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Abstract

Based on a sample of four million events collected by ALEPH from 1991 to 1995,

a measurement of the forward-backward asymmetry in Z ! b�b decays using inclusive

�nal states is presented. High-performance tagging of b�b events in a wide angular

range is achieved using neural network techniques. An optimal hemisphere charge

estimator is built by merging primary and secondary vertex information, leading kaon

identi�cation and jet charge in a neural network. The average charge asymmetry, the


avour tagging eÆciencies and mean b-hemisphere charges are measured from data and
used to extract the pole b asymmetry in the Standard Model

A
0;b
FB = 0:1009 � 0:0027 (stat) � 0:0012 (syst) ;

corresponding to a value of the e�ective weak mixing angle of

sin2�e�W = 0:23193 � 0:00056 .
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1 Introduction

The measurements of the forward-backward asymmetry of b-quarks from e+e� ! Z ! b�b
production o�er the most precise determination of the weak mixing angle at LEP. This gives
a sensitive test of Standard Model [1] predictions of electroweak radiative corrections and
hence constrain the allowed range of the Higgs boson mass.

The polar angle distribution of the b-quark in the e+e� ! Z ! b�b process is forward-
backward asymmetric:

d�b�b
d cos �b

= �b�b
3

8

�
1 + cos2 �b +

8

3
Ab
FB cos �b

�
;

where �b is the angle between the incoming electron and the outgoing b-quark. In this
paper an improved measurement of Ab

FB using inclusive b-hadron decays is presented, based
on the data sample recorded by ALEPH on the Z from 1991 to 1995. The analysis takes
advantage of a reprocessing of LEP I data with improved charged particle tracking and of
neural network techniques making maximum use of the available event information.

The method of selecting events containing b�b quark pairs is upgraded with respect to the
previous analysis [2]. The b-tagging algorithm based on the impact parameters of charged
particle tracks is complemented with information from displaced secondary vertices, event
shape variables and lepton identi�cation. This leads to a 15% reduction of the statistical
uncertainty. The estimate of the b-quark direction is based upon the hemisphere charge
method [3], but also incorporates information from fast kaon tagging and separated primary
and secondary vertex charge estimators. The fraction of incorrect charge tags is reduced
by 10% with respect to the previous measurement, implying a 20% further reduction of the
statistical uncertainty. Another new feature is the control of systematic uncertainties by
use of double tag methods for both 
avour and charge tags, which yields a reduction of the
systematic uncertainty by about a factor of two.

Although lepton identi�cation is used to select events in the b-tag algorithm, no use is
made in the hemisphere charge method of the lepton beyond that of an ordinary charged
track in the detector. This reduces the correlation with the forthcoming ALEPH Ab

FB analysis
based on semileptonic �nal states.

2 The method

The measurement of Ab
FB requires knowledge of the direction of the b-quark from Z ! b�b

decay. The quark-antiquark axis is estimated using the reconstructed thrust axis, the
direction of which is given throughout this paper by a positive value for the cosine of the
thrust polar angle, cos �. Each event is then divided into two hemispheres, F and B, by a
plane perpendicular to the thrust axis. The forward hemisphere, F, is de�ned as the one
into which the incoming electron points. The F-B orientation of the b-quark is determined
on a statistical basis by estimating the hemisphere charges.

Hemisphere charges, QF and QB, are formed using a neural network designed to optimise
the separation power between b- and �b-quarks. The neural network also performs well for
lighter quark 
avours, albeit not in an optimal way. A forward-backward asymmetry for

avour f at a given value of cos � is then proportional to the mean charge 
ow, hQf

FBi,

1



between forward and backward hemispheres in pure f �f events :

hQf
FBi = hQf

F �Qf
Bi

=
1

nftot

�
nfFhQf �Q �f i+ nfBhQ �f �Qf i

�

= Æf A
f
FB

8

3

cos �

1 + cos2 �
; (1)

where nfF (nfB) is the number of events with the primary quark from Z decay emitted into
the forward (backward) hemisphere, and Æf = hQf � Q �f i is the average di�erence between
the charges measured in the hemispheres of the quark and anti-quark, called the charge
separation for 
avour f . As shown in [4], the same sample of events used to measure hQf

FBi
can also be used to extract Æf . This can be understood by considering a single hemisphere
charge measurement, Qf , which can be written as :

Qf =
Æf
2

+ Rf and Q �f =
Æ �f
2

+ R �f ;

where R represents the measurement 
uctuation due to fragmentation and detector e�ects.
The product of the two hemisphere charges then averages to :

hQfQ �fi = hQFQBi =
�Æ2f
4

+ hRfR �f i ;

de�ning Æf = �Æ �f . The measurement 
uctuation correlation, hRfR �f i, arises from e�ects
of charge conservation, sharing a common event axis and crossover of particles close to the
hemisphere boundary. It is then useful to de�ne :

�Æ2f = �2(Qf
FB) � �2(Qf

tot)

= Æ2f � 4 hRfR �f i � hQf
FBi2 + hQf

toti2
= [Æf (1 + kf )]

2 ; (2)

where Qf
tot is the total charge measured in an f �f event. Thus, the observable �Æf is equal to

Æf to within a correction term, kf , depending on the polar angle and taking an average value
of 9% for heavy 
avours in this analysis. Compared with the charge separation itself, the kf
correction term is less sensitive to the details of quark fragmentation and detector resolution
[5]. Relying on the Monte Carlo prediction of kf , it is possible to extract Æf by �tting the
quantities �Æf to a range of measurements of the 
avour combined �Æ using the relation:

�Æ2 =
X

f=u;d;s;c;b

Pf

�
�Æf
�2

= �4 hQFQBi � hQFBi2 + hQtoti2 ; (3)

where Pf are 
avour purities of the event sample under study. As described in Section 8,
these purities are also measured in the data.

For each value of cos � the mean charge 
ow, the purities and the charge separations are
measured. The b-quark asymmetry is then determined according to Equation (1), averaged
over quark 
avours:

hQFB(�)i =
X

f=u;d;s;c;b

Pf (�) Æf(�)A
f
FB(�) ; (4)
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where

Af
FB(�) = Af

FB

8

3

cos �

1 + cos �2
: (5)

Rearranging Equation (4),

Ab
FB(�) =

1

Pb(�)Æb(�)

0
@ hQFB(�)i �

X
f=u;d;s;c

Pf (�)Æf(�)A
f
FB(�)

1
A : (6)

The b-quark forward-backward asymmetry, Ab
FB, is extracted from a simultaneous �t to the

measurements in nine angular bins in the range 0 < cos � < 0:95. A tiny, but non-zero,
correction is applied to take into account the 
avour dependence of the acceptance in each
angular bin.

3 The ALEPH detector

The ALEPH detector is described in detail in [6], and its performance in [7]. The tracking
system consists of two layers of double-sided silicon vertex-detector (VDET), an inner
tracking chamber (ITC) and a time projection chamber (TPC). The VDET single hit
resolution is 12�m at normal incidence for both the r� and rz projections and 22�m
at maximum polar angle. The polar angle coverage of the inner and outer layers are
j cos �j < 0:84 and j cos �j < 0:69 respectively. The ITC provides up to 8 r� hits at radii
16 to 26 cm relative to the beam with an average resolution of 150�m and has an angular
coverage of j cos �j < 0:97. The TPC measures up to 21 space points per track at radii
between 38 and 171 cm, with an r� resolution of 170�m and a z resolution of 740�m and
with an angular coverage of j cos �j < 0:96. In addition, the TPC wire planes provide up to
338 samples of ionisation energy loss (dE=dx).

Tracks are reconstructed using the TPC, ITC and VDET which are immersed in a 1.5T
axial magnetic �eld. This provides a transverse momentum resolution of �(1=pT ) = 0.0006
(GeV/c)�1 for 45 GeV muons. Multiple scattering dominates at low momentum and adds a
constant term of 0.005 to �(pT )=pT .

Outside of the TPC, the electromagnetic calorimeter (ECAL) consists of 45 layers of
lead interleaved with proportional wire chambers. The ECAL is used to identify photons

and electrons and gives an energy resolution �(E)=E = 0.18/
q
E=GeV + 0:009 for isolated

particles. The hadron calorimeter (HCAL) is formed by the iron of the magnet return yoke
interleaved with 23 layers of streamer tubes. It is used to measure hadronic energy and,
together with two surrounding layers of muon chambers, to identify muons.

The information from the subdetectors is combined in an energy 
ow algorithm [7] which
gives a list of charged and neutral track momenta.

Recently the LEP I data have been reprocessed using improved reconstruction algorithms.
In particular, the VDET hits are distributed among tracks according to a global �2

minimisation procedure which improves the hit association eÆciency by more than 2%.
Information from TPC wires is now used in addition to the pad information to improve the
coordinate resolution by a factor of two in z, and by 30% in r� for low momentum tracks.
Similarly the pad information is added to the dE=dx information from TPC wires, increasing
the fraction of tracks with a useful dE=dx measurement to almost 100% and providing on
average a two sigma separation between pions and kaons with momenta above 2.5 GeV/c.

3



4 Monte Carlo simulation

The analysis makes use of a Monte Carlo sample (MC) of 8.1 million simulated hadronic Z
decays as well as two dedicated heavy 
avour samples of 4.9 million Z ! b�b decays and 2.4
million Z ! c�c decays. The simulation is based on JETSET [8] with parameters tuned to
reproduce inclusive particle spectra and event shape distributions measured in hadronic Z
decays [9].

In the MC simulation, the most relevant physics input parameters have been adjusted,
using the re-weighting technique, to the recently measured values [10, 11] shown in Table 1.
The fragmentation of heavy quarks into hadrons is assumed to follow the model of Peterson
et al. [12] with parameters tuned to match the values of the mean heavy hadron fractions of
the beam energy reported in the table.

Physics parameter World average value
< xb > beam energy fraction 0:702� 0:008
< xc > beam energy fraction 0:484� 0:008
nch in b-hadron decay (K0 and � incl.) 5:44� 0:09
Bs fraction 0:100� 0:012
�b fraction 0:099� 0:017
B+ lifetime 1:656� 0:025 ps
B0

d lifetime 1:562� 0:029 ps
Bs lifetime 1:464� 0:057 ps
b-baryon lifetime 1:208� 0:051 ps
g ! b�b rate 0:00251� 0:00063
g ! c�c rate 0:0319� 0:0046

Table 1: List of physics input parameters [10, 11] to the Monte Carlo simulation which are
used for re-weighting.

5 The neural net b-tag

Due to the long lifetime and high mass of b-hadrons, b-jets have several characteristic
properties. Six discriminating variables are combined using a neural network to tag b-quark
jets. A similar scheme is used by ALEPH to identify b-quark jets in searches for neutral
Higgs bosons conducted at LEP II [13].

The jets are clustered with the JADE algorithm using a ycut value of 0.02, and for each
jet six variables are de�ned: two of them are lifetime-based; a third one is based on the
transverse momentum of identi�ed leptons; the last three are based on jet-shape properties.
These quantities are

1. Pjet: probability of the jet being a light quark (uds) jet based upon impact parameters
of tracks in the jet [14].

2. ��2svx: the vertex �
2 di�erence between assigning tracks in the jet both to the secondary

and primary vertices compared to assigning all tracks to the primary vertex. This
is based upon a secondary vertex pattern recognition algorithm which searches for
displaced vertices via a three-dimensional grid point search [15];

4



b-tag
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Figure 1: Distribution of the neural net hemisphere b-tags and the ratio between data and
MC. The shaded region is the distribution for b-hemispheres in the MC.

3. pT of identi�ed leptons [16] with respect to the jet axis;

4. Sb: the boosted sphericity of the jet de�ned to be the sphericity of �nal state charged
and neutral particles in the rest frame of the jet;

5. Multiplicity/ln(Ejet): the charged and neutral particle multiplicity of the jet divided
by the natural logarithm of the jet energy in GeV;

6. �p2T: the sum of squared transverse momenta, p2T, of each charged or neutral particle
with respect to the jet axis.

Among the six input variables, the lifetime tags have the largest weight. However, the
inclusion of the other variables increases the b-quark discriminating power, especially at the
most forward angles that are not covered by the vertex detector. A hemisphere b-tag is
de�ned as the maximum neural net output value among the jets in the hemisphere with
energies exceeding 10 GeV.

5



Prior to the application of the lifetime reconstruction algorithms in the MC, the track
parameters have been given additional smearing and the VDET additional hit ineÆciency
according to a procedure described in [17]. This is necessary in order to render the MC
distributions of the lifetime tags in good agreement with data. Small discrepancies still
remain and combine in the neural network to give the di�erences between the distributions
of the b-tag shown in Figure 1. Deviations up to about 5% between data and simulation
are seen in some b-tag bins and for this reason the b-quark purity as a function of b-tag is
determined from the data themselves.

6 The neural net charge tag

A neural network is also used to determine hemisphere charges. This technique has been
employed earlier for CP violation studies in B0= �B0 decays as described in [18]. In the present
analysis information regarding lepton identi�cation is left out from the tag.

In order to achieve high tagging performance independently of the b-hadron species,
momentum and polar angle, several charge estimators are combined. These charge tags are
complemented with other variables, which do not carry information about the b-hadron
charge in themselves, but are correlated with the relative tagging power of the charge
estimators, thereby allowing an optimal combination to be achieved in the whole phase
space. The two types of input variables are described separately in Sections 6.1 and 6.2.

6.1 Charge estimators

Eight charge estimators are used to provide information on the initial charge state of b-quark
hemispheres as inclusively as possible. These are:

1. The jet charge. This is the charge estimator used in the previous analysis [2]: the
weighted sum of particle charges in a hemisphere, where the weights are the particle
momenta along the thrust axis, pL, raised to the power �. Four di�erent values
of � are used for inputs to the neural net: 0.0, 0.5, 1.1 and 2.2. These focus on
correspondingly higher values of track momenta but are of course highly correlated.
Such charge estimators work well for all species of b-hadrons.

2. The secondary vertex charge. Using a topological vertexing algorithm combining
information from all charged tracks in the hemisphere [18], a best estimate for a
secondary vertex position is obtained in each hemisphere. An estimate of the charge
of this vertex is calculated as:

Qvtx =
X

i=tracks

wi qi ; (7)

where wi, calculated by a dedicated neural net [18], is the probability that track i comes
from the secondary vertex and qi is the track charge. This estimator provides a high
quality charge tag for B� hemispheres, and also helps to indicate which hemispheres
are more likely to contain a neutral B meson.

3. The weighted primary vertex charge. For B0 hemispheres the secondary vertex charge
carries little information, but in this case the fragmentation tracks close in phase space

6



to the B0 have some correlation with the primary b-quark charge. Therefore a charge
estimator, QPvtx, is calculated according to :

QPvtx =
X

i=tracks

(1� wi) p
i
L qi =

X
i=tracks

(1� wi) p
i
L : (8)

4. The weighted secondary vertex charge, QSvtx, is calculated in a similar manner,
replacing the weight (1 � wi) p

i
L by wi (p

i
L)

0:3
with the aim of improving the tagging

for both charged and neutral B-decays via leading particle e�ects from the secondary
decay.

5. Fast kaon identi�cation is formed by another dedicated sub-net [18] trained to identify
charged kaons from b-hadron decays. The output for the most kaon-like particle in the
hemisphere is signed by the charge of the particle and used as a charge estimator.

6.2 Control variables

The following variables are used as inputs to the neural net in order to provide it with some
topological and b-hadron speci�c information:

1. j cos �j is included since it is correlated with the quality of the secondary vertex
reconstruction and hence with the tagging power of the estimators relying on the
separation between tracks from the primary and secondary vertex.

2. The reconstructed b-hadron momentum is included because the relative accuracy of
the various charge estimators depends on the b-hadron momentum. An estimator of
this momentum is constructed from the jet closest to the line-of-
ight of the b-hadron.
The estimator is the sum of the charged track momenta in the jet, weighted by the
probability that they come from the secondary vertex, and the projections of the
neutral momenta onto the line-of-
ight of the b-hadron. The missing energy in the
hemisphere is also added.

3. The reconstructed proper time of the b-hadron is used based on the reconstructed
b-hadron momentum and the measured decay length. The intention here is to
incorporate the increased probability of B0

d mixing at long proper times.

4. The spread of track separation weights i.e. the width of the wi factors distribution in
a given hemisphere. This allows the net to de-weight those charge estimators which
su�er from an ambiguous allocation of tracks to the primary and secondary vertices in
cases of high charged multiplicities and/or poor vertexing.

For the asymmetry calculation, the di�erence between the neural net outputs of the two
hemispheres is used. This is shown in Figure 2 together with the MC prediction. The charge
separation is seen to be reasonably well simulated, but with a slightly larger width in data
than in MC (there is also a small di�erence in the average value of the two distributions,
but this is too small to be visible on the plot).
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Figure 2: The charge di�erence between forward and backward hemispheres measured in
the selected event sample labelled E in Figure 3. The MC distribution corresponds to an
asymmetry of Ab

FB = 0:0967.

7 Event selection

The data set used for this analysis consists of four million hadronic Z decays recorded by
ALEPH during the period 1991 to 1995 in a centre-of-mass energy range of MZ � 3GeV.
Events are selected according to the standard ALEPH hadronic event selection based on
charged track information [19]. This selection has an eÆciency of 97:5% and the backgrounds
from Z decays to �+�� and 

 interactions are estimated to be � 0:3% each. These
backgrounds are reduced to the 10�5 level after the application of the subsequent cuts and
can be safely neglected.

The average beam-spot position is determined every 75 events and used to constrain the
event-by-event interaction point. In order to remove lifetime information from the tracks,
these are projected onto the plane perpendicular to their parent jets (unless they point
behind the interaction point found in a �rst iteration). Combining these projections with
the beam-spot position �xes the interaction point to a precision of 50 � 10 � 60�m3 in
horizontal, vertical and beam directions respectively.
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Figure 3: Upper plots: Subdivision into b-tag intervals with numbers above the plots
enumerating the intervals. The shaded histogram is the expected b-tag distribution for
b-hemispheres, shown separately for two regions of polar angle. Lower plots: The event
acceptance, shown shaded and labelled E, in the plane of the two hemisphere b-tags.

The thrust axis is determined in each event from all charged tracks and calorimeter
clusters using the ALEPH energy 
ow algorithm [7]. To ensure that a good fraction of the
event is contained within the detector acceptance, the cosine of the thrust axis polar angle
is required to be less than 0:95. In order to be able to evaluate the hemisphere b-tag and
charge tag it is required that each hemisphere has at least one charged track and at least
one jet with energy greater than 10 GeV. With these selection cuts a sample of 3,734,425
hadronic Z decays is retained for the remainder of the analysis.
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In order to make use of double-tag methods for determining 
avour purities, the b-tag
range between zero and one is divided into eight sub-intervals as shown in Figure 3. The
672,111 events which are located in the region indicated by the black area in Figure 3, labelled
E, are the ones accepted for the AFB analysis. The acceptance is less strict in the forward
region which is not covered by the vertex detector and therefore has a broader distribution
of b-tags.

8 Determination of 
avour purities

The fractions of primary quark 
avours in the selected event sample are measured in the
data using the double tag method, that has been used previously in e.g. the ALEPH Rb

measurement [17, 20].
In each of nine angular intervals, eight b-tag sub-intervals are de�ned as indicated in

Figure 3, out of which only seven are mutually independent and the eighth is considered as
\not tagged". These give rise to 28 doubly tagged event classes and 7 singly tagged classes:
nij and ni8, which are related to the tagging eÆciencies by:

nij =
X
f

(2� Æij) �
f
i �

f
j c

f
ij Rf nhad ; i � j ;

ni8 =
X
f

2 �fi Rf(1�
X
j�7

�fj c
f
ij) nhad ; i � 7 ; (9)

where �fi is the probability for a primary quark of 
avour f to be located in interval i, cfij
describes correlations between the b-tag values in the two hemispheres, Rf is the Z ! f �f
fraction of the Z hadronic decays and nhad is the total number of events in the sample under
consideration. The 
avour index, f , runs over three 
avour classes only (uds, c and b), hence
eÆciencies and correlation factors are averaged over the three light 
avours.

Various assumptions are made to reduce the number of unknown parameters in
Equation (9). The hemisphere correlations are taken from MC simulation and the values of
Rf are taken from previous measurements. Furthermore, it is necessary to �x the ratio of the
two smallest eÆciencies, where �uds1 � 0:0008 and �uds2 � 0:0013 according to the simulation.
The ratio between these numbers is taken from simulation.

The remaining 20 unknown eÆciencies �fi are determined from a �t using Equations (9)
leaving 15 remaining degrees of freedom in the �t.

The �tted eÆciencies are combined to give event tag eÆciencies by summing over the
�ducial region labelled E in Figure 3:

�fE =
X
i;j2E

�fi �
f
j c

f
ij ; (10)

and from these eÆciencies the three purities are constructed as:

Pf
E =

�fERf

�bERb + �cERc + �udsE (1�Rb � Rc)
; (11)

where the used Rf fractions are shown in Table 6. The result of the �t is shown in Table 2.
The covariance matrix of the �tted eÆciencies is propagated to the event-tag purities with
diagonal elements also shown in Table 2 and correlation coeÆcients being typically �90% ,
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Fitted purities Fit�MC
cos(�) uds c b uds c b

0:0� 0:1 157� 46� 3 1237� 69� 7 8606� 34� 15 �33 96 �63
0:1� 0:2 239� 56� 5 1170� 77� 7 8591� 32� 14 43 6 �49
0:2� 0:3 208� 48� 4 1156� 69� 7 8636� 31� 14 15 13 �28
0:3� 0:4 246� 55� 5 1098� 74� 6 8657� 31� 14 64 �26 �38
0:4� 0:5 200� 36� 4 1064� 56� 6 8736� 40� 14 32 8 �40
0:5� 0:6 147� 42� 3 992� 63� 6 8863� 31� 14 �15 22 �7
0:6� 0:7 197� 52� 5 809� 73� 5 8994� 29� 14 42 14 �56
0:7� 0:8 422� 94� 16 366� 109� 3 9212� 30� 14 238 �242 �4
0:8� :95 405� 203� 5 883� 250� 8 8721� 57� 14 27 342 �369

Table 2: Flavour purities of the event sample labelled E in Figure 3 as obtained from the
double tag �t. The values are given in units of 10�4. The second error is from MC statistics
contributing through the assumed hemisphere tag correlations.

+45% and �80% for the uds-c, the uds-b and the c-b purity correlations, respectively. The
�2 of the nine independent �ts at di�erent cos � averages 0.99 per degree of freedom.

Already from Figure 1 it is seen that the eÆciencies in the highest b-tag bins are higher
in the data than in the MC. The �t determines that this enhancement is slightly larger for
light and charm quarks than for b-quarks, resulting in a b purity which is about 0.5% lower
than predicted by the MC in the selected sample.

9 Determination of quark charge separations

The mean values of the hemisphere charge separations, Æf , are determined from data in each
bin of cos � using the following procedure.

The data sample is subdivided into 14 bins with 
avour compositions ranging from almost
pure uds to almost pure b 
avour. The sum of squares of the two hemisphere b-tags is used
to de�ne the bins and the 
avour compositions of these new bins are derived from the �t to
the data described in the previous section.

In each bin of this event b-tag variable, �Æ is measured according to Equation (3). A �t is
performed using the 14 �Æ measurements and the right side of Equation (3) with the 
avour
speci�c values �Æb, �Æc and �Æuds as free parameters. Since the b-tags in the 14 bins bias the
charge estimator di�erently, additional assumptions taken from MC are needed in order to
compare the 14 �Æ measurements. For each 
avour, the di�erences between the �Æ in a given
bin and the �Æ in the E-region, � = �ÆE � �Æbin, are held �xed at their MC values. Thus, for
each 
avour, the �t shifts �Æ by a �xed amount in all bins, minimising the following �2:

�2 =
14X
i=1

�
�Æ2meas;i �

P3
f=1 Pf

i

�
�Æf rf � �fi

�2�2
�
��Æ2meas;i

�2 ; (12)

where i labels the b-tag bins and f the 
avours (b, c and uds). The �Æf appearing in the �2

refers to MC events in the E-region and the correction factors rf are the three free parameters
of the �t.
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The inputs to the �t, averaged over all cos �, are shown in Table 3 for b- and c-quarks
together with the 
avour combined output and the MC prediction. The �t reproduces
accurately the b-tag dependence of �Æ. The angular dependence of the �tted parameters is
shown in Figure 4 and, since the ratios between �tted and predicted values are consistent
with being constant over angles, their average values are quoted below:

rb = 0:995� 0:004 ;

rc = 1:031� 0:011 ;

ruds = 1:009� 0:009 :

Pc Pb �c �b Observed Expected Fitted
�Æ �Æ �Æ

5.2 0.3 0.0676 0.1650 0:4413� 0:0061 0.4407 0.4430
8.6 0.8 0.0808 0.1559 0:3877� 0:0039 0.3851 0.3878
11.8 1.6 0.1016 0.1663 0:3347� 0:0036 0.3341 0.3371
15.5 3.0 0.1119 0.1493 0:3115� 0:0035 0.3083 0.3124
20.0 5.0 0.0979 0.1496 0:3039� 0:0033 0.3003 0.3042
24.9 8.2 0.0884 0.1284 0:3030� 0:0031 0.2960 0.3001
29.7 12.2 0.0729 0.1186 0:3048� 0:0030 0.2982 0.3029
34.4 18.4 0.0572 0.1118 0:3011� 0:0028 0.2994 0.3026
38.4 27.7 0.0465 0.0945 0:3080� 0:0026 0.3028 0.3072
36.2 45.3 0.0237 0.0813 0:3144� 0:0023 0.3092 0.3130
17.4 77.7 0.0098 0.0445 0:3113� 0:0021 0.3146 0.3157
12.5 85.8 �0.0104 0.0290 0:3276� 0:0028 0.3272 0.3275
7.0 92.5 �0.0252 0.0091 0:3411� 0:0029 0.3421 0.3420
1.2 98.8 �0.0802 �0.0455 0:3910� 0:0019 0.3941 0.3886

Table 3: From left to right: bin-by-bin 
avour purities (P in percent), biases (� = �ÆE� �Æbin),
measured, MC expected and �tted values of �Æbin. The numbers in this table are integrated
over all polar angles.

The average correlation coeÆcients of the error matrix are �64% between uds and c,
25% between uds and b and �49% between c and b. The average �2 probability is 0.72 over
the independent �ts in nine bins of polar angle.

The �tted values of �Æf are translated into the charge separations, Æf by Equation (2),
where the charge correlation correction factors, (1 + kf), are taken from MC. These factors
vary with polar angle, averaging 1.086 for c-quarks and 1.092 for b-quarks.

In the �t of Ab
FB from Equation (6), the values for the charge separations, Æf(�), are thus

the MC values corrected by the rf(�) factors. The ratios between individual light quark
charge separations are taken from MC. In summary, the following values are used (averaging
over polar angle and showing only the diagonal elements of the statistical error matrix):

Æb = �0:3143� 0:0014 ;

Æc = +0:3733� 0:0039 ;

Æs = �0:1929� 0:0016 ;
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Figure 4: The �tted values of �Æb and �Æc as a function of polar angle together with the values
predicted by the MC.

Æd = �0:1547� 0:0013 ;

Æu = +0:2598� 0:0022 :

This charge separation corresponds to an average event mis-tag of 25.6% for b�b events. The
result of the asymmetry �t to the peak data is

Ab
FB(

p
s = 91:232 GeV) = 0:0997� 0:0027(stat):

10 Systematic errors

The determinations of the sample purity, the charge separation and the forward{backward
asymmetry itself all rely to some extent on samples of Monte Carlo events. The features of
the simulation most relevant for the analysis have been identi�ed and varied within their
errors in order to estimate the systematic uncertainty of the measurement as described in
detail in the following sections.

13



10.1 The uds purity at large b-tags

In the �t yielding the 
avour purities of the selected event sample it was assumed that ratio
of the tiny eÆciencies for selecting a light 
avour with b-tag > 0:98 and for selecting a light

avour with 0:94 < b-tag < 0:98 was correctly predicted by the MC to be 0.62, averaged
over polar angle. A systematic uncertainty on this ratio of �30% is estimated by varying
the track parameter smearing and the gluon splitting rates to heavy 
avours in the MC.
Propagating this uncertainty to the asymmetry yields a variation of �0:00037.

10.2 Correlations between hemisphere b-tags

The correlation factors (cfij in Equation (9)) are taken from Monte Carlo simulation. The
in
uence of the correlations on the purities, via the �tted 
avour eÆciencies, is limited by
Equation (11) because the b-quark purity is high, 88% on the average. The correlation
coeÆcient with the largest impact on the b purity is the negative correlation for observing
both hemispheres in the highest b-tag bin: cb11 � 1 = �0:02 in the central region of the
detector. It is due to the pull on the shared reconstructed primary vertex exerted by a
secondary vertex from b-hadron decay. If that coeÆcient is changed by an amount �0:01,
the b purity changes by the amount �2:3 � 10�4 in the central region. The other coeÆcients
carry impacts on the 
avour purities of size 10�4 or less for a one percent change in the
coeÆcient.

In order to estimate the uncertainty in the correlation coeÆcients, the input parameters
to the MC given in Table 1 are changed, one by one by the re-weighting technique, to the
one � higher values. Two additional re-weighted MC samples are studied in order to cover
e�ects of QCD gluon radiation and of fragmentation. In one sample the angles separating
the two selected b-jets are forced to agree with data and in another sample the charged
multiplicity of the primary vertex is forced to agree with data. The largest e�ects on the b
purities arise from changing the xb beam energy fraction, the charge particle multiplicities
and the inter-jet angles, ranging from typically �10�5 in the central region to �10�4 at the
most forward angles. The individual changes are added in quadrature to produce the total
variation in the asymmetry of 0.00001.

There could be e�ects other than b-physics parameters causing an inaccurate simulation
of the correlation factors. The possibilities include inaccuracies in the simulation of vertexing
and of QCD e�ects. Therefore, a study of additional systematic errors is carried out along
the lines of the ALEPH Rb measurement [17, 20]. Here, the contribution to the correlation
from a given variable v is calculated as:

cij(v) =

R
(fi(v) � gj(v) + gi(v) � fj(v))dv

2 (
R
fi(v)dv) (

R
fj(v)dv)

(13)

where fi(v) is the fraction of hemispheres, among all hemispheres with the variable situated
between v and v + dv, having the tag i. Similarly gi(v) is the corresponding fraction with
the opposite hemisphere tagged by tag i. The chosen variables, v, are the thrust polar and
azimuthal angles, an estimator of the b-hadron momentum and the six input variables to
the b-tagging neural network. Since the most important correlations are those involving b�b
events, the ten most signi�cant of those are studied. In order to avoid having to subtract
a very large non-b background in some bins, a soft b-tag is placed before evaluating the
integrals. This soft b-tag leaves a 64% pure b-sample.
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For the azimuthal angle, where no signi�cant correlation is expected, the result of
Equation (13) is indeed unity within a precision of 10�3. The rest of the variables do
produce correlations, but the di�erences between data and MC are all between 10�3 and
10�2 and hence their contribution to the error on the measured asymmetry (via the 
avour
purities) is again very small, in total 0.00001.

Until now only correlations in b�b events have been studied. Although the individual
correlations for the lighter quarks have very little impact, the possibility of a combined
e�ect of a large number of correlations has been investigated by simply ignoring all of them
in the �t (except at the very most forward angle where geometrical e�ects are important).
This results in a change in Ab

FB of +0.00002. A summary of all errors connected with the
estimation of 
avour purities is given in Table 4.

Statistical error in the purity determination �0:00039
Light quark b-tag eÆciencies �0:00037
Hemisphere b-tag correlations �0:00003

Total systematic error due to purities �0:00054

Table 4: Summary of systematic errors on the Ab
FB measurement from the determination of


avour purities.

10.3 Systematic uncertainties on charge separations

Various assumptions contribute to systematic uncertainties on the determination of the
charge separations, Æf . In a �rst step, �Æb, �Æc and �Æuds are extracted from a �t to data, where
the assumed 
avour purities and charge bias corrections in the di�erent b-tag bins contribute
to the systematic error together with the statistical errors of the �t. In a second step, the
constant of proportionality, (1+kf ), between �Æf and Æf contributes to the uncertainty. These
systematic uncertainties are summarised in Table 5 and discussed in detail in the following.

� Flavour purities - This is evaluated by using the purities predicted by the MC instead
of the �tted purities. The full changes in the �tted values of �Æf are propagated to the
error on the asymmetry.

� Corrections for b-tag bias - Two overlapping procedures are used to estimate this
uncertainty:

1. Each of the b-physics parameters listed in Table 1 are increased one at the time by
one standard deviation, using re-weighted versions of the MC, and the di�erences
in the �tted Æb and Æc are propagated to the asymmetry and entered as systematic
errors in Table 5 . These estimates include the e�ect of the parameters on the
charge correlation corrections discussed below. As in the case of hemisphere
tag correlations, the e�ect of re-weighting the MC to agree with the observed
primary vertex multiplicity and the observed distribution of inter-jet angles are
also included. Finally, the V ector=(V ector + Pseudoscalar) ratio in D-meson
production is varied within its experimental error of 0.05 [21].
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2. The values of �Æc and �Æuds are �xed at their MC values instead of being left free
in the �t. In this case Equation (3) can be solved directly for �Æb in the E-region
without any assumptions concerning bias corrections. The full di�erence between
the result of this and the default result is taken as an independent contribution
to the systematic error. This corresponds to an excursion in the �tted value of �Æc
by almost two times the other uncertainties on this quantity.

� Charge correlation corrections - One contribution to the systematic error from the
(1 + kf) factors is found by varying the input parameters of the MC as described
above.

Another contribution is estimated, like in the case of hemisphere b-tag correlations,
from the di�erence between data and MC when building on theE-sample a \projection"
of the hemisphere charge correlations along a series of observables, as follows:

(1 + kv)
2 =

R �
Q+
same(v) �Q�opp(v) +Q�same(v) �Q+

opp(v)
�
P (v)dv

2hQ+ihQ�i ; (14)

where Q�(v) is the average positive or negative hemisphere charge, given the variable
v in either the same or the opposite hemisphere, and P (v) is the probability density of
v. Eight variables are chosen that are weakly correlated while covering the variables
relevant for the charge determination. These are the thrust, the thrust axis direction,
some inputs to the charge tagging neural net, the b-tag and the b-hadron momentum.
The di�erences in (1 + kv) between data and MC are propagated to Table 5.

This procedure relates to the simulation of charge correlations for events in the selected
sample consisting mostly of b�b events. Previous studies using the jet-charge technique
[5, 3] have assessed the uncertainty in kc separately. Using a weighting power of
� = 0:5 the value kc = 0:085 � 0:022 was found, where the error includes systematic
uncertainties. This value is equal to the charm charge correlation in the present study
and its error is propagated as an additional contribution to Table 5.

� Light quark charge separations - The light quark charge separations, Æu, Æd and Æs, are
taken from Monte Carlo, but corrected by the overall correction factor from the �t.
Systematic uncertainties are ascribed according to the results of [5] which represent
relative uncertainties of 2.1%, 4.0% and 1.5% for u, d and s respectively. These errors
are much larger than the error on the combined light quark �Æuds from the �t. However,
when propagated through to Ab

FB, the systematic uncertainties arising from light quark
charges are small, in total 0.00003.

� Track parameter smearing - The extra smearing and hit ineÆciency mentioned in
Section 5 also a�ects the charge tag. The e�ect of dropping these corrections to the
MC altogether results in a change in the asymmetry of +0.00016 which is taken as an
additional contribution to the systematic error.

10.4 Experimental systematic errors on QFB

For the measuring apparatus itself to produce a fake QFB, a forward-backward asymmetric
bias in the charge measurement is needed. Such an e�ect could come from an asymmetry in
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Source of systematic uncertainty �Ab
FB

Statistics in the �Æf determination 0.00074

avour purities 0.00015
< xb > beam energy fraction 0.00007
< xc > beam energy fraction 0.00000
nch in b-hadron decay 0.00003
Bs fraction 0.00004
�b fraction 0.00004
B+ lifetime 0.00003
B0 lifetime 0.00002
Bs lifetime 0.00002
b-baryon lifetime 0.00003
g ! b�b rate 0.00008
g ! c�c rate 0.00004
primary multiplicity 0.00001
inter-jet angles 0.00004
V

V+P
for charm 0.00019

�xed Æc and Æuds 0.00037
charge correlations due to thrust 0.00001
charge correlations due to cos � 0.00008
charge correlations due to � 0.00007
charge correlations due to b-hadron momentum 0.00002
charge correlations due to b-tag 0.00000
charge correlations due to jet-charge 0.00012
charge correlations due to primary vertex charge 0.00010
charge correlations due to secondary vertex charge 0.00011
charge correlations due to kaon charge 0.00000
charm quark charge correlations 0.00016
light quark charge separations 0.00003
track parameter smearing 0.00016

Total systematic error due to charge separations 0.00093

Table 5: Summary of systematic error contributions to the Ab
FB measurement from the

determination of charge separations.

the detector material, since nuclear interactions of the produced particles with this material
give rise to an excess of charge which is measured by the total charge, Qtot, in data [5]. The
asymmetry of the material is estimated by measuring the forward-backward asymmetry of
photons that have converted to e+e� pairs in the detector. This asymmetry is multiplied by
the material charge component at each angle and subtracted from QFB, causing a shift in
Ab
FB by 0:00016� 0:00032 which is taken as a contribution to the systematic error.
Another possible source of error is the modelling of the magnetic �eld in the extreme

forward region. This is known to cause a slight di�erence in the momenta measured for
positive and negative particles at momenta close to the beam energy and a correction, which
is not quite forward-backward symmetric, is applied as default on the data to take out this
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e�ect. However, the e�ect on Ab
FB from dropping the correction is very small (0:00002) and

this is added to the error.

10.5 Electroweak observables

Assumptions regarding electroweak observables other than Ab
FB, e.g. Rb and A

c
FB, belong to

a special class, since they are important for the Standard Model interpretation of the result.
Their values used in this analysis are taken from the Standard Model and are listed in Table 6
together with their impacts on the measured value of Ab

FB. In case of the branching fractions
Rf , the variation in one 
avour is compensated by changes in the light quark Rf 's (f = uds)
according to their relative magnitudes.

Parameter P
p
s = 89:416 GeV

p
s = 91:232 GeV

p
s = 92:945 GeV @Ab

FB=@ P
Ru 0.17211 �
Rd 0.22025 �
Rs 0.22025 �
Rc 0.17154 +0:018
Rb 0.21585 �0:440
Au
FB �0:03342 0.06507 0.12445 +0:006

Ad
FB 0:06141 0.09982 0.12447 �0:001

As
FB 0:06150 0.09983 0.12908 �0:001

Ac
FB �0:03350 0.06513 0.12451 +0:103

Table 6: Summary of Standard Model inputs used in the measurement and their in
uence
on the measured Ab

FB.

10.6 QCD correction

The radiation of gluons from the original quark pair can in principle lower the asymmetry.
The e�ect is expected to be small with the present method, where the thrust-de�ned
hemisphere charges are calibrated back to the charges of the primary quarks in these
hemispheres using partly data and partly MC. However, this built-in correction may not be
suÆcient, since the hemispheres de�ned by the q�q axis are not identical to those de�ned by the
thrust. Therefore the asymmetry measured by repeating the analysis on the high statistics
b�b MC is compared with the generator level asymmetry in the same selected sample of MC
events. The generator level asymmetry is found to be higher by a factor 1:0027� 0:0009.

The most accurate calculation available of the full QCD correction in an unbiased sample
of b�b events results in a correction factor 1 + CQCD = 1:0354 � 0:0063 [22, 23]. The ratio
of CQCD to the same quantity calculated with the ALEPH MC is used to scale the residual
QCD correction. Hereby the residual correction factor becomes 1:0034� 0:0019, where the
error takes into account the statistical uncertainty and the fraction of the theoretical error
which a�ects this analysis.

A summary of all the systematic errors is given in Table 7.
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Flavour purities �0:00054
Charge separations �0:00093

Detector asymmetries �0:00016
QCD correction �0:00019

Total systematic error �0:00110
Table 7: Summary of systematic errors on the Ab

FB measurement.

11 Cross-checks

11.1 Simultaneous �t to Rb

The selection eÆciency �t which yields the 
avour purities of the selected event sample has
been checked by performing the �t on MC and verifying that the input eÆciencies are indeed
returned exactly. It has furthermore been checked that the distribution of b-tags in the MC
agrees with that measured in the data after re-weighting the MC by the ratio of �tted to
simulated 
avour eÆciencies.

Finally, the overall b�b fraction, Rb, is left free in the �t. In order to get a stable �t, it
is necessary to tie down some of the previously free parameters, and therefore the small b-
hemisphere eÆciencies for b-tags less than 0.6 are taken from MC in this case. The result (for
the three million preselected hadronic Z decays at peak energy) is Rb = 0:2174�0:0008(stat).
This measured value is consistent with the world average (0:21643�0:00073 [23]). The change
in the asymmetry from letting Rb 
oat in the �t is �0:0005, in agreement with the sensitivity
shown in Table 6 and consistent with the uncertainty of the �t.

11.2 Lepton tagged events

For the �Æ �t, it has also been checked that it returns the input �Æf 's when applied to the MC.
The sample of events with an identi�ed high{pT lepton o�ers an additional check on the

assumptions entering the b-charge tag. This check is, however, limited by uncertainties in
the lepton tagging due to c! l, b! c! l and B0 ! �B0 transitions as well as lepton mis-
identi�cation. These uncertainties are reduced to below the 10�2 level by placing a high{pT
cut of 1.5 GeV/c on the lepton sample. The distribution of the signed di�erence between the
two hemisphere charges in such events is shown in Figure 5. The sign of the lepton provides
the b�b orientation in the event and allows a measurement of Æb = �0:3395 � 0:0016, after
subtracting the 3.8% non-b background in this sample. This is a factor 0:990�0:006 smaller
than the same quantity measured in the q�q MC. The corresponding ratio between the �Æb's
was found to be 0:995�0:004 in Section 9. This then provides a check on the MC prediction
of kb:

(1 + kb)

(1 + kb)MC
=

Æb
ÆMC
b

=
�Æb
�ÆMC
b

= 0:995� 0:007 (stat) :

11.3 Stability checks

In order to study the stability of the analysis the accepted region in the plane of the two
b-tags is varied over a wide range. The results for peak data shown in Table 8 are consistent
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Figure 5: The di�erence between the two hemisphere charges, signed by the lepton charge,
for events in the E sample containing a high-pT lepton.

within statistical errors.

events selected b purity raw Ab
FB purity corrected charge corrected

380086 0.967 0.0999 0.1006 0.1002 � 0.0031
491011 0.938 0.0987 0.0996 0.0994 � 0.0028
596618 0.886 0.0990 0.0999 0.0997 � 0.0027

643773 0.853 0.0995 0.1006 0.1007 � 0.0027
797132 0.749 0.1001 0.1006 0.1007 � 0.0027

Table 8: Results on peak data for various event selections characterised by the sizes of the
samples and their (predicted) b purities. The event selection shown in bold-face is the chosen
one, the E-sample.

The measurements performed for each LEP I year in the data recorded at Z peak energies
are shown in Table 9. They are seen to be consistent with being constant.
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year Ab
FB

1991 0.0884 � 0.0125
1992 0.0992 � 0.0063
1993 0.1079 � 0.0075
1994 0.0997 � 0.0040
1995 0.0966 � 0.0072

average 0.0997 � 0.0027

Table 9: Results on peak data for each LEP I year.

12 Results and conclusions

The �t to Equation (6) is performed in three intervals of collision energy,
p
s, with the results

shown in Figure 6. The asymmetries are then multiplied by the QCD correction factor of
1:0034 giving, for the sample of events recorded closest to the Z peak, the value:

Ab
FB(

p
s = 91:232 GeV) = 0:1000� 0:0027(stat)� 0:0011(syst) :

The corresponding values averaged over two o�{peak energy ranges are

Ab
FB(

p
s = 89:472 GeV) = 0:0436� 0:0119(stat) ;

Ab
FB(

p
s = 92:950 GeV) = 0:1172� 0:0097(stat) :

The variation of Ab
FB with centre-of-mass energy is shown in Figure 7 and compared with

the Standard Model prediction. The three values are extrapolated to MZ = 91:1874 GeV
using ZFITTER [24], giving the combined value:

Ab
FB(

p
s =MZ) = 0:0977 � 0:0025(stat) � 0:0011(syst)

+0:103 (Ac
FB � 0:06513)� 0:440(Rb � 0:21585) :

In order to interpret the result in terms of the Standard Model, a QED and Z � 

interference correction of 0.0038 is applied according to [23] to give the pole asymmetry,
A0;b
FB, which is then iterated using BHM [25] until consistent values for A0;b

FB, A
c
FB and Rb are

reached. The result is

A0;b
FB = 0:1009 � 0:0027 � 0:0012

using Ac
FB = 0:0623 and Rb = 0:21653. The errors have been obtained from iterating the

value one standard deviation above the measured Ab
FB. The corresponding weak mixing

angle is

sin2�e�W = 0:23193� 0:00056 :

This is to date the best Ab
FB measurement [2,26-34] and provides the single most precise

measurement of sin2�e�W at LEP. The value is in agreement with the present world average
value [23].
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Figure 6: The forward-backward b�b asymmetry as a function of thrust polar angle at three
center-of-mass energies. The errors shown are statistical only.
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