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1 Introduction

In this note we discuss transverse momentum distributions in heavy flavour decays. As may be easily recognized,
the structure of the expressions reflects the analogous case of the energy-energy correlations or shape variables
in e+e− annihilation, i.e. it involves a coefficient function, a universal function f containing the logarithmic
contributions and a remainder function. This structure shows, on the other hand, the general form common to
all the reactions such as Drell-Yan (DY), Deep Inelastic Scattering (DIS), Jet Shape variables, etc., once the
large logarithmic contributions are separately resummed in the function f .

The purpose of computing the set of perturbative contributions for the heavy quark decay case is introduced
in this paper together with some preliminary results. We compute the next-to-leading order (NLO) coefficient
B1 describing single-logarithmic effects, which, together with the universal A1 and A2 coefficients, determines
the function f to NLO accuracy.

We outline here the peculiar phenomenological content of the transverse momentum distribution as making,
for several reasons, a stand-alone case in heavy flavour physics.

The main phenomenological application of our work involves the spectrum of tranverse momenta of the
produced hadrons, with respect to the photon direction, in the reaction b → sγ. This process appears to be
very clean because, in the rest frame of the B-meson, the photon momentum unambigously fixes the reference
direction for transverse hadron momenta.

The final goal of our study is a comparison of the complete NLO perturbative distribution with equally
accurate experimental data. Such a comparison should allow the extraction of the non-perturbative component
in the process i.e. the Fermi motion effects of the b-quark inside the B-meson and the final-state hadronization
of the strange quark. The information about non-perturbative dynamics obtained with p⊥ distributions is
complementary to the one obtained with the well-studied threshold distributions. Roughly speaking, transverse
momentum distributions are sensitive to the motion of the heavy quark in the plane orthogonal to the decay
axis, while threshold distributions are sensitive to the motion along the decay axis. This topic deserves some
attention since, as well known, the transverse momentum distributions of heavy flavours in hadronic processes
are presently poorly understood.

The paper is organized as follows. In sec. 2 we present our result on transverse momentum distributions.
In sec. 3 we summarize the main results on threshold distributions. In sec. 4 we discuss the results and we
compare the two different distributions. Finally, sec. 5 contains the conclusions together with an outlook at
future developments.

2 Transverse momentum distribution

As anticipated in the introduction, let us consider the distribution of relative transverse momenta between a
strange hadron hs and the photon in radiative B decays:

B → hs + X + γ, (1)

In practice, we expect hs to be a meson such as a K, a K∗, etc.. Without any generality loss, we can take
the B-meson at rest and the photon flying along the plus direction (+z axis); the relative tranverse momentum
then coincides with the projection of the hs momentum in the x − y plane. In general, we may identify three
different mechanisms in transverse momentum dynamics:

1. soft-gluon emission. The elementary process in (1) is:

b → s + X̂ + γ. (2)
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Non-vanishing tranverse momenta

pp 6= 0 (3)

are generated by soft-gluon emission1;

2. Fermi-motion. The beauty quark and the light valence quark in the B-meson exchange soft momenta with
each other. This implies that, before decay (2) occurs, the b quark has a non-zero transverse momentum

pf ∼ Λ (4)

where Λ is the QCD scale.

3. final-state hadronization. The strange quark emitted in the hard process fragments into the final hadron
hs,

s → hs + (anything) . (5)

Since the latter is a soft process, this implies a change in the transverse momentum of the strange system
by a quantity

ph ∼ Λ. (6)

The total tranverse momentum of hs is then

p = pp + pf + ph. (7)

Let us observe that Fermi motion and hadronization effects are of the same order and cannot therefore be
separated from each other. As we are going to show later, the situation is instead different in threshold
distributions. According to the above estimates, if we take

|p| � Λ, (8)

we have that the non-perturbative effects described in 2. and 3. are negligible, so that

p ' pp, (9)

and a (resummed) perturbative computation controls the distribution. The transverse momentum distribution
in impact parameter space b [1, 2] has the characteristic form [3]–[6]:

1
ΓB

dΓ
db

= C (αS) f (b; αS) + R (b; αS) . (10)

ΓB is the Born width and is given by:

ΓB ' αem

π

GF m3
bm

2
b,MS

(mb) |VtbV
∗
ts|2

32π3
C2

7 (mB) , (11)

where we consider only the leading operator O7 in the effective b → sγ hamiltonian [7].

The coefficient function C(αS) is process-dependent and short-distance dominated and has an expansion in
powers of αS of the form:

C (αS) = 1 +
CF αS

π
c +

(αS

π

)2

c′ + · · · (12)

1Transverse momenta are generally denoted with boldface symbols.

2



where CF =
(
N2

c − 1
)
/ (2Nc) = 4/3, αS ≡ αS(Q2) and Q = mB is the hard scale. The remainder function R

is process-dependent and has an expansion starting at order αS of the form

R (b; αS) =
CF αS

π
r (b) +

(αS

π

)2

r′ (b) + · · · . (13)

R vanishes in the limit of a large impact parameter:

R (b; αS) → 0 for b →∞, (14)

implying that it is short-distance dominated.

The function f (b; αS) contains the large logarithmic contributions in a resummed form and can be written
as the exponential of a series of functions [4]:

f (b; αS) = exp [L g1(β0αSL) + g2(β0αSL) + αS g3(β0αSL) + · · · ] , (15)

where

L ≡ log
Q2b2

b2
0

(16)

and b0 ≡ 2 exp [−γE ] ' 1.12 with γE ' 0.577 the Euler constant. Our computation of the functions g1 and g2

gives:

g1(ω) =
A1

2β0

1
ω

[log(1− ω) + ω] , (17)

g2(ω) = − A2

2β2
0

[
ω

1− ω
+ log(1− ω)

]
+

A1β1

2β3
0

[
log(1− ω)

1− ω
+

ω

1− ω
+

1
2

log2(1 − ω)
]

+
B1

β0
log(1− ω), (18)

where

A1 =
CF

π
and A2 =

CF

π2

[
CA

(
67
36
− π2

12

)
− 5

9
nfTR

]
. (19)

The above value of A2 is in the MS scheme for the coupling constant [2]. As usual, CA = Nc = 3, TR = 1/2
and nF = 3 is the number of active quark flavours. The first two coefficients of the β-function are:

β0 =
11CA − 2nF

12π
=

33− 2nF

12π
, β1 =

17C2
A − 5CAnF − 3CF nF

24π2
=

153− 19 nF

24π2
. (20)

A complete NLO analysis requires also the knowledge of the coefficient function c and of the remainder function
r (b) of order αS , which at present are unknown. Their computation is in progress and will be presented in a
forthcoming publication.

Denoting by S1 the soft contribution at one loop and by C1 the collinear one in the notation of ref. [8],

S1 = −CF

π
, C1 = −3

4
CF

π
, (21)

the next-to-leading coefficient B1 is given by

B1 =
S1

2
+ C1 = − 5

4
CF

π
. (22)

In usual hard processes, such as DIS or DY, S1 = 0 so that B1 = C1. In our case, single logarithmic effects are
more pronounced because this coefficient is almost a factor of 2 larger.

The expansion to order α2
S of the exponent reads:

log f (b; αS) = −1
4
A1αSL2 −B1αSL− 1

6
A1β0α

2
SL3 − 1

4
A2α

2
SL2 − 1

2
B1β0α

2
SL2. (23)
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Let us note that a single constant B1 controls the single-logarithmic effects in any order. The physical reason
is that a soft gluon and a collinear one with the same transverse momenta are emitted with the same effective
coupling αS

(
k2
⊥

)
[9]. This is to be contrasted with the threshold case (see next section). The function f(b, αS)

is plotted in fig. 1.
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Fig. 1: Plot of the function f(b) in the variable y = Q2b2/b2
0 (αS = 0.22). Solid line: NLO; dotted line: LO.

The resummed distribution (10) becomes singular when

ω → 1− (24)

Since

ω = β0αSL ≈ log Q2b2

log Q2/Λ2
, (25)

the singularity occurs when the transverse strange momentum becomes as small as the hadronic scale,

p⊥ ≈ 1
b
≈ Λ. (26)

The singularity (24) is produced by the infrared pole in the running coupling and signals an intrinsic limitation
of resummed perturbation theory, in agreement with previous qualitative analysis. Let us note that the function
g2 has basically a pole singularity in the limit (24), while g1 has only a softer, logarithmic, singularity.

3 Threshold distribution

In this section we recall the main results on threshold distributions. The distribution in Mellin space — the
N -moment of the rate — has a similar representation to (10) [3]–[5],

1
ΓB

ΓN = C (αS) fN (αS) + RN (αS) , (27)
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where now the large logarithm contains the N -variable:

L ≡ log
N

N0
(threshold case) , (28)

with N0 ≡ exp [−γE] . The functions gi in the exponent are different with respect to the ones in the p⊥ case
and the leading and next-to-leading ones read [10, 11]:

g1 (λ) = − A1

2β0

1
λ

[(1 − 2λ) log(1− 2λ)− 2(1− λ) log(1− λ)] ,

g2 (λ) =
β0A2 − β1A1

2β3
0

[log(1− 2λ)− 2 log(1− λ)]− β1A1

4β3
0

[
log2(1− 2λ)− 2 log2(1 − λ)

]
+

+
S1

2β0
log(1 − 2λ) +

C1

β0
log(1− λ). (29)

The expansion to order α2
S of the exponent reads:

log fN = −1
2
A1αSL2 − αS (S1 + C1) L− 1

2
A1β0α

2
SL3 − 1

2
A2α

2
SL2 −

(
S1 +

1
2
C1

)
β0 α2

S L2. (30)

Let us comment on the above results. The single-logarithmic effects at one loop are controlled by the constant

S1 + C1 = −7
4

CF

π
, (31)

i.e. by the sum of the soft and the collinear coefficients, which is different from the p⊥-case (cf. eqs. (22) and
(23)). At two-loop they are instead controlled by a different constant,

S1 +
1
2
C1 = −11

8
CF

π
. (32)

The soft and the collinear terms begin to differentiate at this order and the soft one has a two times larger
coefficient. Contrary to the p⊥ case, two different constants are needed to describe the single logarithmic effects.
The dynamical difference between soft and collinear terms is that, for a fixed jet mass, the transverse momentum
of a soft gluon is substantially smaller that of a collinear gluon [9, 12, 8, 11].

The functions g1 and g2 in (29) — and therefore also the resummed distribution — have two different
singularities [11, 14, 15, 8]:

i) the first one occurs when

1
2

= λ ≈ log Q2/m2

log Q2/Λ2
, (33)

or, equivalently, when

m2 ≈ Λ Q, (34)

where m is the mass of the final hadronic jet s + X̂. In the last member of (33), we have used the
approximation N ≈ Q2/m2 [16]. The singularity (33) signals the occurence of non-perturbative effects in
region (34) — to be identified with the well-known Fermi motion [17]; it is related to soft-gluon effects
— i.e. to the terms proportional to A1, S1 and A2 — and not to collinear ones — the term proportional
to C1. Fermi-motion effects are therefore controlled by soft and not by collinear dynamics. This fact
allows a factorisation of Fermi-motion effects by means of a function taking into account soft dynamics
only, the well-known shape function2 [18]. In this region, initial bound state effects become relevant while
final-state binding effects can be neglected [19, 8, 11].

2The shape function is also called structure function of the heavy flavours.
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ii) the second singularity occurs at

λ = 1, (35)

or

m2 ≈ Λ 2 (36)

and is related to final-state hadronization effects. Both soft and collinear terms are singular in this region
and there are non-perturbative effects related to initial as well as final bound-state dynamics.

4 Discussion and comparison of the distributions

Let us now discuss the physics of p⊥ distributions and compare with the threshold case. In the latter case,
there is a first singularity, of soft nature, closer to the origin in λ = 1/2, which can be removed by introducing
the shape function. In the p⊥ case, an analogous singularity is absent, as also supported by physical intuition.
In both distributions, there is a singularity in one (λ = 1 or ω = 1), which cannot be removed by introducing
a non-perturbative soft function. This implis that, in the p⊥ case, non-perturbative effects cannot be treated
with a “shape-function” approach. One could try a different approach based on the effective theory introduced
in [13] or the collinear effective theory developed in [20].

Let us note that, in general, the singularities of the functions gi (ω) are more severe than those of the functions
gi (λ) for λ → 1/2 or 1. For example, g1 (ω) has a logarithmic singularity, while g1 (λ) has an additional prefactor
1 − 2λ or 1 − λ which softens the singularity. Owing to the different singularity structure, the p⊥-distribution
is complementary to the threshold one and gives independent information about non-perturbative physics.

Finally, let us make a general field-theory remark. Threshold distributions and p⊥-distributions have a
different theoretical status. The former are completely inclusive quantities and can be computed as the imaginary
part of a forward scattering amplitude: a non-perturbative computation with lattice QCD is in principle feasible
[21]. This is not the case for p⊥-distributions, which instead are true jet quantities: a separate computation of
real and virtual diagrams is unavoidable and a lattice QCD computation is in principle unfeasable.

5 Conclusions

In this note we have discussed transverse momentum distributions in radiative B-decays and we have computed
the next-to-leading coefficient B1. The structure of the logarithmic corrections is analogous to the one encoun-
tered in energy-energy correlations or shape variable distributions in e+e− annihilations. Owing to the different
singularity structure with respect to threshold distributions, it does not seem possible to define the analogue of
a shape function. An operator definition of the non-perturbative effects in this case should presumably involve
a different effective theory explicitly containing the transverse degrees of freedom.

The comparison of our NLO distribution with accurate experimental data may give new and independent
information about the effective size of the non-perturbative corrections of order Λ/mB; a recurrent problem
in B-physics is indeed the separation of perturbative effects from non-perturbative ones and the estimate of
the latter. The computation of the remaining next-to-leading terms — the one loop coefficient function and
remainder function — is in progress and will be presented elsewhere.
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