
J
H
E
P
0
7
(
2
0
0
1
)
0
4
8

Received: July 10, 2001, Accepted: July 31, 2001
HYPER VERSION

O(a) improved twisted mass lattice QCD

Roberto Frezzotti∗ and Stefan Sint

CERN, Theory Division, CH–1211 Geneva 23, Switzerland

E-mail: Roberto.Frezzotti@mib.infn.it, stefan.sint@cern.ch

Peter Weisz

Max-Planck-Institut für Physik, Föhringer Ring 6
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1. Introduction

In ref. [2] twisted mass lattice QCD (tmQCD) has been introduced as a solution to

the problem of unphysical fermion zero modes which plague standard lattice QCD

with quarks of the Wilson type. We will assume that the reader is familiar with the

motivation of this approach, and refer to [1] for an introduction. The main topic
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of the present paper is the application of Symanizik’s improvement programme to

tmQCD. We introduce the set-up in the simplest case of two mass-degenerate quarks,

and study the improved action and the improved composite fields which appear in

the PCAC and PCVC relations.

Our strategy follows closely refs. [3, 4, 5]: in section 2 we go through the struc-

ture of the O(a) improved theory. We then define the Schrödinger functional for

tmQCD, and use it to derive suitable on-shell correlation functions (section 3). The

perturbation expansion is then carried out along the lines of ref. [5], and the new O(a)

improvement coefficients are obtained at the tree-level in section 4 and to one-loop

order in section 5. A few details have been delegated to appendices. Appendix A

describes how the twisted mass term can be incorporated in Lüscher’s construction

of the transfer matrix [6], and appendix B contains the analytic expressions for the

coefficients used in the analysis of the one-loop calculation.

2. Renormalized and O(a) improved tmQCD

The renormalization procedure for twisted mass lattice QCD with Wilson quarks has

already been discussed in ref. [2]. Here we apply Symanzik’s improvement programme

to first order in the lattice spacing a. The procedure is standard and the details of

its application to lattice QCD with Nf mass degenerate Wilson quarks can be found

in ref. [3].

Our starting point is the unimproved tmQCD lattice action for a doublet of mass

degenerate quarks,

S[U, ψ̄, ψ] = SG[U ] + SF[U, ψ̄, ψ] , (2.1)

with the standard Wilson gauge action and the fermionic part

SF[U, ψ̄, ψ] = a
4
∑
x

ψ̄(x)
(
D +m0 + iµqγ5τ

3
)
ψ(x) . (2.2)

The massless Wilson-Dirac operator is given by

D =
1

2

∑
µ

{(∇µ +∇∗µ) γµ − a∇∗µ∇µ} , (2.3)

where the forward and backward covariant lattice derivatives in direction µ are de-

noted by ∇µ and ∇∗µ, respectively. As tmQCD with vanishing twisted mass param-
eter µq reduces to standard lattice QCD we expect that improvement is achieved by

using the standard O(a) improved theory and adding the appropriate O(a) counter-

terms which are proportional to (powers of) µq, and which are allowed by the lattice

symmetries. The procedure hence consists in a straightforward extension of ref. [3],

and we take over notation and conventions from this reference without further notice.
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2.1 Renormalized O(a) improved parameters

Following ref. [3] we assume that a mass-independent renormalization scheme has

been chosen, and we take the same steps as done there for standard lattice QCD. At

µq = 0 the Sheikholeslami-Wohlert term [7] suffices to improve the action, up to a

rescaling of the bare parameters by terms proportional to the subtracted bare mass

mq = m0 −mc [3]. At non-vanishing µq we find that improved bare parameters are
of the form

g̃20 = g20(1 + bgamq) ,

m̃q = mq(1 + bmamq) + b̃maµ
2
q ,

µ̃q = µq(1 + bµamq) , (2.4)

i.e. there exist two new counterterms with coefficients bµ and b̃m. The renormalized

O(a) improved mass and coupling constant are then proportional to these parame-

ters, viz.

g2R = g̃
2
0Zg(g̃

2
0, aµ) , mR = m̃qZm(g̃

2
0, aµ) , µR = µ̃qZµ(g̃

2
0, aµ) . (2.5)

The ratio of the appropriately renormalized mass parameters determines the angle

α which is involved in the physical interpretation of the theory [2]. We will discuss

below the general O(a) improved definition of α. Here we note that the case of

particular interest, α = π/2, corresponds to mR = 0, which implies mq = O(a) [2]. In

this case all the usual b-coefficients multiply terms of O(a2) and are thus negligible in

the spirit of O(a) improvement. One then remains with a single coefficient b̃m, which

compares favorably to the situation in standard lattice QCD where two coefficients,

bm and bg, are required.

2.2 Renormalized O(a) improved composite fields

We assume that composite fields are renormalized in a mass-independent scheme,

and such that the tmQCD Ward identities are respected [2]. Attention will be

restricted to the quark bilinear operators which appear in the PCAC and PCVC

relations. Moreover, we only consider the first two flavour components, and thus

avoid the renormalization of power divergent operators such as the iso-singlet scalar

density [2]. As explained in ref. [2], the third flavour component of the PCAC and

PCVC relations can be inferred in the continuum limit, by assuming the restoration

of the physical isospin symmetry. The O(a) improved currents and pseudo-scalar

density with indices a, b ∈ {1, 2} are then parameterised as follows,

(AR)
a
µ = ZA(1 + bAamq)

[
Aaµ + cAa∂̃µP

a + aµq b̃A ε
3abV b

µ

]
, (2.6)

(VR)
a
µ = ZV(1 + bVamq)

[
V a
µ + cVa∂̃νT

a
µν + aµq b̃V ε

3abAbµ

]
, (2.7)

(PR)
a = ZP(1 + bPamq)P

a . (2.8)
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Here we have chosen the bare operators which are local on the lattice, with the

conventions of ref. [3]. While this is the simplest choice, we also recall the definition

of the point-split vector current,

Ṽ a
µ (x) =

1

2

{
ψ̄(x)(γµ − 1)τ

a

2
U(x, µ)ψ(x+ aµ̂) +

+ ψ̄(x+ aµ̂)(γµ + 1)
τa

2
U(x, µ)−1ψ(x)

}
, (2.9)

which is obtained through a vector variation of the action. This current is protected

against renormalization, and the PCVC relation

∂∗µṼ
a
µ (x) = −2µqε3abP b(x) , (2.10)

is an exact lattice identity, with the local pseudo-scalar density and the backward

derivative ∂∗µ in µ-direction [2]. This implies the identity ZµZP = 1 in any renormal-
ization scheme which respects the PCVC relation.

2.3 An alternative definition of the improved vector current

An alternative renormalized improved current can be obtained from the point-split

current (2.9). For this it is convenient to start from the symmetrized version

V̄ a
µ (x) =

1

2

(
Ṽ a
µ (x) + Ṽ

a
µ (x− aµ̂)

)
, (2.11)

which behaves under space-time reflections in the same way as the local vector cur-

rent. The counterterm structure then is the same as in eq. (2.7), i.e. one finds

(V̄R)
a
µ = ZV̄(1 + bV̄amq)

[
V̄ a
µ + cV̄a∂̃νT

a
µν + b̃V̄aµqε

3abAbµ

]
, (2.12)

where we have again restricted the indices a, b to the first two components. One may

now easily show that

ZV̄ = 1 , bV̄ = 0 . (2.13)

To see this we first note that at µq = 0 the vector charge of this current is given by

Qa
V̄(t) =

1

2
ZV̄(1 + bV̄amq) [Q

a
V(t) +Q

a
V(t− a)] , (2.14)

with

Qa
V(x0) = a

3
∑
x

Ṽ a
0 (x) . (2.15)

At µq = 0, correlation functions of the charge are x0-independent,
1 and the O(a)

improved charge algebra for Qa
V̄
and the exact charge algebra for Qa

V together imply

that the whole renormalization factor in eq. (2.14) must be unity. As this holds

independently of mq, one arrives at the conclusion (2.13).
1i.e. as long as the time ordering of the space-time arguments in the given correlation function

remains unchanged.
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A further relation is obtained by noting that the PCVC relation between the

renormalized O(a) improved fields,

∂̃µ(V̄R)
a
µ = −2µRε3ab(PR)b , (2.16)

with the symmetric derivative ∂̃µ =
1
2
(∂µ + ∂

∗
µ) must hold up to O(a

2) corrections.

Then, using the identity

∂̃µV̄
a
µ (x) = ∂

∗
µ

(
Ṽ a
µ (x) +

1

4
a2∂∗µ∂µṼ

a
µ (x)

)
, (2.17)

one obtains the relation

ZPZmZ
−1
A b̃V̄ = −(bµ + bP) . (2.18)

The scale-independent combination of renormalization constants multiplying b̃V̄ is

determined by axial Ward identities [8], so that eq. (2.18) can be considered a relation

between improvement coefficients.

2.4 O(a) improved definition of the angle α

The physical interpretation of the correlation functions in tmQCD depends on the

angle α, which is defined through

tanα =
µR
mR

. (2.19)

In this equation µR and mR are the O(a) improved renormalized mass parameters

which appear in the PCAC and PCVC relations [2]. Up to terms of O(a2) we then find

µR

mR

=
µq[1 + (bµ − bm)amq]
ZPZm[mq + b̃maµ2q]

=
µq[1 + (bµ + bP − bA)amq]

ZA[m+ b̃Aaµ2qZ
−1
V ]

. (2.20)

Here, m denotes a bare mass which is obtained from some matrix element of the

PCAC relation involving the unrenormalized axial current A1µ + cA∂µP
1 and the

local density P 1. Given m, the critical mass mc, and the finite renormalization

constants ZA, ZV and ZPZm, the determination of the O(a) improved angle requires

the knowledge of two (combinations of) improvement coefficients, which may be

chosen to be bµ− bm and b̃m, or bµ+ bP− bA and b̃A. A special case is again α = π/2,
which is obtained for vanishing denominators in eq. (2.20). For this it is sufficient to

know either b̃A or b̃m, and the finite renormalization constants ZA or ZPZm are then

not needed.

2.5 Redundancy of improvement coefficients

Having introduced all O(a) counterterms allowed by the lattice symmetries, it is

guaranteed that there exists a choice for the improvement coefficients such that O(a)

lattice artefacts in on-shell correlation functions are completely eliminated. We now
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want to show that there is in fact a redundancy in the set of the new counterterms

introduced so far, i.e. the counterterms are not unambiguously determined by the

requirement of on-shell improvement alone. To see this we consider the renormalized

2-point functions

GA(x− y) =
〈
(AR)

1
0(x)(PR)

1(y)
〉
,

GV(x− y) =
〈
(VR)

2
0(x)(PR)

1(y)
〉
, (2.21)

of the renormalized O(a) improved fields defined in subsection 2.2. We assume that

a quark mass independent renormalization scheme has been chosen, and with the

proper choice for the improvement coefficients one finds,

GX(x) = lim
a→0

GX(x) + O(a
2) , X = A,V , (2.22)

provided that x is kept non zero in physical units. If the new improvement coefficients

b̃m, bµ, b̃A and b̃V were all necessary any change of O(1) in these coefficients would

introduce uncancelled O(a) artefacts in eq. (2.22). Varying the coefficients b̃m →
b̃m +∆b̃m, bµ → bµ +∆bµ and b̃A → b̃A +∆b̃A in the correlation function GA(x), we

find that the correlation function itself changes according to

∆GA(x) = −aµRZP
[
∆b̃mZPZm µR

∂

∂mR

GA(x) + ∆bµ(ZPZm)
−1mR

∂

∂µR
GA(x)−

−∆b̃AZAZ−1V GV(x)
]
, (2.23)

where terms of O(a2) have been neglected. In the derivation of this equation one

has to be careful to correctly take into account the counterterms proportional to bµ
and b̃m. First of all we notice that changing an O(a) counterterm can only induce

changes of O(a) in the correlation function. For instance, the equation

GA(x)|bµ→bµ+∆bµ = GA(x) + ∆bµ
∂

∂bµ
GA(x) + O(a

2) , (2.24)

holds even for finite changes ∆bµ. Second, when taking the continuum limit the

bare mass parameters become functions of the improvement coefficients such that

the renormalized O(a) improved masses are fixed. For instance one has

µq = ZPµR(1− bµZ−1m amR) + O(a
2) , (2.25)

and a straightforward application of the chain rule leads to

∂

∂bµ
GA(x) =

(
∂µq
∂bµ

)
∂

∂µq
GA(x) = −aµRmRZPZ

−1
m

∂

∂µq
GA(x) , (2.26)

where we have used eq. (2.25) and neglected terms of O(a2). Proceeding in the same

way for the variation with respect to b̃m, and changing to renormalized parameters

µq = ZPµR +O(a), mq = Z
−1
m mR +O(a) eventually leads to eq. (2.23).
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At this point we recall ref. [2, eq. (3.13)], which expresses the reparameterization

invariance with respect to changes of the angle α. In terms of the above correlation

functions one finds, up to cutoff effects,

∂

∂α
GA(x) ≡

(
mR

∂

∂µR
− µR ∂

∂mR

)
GA(x) = −GV(x) . (2.27)

As a consequence not all the terms in eq. (2.23) are independent, and the requirement

that ∆GA(x) be of order a
2 entails only two conditions,

∆b̃m +∆bµ(ZPZm)
−2 = 0 ,

∆b̃m −∆b̃A(ZPZmZV)−1ZA = 0 . (2.28)

This makes precise the redundancy or over-completeness of the counterterms alluded

to above. The same procedure applies to GV(x), and we conclude that the require-

ment of on-shell O(a) improvement only determines the combinations of improvement

coefficients b̃m + bµ(ZPZm)
−2, b̃m − b̃V(ZPZmZA)−1ZV, and b̃m − b̃A(ZPZmZV)−1ZA.

We emphasize that this redundancy is a generic feature of tmQCD, and not linked

to special choices for the fields or correlation functions. In particular we note that

the third component of the axial variation of any composite field φ has the correct

quantum numbers to appear as an O(aµq) counterterm to φ itself.

In conclusion, O(a) improved tmQCD as defined here constitutes a one-parame-

ter family of improved theories. In view of practical applications it is most convenient

to choose b̃m as the free parameter and set it to some numerical value. For reasons

to become clear in section 4 our preferred choice is b̃m = −1/2. However, in the
following we will keep all coefficients as unknowns and only make a choice at the very

end. In order to define on-shell correlation functions which are readily accessible to

perturbation theory we will first define the Schrödinger functional for tmQCD. It is

then straightforward to extend the techniques of refs. [4, 5] to tmQCD and study the

continuum approach of correlation functions derived from the Schrödinger functional.

3. The Schrödinger functional for tmQCD

This section follows closely ref. [3, section 5] and ref. [4]. The reader will be assumed

familiar with these references, and we will refer to equations there by using the prefix

I and II, respectively.

3.1 Definition of the Schrödinger functional

To define the Schrödinger functional for twisted mass lattice QCD, it is convenient

to follow refs. [9, 10]. The Schrödinger functional is thus obtained as the integral

kernel of some integer power T/a of the transfer matrix. Its euclidean representation
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is given by

Z[ρ ′, ρ̄ ′, C ′; ρ, ρ̄, C] =
∫
D[U ]D[ψ]D[ψ̄] e−S[U,ψ̄,ψ] , (3.1)

and is thus considered as a functional of the fields at euclidean times 0 and T .

From the structure of the transfer matrix it follows that the boundary conditions

for all fields are the same as in the standard framework. In particular, the quark

fields satisfy,

P+ψ|x0=0 = ρ , P−ψ|x0=T = ρ ′ ,
ψ̄P−|x0=0 = ρ̄ , ψ̄P+|x0=T = ρ̄ ′ , (3.2)

with the usual projectors P± = 1
2
(1± γ0). The gauge field boundary conditions are

as in eqs. (I.4.1) and (I.4.2) and will not be repeated here.

The action in eq. (3.1),

S[U, ψ̄, ψ] = SG[U ] + SF[U, ψ̄, ψ] , (3.3)

splits into the gauge part (I.4.5) and the quark action, which assumes the same

form as on the infinite lattice (2.2). Note that we adopt the same conventions as

in [3, subsection 4.2], in particular the quark and antiquark fields are extended to all

times by “padding” with zeros, and the covariant derivatives in the finite space-time

volume now contain the additional phase factors related to θk, (k = 1, 2, 3).

3.2 Renormalization and O(a) improvement

Renormalizability of the tmQCD Schrödinger functional could be verified along the

lines of ref. [11]. However, this is not necessary as any new counterterm is expected

to be proportional to the twisted mass parameter and is therefore at least of mass

dimension 4. One therefore expects the Schrödinger functional to be finite after

renormalization of the mass parameters and the gauge coupling as in infinite vol-

ume [2], and by scaling the quark and anti-quark boundary fields with a common

renormalization constant [11]. This expectation will be confirmed in the course of

the perturbative calculation.

The structure of the new counterterms at O(a) is again determined by the sym-

metries. These are the same as in infinite space-time volume, except for those which

exchange spatial and temporal directions. The improved action,

Simpr[U, ψ̄, ψ] = S[U, ψ̄, ψ] + δSv[U, ψ̄, ψ] + δSG,b[U ] + δSF,b[U, ψ̄, ψ] , (3.4)

has the same structure as in the standard framework, in particular, δSv and δSG,b
are as given in eqs. (I.5.3) and (I.5.6). The symmetries allow for two new fermionic

boundary counterterms,

O± = iµqψ̄γ5τ 3P±ψ . (3.5)

8
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The equations of motion do not lead to a further reduction and the action with the

fermionic boundary counterterms at O(a) is then given by

δSF,b[U, ψ̄, ψ] = a4
∑
x

{
(c̃s − 1)

[
Ôs(x) + Ôs′(x)

]
+ (c̃t − 1)

[
Ôt(x)− Ôt′(x)

]
+

+ (b̃1 − 1)
[
Q̂1(x) + Q̂

′
1(x)
]
+

+ (b̃2 − 1)
[
Q̂2(x) + Q̂

′
2(x)
]}

. (3.6)

Here, we have chosen lattice operators as follows,

Q̂1(x) = iµqψ̄(x)γ5τ
3ψ(x)

∣∣
x0=a

,

Q̂′1(x) = iµqψ̄(x)γ5τ
3ψ(x)

∣∣
x0=T−a ,

Q̂2(x) = iµqρ̄(x)γ5τ
3ρ(x) ,

Q̂′2(x) = iµqρ̄
′(x)γ5τ 3ρ ′(x) , (3.7)

and the expressions for the lattice operators Ôs,t and Ôs,t′ are given in eqs. (I.5.21)–
(I.5.24). Note that the improvement coefficients are the same for both boundaries, as

the counterterms are related by a time reflection combined with a flavour exchange.

3.3 Dirac equation and classical solutions

For euclidean times 0 < x0 < T the lattice Dirac operator and its adjoint are formally

defined through

δSimpr

δψ̄(x)
= (D + δD +m0 + iµqγ5τ

3)ψ(x) ,

−δSimpr
δψ(x)

= ψ̄(x)(D
←† + δD

←† +m0 + iµqγ5τ 3) , (3.8)

where δD = δDv + δDb is the sum of the volume and the boundary O(a) counter-

terms. Equation (II.2.3) for the volume counterterms remains valid, whereas for the

boundary counterterms one obtains

δDbψ(x) = (c̃t − 1)1
a

{
δx0,a
[
ψ(x)− U(x− a0̂, 0)−1P+ψ(x− a0̂)

]
+

+ δx0,T−a
[
ψ(x)− U(x, 0)P−ψ(x+ a0̂)

]}
+

+ (b̃1 − 1) [δx0,a + δx0,T−a] iµqγ5τ 3ψ(x) . (3.9)

We observe that the net effect of the additional counterterm consists in the replace-

ment µq → b̃1µq close to the boundaries. Although a boundary O(a) effect is unlikely

to have a major impact, we note that the presence of this counterterm with a gen-

eral coefficient b̃1 invalidates the argument by which zero modes of the Wilson-Dirac

operator are absent in twisted mass lattice QCD. To circumvent this problem we
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remark that the counterterm may also be implemented by explicit insertions into

the correlation functions. As every insertion comes with a power of a, a single inser-

tion will be sufficient in most cases, yielding a result that is equivalent up to terms

of O(a2).

Given the Dirac operator, the propagator is now defined through

(D + δD +m0 + iµqγ5τ
3)S(x, y) = a−4δxy , 0 < x0 < T , (3.10)

and the boundary conditions

P+S(x, y)|x0=0 = P−S(x, y)|x0=T = 0 . (3.11)

Boundary conditions in the second argument follow from the conjugation property,

S(x, y)† = γ5τ 1S(y, x)γ5τ 1 , (3.12)

which is the usual one up to an exchange of the flavour components.

As in the standard framework [4, 11], it is useful to consider the classical solutions

of the Dirac equation, (
D + δD +m0 + iµqγ5τ

3
)
ψcl(x) = 0 ,

ψ̄cl(x)
(
D
←† + δD

←† +m0 + iµqγ5τ 3
)
= 0 . (3.13)

Here, the time argument is restricted to 0 < x0 < T , while at the boundaries the clas-

sical solutions are required to satisfy the inhomogeneous boundary conditions (3.2).

It is not difficult to obtain the explicit expressions,

ψcl(x) = c̃ta
3
∑
y

{
S(x, y)U (y − a0̂, 0)−1P+ρ(y)

∣∣
y0=a
+

+ S(x, y)U(y, 0)P− ρ ′(y)|y0=T−a
}
,

ψ̄cl(x) = c̃ta
3
∑
y

{
ρ̄(y)P− U(y − a0̂, 0)S(y, x)

∣∣
y0=a
+

+ ρ̄ ′(y)P+ U(y, 0)−1S(y, x)
∣∣
y0=T−a

}
, (3.14)

which are again valid for 0 < x0 < T . Note that these expressions are exactly the

same as in ref. [4], except that the quark propagator here is the solution of eq. (3.10).

3.4 Quark functional integral and basic 2-point functions

We shall use the same formalism for the quark functional integral as described in

subsection II.2.3. Most of the equations can be taken over literally, in particular,

eq. (II.2.21) holds again. The presence of the twisted mass term merely leads to a

10
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modification of the improved action of the classical fields, [eq. (II.2.22)], which is

now given by

SF,impr[U, ψ̄cl, ψcl] = a3
∑
x

{
b̃2aµq

[
ρ̄(x)iγ5τ

3ρ(x) + ρ̄ ′(x)iγ5τ 3ρ ′(x)
]
+

+ c̃sa

[
ρ̄(x)γk

1

2
(∇k +∇∗k)ρ(x)+

+ ρ̄ ′(x)γk
1

2
(∇k +∇∗k)ρ ′(x)

]
−

− c̃t
[
ρ̄(x)U(x − a0̂, 0)ψcl(x)

∣∣
x0=a
+

+ ρ̄ ′(x)U(x, 0)−1ψcl(x) |x0=T−a]
}
. (3.15)

The quark action is a quadratic form in the Grassmann fields, and the functional

integral can be solved explicitly. Therefore, in a fixed gauge field background any

fermionic correlation function can be expressed in terms of the basic two-point func-

tions. Besides the propagator already introduced above,[
ψ(x)ψ̄(y)

]
F
= S(x, y) , (3.16)

we note that the boundary-to-volume correlators can be written in a convenient way

using the classical solutions,[
ζ(x)ψ̄(y)

]
F
=
δψ̄cl(y)

δρ̄(x)
,

[
ψ(x)ζ̄(y)

]
F
=
δψcl(x)

δρ(y)
,

[
ζ ′(x)ψ̄(y)

]
F
=
δψ̄cl(y)

δρ̄ ′(x)
,

[
ψ(x)ζ̄ ′(y)

]
F
=
δψcl(x)

δρ ′(y)
. (3.17)

The explicit expressions in terms of the quark propagator can be easily obtained

from eqs. (3.14), and coincide with those given in ref. [4]. The boundary-to-boundary

correlators can be written as follows,[
ζ(x)ζ̄ ′(y)

]
F
= c̃tP−U(x− a0̂, 0)

[
ψ(x)ζ̄ ′(y)

]
F

∣∣
x0=a

,[
ζ ′(x)ζ̄(y)

]
F
= c̃tP+U(x, 0)

−1 [ψ(x)ζ̄(y)]
F

∣∣
x0=T−a . (3.18)

The correlators of two boundary quark fields at the same boundary receive additional

contributions due to the new boundary counterterms, viz.[
ζ(x)ζ̄(y)

]
F
= c̃2t P−U(x− a0̂, 0)S(x, y)U(y − a0̂, 0)−1P+

∣∣
x0=y0=a

−

−P−
[
c̃sγk
1

2
(∇∗k +∇k) + b̃2iµqγ5τ

3

]
a−2δxy ,[

ζ ′(x)ζ̄ ′(y)
]
F
= c̃2t P+U(x, 0)

−1S(x, y)U(y, 0)P−
∣∣
x0=y0=T−a −

−P+
[
c̃sγk
1

2
(∇∗k +∇k) + b̃2iµqγ5τ

3

]
a−2δxy . (3.19)
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We finally note that the conjugation property (3.12) implies,[
ψ(x)ζ̄(y)

]†
F
= γ5τ

1
[
ζ(y)ψ̄(x)

]
F
γ5τ

1 ,[
ζ(x)ζ̄ ′(y)

]†
F
= γ5τ

1
[
ζ ′(y)ζ̄(x)

]
F
γ5τ

1 ,[
ζ(x)ζ̄(y)

]†
F
= γ5τ

1
[
ζ(y)ζ̄(x)

]
F
γ5τ

1 , (3.20)

and analogous equations for the remaining 2-point functions.

3.5 SF Correlation functions

With this set-up of the SF we now define a few on-shell correlation functions involving

the composite fields of section 2. With the boundary source

Oa = a6
∑
y,z

ζ̄(y)γ5
1

2
τaζ(z) , (3.21)

we define the correlation functions

fabA (x0) = −〈Aa0(x)Ob〉 ,
fabP (x0) = −〈P a(x)Ob〉 ,
fabV (x0) = −〈V a

0 (x)Ob〉 . (3.22)

In the following we restrict the isospin indices to a, b ∈ {1, 2}. It is convenient to
define the matrix [12, 13],

H(x) = a3
∑
y

δψcl(x)

δρ(y)
. (3.23)

Its hermitean conjugate matrix is given by

H(x)† = a3
∑
y

γ5τ
1 δψ̄cl(x)

δρ̄(y)
γ5τ

1 , (3.24)

and the correlation functions can be expressed in terms of H(x), viz.

fabX (x0) =

〈
1

4
tr
{
H(x)†γ5ΓXτ 1τaH(x)τ bτ 1

}〉
G

. (3.25)

As in ref. [4] the bracket 〈· · ·〉G means an average over the gauge fields with the
effective gauge action,

Seff [U ] = SG[U ] + δSG,b[U ]− ln det
(
D + δD +m0 + iµqγ5τ

3
)
, (3.26)

and the trace is over flavour, Dirac and colour indices. The gamma structures are

ΓX = γ0γ5, γ5, γ0, where X stands for A,P and V, respectively.
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3.6 Reducing the flavour structure

In order to carry out the flavour traces we introduce the flavour projectors

Q± =
1

2
(1± τ 3) . (3.27)

Inserting the flavour decomposition,

H(x) = H+(x)Q+ +H−(x)Q− , (3.28)

into the expression eq. (3.25) leads to

fabX (x0) =
∑
i,j=±

tr{Qiτ
1τaQjτ

bτ 1}
〈
1

4
tr
{
Hi(x)

†γ5ΓXHj(x)
}〉

G

. (3.29)

Since we restrict the indices a and b to values in {1, 2} this expression further sim-
plifies leading to

fabX (x0) =
∑
i=±
tr{Qiτ

bτa}
〈
1

4
tr
{
Hi(x)

†γ5ΓXHi(x)
}〉

G

. (3.30)

In order to simplify the expressions further, we now study the behaviour under a

parity transformation combined with the exchange µq → −µq. Notice that the
parity transformation also transforms the background fields, in particular it implies

θk → −θk (k = 1, 2, 3). On the matrices H±(x) this transformation acts according to
H±(x) −→ γ0H∓(x̃) , (3.31)

where x̃ = (x0,−x) is the parity transformed space-time argument, and we recall
that H±(x) depend implicitly on the background gauge field. After averaging over
the gauge fields and due to parity invariance of the effective gauge action (3.26) one

then finds〈
tr
{
H±(x)†γ5ΓXH±(x)

}〉
G
= η(X)

〈
tr
{
H∓(x)†γ5ΓXH∓(x)

}〉
G
, (3.32)

where the sign factor depends on whether ΓX commutes (η(X) = −1) or anti-
commutes (η(X) = 1) with γ0. Using this result in eq. (3.30) it follows that

f 12A (x0) = f
12
P (x0) = f

11
V (x0) = 0 . (3.33)

Furthermore, the exact U(1) flavour symmetry implies that

f 22X (x0) = f
11
X (x0) , f 21X (x0) = −f 12X (x0) , (3.34)

so that we may restrict attention to the following non-vanishing correlation functions:

f 11A (x0) = −
1

2

〈
tr
{
H+(x)

†γ0H+(x)
}〉

G
,

f 11P (x0) =
1

2

〈
tr
{
H+(x)

†H+(x)
}〉

G
,

f 12V (x0) =
i

2

〈
tr
{
H+(x)

†γ0γ5H+(x)
}〉

G
. (3.35)
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Note that eq. (3.32) has allowed to eliminate the dependence upon the second flavour

component H−(x). This is convenient both for perturbative calculations and in the
framework of numerical simulations.

4. O(a) improvement of the free theory

We determine the improvement coefficients in the free theory, which is obtained

by setting all gauge links to unity. In this context correlation functions of quark

and antiquark fields are suitable on-shell quantities which ought to be improved.

We may therefore consider the improvement of the one-particle energies, the quark

propagator and basic 2-point functions in the Schrödinger functional, in addition to

the SF correlation functions introduced in section 3.

4.1 The free quark propagator

All correlation functions in the SF are obtainable from the quark propagator, which

can be computed using standard methods [4]. We set the standard improvement

coefficients to their known values [4],

c̃t = c̃s = 1 , (4.1)

and compute the propagator assuming b̃1 = 1. As discussed in section 3, any other

value can be obtained by insertion of the corresponding boundary counterterm. The

propagator can be written in the form

S(x, y) =
(
D† +m0 − iµqγ5τ 3

)
G(x, y) , (4.2)

where G(x, y) is given by

G(x, y) = L−3
∑
p

eip(x−y) [G+(p, x0, y0)P+ +G−(p, x0, y0)P−] , (4.3)

with the functions

G+(p; x0, y0) = N (p+)
{
M−(p+)

[
e−ω(p

+)(|x0−y0|−T ) − eω(p+)(x0+y0−T )] +
+M+(p

+)
[
eω(p

+)(|x0−y0|−T ) − e−ω(p+)(x0+y0−T )]} ,
G−(p; x0, y0) = G+(p;T − x0, T − y0) . (4.4)

Here, M±(p+) = M(p+) ± ip̊0
+ (II.3.17), with M(p) as defined in eq. (II.3.6) and

p+µ = pµ + θµ/L. Furthermore, we recall that in the above formulae it is understood

that p0 = p+0 = iω(p+), where for given spatial momentum q the energy ω(q) is

obtained as the solution of the equation

sinh
[a
2
ω(q)

]
=
a

2

{
q̊2 + µ2q + (m0 +

1
2
aq̂2)2

1 + a(m0 +
1
2
aq̂2)

}1/2
. (4.5)

Finally, using again the notation of ref. [4], the normalization factor is given by

N (p+) = {−2ip̊0+A(p+)R(p+)eω(p+)T}−1 . (4.6)
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4.2 Improvement conditions and results

In the free quark theory, the quark energy ω is a suitable on-shell quantity. At

zero spatial momentum it coincides with the pole mass, which is related to the bare

masses through

cosh amp = 1 +
1
2
a2(m20 + µ

2
q)

(1 + am0)
. (4.7)

Up to terms of O(a2) one then finds (mc = 0 at tree level)

m2p =
(
m2q + µ

2
q

)
(1− amq) + O(a2) . (4.8)

Replacing the bare masses by the renormalized O(a) improved mass parameters and

requiring the absence of O(a) artifacts one obtains

bm = −1
2
, bµ + b̃m +

1

2
= 0 , (4.9)

and the same condition is obtained from the O(a) improved energy at finite spatial

momentum. One may wonder whether it is possible to get an additional condition

by considering the improvement of the quark propagator itself. This is not so, for

the reasons given in subsection 2.5. As an illustration we consider the quark propa-

gator (4.2) in the limit of infinite time extent T with the limit taken at fixed x0−T/2
and y0−T/2. This eliminates the boundaries both at x0 = 0 and x0 = T , so that one
is left with the improvement of the mass parameters, and of the quark and antiquark

fields, viz.

ψR =
(
1 + bψam0 + b̃ψiaµqγ5τ

3
)
ψ ,

ψ̄R = ψ̄
(
1 + bψ̄am0 + b̃ψ̄iaµqγ5τ

3
)
. (4.10)

Requiring the quark propagator to be O(a) improved we find the usual result of the

untwisted theory, bψ = bψ̄ = 1/2, and

b̃ψ̄ = b̃ψ , 2b̃ψ − b̃m − 1
2
= 0 , 2b̃ψ + bµ = 0 , (4.11)

i.e. 3 equations for 4 coefficients. Similarly, by studying the SF correlation functions

of the improved quark bilinear fields we find the standard results of the untwisted

theory, cA = cV = 0 and 2 bζ = bA = bV = bP = 1, and the following conditions

involving the new coefficients,

b̃1 − 1
2

(
b̃m +

1

2

)
= 1 ,

bµ + b̃m +
1

2
= 0 ,

b̃A −
(
b̃m +

1

2

)
= 0 ,

b̃V −
(
b̃m +

1

2

)
= 0 . (4.12)
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Furthermore, from the O(a) improvement of the basic 2-point functions we also obtain

b̃2 = 1 . (4.13)

The fact that b̃ψ and b̃1 are not determined independently is again due to the invari-

ance of the continuum theory under axial rotations of the fields and a compensating

change in the mass parameters. Hence our findings in the free theory are completely

in line with the general expectation expressed in subsection 2.5. Choosing b̃m as the

free parameter and setting it to −1/2 leads to bµ = b̃A = b̃V = 0 and b̃1 = 1, while

e.g. for b̃m = 0 the tree level value b̃1 = 5/4 is somewhat inconvenient.

5. The one-loop computation

We now want to expand the correlation functions to one-loop order. We work with

vanishing boundary values Ck and C
′
k. The gauge fixing procedure then is the same

as in ref. [4] and will not be described here. In the following we only describe those

aspects that are new and otherwise assume the reader to be familiar with refs. [4, 5].

5.1 Renormalized amplitudes

Once the flavour traces have been taken, the one-loop calculation at fixed lattice size

is almost identical to the standard case [4, 5]. In order to take the continuum limit

at fixed physical space-time volume, we then keep mR, µR, x0 and T fixed in units

of L. Here the renormalized mass parameters are defined in a mass-independent

renormalization scheme which may remain unspecified for the moment.

To first order of perturbation theory the substitutions for the coupling constant

and the quark mass then amount to

g20 = g2
R
+O(g4

R
) ,

m0 = m
(0)
0 + g

2
R
m
(1)
0 +O(g

4
R
) ,

µq = µ(0)q + g
2
Rµ
(1)
q +O(g

4
R) , (5.1)

where the precise form of the coefficients

m
(0)
0 =

1

a

[
1−√1− 2amR − a2µ2R

]
,

m
(1)
0 = m(1)c −

{
Z(1)m mR + b

(1)
m a
(
m
(0)
0

)2
+ aµ2

R

[
b̃(1)m + Z

(1)
µ + b

(1)
µ am

(0)
0

]}
×

×
[
1− am(0)0

]−1
,

µ(0)q = µR ,

µ(1)q = −µ(0)q
{
Z(1)µ + b

(1)
µ am

(0)
0

}
, (5.2)
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is a direct consequence of the definitions made in subsection 2.1, and already includes

the tree-level results obtained in the preceding section with the particular choice

b̃
(0)
m = −1/2.
The renormalized correlation functions,

[f 12V (x0)]R = ZV(1 + bVamq)Z
2
ζ (1 + bζamq)

2
{
f 12V (x0) + b̃Vaµqf

11
A (x0)

}
,

[f 11P (x0)]R = ZP(1 + bPamq)Z
2
ζ (1 + bζamq)

2f 11P (x0) ,

[f 11A (x0)]R = ZA(1 + bAamq)Z
2
ζ (1 + bζamq)

2 ×
×
{
f 11A (x0) + cAa∂̃0f

11
P (x0)− b̃Aaµqf 12V (x0)

}
, (5.3)

have a well-defined perturbation expansion in the renormalized coupling gR, with

coefficients that are computable functions of a/L. For instance the expansion of

[f 12V ]R reads

[f 12V (x0)]R = f 12V (x0)
(0) + g2

R

{
f 12V (x0)

(1) +m
(1)
0

∂

∂m0
f 12V (x0)

(0) +

+
(
Z
(1)
V + 2Z

(1)
ζ + amR

[
b
(1)
V + 2b

(1)
ζ

])
f 12V (x0)

(0) +

+µ(1)q
∂

∂µq
f 12V (x0)

(0) + aµRb̃
(1)
V f

11
A (x0)

(0)

}
, (5.4)

where terms of order a2 and g4
R
have been neglected, and it is understood that the

correlation functions are evaluated at m0 = m
(0)
0 and µq = µ

(0)
q .

Following ref. [4] we now set x0 = T/2 and scale all dimensionful quantities in

units of L. With the parameters zm = mRL, zµ = µRL and τ = T/L we then consider

the dimensionless functions,

hA

(
θ, zm, zµ, τ,

a

L

)
= [f 11A (x0)]R

∣∣
x0=T/2

,

hV

(
θ, zm, zµ, τ,

a

L

)
= [f 12V (x0)]R

∣∣
x0=T/2

,

hP

(
θ, zm, zµ, τ,

a

L

)
= [f 11P (x0)]R

∣∣
x0=T/2

,

hdA

(
θ, zm, zµ, τ,

a

L

)
= L∂̃0[f

11
A (x0)]R

∣∣∣
x0=T/2

,

hdV

(
θ, zm, zµ, τ,

a

L

)
= L∂̃0[f

12
V (x0)]R

∣∣∣
x0=T/2

. (5.5)

One then infers,

hA = v0 + g
2
R

{
v1 + c̃

(1)
t v2 + am

(1)
0 v3 + c

(1)
A v4 + aµ

(1)
q v5 + zµb̃

(1)
1 v6 −

a

L
zµb̃

(1)
A q0+

+
(
Z
(1)
A + 2Z

(1)
ζ +

a

L
zm

[
b
(1)
A + 2b

(1)
ζ

])
v0

}
, (5.6)

hV = q0 + g
2
R

{
q1 + c̃

(1)
t q2 + am

(1)
0 q3 + aµ

(1)
q q5 + zµb̃

(1)
1 q6 +

a

L
zµb̃

(1)
V v0+
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+
(
Z
(1)
V + 2Z

(1)
ζ +

a

L
zm

[
b
(1)
V + 2b

(1)
ζ

])
q0

}
, (5.7)

hP = u0 + g
2
R

{
u1 + c̃

(1)
t u2 + am

(1)
0 u3 + aµ

(1)
q u5 + zµb̃

(1)
1 u6 +

+
(
Z
(1)
P + 2Z

(1)
ζ +

a

L
zm

[
b
(1)
P + 2b

(1)
ζ

])
u0

}
, (5.8)

hdA = w0 + g
2
R

{
w1 + c̃

(1)
t w2 + am

(1)
0 w3 + c

(1)
A w4 + aµ

(1)
q w5 + zµb̃

(1)
1 w6 −

a

L
zµb̃

(1)
A r0 +

+
(
Z
(1)
A + 2Z

(1)
ζ +

a

L
zm

[
b
(1)
A + 2b

(1)
ζ

])
w0

}
, (5.9)

hdV = r0 + g
2
R

{
r1 + c̃

(1)
t r2 + am

(1)
0 r3 + aµ

(1)
q r5 + zµb̃

(1)
1 r6 +

a

L
zµb̃
(1)
V w0 +

+
(
Z
(1)
V + 2Z

(1)
ζ +

a

L
zm

[
b
(1)
V + 2b

(1)
ζ

])
r0

}
. (5.10)

Since we are neglecting terms of order a2, the expansions,

m
(1)
0 = m(1)c − Z(1)m

zm
L
− az2m

L2

[
Z(1)m + b

(1)
m

]− az2µ
L2

[
Z(1)µ + b̃

(1)
m

]
,

µ(1)q = −
zµ
L

[
Z(1)µ + b

(1)
µ

azm
L

]
, (5.11)

may be inserted in eqs. (5.6)–(5.10). All the coefficients vi, . . . , ri are still functions of

τ, θ , zm and zµ. Analytic expressions can be derived for those coefficients involving

the tree level correlation functions or the O(a) counterterms. Their asymptotic

expansions for a/L → 0 are collected in appendix B. The coefficients v1, . . . , r1 are
only obtained numerically and definite choices for the parameters had to be made.

We generated numerical data for θ = 0 and θ = 0.5 for both T = L and T = 2L and

various combinations of the mass parameters zm and zµ 6= 0 with values between 0
and 1.5. With these parameter choices the Feynman diagrams were then evaluated

numerically in 64 bit precision arithmetic for a sequence of lattice sizes ranging from

L/a = 4 to L/a = 32 (and in some cases to L/a = 36).

5.2 Analysis and results

The renormalization constants are determined by requiring the renormalized ampli-

tudes to be finite in the continuum limit, and by the requirement that the tmQCD

Ward identities be satisfied [2]. A linear divergence is cancelled in all amplitudes by

inserting the usual one-loop coefficient am
(1)
c , or equivalently a series which converges

to this coefficient in the limit a/L→ 0 [4]. We choose the lattice minimal-subtraction
scheme to renormalize the pseudo-scalar density and the quark boundary fields, and

the one-loop coefficients are then given by [with CF = (N
2 − 1)/2N ],

Z
(1)
P = −

6CF
16π2

ln

(
L

a

)
, 2Z

(1)
ζ = −Z(1)P . (5.12)

The current renormalization constants, and the renormalization of the standard and

twisted mass parameters are determined by the Ward identities. For the one-loop
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coefficients we expect [2, 14, 15],

Z
(1)
A = −0.087344(2)CF ,

Z
(1)
V = −0.097072(2)CF ,

Z(1)m = −Z(1)P − 0.019458(1)CF ,
Z(1)µ = −Z(1)P . (5.13)

With our data we were able to compute the one-loop coefficients of the combinations

ZmZP/ZA and ZµZP/ZV, as well as the logarithmically divergent parts of all one-loop

coefficients. Complete consistency with the above expectations was found, and we

shall adopt these results in the following.

The corresponding coefficients in other schemes differ from those above by a-

independent terms. With the renormalization constants chosen in this way we find

e.g. for the combination of separately diverging terms appearing in the curly bracket

of (5.8)

u1 + am
(1)
c u3 +

(
Z
(1)
P + 2Z

(1)
ζ

)
u0 − Z(1)m zmu

(−1)
3 − Z(1)µ zµu

(−1)
5 =

= U0 + U1 a
L
+O

(
a2

L2

)
, (5.14)

where Ui are functions of τ , θ , zm and zµ, and u(−1)i are coefficients of L/a in the ex-

pansion of ui for L/a→∞. Evidently similar equations hold for the other functions
v1, q1, w1, r1. It is important to note that we expect no terms involving (a/L) ln(L/a)

on the right-hand side of (5.14) because we have imposed tree level improvement, and

this was indeed seen in our data analysis. Moreover there are no terms ∼ Z
(1)
m a/L or

∼ Z
(1)
µ a/L on the left hand side above because of eq. (B.7); thus the coefficient U1 is

(contrary to U0) independent of the renormalization scheme. Estimates for the co-
efficients U1, V1, . . . were obtained for the various data sequences using the methods
described in [16].

Now the improvement coefficients are determined by demanding that the renor-

malized amplitudes approach the continuum limit with corrections of O(a2/L2). For

the cancellation of the O(a) terms the following equations should be satisfied (for

undefined notation see appendix B):

zµ

[
zµb̃

(1)
m v

(−1)
3 + zmb

(1)
µ v

(−1)
5 + b̃

(1)
A q

(0)
0 − b̃(1)1 v(1)6

]
= V1 + V̄1 ,

zµ

[
zµb̃

(1)
m q

(−1)
3 + zmb

(1)
µ q

(−1)
5 − b̃(1)V v(0)0 − b̃(1)1 q(1)6

]
= Q1 + Q̄1 ,

zµ

[
zµb̃

(1)
m u

(−1)
3 + zmb

(1)
µ u

(−1)
5 − b̃(1)1 u(1)6

]
= U1 + Ū1 ,

zµ

[
zµb̃

(1)
m w

(−1)
3 + zmb

(1)
µ w

(−1)
5 + b̃

(1)
A r

(0)
0 − b̃(1)1 w(1)6

]
= W1 + W̄1 ,

zµ

[
zµb̃

(1)
m r

(−1)
3 + zmb

(1)
µ r

(−1)
5 − b̃(1)V w(0)0 − b̃(1)1 r(1)6

]
= R1 + R̄1 . (5.15)
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In these equations all terms involving improvement coefficients which are necessary

also in the untwisted theory, have been collected in the terms Ū1, . . . on the right-
hand sides and they are specified in eqs. (B.13). The numerical values of these

improvement coefficients, obtained in previous analyses [4, 5], are:

c̃
(1)
t = −0.01346(1)CF ,
c
(1)
A = −0.005680(2)CF ,
b
(1)
ζ = −0.06738(4)CF ,
b(1)m = −0.07217(2)CF ,
b
(1)
A = 0.11414(4)CF ,

b
(1)
V = 0.11492(4)CF ,

b
(1)
P = 0.11484(4)CF . (5.16)

Before we proceed with the numerical analysis of eqs. (5.15), it is essential to

note that using the identities (B.11) they can be rewritten as

zµ

[
zmb

′(1)
µ v

(−1)
5 + b̃

′(1)
A q

(0)
0 − b̃′(1)1 v

(1)
6

]
= V1 + V̄1 , (5.17)

zµ

[
zmb

′(1)
µ q

(−1)
5 − b̃′(1)V v

(0)
0 − b̃′(1)1 q

(1)
6

]
= Q1 + Q̄1 , (5.18)

zµ

[
zmb

′(1)
µ u

(−1)
5 − b̃′(1)1 u

(1)
6

]
= U1 + Ū1 , (5.19)

zµ

[
zmb

′(1)
µ w

(−1)
5 + b̃

′(1)
A r

(0)
0 − b̃′(1)1 w

(1)
6

]
= W1 + W̄1 , (5.20)

zµ

[
zmb

′(1)
µ r

(−1)
5 − b̃′(1)V w

(0)
0 − b̃′(1)1 r

(1)
6

]
= R1 + R̄1 , (5.21)

where the primed coefficients appearing here are defined through

b′(1)µ = b(1)µ + b̃
(1)
m ,

b̃
′(1)
1 = b̃

(1)
1 −

1

2
b̃(1)m ,

b̃
′(1)
A = b̃

(1)
A − b̃(1)m ,

b̃
′(1)
V = b̃

(1)
V − b̃(1)m . (5.22)

In other words, from our equations we can only obtain information on four lin-

early independent combinations of the new improvement coefficients appearing in

the twisted theory. This was in fact to be anticipated from our general discussion in

subsection 2.5, where we argued that we are free to chose for example the coefficient

b̃
(1)
m as we please.

Since our equations are over-determined and also having generated such a large

selection of data sets, we had many ways to proceed to determine the coefficients

b
′(1)
µ , b̃

′(1)
1 , b̃

′(1)
A and b̃

′(1)
V , and a multitude of consistency checks on the results. We
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first note that if we consider the linear combination of amplitudes hdA − 2zmhP and
hdV + 2zµhP associated with the PCAC and PCVC relations, respectively we obtain

−2z2µu(0)0 b̃′(1)A = W1 + W̄1 − 2zm
(U1 + Ū1) ,

−2zµzmu(0)0
(
b′(1)µ + b̃

′(1)
V

)
= R1 + R̄1 + 2zµ

(U1 + Ū1) . (5.23)

With knowledge of the right-hand sides, each equation determines a particular linear

combination of improvement coefficients. In these equations the boundary coefficient

b̃
(1)
1 does not appear as expected. On the other hand the coefficient b̃

′(1)
1 is all that

appears on the left hand sides of eqs. (5.19) and (5.21) for the data sets with zm = 0.

By solving simultaneously the three equations (5.17), (5.19) and (5.20) for one

data set with zm 6= 0, we could obtain the three coefficients2 b′(1)µ , b̃
′(1)
A and b̃

′(1)
1 (and of

course analogously for the equations involving the vector current). We also extracted

the two coefficients b
′(1)
µ , b̃

′(1)
1 by solving just eq. (5.19) for two different data sets (of

which at least one has zm 6= 0).
Unfortunately due to rounding errors, the one-loop cutoff effects like U1 were

rarely determined better than to within a few percent. The consequence of this was

that many routes of analyses described above and when applied to various (combi-

nations of) data sets, led to results for the improvement coefficients with very large

errors. Nevertheless there remained sufficiently many analyses which delivered useful

results with relatively small errors, and in these cases all results were consistent with

each other and with our following “best estimates”:

b′(1)µ = −0.103(3)CF ,
b̃
′(1)
1 = 0.035(2)CF ,

b̃
′(1)
A = 0.086(4)CF ,

b̃
′(1)
V = 0.074(3)CF . (5.24)

As one practical choice for applications in numerical simulations we advocate

b̃m = −1/2 to all orders of perturbation theory, which would result in setting b̃(1)m = 0
in the above equations.

6. Conclusions

In this paper we have introduced the set-up of O(a) improved twisted mass lattice

QCD in its simplest form with two mass-degenerate quarks. In perturbation theory

to one-loop order we have verified that O(a) improvement works out as expected.

We have identified the new counterterms and computed their coefficients at the tree-

level and to one-loop order. In practice perturbative estimates may be satisfactory,

as tmQCD has been primarily designed to explore the chiral region of QCD, where
2Particularly good results were obtained e.g. with the data set zm = 0 , zµ = 0.5 , θ = 0, where

we in fact had data up to L/a = 36.
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the contribution of the new counterterms should be small anyway. This expecta-

tion is confirmed by a non-perturbative scaling test in a physically small volume,

which employs the perturbative values of the new improvement coefficients reported

here [19]. However, a non-perturbative determination of some of the new coefficients

is certainly desirable and may be possible along the lines of ref. [8].

An interesting aspect of O(a) improved tmQCD is the absence of any new coun-

terterm corresponding to a rescaling of the bare coupling g0. This singles out the

choice for the angle α = π/2 for which the physical quark mass is entirely defined in

terms of the twisted mass parameter. A quark mass dependent rescaling of g0 is hence

completely avoided, and one may hope that this eases the chiral extrapolation or in-

terpolation of numerical simulation data. Furthermore, using the over-completeness

of the counterterms (cf. subsection 2.5) to fix b̃m exactly, no tuning is necessary to

obtain α = π/2 up to O(a2) effects, provided the standard critical mass mc and the

standard improvement coefficients of the massless theory csw and cA are known. We

also note that, at α = π/2, both sides of the exact PCVC relation are automatically

renormalized and O(a) improved. This can be exploited for an O(a) improved de-

termination of Fπ [20], as the vector current at α = π/2 is physically interpreted as

the axial current [2].

In the future one may wish to extend the framework of O(a) improved tmQCD

to include the heavier quarks in the way suggested in ref. [2]. The analysis of O(a)

counterterms still remains to be done, but we do not expect any new conceptual

problems here.

Finally, we have defined the Schrödinger functional for tmQCD, based on the

appropriate generalisation of Lüscher’s transfer matrix construction for tmQCD. We

expect that the Schrödinger functional will be useful in the determination of hadronic

matrix elements along the lines of refs. [17, 18], and work in this direction is currently

in progress [20, 21].
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A. The transfer matrix for twisted mass lattice QCD

In this appendix we briefly indicate the generalization of the transfer matrix con-

struction for twisted mass lattice QCD with csw = 0. We use the original notation of

ref. [6] with the conventions of ref. [10]. The transfer matrix as an operator in Fock
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space and as an integral kernel with respect to the gauge fields has the structure

T0[U,U
′] = T̂ †F(U)K0[U,U

′]T̂F(U
′) , (A.1)

with pure gauge kernel K0 and the fermionic part

T̂F(U) = det(2κB)
1/4 exp(χ̂†P−Cχ̂) exp(−χ̂†γ0Mχ̂) . (A.2)

Here, the operators χ̂i(x) are canonical (i is a shorthand for colour, spin and flavour

indices) viz.

{χ̂i(x), χ̂†j(y)} = δija−3δxy , (A.3)

and B and C are matrix representations of the difference operators

B = 1− 6κ− a2κ
3∑
k=1

∇∗k∇k ,

C = a

3∑
k=1

γk
1

2
(∇k +∇∗k) + iaµqγ5τ 3 . (A.4)

As in the standard case the positivity of the transfer matrix hinges on the positivity

of the matrix B, which is guaranteed for ||κ|| < 1/6. This is the standard bound
which also ensures that the matrix M ,

M =
1

2
ln

(
1

2
Bκ−1

)
, (A.5)

is well-defined. No restriction applies to the twisted mass parameter, except that

µq must be real for the transfer matrix (A.1) to reproduce the twisted mass lattice

QCD action.

B. Analytic expressions for expansion coefficients

In this appendix we provide explicit analytic expressions for the tree-level amplitudes

and the counterterms appearing in eqs. (5.6)–(5.10) which are needed to compute

the one-loop amplitudes up to terms of O(a2). We have checked that the analytic ex-

pressions correctly reproduce the numerical values obtained by directly programming

the correlation functions and counterterm insertions.

First we define

ω =
√
z2m + 3θ

2 + z2µ ,

co = cosh(ωτ) ,

si = sinh(ωτ) ,

ρ = ωco + zm si ,

ν = ω si + zmco , (B.1)
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where τ = T/L. Then we have u0 = u
(0)
0 +O(a

2/L2) etc. with

u
(0)
0 =

Nω

ρ
,

v
(0)
0 = −

N(3θ2 + z2µ + zmν)

ρ2
,

q
(0)
0 =

Nzµ(−zm + ν)
ρ2

,

w
(0)
0 = 2zmu

(0)
0 ,

r
(0)
0 = −2zµu(0)0 . (B.2)

For the boundary terms we define

r̂ = zm +
2(3θ2 + z2µ)si

ρ
, (B.3)

and then u2 = au
(1)
2 /L+O(a

2/L2) etc. with

u
(1)
2 = 2r̂u

(0)
0 ,

v
(1)
2 = 2r̂v

(0)
0 −

4Nω(3θ2 + z2µ)(−zm + ν)
ρ3

,

q
(1)
2 = 2r̂q

(0)
0 −

4Nωzµ(3θ
2 + z2µ + zmν)

ρ3
,

w
(1)
2 = 2r̂w

(0)
0 ,

r
(1)
2 = 2r̂r

(0)
0 . (B.4)

Similarly, u6 = au
(1)
6 /L+O(a

2/L2) etc. with

u
(1)
6 = −

2zµ si

ρ
u
(0)
0 ,

v
(1)
6 = −

2zµ si

ρ
v
(0)
0 +

2Nωzµ(−zm + ν)
ρ3

,

q
(1)
6 = −

2zµ si

ρ
q
(0)
0 +

2Nω
(
ωρ+ z2µ(1− co)

)
ρ3

,

w
(1)
6 = −

2zµ si

ρ
w
(0)
0 ,

r
(1)
6 = −

2zµ si

ρ
r
(0)
0 . (B.5)

For the derivatives with respect to the mass parameters we have,

ui =

(
L

a

)
u
(−1)
i + u

(0)
i +O

( a
L

)
, (i = 3, 5) (B.6)
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with

u
(0)
3 = −zmu(−1)3 , u

(0)
5 = −zµu(−1)3 , (B.7)

and analogous equations hold in all other cases. Defining

X =
ν(1 + zmτ)

ω
,

Y =
ρ(1 + zmτ)

ω
,

X̃ =
zµ(ντ + co)

ω
,

Ỹ =
zµ(ρτ + si)

ω
, (B.8)

one has

u
(−1)
3 = −Xu

(0)
0

ρ
+
Nzm

ωρ
,

v
(−1)
3 = −2Xv

(0)
0

ρ
− N(ν + zmY )

ρ2
,

q
(−1)
3 = −2Xq

(0)
0

ρ
− Nzµ(1− Y )

ρ2
,

w
(−1)
3 = 2(zmu

(−1)
3 + u

(0)
0 ) ,

r
(−1)
3 = −2zµu(−1)3 , (B.9)

and

u
(−1)
5 = −X̃u

(0)
0

ρ
+
Nzµ

ωρ
,

v
(−1)
5 = −2X̃v

(0)
0

ρ
− N(2zµ + zmỸ )

ρ2
,

q
(−1)
5 = −2X̃q

(0)
0

ρ
+
N(zµỸ − zm + ν)

ρ2
,

w
(−1)
5 = 2zmu

(−1)
5 ,

r
(−1)
5 = −2zµu(−1)5 − 2u(0)0 . (B.10)

Note the identities

0 = 2zµu
(−1)
3 − 2zmu(−1)5 − u(1)6 ,

0 = 2zµv
(−1)
3 − 2zmv(−1)5 − v(1)6 + 2q(0)0 ,

0 = 2zµq
(−1)
3 − 2zmq(−1)5 − q(1)6 − 2v(0)0 ,

0 = 2zµw
(−1)
3 − 2zmw(−1)5 − w(1)6 + 2r(0)0 ,

0 = 2zµr
(−1)
3 − 2zmr(−1)5 − r(1)6 − 2w(0)0 . (B.11)
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The remaining coefficients to be specified are v4 = av
(1)
4 /L + O(a2/L2) and w4 =

aw
(1)
4 /L+O(a2/L2) with

v
(1)
4 = −

2Nω2ν

ρ2
,

w
(1)
4 =

4Nω3

ρ
. (B.12)

Finally we specify the terms Ū1, . . . appearing on the right-hand side of eqs.
(5.15):

V̄1 = c̃
(1)
t v

(1)
2 − z2mb(1)m v(−1)3 + zm[b

(1)
A + 2b

(1)
ζ ]v

(0)
0 + c

(1)
A v4 ,

Q̄1 = c̃
(1)
t q

(1)
2 − z2mb(1)m q(−1)3 + zm[b

(1)
V + 2b

(1)
ζ ]q

(0)
0 ,

Ū1 = c̃
(1)
t u

(1)
2 − z2mb(1)m u(−1)3 + zm[b

(1)
P + 2b

(1)
ζ ]u

(0)
0 ,

W̄1 = c̃
(1)
t w

(1)
2 − z2mb(1)m w(−1)3 + zm[b

(1)
A + 2b

(1)
ζ ]w

(0)
0 + c

(1)
A w4 ,

R̄1 = c̃
(1)
t r

(1)
2 − z2mb(1)m r(−1)3 + zm[b

(1)
V + 2b

(1)
ζ ]r

(0)
0 . (B.13)
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