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Abstract

π
−
π
−
π
− correlations from Pb+Pb collisions at 158 GeV/c per nucleon are pre-

sented as measured by the focusing spectrometer of the NA44 experiment at CERN.
The three-body effect is found to be stronger for PbPb than for SPb. The two-
dimensional three-particle correlation function is also measured and the longitudinal
extension of the source is larger than the transverse extension.
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1 INTRODUCTION
Three-particle Bose-Einstein correlations are sensitive to source geometry and chao-

ticity[1, 2] in a way not seen in ordinary two-particle correlations. Hence three-body
correlation studies provide a test of the validity of various assumptions often used in the
parameterization of the two-particle correlation function. The additional information is
carried by the genuine three-particle correlation term. In the case of source asymmetries
and/or coherent particle emission, the strength of the genuine three-particle correlation
term will be suppressed. Genuine three-particle correlations have been found at their full
strength in electron-positron annihilations[3] and in high energy in pp collisions[4]. In
other reactions and at lower energies, the possible presence of a three-body correlation is
unclear[5, 6, 7, 8]. In heavy-ion collisions a significant suppression of the genuine three-
body correlation has been reported by this collaboration in S+Pb collisions[9]. In this
paper we have analysed our Pb+Pb three-pion events in the same way as in [9]. In addition
we report on the first experimental measurement of the two-dimensional three-particle
correlation function.

2 EXPERIMENTAL SET-UP
The NA44 experiment is a focusing spectrometer measuring particle distributions

at mid-rapidity with excellent particle identification. The spectrometer set-up has been
described well in [10]. The momentum range and sign of the charge of the particles is
selected by two dipole magnets. The data used for this analysis is 4 GeV/c ± 20%. The
spectrometer axis is located at 44 mrad with respect to the beam axis and covers a pT

range of 0 - 400 MeV/c, with an average of 〈pT 〉 = 145 MeV/c. The rapidity range is
3.1 − 4.1, with an average of 3.7. The trigger requires a well identified single lead ion, at
least two hits on the hodoscopes and a pion signal (with no electrons) from the Cherenkov
detectors. The centrality is fixed at the most central 9% of the geometrical cross-section
by means of a threshold on a scintillator downstream of the target.

3 THE PARAMETERIZATION OF THE CORRELATION FUNCTIONS
In the case of a totally chaotic source, the two- and three-particle Bose-Einstein

correlation functions can be written as[9]:

C2 = 1 + |Fij|2, (1)

C3 = 1 + |F12|2 + |F23|2 + |F31|2 + 2Re(F12F23F31), (2)

where, assuming plane wave propagation:

Fij ≡
∫

eiQijrρ(r)d4r, ij = 12, 23, 31 (3)

where Qij is the four-momentum difference of particle i and j and ρ is the source density
function. The last term in Eq. (2) is the so-called genuine three-particle correlation due
to a pure three-body effect. By assuming a symmetric Gaussian source density function
ρ of width R the correlation functions are parametrized as:

C2(Qij) = 1 + λe−Q2

ijR2

, (4)

C3(Q12, Q23, Q31) = 1 + λ
∑

ij

e−Q2

ij
R2

+ 2λ3/2e−
1

2
(ΣijQ2

ij
)R2

, (5)
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where ij is one of the permutations ij = 12, 23, 31. Here λ is a phenomenological[11]
parameter defined by: λ ≡ C(Q = 0)− 1. This parameter has been introduced due to the
fact that the measured two- and three-particle correlation functions do not reach the full
value which, for Bose-particles, are 2 and 6 for two and three particles respectively.

We have analysed the three-particle correlation function in terms of the sum of the
momentum differences, Q3, and the components of Q3 transverse and along the beam, i.e.
Q2

3 = Q2
t + Q2

l . We will use Eqs. (4), (6), and (7) to parameterize our data:

C3(Q3) = 1 + λ3e
−Q2

3
R2

3 , (6)

where Q2
3 = Q2

12 + Q2
23 + Q2

31, and:

C3(Qt, Ql) = 1 + λ2de
−(R2

t Q2

t +R2

l
Q2

l
), (7)

calculated in the longitudinal center-of-mass system for the triplets characterized by
∑

pz = 0. The kinematical variables used in Eq. (7) are defined in Eqs. (8-9):

Qt =
√

q2
T,12 + q2

T,23 + q2
T,31, q2

T,ij = (px,i − px,j)
2 + (py,i − py,j)

2 (8)

Ql =
√

q2
L,12 + q2

L,23 + q2
L,31, q2

L,ij = (pz,i − pz,j)
2 (9)

where px, py, and pz are the three momenta components.

4 THE GENUINE THREE-PARTICLE CORRELATION
We introduce a weight factor ω defined by the relation:

C3 = 1 + |F12|2 + |F23|2 + |F31|2 + 2|F12||F23||F31| × ω. (10)

The weight factor ω is a measure of the strength of the genuine three-particle correlation.
It can be experimentally determined by using the following expression, extracted from
Eq. (10):

ω =
{C3(Q3) − 1} − {C2(Q12) − 1} − {C2(Q23) − 1} − {C2(Q31) − 1}

2
√

{C2(Q12) − 1}{C2(Q23) − 1}{C2(Q31) − 1}
. (11)

For a totally chaotic and symmetric source ω = 1, but ω will differ from 1 for an asym-
metric and/or coherent particle emitting source, see [9, 1, 2, 12, 13].

Traditionally, the chaoticity is measured by the intercept parameter λ of the two-
particle correlation function. In practice this intercept measurement is difficult since phase
space approaches 0 as Qij → 0 and C2 is diluted by resonances and smeared out by the
effects of momentum resolution and coulomb repulsion. The ω is, however, calculated over
a relatively broad range in Q. Any deviation of ω from 1 is an indication of coherence
as asymmetry effects have only minor influence on ω[2]. Note that lambda cancels in Eq.
(11). This is seen directly for Qij = 0 as ω(Q = 0) = 1 for all values of lambda.

5 DATA ANALYSIS
We study negative pions produced when a lead beam hits a lead target. The dataset

consists of 94,000 events with three pions. We find tracks by fitting straight lines to hits on
two hodoscopes, two strip chambers and a pad chamber, all situated behind the magnets.
Tracks are not allowed to share the same hodoscope slats and a minimum track separation
is required in the pad-chamber to certify a high purity of the three-pion sample. The
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time-of-flight start signal is derived from a beam counter with a time resolution of σ ≃ 35
ps[14]. Events containing particles other than pions are rejected by combining information
from the time-of-flight and from the multi-particle threshold imaging Cherenkov (TIC)
detector[15]. The TIC distinguishes pions from heavier particles on a track by track basis
by requiring a sufficiently high signal in a fiducial zone around the tracks. The residual
contamination from particles other than pions is typically less than 1%. Identical cuts are
used in constructing the two- and three-particle correlation functions.

The bin size used in the analysis corresponds to the momentum resolution. The
resolutions are calculated using a Monte-Carlo programme with full detector simulation.

The correlation function is determined using C( ~Q) = A( ~Q)/B( ~Q). The “real” mo-

mentum distribution A( ~Q) is constructed from tracks from the same event and the “back-

ground” distribution, B( ~Q), is constructed from tracks mixed randomly from all events

contained in A( ~Q). Around ten “background” events are created for each “real” event
in order to avoid statistical uncertainties from the “background” sample. This method
cancels effects of the experimental acceptance and trigger biases and is described in detail
in our previous publication[16].

To compare with theoretical correlation functions, corrections are applied iteratively
to produce the correlation function Ccorr:

Ccorr = Craw × KSPC × Kacceptance × KCoulomb. (12)

This procedure converges within four iterations. The factors are explained below:
• The background spectrum is distorted with respect to the true uncorrelated many-

particle spectrum, owing to the effect of the many-particle correlations on the single-
particle spectrum. This is iteratively corrected by the factor KSPC appropriately gener-
alized to the three-particle case, in which each particle used in the background spectrum
is weighted by the correlation from the event from which it is taken.

• The factor Kacceptance corrects the data for the momentum resolution of the spec-
trometer and the many-particle acceptance and is calculated using a Monte Carlo pro-
gramme with a full simulation of the tracking detectors and multiple scattering.

• The two-particle correlation function has been corrected for the Coulomb in-
teraction, KCoulomb, between the particles using the Coulomb wave function integra-
tion method[17, 18]. The three-particle correlation function has been corrected for the
Coulomb interaction using a similar technique[19, 9] by using a three-body Coulomb
wave-function[20, 21].

Coulomb interactions with the residual nuclear system are expected to be small
and no corrections are applied in this analysis. Final-state strong interactions are also
expected to be small and due to large uncertainties in proposed procedures, no corrections
are applied for them[22].

The systematic errors are evaluated by varying the analysis parameters and cal-
culating the difference in the correlation functions produced. These variations include
changing the momentum resolution assumed in the Monte-Carlo correction by ±10%,
changing the time-of-flight cuts, increasing the minimum separation in the pad chamber,
requiring more hits in the strip chambers, and increasing the minimum slat separation
in all the hodoscopes. We re-calculate ω for each new set of correlation functions. The
systematic errors are estimated by summing up the differences to the mean-value for each
altered setting. The statistical error on the ω distribution is: σstat(ω) = σ/

√
N , where

σ is the variance and N is the number of entries. The statistical error is much smaller
than the systematic error. In the statistical error calculation we have not included error
propagation from the correlation functions to ω. This is very complicated so instead we
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λ3 R3 (fm) χ2/Ndof

1.92 ± 0.16 ± 0.33 3.78 ± 0.16 ± 0.37 17.1/15

Table 1: Results from a fit to the three-pion correlation function using Eq. (6). The errors
are statistical and systematic respectively.

System λ R (fm) χ2/Ndof Centrality
3π → 2π 0.57 ± 0.04 7.49 ± 0.34 18/20 9%
2π[9] 0.52 ± 0.04 7.56 ± 0.38 30/36 18%

Table 2: Results from a fit to the two-pion correlation function made from the three- and
a two-particle dataset. Both datasets are corrected by the Coulomb-Wave integration but
they have different centrality. The errors are statistical only.

have calculated ω using C3±σstat and C2±σstat and treated the deviation as an additional
systematic error. The two systematic errors are added in quadrature.

There is still some room for further systematic errors in the Coulomb correction,
due to the fact that the unknown exact three-body Coulomb wave-function is reproduced
only asymptotically. However, in the kinematic region of the NA44 experiment, these
non-asymptotic correction terms in the three-body Coulomb wave-function are known to
decrease strongly with increasing energy of the triplets and the average energy of the
triplet is large compared to the typical scale of the three-body Coulomb potential in the
NA44 three-pion data sample, see [19].

6 RESULTS AND DISCUSSION
The three-pion correlation function is shown in Fig. 1 and the result of a fit to Eq.

(6) is summarized in Table 1. An estimate of the strength of the three-pion correlation
function is shown in Fig. 1 as dotted lines. This is done using Eq. (5) with λ and R
extracted from a fit to the two-pion correlation function. The lower dotted line is without
contribution from the genuine three-body correlation, i.e. the datapoints would follow this
path in case of ω=0. The upper dotted line is for ω =1, and in fact seems to follow the
datapoints.

The two-pion correlation function is constructed by using the three combinations of
a pair from the triplet datasample. The correlation function is fitted using Eq. (4) and the
results are summarized in Table 2 where we also list our results from [10]. The extracted
fit-parameters are consistent between the two- and three-particle datasets despite the
different centrality. The similarity indicates that the effect on the correlation function due
to the presence of a third pion is small for our data. By comparing results in Table 2 and
1 one sees directly that λ3 > 3λ as expected when ω > 0.

The direct method of extracting the strength of the genuine three-pion correlation is
to calculate the ω factor using Eq. (11). When we have determined C2 and C3, as described
above, we can use the actual data points, C2(Q12), C2(Q23), C2(Q31), and C3(Q3), so as
not to be biased by some parameterization. The data points are obtained by using Q12,
Q23, Q31, and Q3 for each event and we have checked that the result do not change when
altering the Q’s by ± 5%. In order to avoid poles in the denominator of Eq. (11) events
are accepted if Qij ≤ 60 MeV/c. As a result we obtain a distribution of ω for each Q3

bin, see Fig. 2, where we also show our S+Pb result[9]. Events are taken in the region of
the genuine three-body correlation, i.e. in the range 14 < Q3 < 54 MeV/c as we have no
data below 14 MeV/c. In this range we find the weighted-mean ω = 0.85 ± 0.02 ± 0.21
where the errors are statistical and systematic, respectively. The value ω from our S+Pb
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λ2d Rt (fm) Rl (fm) χ2/Ndof

2.67 ± 0.49 ± 0.19 3.67 ± 0.26 ± 0.19 5.89 ± 0.53 ± 0.68 189/113

Table 3: Results of a fit to the two-dimensional three-pion correlation function using Eq.
(7). The errors are statistical and systematic respectively.

result[9] was ω = 0.20 ± 0.02 ± 0.19.
The three-pion correlation in PbPb collisions has also been published by WA98[23]

without using the more correct Coulomb correction method[19] employed by NA44. Within
the errors, however, the ω are compatible between the two experiments.

The two-dimensional three-pion correlation function has also been analyzed in the
longitudinal-center-of-mass system. Only bins which contain more than 40 entries are used
in the fit. Projections are made following [24] and are shown in Fig. 3. The results of a
fit to the two-dimensional correlation function using Eq. (7) is summarized in Table 3.
The systematic error of Rt and Rl are correlated, i.e. the radii both become small or both
large when varying the analysis parameters. When comparing the difference of the radii
to the largest statistical error we see a 4-σ effect in the difference of the radii.

There exist only few predictions of the two-dimensional three-body correlation func-
tion. One is based on the Lund string-model[25] where a larger longitudinal than transverse
radius parameter is in fact expected.

7 CONCLUSIONS
We have found that the measure of the strength of the genuine three-particle cor-

relation, expressed as the mean weight factor ω in PbPb interactions, is compatible with
1, ω= 0.85 ± 0.02 ± 0.21. This is different from SPb interactions where we earlier have
found, using the same analysis method, ω=0.20 ± 0.02 ± 0.19. We consider this differ-
ence to be significant as the systematic errors between the two dataset are correlated.
The small ω-value in SPb interactions indicates a nonchaotic mechanism for particle
production[1, 2, 26, 27], different from PbPb interactions which are compatible with a
fully chaotic mechanism.

We have performed a first measurement of the two-dimensional three-pion correla-
tion function. The data show that the longitudinal radius parameter is larger than the
transversal radius parameter in the longitudinal center-of-mass system.
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drawn using Eq. (7) using an average 〈Q〉 in the orthorgonal direction of the momentum
difference. The correlation function is calculated in the longitudinal center-of-mass system
for the triplets. The errors are statistical (inner) and systematic (outer) respectively.
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