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Abstract. We identify a class of chiral models where the one-loop
effective potential for Higgs scalar fields is finite without any requirement of
supersymmetry. It corresponds to the case where the Higgs fields are identified
with the components of a gauge field along compactified extra dimensions. We
present a six-dimensional model with gauge group U(3) × U(3) and quarks and
leptons accommodated in fundamental and bi-fundamental representations. The
model can be embedded in a D-brane configuration of type I string theory and,
upon compactification on a T 2/Z2 orbifold, it gives rise to the standard model
with two Higgs doublets.

1. Introduction

In generic non-supersymmetric four-dimensional theories, the mass parameters of scalar fields
receive quadratically divergent one-loop corrections. These divergences imply that the low-
energy parameters are sensitive to contributions of heavy states with masses lying at the cut-off
scale. Such expectations were confirmed by explicit computations in a string model in [1]. In
fact, in the case where the theory remains four-dimensional (4D) up to the string scale Ms ≡ l−1s ,
we found that the string scale acts as a natural cut-off: the scalar squared masses are given by a
loop factor times M2

s and the precise coefficient depends on the details of the string model.
However, in the case where some compactification radii are larger than the string length,

which corresponds to the situation where, as energy increases, the theory becomes higher-
dimensional before the string scale is reached, we found a qualitatively different result. There,
the one-loop effective potential was found to be finite and calculable from the only knowledge of
the low-energy effective field theory! For instance, in the five-dimensional (5D) case with
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compactification radius R > ls, we found the scalar squared mass to be given by a loop
factor times 1/R2, with exponentially small corrections. The precise factor is now completely
determined by the low-energy field theory.

The above behaviour can easily be understood from the fact that the scalar field considered
in [1] corresponds to the component along the fifth dimension of a higher-dimensional gauge
field [2]. The associated 5D gauge symmetry protecting the scalar field from obtaining a 5D
mass is spontaneously broken by the compactification. As a result a 4D mass term of order 1/R
is allowed and gets naturally generated at one-loop.

In this work we would like to propose a scenario where the Higgs fields are identified with
the internal components of a gauge field along TeV-scale extra-dimensions where the standard
model gauge degrees of freedom can propagate [3, 4]. We will not present here a realistic
model for fermion masses; instead, we would like to concentrate on the main properties of the
electroweak symmetry breaking in an example and postpone a more realistic realization for a
future work.

The adjoint representation of a gauge group containing the standard model Higgs, which
is an electroweak doublet, should extend the electroweak gauge symmetry. The minimal
extension compatible with the quantum numbers of the standard model fermion generations
is SU(3) × SU(3) × U(1). In this work, we construct a six-dimensional (6D) model with
gauge group U(3) × U(3), which can be embedded in a D-brane configuration of type I string
theory. It accommodates all quantum numbers of quarks and leptons in appropriate fundamental
and bi-fundamental representations. The gauge group is broken to the standard model upon
compactification on a T 2/Z2 orbifold, leaving as a low-energy spectrum the observable world
with two Higgs doublets.

We would like to remind that many ingredients were already present in the literature. For
instance, the identification of the Higgs field with an internal component of a gauge field is not
new but a common feature of many string models. The use of this possibility in the case of
large extra-dimension scenarios was already suggested in [4], where two standard model Higgs
doublets were expected to arise from the orbifold action in six dimensions on SU(3), in a way
similar to the model we consider here. Moreover, there have been some proposals in various
contexts of field theory where the Higgs field is identified with a gauge field component along
extra dimensions, leading to finite one-loop mass in the case of smooth compactifications [2].
However, a further essential step was made in [1] as it was shown that embedding the higher-
dimensional theory in a string framework allows us to get a result for one-loop corrections that
is calculable in the effective field theory. In order to obtain such a result from a field theory
description it is necessary to assume that the theory contains an infinite tower of KK states
and not a finite number truncated at the cut-off. The absence of ultraviolet (UV) divergences
in the one-loop contribution to the Higgs mass when the whole tower of Kaluza–Klein (KK)
excitations is taken into account has also been discussed by [5]–[8]. However, in these cases
supersymmetry was necessary in order to cancel the UV divergences in the loop contributions
from bosonic (scalar and vector) and fermionic fields.

The content of this paper is as follows. In section 2 we derive the one-loop effective
potential for a Higgs scalar identified with a continuous Wilson line. We show that the effective
potential is insensitive to the UV cut-off in the case of toroidal compactification, and discuss the
requirements in order to remain as such when performing an orbifold projection. In section 3
we study the minimization of this potential in the case of two extra dimensions. In section 4 we
build a model with the representation content of the standard model from a compactification on
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a T 2/Z2 orbifold of a 6D gauge theory. In section 5 we compute the one-loop Higgs mass terms
for this model reproducing the results of sections 2 and 3. In section 6 we study the cancellation
of anomalies in our model and obtain the induced corrections on the effective potential for the
Higgs fields. Section 7 summarizes our results and discuss the requirements for more realistic
models.

2. The one-loop effective potential

The 4D effective potential for a scalar field φ is given by

Veff(φ) =
1
2

∑
I

(−)FI

∫
d4p
(2π)4

log[p2 +M2
I (φ)] (2.1)

where the sum is over all bosonic (FI = 0) and fermionic (FI = 1) degrees of freedom with
φ-dependent masses MI(φ). In the Schwinger representation, it can be rewritten as

Veff(φ) = −1
2

∑
I

(−)FI

∫ ∞

0

dt
t

∫
d4p
(2π)4

e−t[p2+M2
I (φ)]

= − 1
32π2

∑
I

(−)FI

∫ ∞

0

dt
t3

e−tM2
I (φ)

= − 1
32π2

∑
I

(−)FI

∫ ∞

0
dl l e−M2

I (φ)/l (2.2)

where we have made the change of variables t = 1/l. The integration regions t → 0 (l → ∞)
and t → ∞ (l → 0) correspond to the UV and infrared (IR) limits, respectively.

We consider now the presence of d (large) extra dimensions compactified on orthogonal
circles with radii Ri > 1 (in units of ls) with i = 1, . . . , d. The states propagating in this space
appear in the 4D theory as towers of KK modes of the (4 + d)-dimensional states labelled by I
with masses given by

M2
�m,I = M2

I (φ) +
d∑
i=1

[
mi + aIi (φ)

Ri

]2
(2.3)

where �m = {m1, . . . ,md} with mi integers. In (2.3) the term M2
I (φ) is a (4 + d)-dimensional

mass which remains in the limit Ri → ∞. The (4 + d)-dimensional fields ΨI , whose Fourier
modes decomposition along the d compact dimensions have masses given by (2.3), satisfy the
following periodicity conditions:

ΨI(xµ, yi + 2πkiRi) = ei2π
∑

i kia
I
i ΨI(xµ, yi) (2.4)

where the yi coordinates parametrize the d-dimensional torus and ki are integer numbers. There
are different cases where such a failure of periodicity appears and generates shifts aIi for internal
momenta. For instance, in the case of a Wilson line, aIi = qI

∮ dyi

2π gAi, where Ai is the internal
component of a gauge field with gauge coupling g and qI is the charge of the I field under the
corresponding generator. Another case is when (2.4) appears as a junction condition, i.e. as a
continuity condition of the wavefunction, in the presence of localized potential at yi = 0. In this
work we will focus on the first situation.
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The cases where M2
I (φ) are independent of φ are of special interest. Such models, as we

shall see shortly, lead to a finite one-loop effective potential for φ. Here, we will consider for
simplicity M2

I = 0, as a non-vanishing finite value would otherwise play the role of an IR cut-off
but does not introduce new UV divergences.

The effective potential obtained from (2.2) for the spectrum in (2.3) withM2
I = 0 is given by

Veff(φ)|torus = −
∑
I

∑
�m

(−)FI
1

32π2

∫ ∞

0
dl l e− ∑

i(mi+aI
i )

2
/R2

i l. (2.5)

By commuting the integral with the sum over the KK states, and performing a Poisson
resummation, the effective potential can be written as

Veff(φ)|torus = −
∑
I

(−)FI

∏d
i=1Ri

32π
4−d
2

∑
�n

e2πi
∑

i nia
I
i

∫ ∞

0
dl l

2+d
2 e−π2l

∑
i n

2
iR

2
i . (2.6)

The term with �n = �0 gives rise to a (divergent) contribution to the cosmological constant that
needs to be dealt with in the framework of a fully fledged string theory. This φ-independent part
is irrelevant for our discussion and can be forgotten. For all other (non-vanishing) vectors �n 
= �0
in (2.6), we make the change of variables l′ = π2 l

∑
i n
2
iR

2
i and perform the integration over l′

explicitly. This leads to a finite result for the φ-dependent part of the effective potential

Veff(φ)|torus = −
∑
I

(−)FI
Γ(4+d2 )

32π
12+d

2

d∏
i=1

Ri

∑
�n�=�0

e2πi
∑

i nia
I
i (φ)

[
∑

i n
2
iR

2
i ]

4+d
2

. (2.7)

These results call for a few remarks. A generic (4 + d)-dimensional gauge theory is
not expected to be consistent and its UV completion (the embedding in a consistent higher-
dimensional theory, as string theory) is needed. However, we found that some one-loop effective
potentials can be finite, computable in the field theory limit and insensitive to most of the details
of the UV completion under the following conditions:

• One of the properties of the UV theory we made use of is to allow to sum over the whole
infinite tower of KK modes. This was necessary in order to perform the Poisson resummation
in (2.6). String theory provides an example with such a property. In the string embedding
the effective potential (2.6) becomes

Veff(φ)|torus = −
∑
I

(−)FI

∏d
i=1 Ri

32π
4−d
2

∑
�n

e2πi
∑

i nia
I
i

∫ ∞

0
dl l

2+d
2 fs(l) e−π2l

∑
i n

2
iR

2
i (2.8)

where fs(l) contains the effects of string oscillators. In the case of large radii Ri > 1,
only the l → 0 region contributes. This means that the effective potential receives sizable
contributions only from the IR (field theory) degrees of freedom. In this limit we should
have fs(l) → 1. For example, in the model considered in [1]

fs(l) =
[
1
4l

θ2
η3

(
il +

1
2

)]4
→ 1 for l → 0, (2.9)

and the field theory result (2.7) is recovered†.

† Strictly speaking this is true in consistent, free of tadpoles, models. The known non-supersymmetric string
constructions typically introduce tadpoles that lead to the presence of divergences at some order. However, in the
model considered in [1] these appear at higher orders and we were able to extract the finite one-loop contribution.
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• A second, important, ingredient was the absence of a (4 + d)-dimensional mass M2
I (φ).

The effective potential contains, for instance, a divergent contribution

V (∞) =
1
2

∑
I

(−)FI

∫
d4+dp
(2π)4+d

log[p2 +M2
I (φ)]. (2.10)

While this part identically cancels in the presence of supersymmetry, in a non-
supersymmetric theory it usually gives a contribution to theφ-dependent part of the effective
potential which is sensitive to the UV physics introduced to regularize it. We will consider
below the case where φ arises as a (4+d)-dimensional gauge field. The higher-dimensional
gauge symmetry will then enforce M2

I (φ) = 0.

• Another issue is related with chirality. Compactification on tori is known to provide a
non-chiral spectrum. Chiral fermions arise in more generic compactifications as orbifolds.
These can be obtained from the above toroidal compactification by dividing by a discrete
symmetry group. The orbifolding procedure introduces singular points, fixed under the
action of the discrete symmetry, where new localized (twisted) matter can appear. These
new states have no KK excitations along the directions where they are localized and they
generically introduce, at one-loop, divergences regularized by the UV physics. To keep
the one-loop effective potential finite, we need to impose that such localized states with
couplings to φ are either absent or that they appear degenerate between bosons and fermions
(supersymmetric representations).

The model of [1] discusses an explicit string example with the above properties.
Finally, we would like to comment on higher loop corrections. UV divergences are

expected to appear at two loops, but they must be absorbed in one-loop sub-diagrams
involving wavefunction renormalization counterterms. In other words the effect of two-loop
divergences can be encoded in the running of gauge couplings [5, 8]. Then, requirement of
perturbativity imposes that the string scale should not be hierarchically separated from the inverse
compactification radius (not more than ∼ two orders of magnitude). An UV sensitive Higgs mass
counterterm is not expected to appear at any order in perturbation theory because it is protected
by the higher-dimensional gauge invariance. On the other hand, in the presence of extra massless
localized fields, there are two-loop diagrams depending logarithmically on the cutoff and leading
to corrections to the Higgs mass proportional to log(MsR) [9].

3. The six-dimensional case

In this section we would like to study in greater detail the case of two extra dimensions
compactified on a torus. The torus is parametrized by the radii of the two non-contractible
cycles R1 and R2 and the angle θ between the directions x5 and x6 (see figure 1). We
will use the notation cos θ = c, sin θ = s > 0. These parameters appear in the internal
metric GMN , M,N = 5, 6, the torus area

√
G and the complex structure modulus U given

by

GMN =
(

R21 R1R2c
R1R2c R22

)
;

√
G = R1R2s; U =

R2
R1

(c+ is). (3.1)
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R 2

π

θ

2
1

R

π
2

Figure 1. The two-dimensional torus.

With this notation, the case of orthogonal circles corresponds to θ = π
2 , thus

c = 0. Instead of (2.3), the squared mass of the KK excitations now be-
comes

M2
�m,I =

∣∣∣∣m2 + a2 − (m1 + a1)U√
ImUG1/4

∣∣∣∣
2

=
1
s2

[
(m1 + a1)2

R21
+

(m2 + a2)2

R22
− 2

(m1 + a1)(m2 + a2)c
R1R2

]
(3.2)

where we assumed a vanishing 6D mass M2
I (φ) = 0.

Plugging the form (3.2) in the effective potential and performing a Poisson resummation,
one can extract the part of the effective potential dependent on a1 and/or on a2 that takes the
form

Veff(φ) = −
∑
I

(−)FI
R1R2s

16π7
∑
�n�=�0

cos [2π(n1a1 + n2a2)]
[n21R21 + n22R

2
2 + 2cn1R1n2R2]

3 . (3.3)

We consider here only the case where a1 and a2 are identified with Wilson lines

a1 =
1
2π

q

∮
gA5 dx5 a2 =

1
2π

q

∮
gA6 dx6 (3.4)

where the internal components A5 and A6 of a gauge field have constant expectation values
in commuting directions of the associated gauge groups. Here g is the gauge coupling and q
is the charge of the field circulating in the loop. In such a case the fields a1 and a2 have no
tree-level potential and the one-loop contribution (3.3) represents the leading-order potential for
these fields.

The structure of the minima of the potential (3.3) determines the value of the
compactification radii and torus angle cos θ by imposing the correct EWSB scale at the minimum.
For instance, in the case of one extra dimension the vacuum expectation value (VEV) at the
minimum uniquely determines the compactification radius. It can be easily seen from (2.7) for
d = 1 that the minimum of the potential is at a = 1/2 [1]. In any realistic model a = mtR where
mt is the mass of the fermion which drives EWSB, i.e. the top in the case of standard model;
thus it follows that 1/R = 2mt which is the result that was obtained in [7].
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Figure 2. The minima of the effective potential (3.3), for R1 = R2, as a function
of cos θ.

For the case we are considering here, d = 2, the VEV at the minimum fixes one of the
torus parameters while we have the freedom to fix the other two. In particular, if we restrict
ourselves to the case of equal radii, i.e. R1 = R2 ≡ R, we can still consider the torus angle as a
free parameter. Using torus periodicity and invariance under the orbifold action we can restrict
the potential to the region −1/2 ≤ a1, a2 ≤ 1/2. In fact, the structure of the potential (3.3),
symmetric with respect to |a2| ↔ |a1|, determines that, at the minimum |a2| = |a1| ≡ a.

The minimum is plotted in figure 2 as a function of cos θ. We can see that for cos θ < 0.4
the minimum is at a = 1/2, which corresponds to 1/R = 2mt. For cos θ > 0.4 the minimum
goes from a = 1/2 to a = 1/4, that would correspond to 1/R = 4mt � 0.7 TeV. Of course,
in the absence of a tree-level quartic term the corresponding Higgs mass would be below the
experimental bounds and the model becomes non-realistic. We will discuss this issue in detail
in section 6.

4. A six-dimensional model

The (4 + d)-dimensional Lagrangian for a Yang–Mills gauge field Aµ̂ coupled to a fermion
Ψ(4+d) is given by†:

L = −1
2 TrFµ̂ν̂F

µ̂ν̂ − iΨ̄(4+d)Γµ̂Dµ̂Ψ(4+d) (4.1)

where Γµ̂ represent the gamma matrices in (4 + d)-dimensions. We use the metric ηµ̂ν̂ =
diag(−1,+1, . . . ,+1) and the notation Fµ̂ν̂ =

∑
a F

(a)
µ̂ν̂ ta and Aµ̂ =

∑
aA

(a)
µ̂ ta where the

generators ta are normalized such that Tr(tatb) = δab/2. With this convention

Fµ̂ν̂ = ∂µ̂Aν̂ − ∂ν̂Aµ̂ − ig[Aµ̂ , Aν̂ ]
Dµ̂ = ∂µ̂ + igAµ̂

(4.2)

† We use the hatted indices [µ̂, ν̂, . . . = 0, . . . , 3, 5, 6, . . . , 4 + d] while [µ, ν, . . . = 0, . . . , 3] and [M, N . . . =
5, 6, . . . , 4 + d].
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where g is the tree-level gauge coupling. Upon toroidal compactification the internal components
AM of the gauge fields give rise to scalar fields. Some of them will be later identified with the
standard model Higgs field so that the mass structure given in (2.3) is generated naturally.
Furthermore, when the scalar fields are identified with the internal components AM of gauge
fields, the higher-dimensional gauge symmetry forbids the appearance of a (4+ d)-dimensional
mass term, i.e. M2

I (φ) = 0.
Quartic couplings for the scalar fields are generated from the reduction to 4D of the quartic

interaction among gauge bosons in 6D and takes the form

V0 =
g2

2

d+4∑
M,N=5

Tr[AM , AN ]2. (4.3)

The tree-level quartic interaction term is absent in the case of 5D theory (d = 1), leading to an
unacceptably small Higgs mass (∼50 GeV). Therefore, a realistic model seems to require d > 1.
We discuss below the simplest example of d = 2 extra dimensions.

We make the following choice of 6D Γ-matrices [10] satisfying the 6D Clifford algebra
{Γµ̂,Γν̂} = ηµ̂ν̂ :

Γµ =
[
γµ 0
0 γµ

]
; Γ5 =

[
0 −γ5
γ5 0

]
; Γ6 =

[
0 iγ5
iγ5 0

]
(4.4)

where γ5 is the 4D gamma matrix satisfying (γ5)2 = −1. We can define the corresponding 6D
Weyl projector

P± = 1
2(1 ± iΓ7) =

[ 1
2(1 ∓ iγ5) 0

0 1
2(1 ± iγ5)

]
(4.5)

so that P+ and P− leave invariant the positive and negative chiralities, respectively. The 6D
spinor Ψ(6) and the projectors can be written as

Ψ(6) =



ψ+
ψ−
Ψ−
Ψ+


 ; P+ =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 ; P− =



0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 (4.6)

where ψ± and their mirrors Ψ± are (4D Weyl) two-component spinors. The eigenstates of P+
and P− can be written as

Ψ(6)+ =



ψ+
0
0
Ψ+


 =




ψL

0
0
ΨR


 Ψ(6)− =




0
ψ−
Ψ−
0


 =




0
ψR

ΨL

0


 (4.7)

where in the second equality we have dropped the 6D chirality indices and used the 4D chirality
left (L) and right (R) indices.

We consider now a 6D theory with gauge group U(3)3 × U(3)2 associated to two different
gauge couplings g3 and g2 ≡ g respectively. This model can be embedded in a D-brane
configuration of type I string theory containing two sets of three coincident D5-branes. The
‘colour’ branes give rise to U(3)3 = SU(3)c × U(1)3 and contains the SU(3)c of strong
interactions. Similarly, the ‘weak’ branes give rise to U(3)2 = SU(3)w ×U(1)2 where SU(3)w
contains the weak interactions. This is the smallest gauge group that allows one to identify the
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Higgs doublet as a component of the gauge field. Indeed, the adjoint representation of SU(3)w
can be decomposed under SU(2)w × U(1)1 as

8 = 30 + 10 + 23 + 2̄−3, (4.8)

where the subscripts are the charges under the U(1)1 generator Q1 =
√
3λ8 with gauge coupling

g/
√
12. We chose the normalization of the generators Q2 and Q3 of U(1)2 and U(1)3 such that

the fundamental representation of SU(3)i has U(1)i charge unity [11]. The corresponding gauge
couplings are then given by g/

√
6 and g3/

√
6, respectively.

In addition to the gauge fields, the model contains three families of matter fermions in the
representations

L1,2,3 = (1,3)+(0,1), D c
1,2,3 = (3̄,1)+(−1,0), (4.9)

Q1 = (3, 3̄)+(1,−1) Q2 = (3, 3̄)−(1,−1) Q3 = (3̄,3)−(−1,1) (4.10)

where the notation (r3, r2)ε(q3,q2) represents a 6D Weyl fermion with chirality ε = ± in the
representations r3 and r2 of SU(3)c and SU(3)w, respectively, and U(1) charges q3 and q2
under the generators Q3 and Q2. The choice of the quantum numbers ensures the absence of all
irreducible anomalies in six dimensions (see section 6).

In a D-brane configuration, the states Qi arise as fluctuations of open strings stretched
between the colour and weak branes. In contrast, the open strings giving rise to L and d c need
to have one end elsewhere as L and d c carry charges only under one of the U(3) factors. This
requires the presence of another brane in the bulk, where we assume that the associated gauge
group is broken at the string scale and is not relevant for our discussion. The details of the
derivation of this model are presented in the appendix, along with two alternative possibilities
of quantum number assignments that we do not use in this work.

As the 6D chiral spinors contain pairs of left and right 4D Weyl fermions, the 6D model
contains, besides the standard model states, their mirrors. Thus, the leptons appear as

LL =
(

l
ẽ

)
L

and LR =
(

l̃
e

)
R

(4.11)

while the quark representations are

Q1,2L =
(

q
ũ

)
L

Q1,2R =
(

q̃
u

)
R

Q3L =
(

q̃c

uc

)
L

, Q3R =
(

qc

ũc

)
R

(4.12)

where q, l are the quark and lepton doublets, and ucL, dcL, eR their weak singlet counterparts,
while q̃, l̃, ũ and ẽ are their mirror fermions.

To obtain a chiral 4D theory from the 6D model, we perform a Z2 orbifold:

x5 → −x5 x6 → −x6. (4.13)

Each state can be represented as |gauge〉 ⊗ |spacetime〉 where |gauge〉 represents the gauge
quantum numbers (singlet, fundamental or adjoint representation of U(3)s), while |spacetime〉
represent the spacetime ones (scalar, vector or fermion). The orbifold acts on both of these
quantum numbers.

The orbifold action on the spacetime quantum numbers is chosen to be

even: Aµ → Aµ odd: AM → −AM M = 5, 6. (4.14)
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The adjoint of SU(3) is represented by 3 × 3 matrices ta = λa

2 , where λa are the well known
Gell-Mann matrices. The orbifold action on the adjoint representation of U(3)2 is defined by

ta → Θ−1taΘ with Θ =


 1 0 0

0 1 0
0 0 −1


 . (4.15)

As a result of combining the two actions, the invariant states from the adjoint representation
of U(3)3 are the 4D gauge bosons, while from the adjoint representation of U(3)2 we obtain the
U(2) × U(1) gauge bosons Aµ =

∑
a=1,2,3,8A

(a)
µ

λa

2 + A
(0)
µ · 1√

6
:

Aµ = 1
2




W3 + 1√
3
A(8) +

√
2
3A

(0)
√
2W+ 0

√
2W− −W3 + 1√

3
A(8) +

√
2
3A

(0) 0

0 0 −2√
3
A(8) +

√
2
3A

(0)



µ

(4.16)

as well as the scalar fields HM =
∑

a=4,5,6,7A
(a)
M

λa

2 where M = 5, 6. This takes the form

HM = 1
2


 0 0 A

(4)
M + iA(5)M

0 0 A
(6)
M + iA(7)M

A
(4)
M − iA(5)M A

(6)
M − iA(7)M 0


 = 1

2


 0 0 H+

M

0 0 H0
M

H−
M H0∗

M 0


 .

It is useful to define H = H5 − γ5H6:

H = 1
2


 0 0 H+

5 − γ5H
+
6

0 0 H0
5 − γ5H

0
6

H−
5 − γ5H

−
6 H0∗

5 − γ5H
0∗
6 0


 =


 0 0 H+

2
0 0 H0

2
H−
1 H0

1 0


 . (4.17)

In addition, the orbifold projection acts on the fermions in the representation rf of U(3)×U(3)
as

rf → Θrf : (1, 3)L (3, 3̄)L (3̄, 3)R
rf → −Θrf : (1, 3)R (3, 3̄)R (3̄, 3)L
rf → rf : (3̄, 1)L
rf → −rf : (3̄, 1)R

leaving invariant, in the massless spectrum, just the standard model fields and projecting the
mirrors away.

The model contains three U(1) factors corresponding to the generators Qi with i = 1, 2, 3.
As we will discuss in more details in section 6, there is only one anomaly-free linear combination

QY =
Q1

6
− 2Q2

3
− Q3

3
(4.18)

identified with the standard model hypercharge. The corresponding gauge coupling is given by

1
g2Y

=
3
g2

+
2
3
1
g23

(4.19)

which corresponds to a weak mixing angle θw (at the string scale) given by

sin2 θw =
1

4 + 2
3g
2/g23

. (4.20)
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This relation coincides with one of the two cases considered in [11], which are compatible with
a low string scale. Of course, a detailed analysis would need to be repeated in our model to take
into account the change of the spectrum above the compactification scale.

The other two U(1) are anomalous. In a consistent string theory these anomalies are
cancelled by appropriate shifting of two axions. As a result the two gauge bosons become
massive, giving rise to two global symmetries. One of them corresponding to Q3 is the ordinary
baryon number which guarantees proton stability.

The projection on the fermions as chosen above leaves invariant only the standard model
representations and projects away the mirror fermions from the massless modes. The low-energy
spectrum is then the standard model one with two Higgs doublets H1 and H2 as defined in (4.17).

The Higgs scalars have a quartic potential at tree level given in (4.3). As a function of the
neutral components of the fields H1 and H2 the potential is given by†:

V0(H0
1 , H

0
2 ) =

g2

2
(|H0

1 |2 − |H0
2 |2)2 (4.21)

which corresponds to the one of the minimal supersymmetric standard model with g′2 = 3g2

due to the embedding of the hypercharge generator inside SU(3)w as given by (4.18).
The Higgs field coupling to fermions is given by

−iΨ̄(4+d)ΓMDMΨ(4+d) → Ψ̄(4+d)ΓM
[

− i∂M + g
∑

a=4,5,6,7

A
(a)
M

λa
2

]
Ψ(4+d) (4.22)

and leads to generation of fermion masses when the Higgs fields acquire VEVs.

5. One-loop Higgs mass

The Higgs scalars H5 and H6, or equivalently H1 and H2, arise as zero modes in the dimensional
reduction of the 6D gauge field on the torus. At tree level they are massless and have no VEV.
However, as we will show here, at one-loop a (tachyonic) squared mass term can be generated
inducing a spontaneous symmetry breaking. For simplicity, we will denote H0

M = HM and
H0∗
M = H̄M as they are the only components that will obtain a VEV. The generic mass terms

for H5 and H6 are given by the coefficients of quadratic terms in the expansion of the effective
Lagrangian around H5 = H6 = 0,

− Lmass = M2
55̄|H5|2 +M2

66̄|H6|2 +M2
56̄H5H̄6 +M2

5̄6H̄5H6

= M2
55̄|H5|2 +M2

66̄|H6|2 +M2
+(H5H̄6 + H̄5H6) +M2

−(H5H̄6 − H̄5H6), (5.1)

where we have defined

M2
+ = 1

2(M
2
56̄ +M2

5̄6) M2
− = 1

2(M
2
56̄ − M2

5̄6). (5.2)

Reality of the Lagrangian (5.1) implies that M5̄5 and M6̄6 are real and M5̄6 = M ∗̄
65, so that M2

+
is real, while M2

− is purely imaginary.
However, since the fields H5, 6 do not have a well defined hypercharge, we should write

the Lagrangian for the standard model Higgs fields H1, 2. Using, from equation (4.17),
H5 = (H̄1 + H2)/2 and H6 = (H̄1 − H2)/2i, this part of the Lagrangian can be written as
a function of H1 and H2 as

−Lmass = m2
1 |H1|2 +m2

2 |H2|2 + µ2+ (H1H2 + H̄1H̄2) + µ2− (H1H2 − H̄1H̄2) (5.3)

† We will see in section 6 that this potential gets corrected due to the presence of U(1) anomalies.
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Figure 3. One-loop diagram contributing to M2
IJ̄

.

with

m2
1 =

1
4 [M

2
55̄ +M2

66̄] + (i/2) M2
− m2

2 =
1
4 [M

2
55̄ +M2

66̄] − (i/2) M2
− (5.4)

µ2+ = 1
4 [M

2
55̄ − M2

66̄] µ2− = (i/2) M2
+ (5.5)

where m2
1, m

2
2 and µ2+ are real while µ2− is purely imaginary. The last two terms in (5.3) can

be written in standard notation as [m2
3H1H2 + h.c.] where m2

3 = µ2+ + µ2−. If µ2− 
= 0, m2
3 is

a complex parameter and there is explicit CP -violation if the phase of m2
3 cannot be absorbed

into a redefinition of the Higgs fields.
In general there can be one-loop generated quartic couplings, λ5, λ6 and λ7, in the effective

potential that can prevent such field redefinitions. They look like

−Lquartic = 1
2λ5(H1H2)2 + (H1H2)[λ6 |H1|2 + λ7 |H2|2] + h.c. (5.6)

However, in order to prevent tree-level flavour changing neutral currents one usually
enforces the discrete Z2 symmetry, H2 → −H2, which is only softly violated by dimension-two
operators, and prevents the appearance of λ6 and λ7-terms, i.e. λ6 = λ7 = 0 [12]. In that
case, the phase of m2

3 cannot be absorbed into a redefinition of the Higgs fields provided that
Im(λ∗

5m
4
3) 
= 0, which signals CP -violation.

5.1. Toroidal compactification

We will first compute the Higgs mass parameters M2
55̄, M

2
66̄, M

2
+ and M2

− induced at one-loop
by the fermionic matter fields in the case of a compactification on a torus. We denote by GIJ

the torus metric as given in (3.1) and by GIJ its inverse. The interaction Lagrangian between
the 6D Weyl fermion Ψε, satisfying PεΨε = Ψε with ε = ±, with the Higgs fields

−gΨ̄εΓMHMΨε (5.7)

induces, at one-loop, a quadratic term HIH̄J from the diagram of figure 3.
Calculation of the diagram of figure 3 yields the result

M2
IJ̄ = g2

∑
p5, p6

∫
d4p
(2π)4

Tr
{
ΓI Pε

1
P/

ΓJ Pε
1
P/

}

= − 4 g2RIRJ

∑
p5, p6

∫
d4p
(2π)4

{
GIJ

p2 + pMGMNpN
− 2GIKGJLpKpL

(p2 + pMGMNpN)2

}
(5.8)

with P/ = Γµ̂P µ̂ = p/ + Γ5p5 + Γ6p6 where p is the 4D momentum. For simplicity of notations
we use here R5 ≡ R1 and R6 ≡ R2. The RIRJ factors arise because the normalization of the
metric is such that the pI are integers. In the last equality of (5.8) we have used the Γ-matrices
property

Tr[ΓIPεΓµ̂ΓJPεΓν̂ ] = 1
2 Tr

[
ΓIΓµ̂ΓJΓν̂

]
= 4(gIµ̂gJν̂ + gIν̂gJµ̂ − gIJgµ̂ν̂) (5.9)
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where gµ̂ν̂ has elements {gµν = ηµν , gµI = 0, gIJ = GIJRIRJ} .
Note that the result of (5.8) is independent of the 6D chirality so we can choose ε = +

without loss of generality.
To perform the integration in (5.8) we use the Schwinger representation

1
(p2 +m2)n

=
1

Γ(n)

∫ ∞

0
dt tn−1 e−(p2+m2)t (5.10)

and make the change of variables t = 1/l. This gives

M2
IJ̄ = − 4g2

16π2
RIRJ

∑
p5, p6

∫ ∞

0
dl

(
GIJ − 2GIKGJLpKpL

l

)
e−(pMGMNpN )/2l. (5.11)

As the momenta p5 and p6 take integer values, we can perform a Poisson ressumation which
gives

M2
IJ̄ = −4g2π

8

√
GRIRJ

∑
p̃5, p̃6

∫ ∞

0
dl l2 p̃I p̃J e−π2(p̃MGMN p̃N )l (5.12)

where p̃I are momenta on the dual lattice. p̃I take integer values with our choice for the metric
in (3.1). Note that the integrand dies exponentially when l → ∞ except when p̃5 = p̃6 = 0.
However, this term is zero in the summation (5.12) because of the prefactor p̃I p̃J and the
integral is well behaved for all values of p̃5, p̃6. We finally make the change of variables
l′ = π2(p̃MGMN p̃N)l and perform the integration on l′ to obtain

M2
IJ̄ = −NFg

2

4π5
√
G

∑
p̃5, p̃6

RIRJ p̃
I p̃J

[p̃MGMN p̃N ]3
(5.13)

with NF = 4 being the number of degrees of freedom of a 6D Weyl spinor.
This corresponds to the mass parameters

M2
55̄ = −NFg

2

4π5
R1R2s

∑
n1, n2

n21R
2
1

[n21R21 + n22R
2
2 + 2c n1n2R1R2]3

,

M2
66̄ = −NFg

2

4π5
R1R2s

∑
n1, n2

n22R
2
2

[n21R21 + n22R
2
2 + 2c n1n2R1R2]3

,

M2
+ = M2

56̄ = M2
5̄6 = −NFg

2

4π5
R1R2s

∑
n1, n2

n1n2R1R2
[n21R21 + n22R

2
2 + 2c n1n2R1R2]3

,

M2
− = 0 (5.14)

which implies that

m2
1 = m2

2 = −NFg
2

8π5
R1R2s

∑
n1, n2

n21R
2
1 + n22R

2
2

[n21R21 + n22R
2
2 + 2c n1n2R1R2]3

,

µ2− = −i
NFg

2

4π5
R1R2s

∑
n1, n2

n1n2R1R2
[n21R21 + n22R

2
2 + 2c n1n2R1R2]3

,

µ2+ = 0. (5.15)

It is easy to check that the CP-violating term µ2− vanishes for c = cos θ = 0. This yields
m2
3 purely imaginary so that if the quartic coupling λ5(H1H2)2 + h.c. is generated with a real

coefficient then Im(m4
3 λ

∗
5) = 0 and there is no CP -violation.

New Journal of Physics 3 (2001) 20.1–20.24 (http://www.njp.org/)

http://www.njp.org/


20.14

5.2. Orbifold compactification

Let us now turn to the orbifold case of our example. We will carry the computation of the
one-loop Higgs mass induced by the fermions originating from a 6D Weyl fermion Ψ+:

Ψ(6)+ =




ψL

0
0
ΨR


 with ψL =


 φ̃e

φe
φo


 and ΨR =


 ˜̄χo

χ̄o
χ̄e


 . (5.16)

The Γ-matrices Γµ̂⊥ as written in (4.4) are given in an orthogonal basis. In order to write the
Yukawa interaction with the Higgs fields we need to define the Γ-matrices in the basis associated
with x5, x6 and forming an angle θ (see figure 1):

Γ5 = Γ5⊥ − c

s
Γ6⊥

Γ6 =
1
s
Γ6⊥

(5.17)

which satisfy {ΓM ,ΓN} = 2gMN . The Yukawa interaction giving rise to masses for the
components of the fermions in L can be obtained from the expansion of (5.7)

LYukawa = − g
1
s
(H6 − e−iθH5) φ̄eχ̄e − g

1
s
(H̄6 − eiθH̄5) χeφe

− g
1
s
(H̄6 − e−iθH̄5) φ̄oχ̄o − g

1
s
(H6 − eiθH5) χoφo. (5.18)

As we are performing the computation in the symmetric phase, i.e. an expansion around
HM = 0, we can use the free fields KK decomposition of the fermion fields. The Z2-even states
φe and χ̄e have the following decomposition:

φe =
1

π
√
R1R2

∞∑
n1=−∞

∞∑
n2=−∞

cos
(
n1x

5

R1
+

n2x
6

R2

)
φ(n1,n2)
e

χ̄e =
i

π
√
R1R2

∞∑
n1=−∞

∞∑
n2=−∞

cos
(
n1x

5

R1
+

n2x
6

R2

)
χ̄(n1,n2)
e

(5.19)

while for the Z2-odd states φo and χ̄o we have,

φo =
1

π
√
R1R2

∞∑
n1=−∞

∞∑
n2=−∞

sin
(
n1x

5

R1
+

n2x
6

R2

)
φ(n1,n2)
o

χ̄o =
i

π
√
R1R2

∞∑
n1=−∞

∞∑
n2=−∞

sin
(
n1x

5

R1
+

n2x
6

R2

)
χ̄(n1,n2)
o

(5.20)

where the transformation properties under the orbifold group action imply

φ(−n1,−n2)
e = φ(n1,n2)

e φ(−n1,−n2)
o = −φ(n1,n2)

o

χ̄(−n1,−n2)
e = χ̄(n1,n2)

e χ̄(−n1,−n2)
o = −χ̄(n1,n2)

o .
(5.21)

The Yukawa couplings of H5 and H6 are given by∫
d4x

∫ πR1

0
dx5

∫ πR2

0
dx6 [gH5(e−iθφ̄eχ̄e + eiθχeφe) − gH6(φ̄eχ̄e + χeφe)] (5.22)
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while those of H̄5 and H̄6 can be obtained by complex conjugation. Using the KK-decomposition
of (5.20) in (5.18) we obtain the coupling of H6 to the KK-excitations of the fermion

LY 6 = −
∑
n1, n2

′ igH6
(
φ̄(n1,n2)
e χ̄(n1,n2)

e + φ̄(n1,n2)
o χ̄(n1,n2)

o

)
+ h.c. (5.23)

where the summation
∑′ is defined as,

∑
n1, n2

′ f(n1, n2) =
∞∑

n1=1

∞∑
n2=−∞

f(n1, n2) +
∞∑

n2=0

f(0, n2). (5.24)

Notice that there is no overcounting of states in (5.23) since, from (5.21), φ(0,0)o = χ
(0,0)
o ≡ 0.

It is also important to note that even for this orbifold case the summation can be made on a full
tower of KK-excitations n1, n2 ∈ [−∞,∞]. This can be made explicit by defining φ(n1,n2) and
χ(n1,n2) through

φ(n1,n2) =




φ(n1,n2)
e for n1 > 0

φ(n1,n2)
e for n1 = 0, n2 > 0

φ(0,0)e for n1 = n2 = 0

φ(n1,n2)
o for n1 = 0, n2 < 0

φ(n1,n2)
o for n1 < 0,

χ(n1,n2) =




χ(n1,n2)
e for n1 > 0

χ(n1,n2)
e for n1 = 0, n2 > 0

χ(0,0)e for n1 = n2 = 0

χ(n1,n2)
o for n1 = 0, n2 < 0

χ(n1,n2)
o for n1 < 0.

(5.25)

The interaction Lagrangian between H6 and the fermions takes then the form

LY 6 = −
∞∑

n1=−∞

∞∑
n2=−∞

ig
[
H6φ̄

(n1,n2)χ̄(n1,n2) + H̄6φ
(n1,n2)χ(n1,n2)

]
. (5.26)

The diagonal one-loop-induced mass term M2
66̄|H6|2 is then automatically finite, as it is due to a

whole tower of KK states. In fact the contribution of a full tower can be computed directly from
the toroidal case (5.13) with the replacement NF → NF (orbifold) = 1

2NF (torus).
In the same way, the Yukawa coupling of H5 with fermions of positive 6D chirality is given

by

LY 5 =
∑
n1, n2

′ gH5
[
ie−iθφ̄(n1,n2)

e χ̄(n1,n2)
e + ieiθφ̄(n1,n2)

o χ̄(n1,n2)
o

]
+ h.c. (5.27)

When computing the one-loop diagrams of figure 3 contributing to M2
55̄, the product of phases

e±iθ at the two vertices cancel to each other and the result also corresponds to the contribution
of a whole tower of states. It can be obtained from M2

66̄ through the exchange of R1 with
R2. In fact, it is possible to write the Lagrangian (5.27) as a Yukawa coupling interaction
of H5 with a complete tower of KK excitations, as it was done in (5.26) for H6, by making
phase rotations on the fermions. However, for θ 
= π

2 one cannot write simultaneously
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both (5.27) and (5.26) as interactions with a whole tower. In fact, the phase e±iθ comes from
the metric of the torus and for θ 
= π

2 it is at the origin of the appearance of a M2
− term as we

will see now.
The one-loop-induced mixing terms between H5 and H6 can also be computed in a

straightforward manner as the sum of the contribution of even states and that from odd states
propagating in the loop of figure 3. The result of the one-loop mixing diagrams can be written
formally as

M2
56̄ = e−iθ

(
contributions of

even states

)
+ eiθ

(
contributions of

odd states

)
(5.28)

M2
5̄6 = eiθ

(
contributions of

even states

)
+ e−iθ

(
contributions of

odd states

)
(5.29)

which implies

M2
+ = c

[(
contributions of

even states

)
+

(
contributions of

odd states

)]
(5.30)

M2
− = −i s

[(
contributions of

even states

)
−

(
contributions of

odd states

)]
. (5.31)

In (5.30) the sum of contributions from even and odd states reproduces the one from a whole
tower of states. The overall c is necessary to reproduce the metric factor in the product of the
two momenta p5 and p6 (see the double product in (5.8)). We then reproduce for M2

+ the result
of the torus with, again, NF → NF (orbifold) = 1

2NF (torus).
Next, we consider the mass parameter M2

−. Due to the relative sign in (5.31), all the
contributions of even and odd massive KK-states cancel to each other and only the divergent
contribution of the massless mode remains! while each tower of KK excitations of the massless
fermions contributes with a divergent result, the sum of all of these contributions is finite and, in
our case, it vanishes. Indeed, the cancellation of irreducible non-Abelian anomalies in 6D (see
the next section) requires the fermions to arise from 6D Weyl spinors that can be paired with
opposite 6D chiralities. While the Higgs field interaction with the positive chirality fermions is
given by

L+Yukawa = − g
1
s

(
H6 − e−iθH5

)
φ̄eχ̄e − g

1
s

(
H6 − eiθH5

)
χoφo + h.c. (5.32)

the one with negative chirality fermion interaction is given by

L−
Yukawa = − g

1
s

(
H6 − eiθH5

)
φ̄eχ̄e − g

1
s

(
H6 − e−iθH5

)
χoφo + h.c. (5.33)

The contribution of fermions originating from 6D spinors with negative chirality can be obtained
from the one due to spinors with positive chirality through the exchange of eiθ → e−iθ. For each
pair of such fermions the contribution to M2

− cancels. In our model of section 4, we have the
leptons L whose contribution is cancelled by that of Q3, and the quarks Q2 that cancel the
contributions from Q1. The sum of the contributions of all fermions leads then to M2

− = 0.
Our results for the mass parameters are then

NF → NF (orbifold) = 1
2NF (torus)

M2
55̄ = −NFg

2

4π5
R1R2s

∑
n1, n2

n21R
2
1

[n21R21 + n22R
2
2 + 2c n1n2R1R2]3

,
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M2
66̄ = −NFg

2

4π5
R1R2s

∑
n1, n2

n22R
2
2

[n21R21 + n22R
2
2 + 2c n1n2R1R2]3

,

M2
+ = M2

56̄ = M2
5̄6 = −NFg

2

4π5
R1R2s

∑
n1, n2

n1n2R1R2
[n21R21 + n22R

2
2 + 2c n1n2R1R2]3

,

M2
− = 0 (5.34)

which implies that

m2
1 = m2

2 = −NFg
2

8π5
R1R2s

∑
n1, n2

n21R
2
1 + n22R

2
2

[n21R21 + n22R
2
2 + 2c n1n2R1R2]3

,

µ2− = −i
NFg

2

4π5
R1R2s

∑
n1, n2

n1n2R1R2
[n21R21 + n22R

2
2 + 2c n1n2R1R2]3

,

µ2+ = 0. (5.35)

It is important to note that results of the diagrammatic one-loop computation exactly
reproduce the results of the expansion of the one-loop effective potential in section 3 upon
identification: H5 = H̄5 = a1/gR1 and H6 = H̄6 = a2/gR2.

The geometrical origin of the mixing terms between H5 and H6 can be understood easily.
Upon toroidal compactification, the 6D Lorentz invariance is broken and one is left with
translation invariance along the two internal dimensions. This symmetry is enough to forbid
transitions between the components A′

5 and A′
6 of the internal gauge field in an orthogonal

basis and thus forbids any mass term of the form A′
5A

′
6. However, due to the presence of the

angle θ 
= π
2 the new fields A6 have a component cA6 along the fifth dimension, which implies

transitions amplitudes between A6 and A5, or equivalently between H5 and H6, c = cos θ 
= 0.
On the other hand, the mass terms M2

− (µ2−) correspond to transitions between elements of
the orthogonal basis which do not receive contributions from the bulk fields M2

− = µ2+ = 0.
However, upon orbifolding of the torus, the translation invariance is broken at the boundaries
and then terms mixing A′

5 and A′
6 could a priori appear localized on the fixed points through

higher loops involving localized states.

6. Higgs potential from U (1) anomaly cancellation

It is easy to show that the 6D model with the spectrum given in (4.10) is free from irreducible
anomalies†. Indeed the associated anomaly polynomial which describes all mixed non-Abelian
and gravitational anomalies is factorizable and it is given by

A6D = trF 2c trF 2w (6.1)

where Fc and Fw are the strength fields of the SU(3)c and SU(3)w gauge fields respectively. The
reducible anomaly (6.1) can be cancelled by a generalized Green–Schwarz mechanism [13].

The compactification to four dimensions on the T 2/Z2 orbifold considered in section 4 does
not produce any non-Abelian anomalies. The chiral spectrum obtained through the Z2 projection

† As the non-Abelian factors in our model are SU(3)s there is no irreducible trF 4. However, there is the possibility
to have terms of the form trQiF

3.
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leads, however, to anomalies for the U(1) factors. The mixed anomalies of the three U(1)s with
non-Abelian factors are given by the matrix [Aai]:

[Aαi] =
(−6 −3

2 0
−3 −3 9

2

)
(6.2)

where Aαi = tr(Qit
2
α) with t1 and t2 the generators of SU(3)c and SU(2)w respectively. It is

easy to check that one U(1) combination, corresponding to the hypercharge U(1)Y :

QY = 1
3(
1
2Q1 − 2Q2 − Q3) (6.3)

obtained in (4.18), is anomaly free while the two other orthogonal combinations of U(1) factors

Q′ =
1√
30

(2Q1 + Q3)

Q′′ =
1√
30

(Q2 − 2Q3)
(6.4)

are anomalous. These anomalies can generally be cancelled in two possible ways: (i) by the
appearance of extra matter localized at the orbifold fixed points with the appropriate quantum
numbers to cancel the anomalies; (ii) by a generalized Green–Schwarz mechanism.

Although, for simplicity, we will only consider below the second possibility, the former
one could also be easily realized. For instance, if the model originates from D5-(anti)branes in
type IIB orientifolds, then D3-(anti)branes should also be introduced because of the Z2 orbifold.
Open strings with one end on these branes and the other on the U(3) × U(3) D5-branes would
give rise to extra matter fields needed to cancel the U(1) anomalies. As stated in section 2, a
sufficient condition to keep the one-loop Higgs mass finite is that these localized states must
appear in supermultiplets. In this case, the results for the one-loop Higgs potential obtained
above remain unchanged.

A way to avoid the appearance of extra branes and matter, is by making the Z2 orbifold
freely acting, combining for instance its action with a shift by half a compactification lattice
vector. Our computation can be easily generalized for this case.

The generalized Green–Schwarz mechanism to cancel the above anomalies rests on the
observation that if the model is obtained using a string construction there should exist two
(Ramond–Ramond) axion fields a′ and a′′ which transform non-trivially under the U(1)′ and
U(1)′′ gauge transformations in order to cancel the anomalies [14]. The couplings of these fields
to the corresponding gauge fields, B′

µ and B′′
µ is given by the Lagrangian

L = −1
2(∂µa

′ + λMsB
′
µ)
2 − 1

2

∑
k

(∂µa′′ + λMsB
′′
µ)
2

− 1
32π2

a′

λMs

∑
a

k′
a F

(a)
µν F̃ (a)µν − 1

32π2
a′′

λMs

∑
a

k′′
a F (a)µν F̃ (a)µν (6.5)

where λ is a parameter that depends on the string model and

k′
1 = tr(Q′t21) k′

2 = tr(Q′t22) k′′
1 = tr(Q′′t21) k′′

2 = tr(Q′′t22). (6.6)

In order to cancel the phase from the fermionic determinant, the axionsa′ anda′′ need to transform
as

δB′
µ = ∂µΛ′, δa′ = gλMsΛ′ and δB′′

µ = ∂µΛ′′, δa′′ = gλMsΛ′′. (6.7)
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In the analysis of the modifications of the Higgs potential due to the use of a Green–
Schwarz mechanism for cancelling the anomalies, it is necessary to make use of a basis for the
U(1) charges. A possible choice is to use U(1)Y , U(1)Q′ and U(1)Q′′ such that the anomaly-free
combination QY is made manifest. Instead, it is more convenient for our discussion to use U(1)1
(Q1) since the Higgs fields do not carry charges under the other two U(1). In order to obtain
the modification to the Higgs potential we assume that the theory is obtained as a truncation
of a supersymmetric (‘super-parent’) theory projecting away the R-symmetry odd gauginos,
sleptons, squarks and Higgsinos while keeping the R-parity even states: gauge bosons, matter
fermions and Higgs scalars. The tree-level Lagrangian can then be obtained by putting to zero
the R-odd states. This way of describing the model as a truncation allows one to obtain the
modification for tree-level Higgs potential easily. Indeed, this potential given in (4.21) arises
in the super-parent model as the D-term potential. Its modification due to the cancellation of
anomalies through the Green–Schwarz mechanism is well known, and given by

g2

8
(|H0

1 |2 − |H0
2 |2

)2 + 3 g2

8
(|H0

1 |2 − |H0
2 |2

)2

→ g2

8
(|H0

1 |2 − |H0
2 |2

)2 + 3 g2

8

(
|H0

1 |2 − |H0
2 |2 + ξ

ϕ√
G

)2
(6.8)

where ξ is proportional to λ and ϕ is a scalar modulus blowing up the orbifold singularities; it
is complexified with the axion a′. The first term in (6.8) arises from the D term of the U(1) in
the Cartan of SU(2)w, which is free of anomalies, while the second one arises from the D term
of U(1)1, with anomalies cancelled by the Green–Schwarz mechanism. The presence of 1√

G

in (6.8) is due to the absence of the U(1) anomaly in the decompactification limit.
The leading terms in the expansion of the scalar potential in powers of H1 and H2 are then

given by

Vtotal = Vc(ϕ,GIJ) + V0(H1, H2, ϕ,GIJ) + ∆V1 (6.9)

where V0 is the tree-level potential including the U(1)-anomaly, equation (6.8), and ∆V1 is the
one-loop effective potential from bulk field loops, computed in previous sections. We do not
minimize with respect to ϕ, the internal metric GIJ and other moduli, as their corresponding
effective potential Vc is unknown. Instead, we consider these moduli as given parameters of the
theory and carry the minimization only with respect to H1 and H2.

We will start by analysing the structure of V0 as a function of the four real fields A1 = A
(6)
5 ,

A2 = A
(6)
6 , B1 = A

(7)
5 and B2 = A

(7)
6 , in terms of which the neutral components of Higgs

doublets are defined as

H5 = A1 + iB1, H1 = [A1 − B2 − i(A2 +B1)]/2
H6 = A2 + iB2, H2 = [A1 +B2 − i(A2 − B1)] /2.

(6.10)

The potential V0 reads,

V0 = α (B1A2 − A1B2)2 + β

(
B1A2 − A1B2 + ξ

ϕ√
G

)2
(6.11)

whereα = g2/8 and β = g′2/8. Notice that the VEVs of theAI-fields are, after a trivial rescaling
by gRI , the Wilson line background we introduced in section 3. In that case, i.e. for BI ≡ 0, the
potential V0 is just a constant provided by the anomaly.
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Minimization with respect to AI and BI yields the condition for the corresponding VEVs,
〈AI〉 = aI , 〈BI〉 = bI

a1 b2 − b1 a2 = κ2, κ2 =
g′2

g2 + g′2 ξ
ϕ√
G

(6.12)

and the squared mass matrix at the minimum is given by

M2 = 2 (α+ β)




b22 −b1 b2 −b2 a2 a1 b2
−b1 b2 b21 b1 a2 −b1 a1
−b2 a2 b1 a2 a22 −a1 a2
a1 b2 −b1 a1 −a1 a2 a21


 (6.13)

where the VEVs aI and bI are subject to the condition (6.12). The matrix (6.13) has one non-
vanishing mass eigenvalue, given by

M2 =
g2 + g′2

2
v2, (6.14)

where v2 ≡ |H1|2+ |H2|2, and three massless eigenvalues corresponding to three flat directions
of the potential V0. The mass eigenstates are

Ã1 = −a1
b2

A1 +B2 (6.15)

Ã2 =
a2
b2

A1 +B1 (6.16)

B̃1 =
b1
b2

A1 + A2 (6.17)

B̃2 =
b2
a1

A1 − b1
a1

A2 − a2
a1

B1 +B2 (6.18)

where Ã1, Ã2 and B̃1 are the flat directions of V0.
If we define the β-angle as tan β = |H2|/|H1|, we can use the equation of minimum (6.12)

to write,

tan β =

√
v2 + κ2

v2 − κ2
. (6.19)

In particular, in the absence of anomaly ξ = 0 and tan β = 1.
Of course, the latter result is based on the tree-level minimization condition (6.12) and

radiative corrections, corresponding to the introduction of the potential ∆V1, can provide small
corrections to it. In particular we can introduce just the radiative mass terms of (5.35) in the
potential∆V1, neglect the one-loop generated quartic couplings compared to the tree-level quartic
potential, and assume that the determination of tan β from (6.12) is a good enough approximation.
The effective potential, written as a function ofH1 andH2 contains now a term asµ2− H1H2+h.c.
where µ2− is purely imaginary as given in (5.35). In fact, if we define µ2− ≡ im2

3 we can absorb
the phase eiπ/2 into the Higgs product H1H2 and, since λ6 = λ7 = 0 in (6.9), our approximated
potential does not contain any explicit CP -violation. Using now the SU(2) gauge invariance in
order to rotate one of the Higgs field VEVs on its real part, the remaining degrees of freedom
are |H1|, |H2| and a phase, whose VEV would signal spontaneous CP breaking. However,
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Figure 4. The function f(c) in (6.21).

since λ5 = λ6 = λ7 = 0 in (6.9), it is easy to see that the dynamical phase is driven to zero.
Minimization conditions imply now,

|H1|2 − |H2|2 + κ2 =
4

g2 + g′ 2 cot 2β m2
3 (6.20)

which generalizes equation (6.12). In fact, in the absence of U(1) anomalies, for ξ = 0,
equation (6.20) is only consistent for tan β = 1, in agreement with equation (6.19). In
a sense equation (6.12) can be seen as the limit of (6.20) when RI → ∞. However, for
finite radii equation (6.20) can be used, if tan β is approximately fixed by (6.19), to relate the
compactification radii and the physical VEV of the Higgs fields v2 = |H1|2+ |H2|2. We will do
this for the case of equal radii, R1 = R2 = R, and an arbitrary torus angle c ≡ cos θ. Using the
relations (6.20) and (5.35) we can write the compactification radius as a function of c and the
other parameters of the theory, as v2, κ2 and tan β,

1
R

= f(c)
√

(10/NF ) (v2 sin 2β + κ2 tan 2β). (6.21)

We have arbitrarily normalized NF to 10 and the function f(c), that can be easily obtained
from (5.35), has been plotted in figure 4, where we have chosen g2 = g′ 2.

From figure 4 we can see that, depending on the value of c, there is an enhancement factor for
the compactification scale 1/R with respect to the weak scale v. This enhancement factor goes
to ∞ when c → 0†, which shows that we can obtain compactification scales larger than the weak
scale 1/R � v for a range of torus angles. As we have seen in section 3 this enhancement factor
disappears for pure Wilson lines since in that case the background field is along the direction
|H1| = |H2| and all quartic (non-radiative) contributions to the effective potential vanish.

† For the case c = 0, m2
3 = 0 and equation (6.20) goes back to (6.12), for which the relation between 1/R and the

weak scale is lost.
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7. Discussion

In this work we have studied the possibility that the standard model Higgs boson would be
identified with the component of a gauge field along a compact extra dimension. The nice
feature in such scenario is that the Higgs mass is expected to be free of one-loop quadratic
divergences. Such divergences would introduce a mass to the Higgs field that would not vanish
in the decompactification limit, and they are thus forbidden by the higher-dimensional local
gauge symmetry.

Although higher-dimensional gauge theories are non-renormalizable, we have shown that
for toroidal compactifications the full one-loop potential of the Higgs field can be explicitly
computed without any reference to the underlying fundamental theory. As these toroidal
compactifications do not lead to a chiral spectrum, it is necessary to introduce more complicated
internal spaces. We considered here compactification on an orbifold obtained from the torus by
gauging a discrete Z2 symmetry of the model. The finiteness of the one-loop Higgs mass is no
more guaranteed in this case because of the presence of subspaces fixed under the orbifold
where the local higher-dimensional gauge symmetry is not conserved. Indeed, in existing
string examples, one often obtains massless states localized at the orbifold fixed points in
representations of the 4D (but not the higher-dimensional) gauge group. We have shown that the
one-loop result remains insensitive to the UV theory if the localized matter appears degenerate
between fermions and bosons, forming N = 1 supersymmetric multiplets. Such a situation
appears for instance in the class of non-supersymmetric string models that were studied in [1].

For such orbifold models we have computed the one-loop Higgs mass, both from the analysis
of the effective potential and from a diagrammatic one-loop computation, and shown to agree.
The former method allows to compute the full one-loop effective potential dependence on tree-
level flat directions. Instead, in the second (diagrammatic) approach we are able to compute the
quadratic part for all scalar fields, however only as an expansion around the symmetric phase
where the VEVs vanish.

In a fully realistic model the fermion flavour should be incorporated from the fundamental
theory. In fact, as the Higgs is identified with an internal component of a gauge field, all tree
level Yukawa couplings are given by the gauge coupling and all particles interacting with the
Higgs field participate equally in generating its mass. This is to be contrasted with the usual
case where the one-loop Higgs mass is dominated by the top quark due to the hierarchy of
Yukawa couplings. A possible approach would be to identify the two light generations with
(supersymmetric) boundary states with no tree level Yukawa couplings. In this work we did
not attempt to address the problem of hierarchy of fermion masses. Instead, we tried to build a
simple model from compactifications on orbifold in order to illustrate the main features of the
scenario. We constructed a model where the massless representations are exactly the ones of the
standard model, with two Higgs doublets originating from the internal components of a gauge
field. It was obtained as a compactification of a 6D model with gauge group U(3) × U(3) on a
T 2/Z2 orbifold.
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Appendix. Embedding of the standard model in U (3) × U (3)

We will assume that the model can be embedded in a configuration of D-branes of type I strings.
In such a case matter fields arise as massless fluctuations of open strings stretched between two
sets of branes. Given n sets of coincident Ni, i = 1, . . . , n, D-branes, the associated gauge
group is U(N1) × · · · × U(Nn) ≡ SU(N1) × · · · × SU(Nn) × U(1)N1 × · · · × U(1)Nn , with
non-Abelian gauge couplings gNi

and abelian ones normalized as gNi
/
√
2Ni. An open string

starting on one of the Ni and ending on one of the Nj branes transforms in the representation
(Ni, N̄j) of SU(Ni) × SU(Nj)(1,−1) where (1,−1) are the U(1)Ni

× U(1)Nj
charges.

For the purpose of embedding the standard model, we choose n = 2 and N1 = N2 = 3,
so that the gauge group is U(3)3 × U(3)2 ≡ SU(3)c × SU(3)w × U(1)3 × U(1)2. We denote
by Q3 and Q2 the charges associated to U(1)3 and U(1)2, respectively. The weak SU(3)w
contains SU(2)w ×U(1)1 as its maximal subgroup, with the generator Q1 of U(1)1 represented
in the adjoint of SU(3)w as

√
3λ8. Here λ8 is the diagonal Gell-Mann matrix with entries

{1/√3, 1
√
3,−2

√
3}.

The standard model hypercharge is a linear combination of the three U(1) charges Q1, Q2

and Q3:

QY = c1Q1 + c2Q2 + c3Q3 (A.1)

where the coefficients ci are such that it reproduces the standard model representation quantum
numbers.

First, note that the Higgs doublets arising from the decomposition of the adjoint of SU(3)w
in irreducible representations of SU(2)w × U(1)1 are not charged with respect to either Q2 or
Q3. With their hypercharge normalized as ±1/2 we obtain c1 = 1/6. Next, we consider the
lepton doublets l to arise from the representation (1,3)L, while the singlet eR belongs to the
mirror representation (1,3)R. In order to obtain the correct normalization of the corresponding
hypercharges, we are led to c2 = −2/3. Finally, for the quark representations we find two
possible choices, corresponding to put either the uc or the dc quark with the quark doublet in the
bifundamental representation of SU(3)c×SU(3)w. The first choice leads to the model described
in section 4. The other choice leads to c3 = 2/3 with matter representations

L1,2,3 = (1,3)+(0,1), U1,2,3 = (3,1)+(1,0), (A.2)

Q1 = (3,3)−(1,1) Q2 = (3,3)−(1,1) Q3 = (3,3)+(1,1). (A.3)

The standard model representations are obtained through a Z2 orbifold on the representations rf
as

rf → Θrf : (1,3)L (3,3)L
rf → −Θrf : (1,3)R (3,3)R
rf → rf : (3,1)R
rf → −rf : (3,1)L

which keeps the standard model fermions and projects the mirrors away. Only one linear
combination is anomaly free and corresponds to the hypercharge

QY =
Q1

6
− 2Q2

3
+

2Q3

3
. (A.4)
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The corresponding tree-level gauge coupling is given by
1
g2Y

=
3
g2

+
8
3
1
g23

(A.5)

and corresponds to a weak mixing angle θw given by

sin2 θw =
1

4 + 8
3g
2/g23

. (A.6)

Note that both this model and the one presented in section 4 require the presence of a new
brane where the open strings giving rise to L and Dc or U will end. One way to avoid the
introduction of the new brane is to make use of the fact that the representation 3̄ can be obtained
as the antisymmetric product of two 3s. L and Dc can then be identified with massless exitations
of open strings with both ends on the weak and colour D-branes, respectively, and corresponding
U(1) charges, L = (1,3)(0,2) and Dc = (3̄,1)(−2,0). The hypercharge generator is then

QY =
Q1

6
+

Q2

3
− Q3

3
. (A.7)
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