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Abstract

A formulation to obtain the response of hadron masses to the chemical po-
tential is developed on the lattice. As a first trial, screening masses of pseu-
doscalar and vector mesons and their responses are evaluated. We present re-
sults for two flavors of staggered fermions below and above Tc. The responses
to both the isoscalar and isovector chemical potentials are sizable. They show
different behaviours in the low and high temperature phases, which may be
explained as a consequence of chiral symmetry breaking and restoration.

I. INTRODUCTION

It is well known that studying finite density QCD through lattice simulations is a very
hard problem. The fermionic determinant at finite chemical potential is complex, and it gives
an oscillating behaviour in quantum averages, making simulations very inefficient. The naive
quenched approximation at finite chemical potential leads to an essentially different world
[1], so that the use of dynamical fermions seems essential to extract the relevant physics. In
spite of such a difficult situation, the study of the behaviour of hadrons in a finite baryonic
environment is very important [2–4], especially in view of the evidences for deconfinement of
quarks and gluons recently reported in high energy heavy ion collisions [5]. Moreover, some
experimental results can be interpreted by assuming a shift in the mass and the width of
the ρ meson, induced by the dense nuclear medium even below the deconfinement transition
[6]. We are taking first steps towards studying such effects on the lattice here.
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There are several approaches to circumvent the difficulty of studying a finite chemical
potential system, and they seem successful to a limited extent [7,8]. In particular, the
baryon number susceptibility at zero baryon density has been studied and an abrupt jump
at the transition temperature has been reported [9]. There is in fact much interesting
physical information which can be extracted from the behaviour of a system at small chemical
potential. In this paper, we examine the behaviour of hadron masses in the vicinity of zero
chemical potential at finite temperature. Our strategy is based on describing the response
of hadrons to chemical potential by a Taylor expansion of hadronic quantities around µ = 0.
This allows simulations to be performed with standard methods at µ = 0. Although a
Taylor expansion cannot reproduce the non-analyticity inherent to a phase transition, it
may suffice for observing the rounded, analytic behaviour indicative of a phase transition in
a finite volume. Preliminary results of such a strategy can be found in [10,11].

The organization of this paper is as follows. In Sect.II, we develop basic formulae to
evaluate the first and second responses of hadron masses with respect to both isoscalar and
isovector chemical potentials. In Sect.III, we present and discuss some data obtained from
Monte Carlo (MC) calculations. Conclusions are presented in Sect.IV.

II. CHEMICAL POTENTIAL RESPONSE OF HADRON MASSES AND
RESIDUES AT HIGH TEMPERATURE

The basic framework is as follows. We aim at extracting the response of masses to
chemical potential through an expansion of the form:
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at fixed temperature, T , and bare quark masses.
Suppose that a hadron correlator is dominated by a single pole1

C(x) =
∑
y,z,t

〈H(x, y, z, t)H(0, 0, 0, 0)†〉 =
γ̂

2M̂
(e−M̂x̂ + e−M̂(Lx−x̂)) , (2)

where M̂ = aM and x̂ = x/a. Lx is the lattice size in the x-direction. γ̂ is the residue
appearing in the propagator as γ/(p2 + m2). In the following, we write A = γ̂/2M̂ . The
value of A depends on the choice of sources. But its behaviour as a function of the chemical
potential provides information on the coupling to the medium.

We take the first and second derivatives with respect to µ̂ ≡ atµ = µ/(NtT ) where µ is
the chemical potential;

C(x)−1 dC(x)

dµ̂
= A−1dA

dµ̂
+

dM̂

dµ̂
[(x̂− Lx

2
)tanh(M̂(x̂− Lx

2
))− Lx

2
] (3)

1Generalisation to a multi-pole situation is straightforward.
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and

C(x)−1 d2C(x)

dµ̂2 = A−1 d2A

dµ̂2

+ (2A−1 dA

dµ̂

dM̂

dµ̂
+

d2M̂

dµ̂2 )[(x̂− Lx

2
)tanh(M̂(x̂− Lx

2
))− Lx

2
]

+ (
dM̂

dµ̂
)2[(x̂− Lx

2
)2 +

L2
x

4
− Lx(x̂− Lx

2
)tanh(M̂(x̂− Lx

2
))] . (4)

C(x) and the first and the second derivatives of C(x) are calculated from lattice simulations.
Then, using the right-hand side of Eqs.(3) and (4), the first and the second responses of
hadron masses and couplings are determined.

The next question is how to extract the derivative of the correlator from lattice simula-
tions. For this purpose, we go back to the definition of the hadron correlator. In this work,
we treat flavour non-singlet mesons in two flavour QCD. The hadron correlator is given by

〈H(n)H(0)†〉 = 〈G〉 , (5)

where G is the meson propagator

G = Tr(g(µ̂u)n0Γg(µ̂d)0nΓ†) . (6)

Here g(µ̂) is the quark propagator at finite chemical potential, and Γ is the Dirac matrix
which selects the desired meson quantum numbers. The relation between the quark propa-
gator and the Dirac operator D(µ̂) is

g(µ̂) = D(µ̂)−1. (7)

An expectation value 〈O〉 stands for

〈O〉 =

∫
[dU ]O∆e−Sg∫
[dU ]∆e−Sg

, (8)

where Sg is the gluonic action and ∆ is the fermion determinant

∆ = det(D(µ̂u))det(D(µ̂d)) . (9)

Then, the first and the second derivatives are

d

dµ̂
〈H(n)H(0)†〉 = 〈Ġ + G

∆̇

∆
〉 − 〈G〉〈∆̇

∆
〉 (10)

and

d2

dµ̂2 〈H(n)H(0)†〉 = 〈G̈ + 2Ġ
∆̇

∆
+ G

∆̈

∆
〉 − 2〈Ġ + G

∆̇

∆
〉〈∆̇

∆
〉

− 〈G〉[〈∆̈
∆
〉 − 2(〈∆̇

∆
〉)2] , (11)
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where the dotted Ȯ and Ö stand for the first and the second derivatives with respect to µ̂
of the operator O.

At zero chemical potential, we have simpler expressions since

〈∆̇
∆
〉 = 0 at µ̂ = 0 . (12)

Eq.(12) corresponds to the fact that the average baryon number density is zero at µ̂ = 0.
Actually, we see that d det(D)/dµ̂ = Tr[ḊD−1]det(D) is anti-hermitian at µ̂ = 0:

Tr[ḊD−1] = Tr[Ḋγ5γ5D
−1] = Tr[(−γ5Ḋ†)(D†)−1γ5] = −Tr[ḊD−1]∗ . (13)

This means that d det(D)/dµ̂ changes sign under the transformation U → U †. Since the
measure and the gluonic action are invariant under this transformation, its expectation value
vanishes [12]. Thus, at zero chemical potential, Eqs.(10) and (11) turn into

d

dµ̂
〈H(n)H(0)†〉 = 〈Ġ + G

∆̇

∆
〉 ,

d2

dµ̂2
〈H(n)H(0)†〉 = 〈G̈ + 2Ġ

∆̇

∆
+ G

∆̈

∆
〉 − 〈G〉〈∆̈

∆
〉 . (14)

We investigate derivatives with respect to both isoscalar and isovector type of chemical
potentials. The isoscalar chemical potential is conjugate to the total quark density. In this
paper we study the response to the isoscalar chemical potential by setting

µ̂S = µ̂u = µ̂d , (15)

and for the isovector case

µ̂V = µ̂u = −µ̂d . (16)

Note that Son and Stephanov proposed a model corresponding to the isovector case as a
good test bed for chemical potential effects in QCD [13]. The advantage of setting µ̂u = −µ̂d

is that the fermion determinant is positive, so that the problem becomes tractable with
standard lattice techniques. Here we don’t make use of this advantage and still study the
dependence on µ̂V by performing a Taylor expansion around µ̂V = 0. Future simulations
at non-zero µ̂V will also constitute a good test of the performance of our Taylor expansion
approach.

Our simulations with nf = 2 dynamical quarks are performed using staggered fermions.
The fermion operator and its derivatives are

D(U, µ̂)n,m = maδn,m +
1

2

∑
σ=x,y,z

ησ(n)[Uσ̂(n)δn+σ̂,m − U †
σ̂(n− σ̂)δn−σ̂,m]

+
1

2
ηt(n)[Ut̂(n)eµ̂δn+t̂,m − U †

t̂
(n− t̂)e−µ̂δn−t̂,m] , (17)

dD

dµ̂
=

1

2
ηt(n)[Ut̂(n)eµ̂δn+t̂,m + U †

t̂
(n− t̂)e−µ̂δn−t̂,m] , (18)
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and

d2D

dµ̂2
=

1

2
ηt(n)[Ut̂(n)eµ̂δn+t̂,m − U †

t̂
(n− t̂)e−µ̂δn−t̂,m] , (19)

where σ̂ and t̂ are unit vectors pointing along space and time directions.
Taking into account the four-fold degeneracy of the staggered fermion operator, the

determinant factor ∆ of nf = 2 fermions is then

∆ = exp[
1

4
Tr lnD(U, µ̂u) +

1

4
Tr lnD(U, µ̂d)] . (20)

Explicit formulae are given in Appendix A (for the isoscalar case) and B (for the isovector
case), and specialized for staggered fermions in Appendix C.

III. NUMERICAL RESULTS

In this study, simulations are performed on a 16 × 82 × 4 lattice. We study responses
of hadrons below and above the confinement/deconfinement phase transition temperature.
For two light flavours of staggered fermions, the critical coupling βc at Nt = 4 is βc = 5.271
for ma = 0.0125, and βc = 5.288 for ma = 0.025 [14,15]. Our simulations are carried out
with the R-algorithm. The time step of the molecular dynamics is taken as δ = 0.01, and
the trajectory length is 50 steps. We measure correlators on configurations separated by 20
trajectories. To evaluate the traces of the various fermionic operators, the Z2 noise method
[16] is used, with 200 noise vectors. Hadronic correlators are measured by using the corner-
type wall source [17] after Coulomb gauge fixing in each x-hyperplane, and we choose three
quark masses, ma = 0.0125, 0.017, 0.025. The parameters of our simulations, including
the number of configurations used in each case for our analysis, are summarized in Table I.
The average Polyakov loop is shown in Fig.1. It shows that, for each quark mass, we cover
temperatures on either side of the phase transition.

Many terms contribute to the derivatives of the meson correlator with respect to the
chemical potential: see Eqs.(B5), (C2), and (C3) in the Appendix. Representative terms
are:

(A) : 2
∑
y,z,t

Re〈Tr|(gḊg)n0|2〉

(B) : 4
∑
y,z,t

Re〈Tr[(gḊgḊg)n0g
†
n0]〉

(C) : 2
∑
y,z,t

Re〈Tr[(gD̈g)n0g
†
n0]〉 . (21)

In Fig.2, we show the pseudoscalar correlator. Error bars are clearly very small. Neverthe-
less, a single pole fit works very well over the interval 1 < x/a < 15. We also present in the
figure the terms (A), (B) and (C) above. All of them can be determined with reasonable
accuracy.

Let us turn to the first response of the pseudoscalar correlator to the chemical potential.
Note that the first derivative with respect to the isoscalar chemical potential is identi-
cally zero (see Eq.(A9) in Appendix A). For the isovector chemical potential, Fig.3 shows
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C−1dC/dµ̂V at β = 5.26 and 5.34. At both temperatures, the values are very small. This is
consistent with a comparative study in the Nambu–Jona-Lasinio (NJL) model, which also
predicts very small responses around the critical temperature [19].

We consider then the second responses, starting with the pseudoscalar meson channel.
Fig.4 shows C−1d2C/dµ̂2 at β = 5.26 (below βc) and 5.34 (above βc) for the isoscalar and
isovector chemical potentials. The solid curves are fits by Eq.(4), after fitting C(x) by Eq.(2).

We determine the dependence of a meson mass on the chemical potential as follows. (i)
First we determine the meson mass M̂ by the usual step. Namely, we fit the MC results of
the correlator to Eq.(2). The value of the meson mass M̂ is obtained as a fitting parameter.
(ii) Then we fit the MC results for the derivatives of the meson correlator to Eqs.(3) and
(4), substituting in them the value previously determined for M̂ . The derivatives of masses
and coupling are then obtained as fitting parameters. Note that for µ̂S we omit the fitting
step to Eq.(3) since the first response is strictly zero.

A. Responses of the pseudoscalar meson mass to the isoscalar chemical potential

Results of the pseudoscalar meson response to the isoscalar chemical potential are sum-
marized in Table II. The screening mass of the pseudoscalar meson at ma = 0.025 as a
function of T/Tc is shown in Fig.5 .

In the low temperature phase, the dependence of the mass on µ̂S is small. This behaviour
is to be expected since, below the critical temperature and in the vicinity of zero µ̂S, the
pseudoscalar is still a goldstone boson. In fact, if the chiral extrapolation is made, the
limiting value of the isoscalar response is consistent with zero as shown in Fig.6. This is in
contrast with the picture above TC where, even in the chiral limit, d2M̂2/dµ̂2 remains large.
In addition, our results suggest that the response of the coupling is small below Tc.

Above Tc, we first note that the correlator and its response are still well fitted by single
pole formulae, Eqs.(2-4). Screening masses are manifestly larger than those below Tc. This
confirms results of previous works [9]. As pointed before, the response of the mass above Tc

becomes large, a reflection of the fact that the pion is no longer a goldstone and an indication
of chiral symmetry restoration. We also note that the response of the coupling increases,
which could reflect a larger projection onto free quarks as described by the wall-source.

B. Responses of the pseudoscalar meson mass to the isovector chemical potential

Results for the isovector chemical potential are summarized in Table III. In the presence
of the isovector chemical potential, π+ and π− may have different masses. Here we consider
the π+ ( ud̄ ) meson as shown in Eq.(6). In contrast to the case of the isoscalar chemical
potential, the second order response of the mass is significantly large in the low temperature
phase, and decreases in magnitude above Tc. The difference between the isoscalar and
isovector chemical potentials is illustrated in Fig.7. The response of the residue, γ̂, also
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shows different behaviours in the confined and deconfined phases, illustrated in Fig.8. 2

These features are manifest even for a small quark mass parameter. Note that the
isovector potential explicitly breaks the u− d symmetry, even if the two quarks have equal
masses. The phase structure in the (T, |µV |) plane has been studied by Son and Stephanov
[13]. The original SU(2)L+R symmetry at non-zero quark mass and zero chemical potential is
broken down to U(1)L+R. At zero T and for |µV | larger than the mass of the pseudoscalar, the
system is in a different phase from µ = 0. The ground state is a pion condensate and there is
one massless goldstone associated with the spontaneous breaking of the U(1)L+R symmetry.
For |µV | = mPS, the critical temperature is T = 0. At sufficiently high temperature, the
condensate melts and the symmetry is restored. Due to the presence of the phase boundary,
we do not expect to be able to reach the condensed phase by Taylor expanding around
µV = 0. We can however hope to get some hints about the presence of the phase boundary
while keeping |µV | < mPS. In this case, the system is in the same ground state as for zero
chemical potential, there are no exact goldstone modes and the three pions are massive.

An interesting point in this respect is that the second derivative of the mass is negative
in the low temperature phase, in marked contrast with what happened for the isoscalar
potential. The mass tends to decrease under the influence of the isovector chemical potential,
reflecting the fact that for low temperature and chemical potential above the pion mass, a
goldstone appears [1,13]. This is more clearly shown by an expansion as in Eq.(1). At
β = 5.26 and ma = 0.017, the data suggest

M(µV )

T
|µV

=
M

T
|µV =0 + (0.021± 0.034)(

µV

T
)− (1.31± 0.04)(

µV

T
)2 + O((

µV

T
)3) . (22)

The coefficient of the linear term is consistent with zero. Notice also in Table III that the
lighter the quark mass, the stronger the response, a possible indication that for lighter pions
the phase boundary is closer to the zero chemical potential axis, as suggested in [13].

In the high temperature phase, the dependence of the masses on µV decreases. Since
the pseudoscalar meson becomes heavier, the phase boundary to the pion condensate phase
is farther away from the µV = 0 axis. The weaker responses may be understood from this
point of view.

C. Results for the vector meson

Vector meson correlators can be computed, but the signal to noise ratio for their response
is very bad. An example is provided in Fig.9, for β = 5.26. At present, the screening
mass and the responses are extracted from a limited range in x near the source, where the
statistical error is smaller. The first order response to the isovector chemical potential is
again small and consistent with zero. The second order response to the isoscalar chemical
potential appears to be positive at low temperature, whereas that to the isovector potential
is negative. In comparison with the pseudoscalar meson case, for example d2M̂/dµ̂2

V , the
responses are weak.

2Note that (d2γ̂/dµ̂2)/γ̂ does not depend on the choice of the source normalization.
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Finally, let us turn to the high temperature phase. At β = 5.34, the correlator and
its response show markedly different x-dependence, compared to the pseudoscalar meson.
Apparently, formulae based on a single meson pole dominance, Eqs.(2-4), give very poor
descriptions of the data. High statistics simulations shall be required to clarify the behaviour.

IV. CONCLUSIONS

In this work, we have developed a framework to study the response of hadrons to the
chemical potential. It is based on Taylor expanding hadronic quantities around µ = 0. We
show the first results of the first and second derivatives of pseudoscalar and vector meson
masses with respect to µ. As shown in the previous sections, the second order responses are
sizable and reveal several characteristic features. For the pseudoscalar meson, the behaviour
of the responses seems to have close contact to chiral symmetry restoration. For the isoscalar
chemical potential µS, the dependence of the pseudoscalar mass on µS in the chiral limit is
consistent with zero, reflecting the fact that at low temperature and small µS the pion is
still a goldstone. For the isovector chemical potential, we show features that point towards
the phase structure studied by Son and Stephanov [13]. The ud̄ pseudoscalar mass tends to
decrease as a function of µV at a much stronger rate in the low temperature phase.

It is notable that a single hadron pole gives a good description for the response as well
as for the correlator at β = 5.34 (T/Tc ≈ 1.1) in the pseudoscalar channel.

On the other hand, the results for the vector meson response are still too noisy. It is
encouraging that the questions touched in the introduction appear to be addressable within
our approach, but improved statistics are necessary for quantitative conclusions.

Since the present study is a first trial, our simulations have been performed on a rather
small lattice. However, differences between the dynamics of Nt = 4 and Nt = 6 lattices have
been reported [18]. Thus, further investigations on larger lattices are indispensable.

The chemical potential response of the nucleon is also an interesting issue. That of
the quark condensate is even more important. An exploratory study on these topics is in
progress.
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APPENDIX A: FORMULAE FOR THE ISOSCALAR CHEMICAL POTENTIAL
RESPONSE

Using Eq.(15), the quark propagator g satisfies the relation

g(µ̂d)0n = γ5g
†(−µ̂d)n0γ5 , (A1)

8



so that the meson correlator G is given by

G = Tr[g(µ̂S)n0Γγ5g(−µ̂S)†n0γ5Γ
†] , (A2)

where Tr means the trace over spinor and colour indices. Each propagator is expanded as

g(µ̂) = g − µ̂gḊg +
µ̂2

2
(2gḊgḊg − gD̈g) + O(µ̂3) ,

g(−µ̂) = g + µ̂gḊg +
µ̂2

2
(2gḊgḊg − gD̈g) + O(µ̂3) , (A3)

where g and D are the propagator and the Dirac operator at zero chemical potential, re-
spectively, and the relation

ġ = −gḊg (A4)

is used.
The first derivative at µ̂S = 0 is

Ġ = −i2ImTr[(gḊg)n0Γγ5g
†
n0γ5Γ

†] , (A5)

and the second derivative at µ̂S = 0 is obtained as

G̈ = 4ReTr[(gḊgḊg)n0Γγ5g
†
n0γ5Γ

†]− 2ReTr[(gD̈g)n0Γγ5g
†
n0γ5Γ

†]

− 2Tr[(gḊg)n0Γγ5(gḊg)†n0γ5Γ
†] . (A6)

Let us calculate the derivatives of ∆. Using the following equations ,

d

dµ̂
det(D) = Tr[Ḋg]detD ,

d2

dµ̂2
det(D) = {Tr[D̈g]− Tr[ḊgḊg] + Tr[Ḋg]2}det(D) , (A7)

we have

∆̇

∆
= 2Tr[Ḋg] ,

∆̈

∆
= 2Tr[D̈g]− 2Tr[ḊgḊg] + 4Tr[Ḋg]2 . (A8)

Combining Eqs.(14), (A5), (A6), (A7) and (A8), we have

d

dµ̂
Re〈H(n)H(0)†〉 = 0 , (A9)

and

d2

dµ̂2
Re〈H(n)H(0)†〉 = 4Re〈Tr[(gḊgḊg)n0Γγ5g

†
n0γ5Γ

†]〉
− 2Re〈Tr[(gD̈g)n0Γγ5g

†
n0γ5Γ

†]〉
− 2Re〈Tr[(gḊg)n0Γγ5(gḊg)†n0γ5Γ

†]〉
+ 8〈ImTr[(gḊg)n0Γγ5g

†
n0γ5Γ

†]ImTr[Ḋg]〉
+ 2Re{〈Tr[gn0Γγ5g

†
n0γ5Γ

†](Tr[D̈g]− Tr[ḊgḊg] + 2Tr[Ḋg]2)〉
− 〈Tr[gn0Γγ5g

†
n0γ5Γ

†]〉〈(Tr[D̈g]− Tr[ḊgḊg] + 2Tr[Ḋg]2)〉}. (A10)
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APPENDIX B: FORMULAE FOR THE ISOVECTOR CHEMICAL POTENTIAL
RESPONSE

Next, we consider responses to the isovector chemical potential, Eq.(16). In this case,
the first derivative of ∆ vanishes,

∆̇ =
d

dµ̂V
(det(D(µ̂V ))det(D(−µ̂V ))|µ̂V =0 = 0 , (B1)

and the second derivative is obtained as

∆̈

∆
= 2Tr[D̈g]− 2Tr[ḊgḊg] . (B2)

Similarly, derivatives of G are calculated as

Ġ = −2ReTr[(gḊg)n0Γγ5g
†
n0γ5Γ

†] , (B3)

and

G̈ = 4ReTr[(gḊgḊg)n0Γγ5g
†
n0γ5Γ

†]− 2ReTr[(gD̈g)n0Γγ5g
†
n0γ5Γ

†]

+ 2Tr[(gḊg)n0Γγ5(gḊg)†n0γ5Γ
†] . (B4)

Resulting expressions for the first and second responses to the isovector chemical poten-
tials are

d

dµ̂
Re〈H(n)H(0)†〉 = −2ReTr[(gḊg)n0Γγ5g

†
n0γ5Γ

†] , (B5)

and

d2

dµ̂2
Re〈H(n)H(0)†〉 = 4Re〈Tr[(gḊgḊg)n0Γγ5g

†
n0γ5Γ

†]〉
− 2Re〈Tr[(gD̈g)n0Γγ5g

†
n0γ5Γ

†]〉
+ 2Re〈Tr[(gḊg)n0Γγ5(gḊg)†n0γ5Γ

†]〉
+ 2Re{〈Tr[gn0Γγ5g

†
n0γ5Γ

†](Tr[D̈g]− Tr[ḊgḊg])〉
− 〈Tr[gn0Γγ5g

†
n0γ5Γ

†]〉〈(Tr[D̈g]− Tr[ḊgḊg])〉} . (B6)

APPENDIX C: RESPONSES FOR STAGGERED FERMIONS

For staggered fermions, the determinant factor ∆ is given by Eq.(20), and this leads to

∆̇

∆
=

1

2
Tr[Ḋg] ,

∆̈

∆
=

1

2
Tr[D̈g]− 1

2
Tr[ḊgḊg] +

1

4
Tr[Ḋg]2 . (C1)
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The final expressions for the second responses are

d2

dµ̂2
Re〈H(n)H(0)†〉 = 4Re〈Tr[(gḊgḊg)n0Γγ5g

†
n0γ5Γ

†]〉
− 2Re〈Tr[(gD̈g)n0Γγ5g

†
n0γ5Γ

†]〉
− 2Re〈Tr[(gḊg)n0Γγ5(gḊg)†n0γ5Γ

†]〉
+ 2〈ImTr[(gḊg)n0Γγ5g

†
n0γ5Γ

†]ImTr[Ḋg]〉
+

1

2
Re{〈Tr[gn0Γγ5g

†
n0γ5Γ

†](Tr[D̈g]− Tr[ḊgḊg] +
1

2
Tr[Ḋg]2)〉

− 〈Tr[gn0Γγ5g
†
n0γ5Γ

†]〉〈(Tr[D̈g]− Tr[ḊgḊg] +
1

2
Tr[Ḋg]2)〉} (C2)

for the isoscalar chemical potential, and

d2

dµ̂2
Re〈H(n)H(0)†〉 = 4Re〈Tr[(gḊgḊg)n0Γγ5g

†
n0γ5Γ

†]〉
− 2Re〈Tr[(gD̈g)n0Γγ5g

†
n0γ5Γ

†]〉
+ 2Re〈Tr[(gḊg)n0Γγ5(gḊg)†n0γ5Γ

†]〉
+

1

2
Re{〈Tr[gn0Γγ5g

†
n0γ5Γ

†](Tr[D̈g]− Tr[ḊgḊg])〉
− 〈Tr[gn0Γγ5g

†
n0γ5Γ

†]〉〈(Tr[D̈g]− Tr[ḊgḊg])〉} (C3)

for the isovector chemical potential.
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TABLES

TABLE I. Parameters of the simulations. #conf. stands for the number of configurations
analyzed.

ma β #conf. T
TC

0.0125 5.26 600 0.99
5.34 300 1.10

0.0170 5.26 600 0.98
5.34 300 1.09

0.0250 5.20 600 0.89
5.26 600 0.96
5.32 300 1.05
5.34 300 1.07

TABLE II. Responses of the pseudoscalar meson to the isoscalar chemical potential µ̂S .

ma β M̂ 1
A

d2A
dµ̂2

d2M̂
dµ̂2

1
γ̂

d2γ̂
dµ̂2

0.0125 5.26 0.2956(2) -1.4(20) 0.17(35) -0.8(23)
5.34 0.7513(11) -4.23(49) 5.39(10) 2.95(51)

0.0170 5.26 0.3506(2) -1.5(14) 0.30(26) -0.6(16)
5.34 0.7421(35) -3.68(75) 5.82(16) 4.16(78)

0.0250 5.20 0.4061(2) -0.4(14) 0.16(26) 0.0(16)
5.26 0.4218(2) -0.8(11) 0.29(20) -0.1(12)
5.32 0.6926(11) -4.65(91) 5.17(20) 2.82(96)
5.34 0.7534(7) -3.17(41) 4.43(8) 2.71(42)

TABLE III. Responses of the pseudoscalar meson to the isovector chemical potential µ̂V .

ma β 1
A

dA
dµ̂

dM̂
dµ̂

1
A

d2A
dµ̂2

d2M̂
dµ̂2

1
γ̂

d2γ̂
dµ̂2

0.0125 5.26 0.0029(57) -0.0001(12) 47.46(71) -12.93(43) 3.7(16)
5.34 0.0047(93) 0.0006(21) 2.32(64) -1.32(32) 0.56(77)

0.0170 5.26 -0.0081(48) -0.0005(10) 33.52(61) -10.49(33) 3.6(11)
5.34 0.0000(82) -0.0012(19) 2.74(64) -1.48(32) 0.75(78)

0.0250 5.20 0.0062(39) 0.0016(8) 25.24(46) -9.10(23) 2.84(74)
5.26 -0.0080(37) 0.0007(8) 23.22(46) -8.64(23) 2.72(71)
5.32 -0.0054(64) -0.0020(14) 4.04(75) -2.14(38) 0.95(93)
5.34 0.000(6) 0.000(1) 2.99(53) -1.51(26) 0.99(60)
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FIG. 1. Average value of the Polyakov loop as a function of β.
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FIG. 2. Pseudoscalar correlator and some contributions to its response to µ̂S,V (see Eq.(21))
at β = 5.34 and ma = 0.025. The correlator is fitted by the single pole formula Eq.(2).
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FIG. 3. The first response of the pseudoscalar meson correlator at β = 5.26 (T < Tc, left) and
β = 5.34 (T > Tc, right). The quark mass is ma = 0.025.
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FIG. 4. The second response of the pseudoscalar meson correlator at β = 5.26 and ma = 0.025
(T < Tc, left), and at β = 5.34 and ma = 0.0125 (T > Tc, right). The curves are fits to Eq.(4).

15



0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
T/TC

0

0.2

0.4

0.6

0.8

1

M

FIG. 5. Screening mass of the pseudoscalar meson at ma = 0.025, in a−1 units. βC is taken
from Ref.[15]. Values for T/TC are estimated by using the two-loop β-function.
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FIG. 6. M̂2 (left) and d2M̂2/dµ̂2
S (right) for the pseudoscalar meson versus ma. β is 5.26

(triangles) and 5.34 (circles). Extrapolation to ma = 0 is also shown.

16



0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
T/TC

−10

−8

−6

−4

−2

0

2

4

6

8

d2 M
/d

µ2

µS

µV

FIG. 7. Second response d2M̂/dµ̂2
S , d2M̂/dµ̂2

V of the pseudoscalar meson at ma = 0.025. T/Tc

is estimated as in Fig.5.
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FIG. 8. Second response of the coupling, γ̂−1d2γ̂/dµ̂2
S , γ̂−1d2γ̂/dµ̂2

V , for the pseudoscalar meson
at ma = 0.025. T/Tc is estimated as in as Fig.5.
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FIG. 9. Vector meson correlator at β = 5.26 and ma = 0.025 (left), and its second response
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