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A bstract

Lattice QCD with W ilson quarks and a chirally twisted massterm (tm QCD )
has been introduced in refs. E]. W e here apply Sym anzik’s in provem ent
program m e to this theory and list the counterterm s which arise at rst order
in the Jattice spacing a. Based on the generalised transfer m atrix, we de ne
the tm Q CD Schrodinger fiinctional and use it to derive renom alized on-shell
correlation functions. By studying their continuum approach in perturbation
theory we then determ ine the new O (a) counterterm s of the action and of a
few quark bilinear operators to one-loop order.
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1 Introduction

In ref. E]mjst:ed mass lattice QCD (tm Q CD ) has been Introduced as a solu—
tion to the problem of unphysical ferm ion zero m odes w hich plague standard
lattice QCD w ith quarks of the W ilson type. W e w ill assum e that the reader
is fam iliar w ith the m otivation of this approach, and refer to EI] for an intro-
duction. Them ain topic of the present paper is the application of Sym anizik’s
In provem ent programme to tmn Q CD . W e introduce the setup in the sim plest
case of two m assdegenerate quarks, and study the in proved action and the
In proved com posite eldswhich appear in the PCAC and PCVC relations.

O ur strategy follow s closely refs. EHE]: n section 2 we go through the
structure of the O (a) in proved theory. W e then de ne the Schrodinger func—
tional for tm Q CD , and use it to derive suitable on-shell correlation functions
(sect. 3). The perturbation expansion is then carried out along the lines of
ref. ﬁ], and the new O (a) In provem ent coe cients are obtained at the tree-
level in sect. 4 and to onedoop order in sect. 5. A few details have been
delegated to appendices. Appendix A describes how the tw isted m ass tem
can be incorporated in Luscher’s construction of the transfer m atrix {1, and
Appendix B contains the analytic expressions for the coe cients used in the
analysis of the one-loop calculation.

2 Renom alized and O (a) Imn proved tm Q CD

The renom alization procedure for twisted m ass lattice QCD with W ilson
quarks has already been discussed in ref. [E]. Here we apply Sym anzik’s in -
provem ent programm e to rst order in the lattice spacing a. T he procedure
is standard and the details of its application to lattice QCD with N ¢ m ass
degenerate W ilson quarks can be found in ref. E].

O ur starting point is the unin proved tm Q CD Jattice action for a doublet
of m ass degenerate quarks,

SU; ; 1=ScU I+ SrlU; ; | (2.1)

w ith the standard W ilson gauge action and the ferm jonic part

X

sglU; ; 1= a* x) D+mo+igs > (x): 22)

X

Them assless W ilson-D irac operator is given by
X n ¢}



w here the forward and backward covariant lattice derivatives in direction
are denoted by r and r respectively. Astm QCD w ith vanishing tw isted
m ass param eter 4 reduces to standard lattice Q CD we expect that in prove-
m ent is achieved by using the standard O (a) In proved theory and adding the
appropriate O (a) counterterm s w hich are proportional to (powers of) 4, and
w hich are allow ed by the Jattice sym m etries. T he procedure hence consists in a
straightforw ard extension of ref. E ], and w e take over notation and conventions
from this reference w ithout further notice.

2.1 Renom alized O (a) In proved param eters

Follow ing ref. E] we assum e that a m ass-independent renom alization schem e
hasbeen chosen, and we take the sam e steps as done there for standard lattice
QCD.At 4= 0 the Shekholeslam W ohlert term [ﬂ] su ces to In prove the

action, up to a rescaling of the bare param eters by term s proportional to the
subtracted baremassmg = mo m. [§). At non+vanishing 4 we nd that
In proved bare param eters are of the form

g% = g1+ hang); (2.4)
ey = mgl+bhamg)+ Ba Z; (2.5)
eq = q(1+ b amy); (2.0)

ie. there exist two new counterterm s w ith coe cientsb and B, . T he renor-
m alized O (a) In proved m ass and coupling constant are then proportional to
these param eters, viz.

& = SZslgia ); 2.7)
me = ®qZn(glia ); (2.8)
R = €qZ («ra ) (29)

T he ratio of the appropriately renorm alized m ass param eters determ ines the
angle which is Involved in the physical interpretation of the theory [E]. We
w ill discuss below the general O (a) In proved de nition of . Here we note
that the case of particular interest, = =2, correspondstomy = 0,which
inpliesmg= 0 (a) [E]. In this case all the usualbcoe cients m ultiply term s
of O (a?) and are thus negligible in the spirit of O (a) in provem ent. O ne then
rem alnsw ith a single coe cient B, ,which com pares favorably to the situation
In standard lattice QCD where two coe clents, b, and by, are required.



2.2 Renorm alized O (a) iIm proved com posite elds

W e assum e that com posite elds are renom alized In a m ass-ndependent
schem e, and such that the mQCD W ard identities are respected E]. At—
tention w ill be restricted to the quark bilinear operators which appear in the
PCAC and PCVC relations. M oreover, we only consider the rsttwo avour
com ponents, and thus avoid the renomm alization of power divergent opera—
tors such as the isosinglt scalar density E]. As explained in ref. [E], the
third avour com ponent ofthe PCAC and PCVC relations can be inferred in
the continuum lin it, by assum ing the restoration of the physical isospin sym -
metry. The O (a) In proved currents and pseudo-scalar density w ith indices
a;b2 f1;2g are then param eterised as follow s,

h i
Br) = Za(l+hhamg) A%+ al@ P2+ a B VP ; (210)
h i
Ve ) = Zy(l+bjamg) V3+ qva@ T? +a ok AP ; (211)
Pr)® = Zp(l+ kpamy)P°: (212)

Here we have chosen the bare operators which are local on the lattice, w ith
the conventions of ref. [§]. W hile this is the sin plest choice, we also recall the
de nition of the point—split vector current,

+ x+aM)( +15U&; )T ®) (213)

which is obtained through a vector variation of the action. This current is
protected against renom alization, and the PCVC relation

@ Veix)= 2 "*PPP(x); (2.14)

is an exact Jattice dentity, w ith the local pseudo-scalar density and the back-
ward derivative @ in -direction D]. This mplies the dentity 2 Zp = 1 In
any renom alization schem e which respects the PCVC relation.

2.3 An alternative de nition of the In proved vector current

An altemative renom alized in proved current can be obtained from the point-
split current (2.13). For this it is convenient to start from the symm etrized
version

Ve(x)= Cix)+ 4 (x at) ; (215)

(NI



w hich behaves under space—tim e re ections In the sam e way as the local vector
current. T he counterterm structure then is the sam e as in &J. ), ie. one

nds
h i
Vg =2, 1+ hamg) V¥+ g al T? + K a "A° ; (216)

where we have again restricted the Indices a;b to the st two com ponents.
Onemay now easily show that

Zy = 1; B = O (217)

To see thiswe rst note that at 4 = 0 the vector charge of this current is
given by

Q2 (D)= 32y (1+ hamq) 07 (D+ Q5 (£ a)l; (2.18)

w ith
X
07 (xo)=a’ ¥ (x): (2.19)

X
At 4 = 0, corelation functions of the charge are xo—jndependentﬂ, and the
0 (@) Inproved charge algebra for Q7 and the exact charge algebra for QF
together in ply that the whole renom alization factor in eg. ) m ust be
unity. A s this holds independently ofm 4, one arrives at the conclusion ).
A further relation is obtained by noting that the PCVC relation between
the renom alized O (a) In proved elds,

@ (Ve )= 2 ."%@Ex); (2.20)

w ith the sym m etric derivative @ = %(@ + @ )mustho]duptoO(az)com:ec—
tions. T hen, using the dentity

EVix)=@ ®i(x)+ 1a%@ @ ®(x) ; (2.21)
one obtains the relation
ZpZnZ, B, = (b +h): (222)

T he scale-independent com bination of renom alization constants m ultiplying
B, isdetemm ined by axialW ard dentities ], so that eg. () can be consid—
ered a relation between In provem ent coe cients.

tie. as Iong as the tin e ordering of the space-tin e argum ents in the given correlation
function rem ains unchanged.



24 O (a) In proved de nition of the angle

T he physical interpretation of the correlation functionsin tm © CD dependson
the angle ,which isde ned through

tan = : (2.23)

In thisequation ; andm; aretheO (a) In proved renom alized m ass param e-
tersw hich appear in the PCAC and PCVC relations [E]. Up to term s of O (a?)
we then nd

«_ _al+ ® bujamgl  gl+ b+ biamgl (2.24)

Me  Zplng+ Ba 2] Za + Ba 22,']

Here, m denotes a barem ass which is cbtained from som e m atrix elem ent of
the PCAC relation involing the unrenom alized axial current At + ¢, @ P!
and the localdensity P'. G &7en m , the criticalm assm ., and the nite renor—
m alization constants Za , Zyv and ZpZ, , the determ ination of the O (a) in -
proved angle requires the know ledge of two (com binations of) in provem ent
coe clents, which m ay be chosen to beb by and B, ,orb + I Iy and By .
A specialcase isagain = =2,which isobtained for vanishing denom inators
n &. (). For this it is su cient to know either I or &, , and the nite
renomm alization constants Zx or ZpZ, are then not needed.

2.5 Redundancy of In provem ent coe cients

Having Introduced all O (a) counterterm s allowed by the lattice sym m etries,
it is gquaranteed that there exists a choice for the Im provem ent coe cients

such that O (a) Jattice artefacts iIn on-shell correlation functions are com pletely
elin nated. W e now want to show that there is In fact a redundancy In the
set of the new counterterm s introduced so far, ie. the countertermm s are not
unam biguously determ ined by the requiram ent of on-shell In provem ent alone.
To see thiswe consider the renom alized 2-point functions

Galx y) = @r)pEIPR) () ; (2.25)
Gyv(x y) = (VREEIPR) () ; (2.26)
of the renom alized O (a) In proved eldsde ned in subsect.2.2. W e assum e

that a quark m ass Independent renom alization schem e has been chosen, and
w ith the proper choice for the in provem ent coe cients one nds,

Gy (x)= lin Gy (x)+ O (@%); X = A;V; (2.27)

al! 0



provided that x is kept non—zero in physical units. If the new in provem ent
coe cients I, ;b ;B and B, were all necessary any change of O (1) in these
coe cients would introduce uncancelled O (a) artefacts in eq. (427). Varying
thecoe cients B, ! G+ Bo,b ! b+ b andB ! B + B in the
correlation function G, (x),we nd that the correlation function itself changes
according to

h

@
G ax) = a rl2p W®ZpZn R—Ga (X)
@m
+ b (ZpZnp) 'My—Ga (x)
l R
BZaZy, Gy (x) ; (2.28)

where term s 0of O (a2 ) have been neglected. In the derivation of this equation
one has to be carefiil to correctly take into account the counterterm s propor—
tionalto b and B, . First of allwe notice that changing an O (a) counterterm
can only induce changes of O (a) in the correlation function. For instance, the
equation
< 2
Ga (x) =Gar(x)+ b —Ga (x)+ 0 (@%); (2.29)
b!b+ b @b

holds even for nite changes b . Second, when taking the continuum Im it
the bare m ass param eters becom e functions of the in provem ent coe cients
such that the renomm alized O (a) in proved m asses are xed. For instance one
has

g=2%2p (1 bz, 'am,)+ 0 @%); (2.30)
and a straightforw ard application of the chain rule leads to

@ @ g @ ;@

—Ga(x)= — —Gax)= a mpZ2pZ2, —Ga (X); (2.31)

eb b @ 4 FUREESm o TR
w here we have used eq.()andneg]ectedtemsofo (az).Proceedjngjnthe
sam e way for the variation w ith respect to &, , and changing to renomm alized
parameters 4 = Zp z + O(@), mq = ZmlmR+O(a)eventua]y Jeads to
. 229).

At this point we recall eg. (3.13) of ref. E], which expresses the re-
param eterization invariance w ith respect to changes of the angle . In tem s
of the above correlation functions one nds,up to cuto e ects,

@ @ @

—G
@ a (X) mR@ . em ,

Ga(x)= Gy Xx): (2.32)



A's a consequence not all the term s In eg. R.29) are iIndependent, and the
requirem ent that G  (x) be of order a® entails only two conditions,

By + b (ZpZp) ° 0; (2.33)
B By (ZpZmZy) "Za 0: (2.34)

T hism akes precise the redundancy or overcom pleteness of the counterterm s
alluded to above. T he sam e procedure applies to Gy (x),and we conclude that
the requirem ent of on-shell O (a) in provem ent only determ ines the com bina—
tions of in provem ent coe cients B, + b (ZpZn ) %, B B ZpZmZa) Zv,
and B, B (ZpZnmZv) ‘Za .W ean phasize that this redundancy is a generic
feature of tm Q CD , and not linked to special choices for the elds or correla—
tion functions. In particular we note that the third com ponent of the axil
variation ofany com posite eld has the correct quantum num bers to appear
asan O (a 4) counterterm to  itself.

In conclusion, O (a) In proved tm Q CD as de ned here constitutes a one-
param eter fam ily of in proved theories. In view of practical applications it
is m ost convenient to choose B, as the free param eter and set it to som e
num erical value. For reasons to becom e clear in section 4 our preferred choice
sk, = % . However, In the follow ing we w illkeep allcoe cients asunknowns
and only m ake a choice at the very end. In order to de ne on-shell correlation
functionsw hich are readily accessible to perturbation theory wew ill rstde ne
the Schrodinger functional for tm Q CD . It is then straightforward to extend
the technigques of refs. EE] to m QCD and study the continuum approach of
correlation functions derived from the Schrodinger fiinctional.

3 The Schrodinger functional for tm Q CD

T his section fllow s closely Section 5 of ref. [J]and ref. 1. T he reader w illbe
assum ed fam iliar w ith these references, and we w ill refer to equations there by
using the pre x I and II, respectively.

3.1 De nition of the Schrodinger functional

To de ne the Schrodinger functional for tw isted m ass Jattice Q CD , it is conve-
nient to ollow refs. [J[LQ]. T he Schrodinger functional is thus obtained as the
integralkemel of som e Integer pow er T =a of the transferm atrix. Its Euclidean
representation is given by

z1% %% ; ;cl= DUDLI DI JeSPii ) (3.1)



and is thus considered as a functionalofthe eldsatEuclidean tines0and T .
From the structure of the transfer m atrix it follow s that the boundary condi-
tions for all elds are the sam e as in the standard fram ework. In particular,
the quark elds satisfy,

) 0.
P 1(0:']? - ’

]
n
§J.
I
o

Il

. (32)
P 1020: / PJF j{():T = /

w ith the usualpro gctorsP = % (1 o). Thegauge eld boundary conditions
are as in egs.(I41){(I42) and will not be repeated here.

T he action in eg. (@),
SU; ; 1=ScU 1+ SrlU; ; | (3.3)

splits into the gauge part (I4.5) and the quark action, which assum es the sam e
form ason the in nite latrice (£3). Note that we adopt the sam e conventions
as in subsect. 4.2 of E], In particular the quark and antiquark elds are ex—
tended to all tin es by \padding" w ith zeros, and the covariant derivatives in
the nite spacetin e volum e now contain the additional phase factors related
to , k= 1;2;3).

3.2 Renom alization and O (a) In provem ent

R enomm alizability of the tm Q CD Schrodinger functional could be veri ed
along the lines of ref. @]. However, this is not necessary as any new coun-
terterm is expected to be proportional to the tw isted m ass param eter and is
therefore at least of m ass din ension 4. O ne therefore expects the Schrodinger
functional to be nite after renom alization of the m ass param eters and the
gauge coupling as in in nite volum e @], and by scaling the quark and anti-
quark boundary elds with a comm on renom alization constant [E]. This
expectation willbe con m ed in the course of the perturbative calculation.

T he structure of the new counterterm satO (a) isagain detem ined by the
symm etries. These are the sam e as in In nite spacetin e volum e, except for
those which exchange spatial and tem poraldirections. T he in proved action,

SwmprlU; 5 1=SU; ; 1+ SU; ; 1+ SpUl+ SplU; 7 I (34)

has the sam e structure as in the standard fram ework, in particular, S, and
S p are as given in egs. (I5.3) and (I56). The symm etrdes allow for two
new ferm ionic boundary countertem s,

0O =igq s5°P (3.5)



T he equations of m otion do not lead to a further reduction and the action
w ith the ferm ionic boundary countertermm s at O (a) is then given by

SplU; ;1 = at (& 1) ®sx)+ PIx)

+ & 1) Px) Px)
+® 1) @)+ )

+ (R 1)@?2<x>+@2<x>o: (36)
Here, we have chosen lattice operators as follow s,
Frx) = igq ®) s’ ®), i (3.7)
Plx) = iq ®) s’ ®, 5 i (38)
$rx) = iq ®)s > x); (39)
) = iq ') s’ x); (3.10)

and the expressions for the Jattice operators C]?S,t and C]psoltare given In egs. (I.5.21){

(I5.24). Note that the In provem ent coe cients are the sam e for both bound-

aries, as the counterterm s are related by a tin e re ection combined with a
avour exchange.

3.3 D irac equation and classical solutions

For Euclidean tines 0 < xp < T the Jattice D irac operator and its ad pint are
form ally de ned through

S.
L(p)f = D+ D+mo+igs ) (x); (311)
X
S.
J‘“(ir) = ®)OY+ DVemo+igs 2); (312)
where D = D, + Dy is the sum of the volum e and the boundary O (a)

counterterm s. Eq. (II2.3) for the volum e countertermn s rem ains valid, w hereas
for the boundary counterterm s one obtains

n
Dy () = (& 1) xwa () U al;0) 'p. x al)
a O
+ oxor a (X)) UE;0P  (x+ al)
+ ® Dlxgat xom allqs > (x): (313)



W e observe that the net e ect of the additional counterterm consists in the
replacement 4 ! B 4 close to the boundaries. A Ithough a boundary O (a)
e ect is unlkely to have a m apr In pact, we note that the presence of this
counterterm w ith a general coe cient B invalidates the argum ent by which
zero m odes of the W ilson-D irac operator are absent in tw isted m ass lattice
QCD .To circum vent this problem we rem ark that the counterterm m ay also
be in plem ented by explicit insertions into the correlation functions. A s every
insertion com es w ith a power of a, a single insertion willbe su cient in m ost
cases, yieding a result that is equivalent up to tem s of O (a2).
G ven the D irac operator, the propagator is now de ned through
(D + D+m0+iq53)S(x;y)=a4xy; 0< x0< T3 (3.14)
and the boundary conditions
P, S(xX;¥)k=0=P Sx;¥)k,=1 = O: (3.15)

Boundary conditions In the second argum ent follow from the conjugation prop-—
erty,
Syl = 5 'Slyix) s ;i (3.16)

which is the usualone up to an exchange of the avour com ponents.
A'sin the standard fram ework [LJHJ, it is usefiil to consider the classical
solutions of the D irac equation,

D+ D+mg+igs > alx) = 0; (317)
a) DY+ DY+mo+igs > = O (3.18)

Here, the tin e argum ent is restricted to 0 < x¢ < T ,while at the boundaries
the classical solutions are required to satisfy the inhom ogeneous boundary
conditions @) . It isnot di cult to obtain the explicit expressions,

X n
alk) = e&a’ SV ab0) Py v), |
Y @)
+ Sy 0P Yy), oo, (319)
X n
alx) = ea’ ()P Uy ab;0s(yix), __
Y O
+ P UY;0) TStyix), oo, i (320)

which are again valid for 0 < xp < T . Note that these expressions are exactly
the sam e as in ref. E], except that the quark propagator here is the solution

ofeq. G19).

10



34 Quark functional integral and basic 2-point functions

W e shalluse the sam e form alin for the quark functional integral as described
In subsect. II23. M ost of the equations can be taken over literally, In par-
ticular, eg. (II221) holds again. The presence of the tw isted m ass tem
m erely leads to a m odi cation of the Im proved action of the classical elds,
[eg. (IT222)], which isnow given by
X n
SramprlU; ai al = &  ka g &)is

& (U (x ad;0) ax),

0=2a

+ 90 (%;0) 1 ax) (321)

xo=T a

T he quark action is a quadratic form in the G rassm ann elds, and the func-
tional integral can be solved explicitly. T herefore, In a xed gauge eld back-
ground any ferm jonic correlation function can be expressed In tem s of the
basic twopoint functions. Besides the propagator already introduced above,

x) (v) .= S&xiy); (322)

we note that the boundary-to-volum e correlators can be w ritten in a conve-
nient way using the classical solutions,

®) (y), = Cl(g)); (323)
(%)

x) )y = (y); (3.24)

“®) ), = col(g)); (3.25)

x) %), = col((;)): (3.26)

T he explicit expressions In temm s of the quark propagator can be easily ob—
tained from egs. 13 .19) and ([§ .251), and coincide w ith those given in ref. E].
T he boundary-to-boundary correlators can be w ritten as follow s,

®) %), = &P Uk ab;0) &) %y), i 327

1

&P, U (x;0) x) v)g : (328)

><
3
|
I

11



T he correlators of two boundary quark elds at the sam e boundary receive
additional contributions due to the new boundary countertemm s, viz.

eiP U (x a@;O)S (x;¥)U (y a@;O) lP+

) (7)), = S
h i
P e xiltx+r)+Bigs > a’yy; (329
%) y), = P.UX0) SEiyIUOP o
h i
P, G rsCr+ry)+Bigs > a’yy: (330

W e nally note that the conjigation property () In plies,

=) (v), = s’ )&, s ; (3.31)
=) %)L o= st y) x). st (332)
®) (Y)) = s ) &), s (333)

and analogous equations for the ram aining 2point functions.

3.5 SF Correlation functions

W ith this setup of the SF we now de ne a few on-shell correlation functions
hvolving the com posite elds of Sect. 2. W ith the boundary source

0% (v)s3 ° (2); (334)
Y iz
we de ne the correlation fiinctions
£2P(x0) = M3 x)0PL; (3.35)
£2P(xg) = P2 (x)0Pi; (3.36)
£2P(x) = W& (x)0Pi: (3.37)

In the follow Ing w e restrict the isogpin indices to a;b 2 £1;2g. It is convenient
to de ne them atrix [[4[3],

H (x)= a’ Cl((;)) (3.38)
v
Its hemm itian conjugate m atrix is given by
X
HxP=a’ 5! l((;)) 5 1 (339)

12



and the correlation functions can be expressed In term s of H (x), viz.
D n oE
f2(x0)= +tr Hx) s x ' %H(x)°! : (3.40)
G
As in ref. @] the bracket h ¢ m eans an average over the gauge eldsw ith
the e ective gauge action,
Se Ul=5ScUl+ S U] Indet D+ D+mo+igqs > ;  (341)

and the trace is over avour, D irac and colour indices. T he gam m a structures
are x = ¢ s5; 5; 0,WhereX stands for A ;P and V respectively.
3.6 Reducing the avour structure

In order to carry out the avour traces we introduce the avour proEctors
0 =i ) (3.42)
Inserting the avour decom position,
Hx)=H,)Q:; +H X)Q ; (343)
into the expression eg. (3.4() kads to

X D n oE

£2P(x0) = wf0; " %05 P g ftr Hix) s xHjx) _ B4

1=

N

Since we restrict the Indices a and b to values in f£1;2g this expression further
sin pli es leading to
X D n oE

7o) = w0y P g g Hix) s xHix) s (3.45)
i=

In order to sin plify the expressions further,wenow study the behaviour under

a parity transform ation com bined w ith the exchange ¢ ! q- Notice that
the parity transform ation also transfom s the background elds, in particular
it mplies i ! x (k= 1;2;3). On thematrices H (x) this transform ation

acts according to
H x) ! oH (®); (3406)
where % = (xg; x) is the parity transform ed spacetim e argum ent, and we

recall that H (x) depend im plicitly on the background gauge eld. A fter

13



averaging over the gauge elds and due to parity invariance of the e ective

gauge action ) one then nds
D n oE D n oE
tr H x) s xH (x) = X) & B ®)sxH (x) i (347)

G G

w here the sign factor dependson whether y commutes ( (X )= 1) oranti-
commutes ( (X )= 1)with (. Using thisresult in eg. ) it follow s that

12 (x0) = £2%(x0) = £1' ()= O: (3.48)

Furthem ore, the exact U (1) avour symm etry in plies that

£2(x0) = 31 (%0);  fot(xo)= f52(x0); (3.49)

so that we m ay restrict attention to the follow ing non-vanishing correlation
functions:

D n oE

falxo) = 3 W He @) oH. ) (3.50)
D n oE

foilxo) = 3 & H,@H. &) (3.51)
D n ok

£77(x0) = 5 tr Hox)Y o sH.(x) (3.52)

G

N ote that eg. () has allowed to elin inate the dependence upon the second
avour com ponent H (x). This is convenient both for perturbative calcula—
tions and in the fram ew ork of num erical sin ulations.

4 O (a) In provem ent of the free theory

W edeterm ine the In provem ent coe cients in the free theory, which isobtained

by setting all gauge links to unity. In this context correlation functions of
quark and antiquark elds are suitable on-shell quantities which ought to be
In proved. W e may therefore consider the im provem ent of the oneparticle
energies, the quark propagator and basic 2-point functions in the Schrodinger
functional, In addition to the SF correlation functions introduced in section 3.

4.1 The free quark propagator

A 1l correlation functions in the SF are obtainable from the quark propagator,
which can be com puted using standard m ethods 1. W e set the standard
In provem ent coe clents to their known values [{]l,

== 1; (4.1)
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and com pute the propagator assum ing & = 1. A s discussed in sect. 3, any
other value can be obtained by insertion of the corresponding boundary coun—

terterm . T he propagator can be w ritten in the form
Sxjy)= DY+ mg digqs° Gxiy); (4.2)

where G (x;vy) is given by

X )
GEy)=L ° " VG, (pixo;v0)Pr + G (Pixoivo)P 1;  (43)
p
w ith the fiinctions
h L _ X i
G, (PiXoiyo) = N @) M () e PP ) (ko vo3 T)  SHp" )xotyo T)
h i
+ M, (p+ ) e! ") (F&o voi T) e ' (pf ) xo+yo T) ; (4.4)
G (PiXoivo) = G+ (E;T  x0;T  yo): (4.5)

Here, M (P )= M (p') Do (II317),with M (p) asde ned In eg. (II.3.6)
and p" = p + =L. Furthem ore, we recall that in the above form ulae it is
understood that pg = pg = 1i! (p* ), where for given spatialm om entum g the
energy ! (q) is obtained as the solution of the equation

. ( ) 1

h i 2 2 1_4a2y2 2
+ + Mmoo+ 3a9“)
sjnhgl(q)= 4 q 0+ 239

a
2 1+ a(mo+%aq2)

(4.6)

Finally, using again the notation of ref. [E ], the nomm alization factor is given
by
n o ;
N ()= 2p0A RE)E®T (4.7)

4.2 Im provem ent conditions and results

In the free quark theory, the quark energy ! is a suitable on-shell quantity.
At zero spatialm om entum it coincides w ith the polem ass, which is related to
the bare m asses through

2mi+ 2)=(1+ amg): (4.8)

1
a d

cosham p, = 1+ 3
Up to term s 0of O (az)onethen nds (m . = 0 at tree level)

: G+ 21 amg)+ 0@%): (4.9)
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R eplacing the bare m asses by the renom alized O (a) in proved m ass param e-
ters and requiring the absence of O (a) artifacts one obtains

bh = 32; b +B+3=0; (4.10)

and the sam e condition is obtained from the O (a) in proved energy at nite
spatialm om entum . O nem ay wonderw hether it ispossible to get an additional
condition by considering the In provem ent of the quark propagator itself. T his
isnot so, for the reasons given In subsection 2.5. A san ilustration we consider
the quark propagator @) n the lim it of In nite tin e extent T w ith the lin it
taken at xed xy T=2 and yp T=2. This elin inates the boundaries both
at xg = 0 and xg = T, so that one is left w ith the In provem ent of the m ass
param eters, and of the quark and antiquark elds, viz.

R = l+bamg+DbBiags > ; (411)

R = l+bamg+bia g5 ° = (412)

R equiring the quark propagator to be O (a) in proved we nd the usualresult

of the untw isted theory,b = b = %,and

B=b; 2 kK <=0, 285 +b=0; (4.13)
ie. 3 equations for 4 coe cients. Sin ilarly, by studying the SF correlation
functions of the in proved quark bilinear eldswe nd the standard results of

the untwisted theory, ca = oy = Oand 2b = Iy = by = Ip» = 1, and the
follow ing conditions involving the new coe cients,

Bl s® +32) = 1; (4.14)

b +B +3 = 0; (4.15)
v @+ 3) = 0; (4.16)
By (B +3) = O: (417)

Furthem ore, from the O (a) in provem ent of the basic 2-point functions we
also obtain

B=1: (4.18)

The fact that B and B, are not detem Ined independently is again due to
the Invariance of the continuum theory under axial rotations of the eldsand
a com pensating change In the m ass param eters. Hence our ndings in the
free theory are com pletely In lne with the general expectation expressed in
subsect. 2.5. Choosing B, as the free param eter and setting it to % leads
tob =B =& = 0and B = 1,whikeg. ork, = 0 the tree level value
B = 5=4 is som ew hat iInconvenient.
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5 The one-loop com putation

W e now want to expand the correlation fiinctions to one-loop order. W e work
w ith vanishing boundary values C, and C ]S . The gauge xing procedure then
is the sam e as In ref. E] and w ill not be described here. In the follow Ing we
only describe those aspects that are new and otherw ise assum e the reader to
be fam iliar w ith refs. J[§1.

5.1 Renor alized am plitudes

Once the avour traces have been taken, the oneldoop calculation at xed
Jattice size is aln ost dentical to the standard case EE] In order to take the
continuum lin it at xed physical spacetin e volum e, we then keepm  ,  ,Xg
and T xed In unitsof L . H ere the renomm alized m ass param eters are de ned
in a m ass=ndependent renom alization schem e which m ay rem ain unspeci ed
for the m om ent.

To st order of perturbation theory the substitutions for the coupling
constant and the quark m ass then am ount to

% = F+0@E); (51)
ny = nd+fm+ 0t (52)
e = Ui Pro; (53)

w here the precise form of the coe cients
h  p i

1
m = -1 1 2am, a2 2 ; (5.4)
¥ _ 1) 1) (1) 0) 2
my = mg Z, my + a m,
h ,ioh i
+a e zWe a1 an” ; (55)
é@) _ o (5.6)
n (0)o
1 0 1 1
&= O z® s pPam g’ (5.7)

is a direct consequence of the de nitions m ade In subsect. 2.1, and already
includes the treelevel results obtained in the preceding section w ith the par-

ticular choice E;O) = %
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T he renom alized correlation functions,

[fi2(%0)k = Zy(1+ kyamg)z2(1+ bamg)?

n O

£2(x0) + Bra ofal(x0) ; (58)
21 (x0)k = Zp(l+ bpamy)Z2(1+ bam ) f2t (x0); (59)
o (x0)k = Za(l+hnamg)Z”(1+ bamg)

n (]

fal (x0) + caa@fa'(x0) Mna ofg(x0) ; (510)

have a wellde ned perturbation expansion in the renom alized coupling g ,
w ith coe cients that are com putable functions of a=L . For instance the ex-—
pansion of [fx}2 1 reads

n
1, @
E2 o)k = EPe0) P+ ol £ 0e0) )+ m g 7 (x0)
0
1 1 1 1
+ oz 22% v am, B 200 %)@
@ 1) ©
+ §>@—fv12(xo)<0>+ a B f2l(x0)? ; (511)
q

where term s of order a® and gf have been neglected, and it is understood that
the correlation functions are evaluated atm o= m éo) and 4= é@)

Follow ing ref. @ Jwenow setxg = T=2 and scale alldin ensionfillquantities
In unitsof L. W ith the parameters z, = myL,z = L and = T=L we

then consider the din ensionless fiinctions,

ha ( 7%z 7 ;a=l) = [& &)k 7 (512)
hy ( 5miz i ja=l) = 6§20k o, (513)
he (w2 i ja<l) = [ o)k , o _,i (5.14)
haa ( % iz i ja=L) = LI (o)} , ., (5.15)
hav ( i% iz ; ja=l) = L@&Ey" o)} , .., (5.16)
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O ne then infers,

) (1)

1
V3 + C%)V4+a q

1 1
hy, = vo+g§ v1+eé)v2+amé Vs

a
+ Z bil)v6 IZ b[il)qo

1)
A

(1) (1)

a
vz ol 2t vy ;o (5a7)

(1) (1)
hy = @+g q+e q+ang @+ a (Vo

a
+ z F)il)qg-l- EZ b\(]l)VO

vz My Wy Szm pe ot g (518)
hp = up+ gf up + eél)u2+ amél)u3+ a f;)u5+ z bf)u6

R A Szm e 2w ;o (519)
hga = wqo+ gf Wi+ eél)w2+ améDW3+ cgl)w4+ a C(Il)w5

a
+ z bil)W6 EZ b;l)ro

1)
A

(1) (1)

a
+ o2y 220 s o+ 2wy ;o (520

2 (1) (1) 1
hgw = r+g n+ e rn+am, r3+aé)r5

a
+ z bil)rg-l- EZ bél)WO

1)
v

(1) (1)

a
tozy vz 2a o+ 2w i (521)

Since we are neglecting tem s of order a?, the expansions,

i 2h i

2 h
1 _ (1) W 3Zn ), w0 2%y, w1 .
my, = mg Zm a T2 Zo 7 Zz7'+n ;(522)
h i
Z a
1 _ Z oW, g (523)
a L L

may be inserted in Egs. (5.17)-(5.2]). A1l the coe cients v i;:::;1; are still
functions of ;; ;z and z . Analytic expressions can be derived for those
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coe cients involving the tree level correlation functions or the O (a) countert-
em s. T heir asym ptotic expansions fora=L ! 0 are collected in A ppendix B .

for the param eters had to be m ade. W e generated num ericaldata for = 0
and = 05 forboth T = L and T = 2L and various com binations of the
m ass param eters z, and z 6 0 with values between 0 and 1.5. W ith these
param eter choices the Feynm an diagram s were then evaluated num erically in
64 bit precision arithm etic for a sequence of lattice sizes ranging from L=a = 4
toL=a= 32 (and In som e cases to L=a = 36).

5.2 A nalysis and results

T he renom alization constants are determ ined by requiring the renom alized
am plitudes to be nite in the continuum Iim it, and by the requirem ent that
the tm QCD W ard dentities be satis ed [E]. A linear divergence is cancelled
In all am plitudes by inserting the usual one-loop coe cient am él) , Or equiv—
alently a series which converges to this coe cient in the Iimita=L ! O [ﬂ.
W e choose the Jattice m inim alsubtraction schem e to renom alize the psesudo-
scalar density and the quark boundary elds, and the one-loop coe cients are
then given by Wwith Cp = (N2 1)=2N ],

(1) 6Cr (1)

Zp ' = 162]n(L=a); 2z = g

(5.24)

T he current renom alization constants, and the renomn alization of the stan—
dard and tw isted m ass param eters are determ ined by the W ard dentities. For
the one-loop coe cients we expect [[4J{5H],

z = 0:087344(2)Cp ; (525)
z»M = 0097072(2)Cr ; (526)
z3M =z 0019458(1)Cy ; (527)
g (1) _ z 1 (5.28)

P

W ith ourdata we were able to com pute the one-loop coe cients of the com bi-
nationsZy Zp=Z2a and Z Zp=Zv ,aswellasthe logarithm ically divergent parts
of allone-loop coe cients. C om plete consistency w ith the above expectations
was found, and we shall adopt these results in the follow ing.

T he corresponding coe cients in other schem es di er from those above
by a-independent term s. W ith the renom alization constants chosen in this
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way we nd eg. for the com bination of separately diverging term s appearing
in the curly bracket of (5.19)

(1)
P

1) 1) (S

1) 7 1), Us

up+ amg'uz + (2 + 27 )y anl)zmué

_ a 272y,
= Up+ U1L+O(a—L ); (5.29)

where U; are functions of ; ;g and z , and ui Y are coe cients of L=a

in the expansion of u; for L=a ! 1 . Evidently sin ilar equations hold for
the other functions vy ;01 ;w1 ;1 . It is In portant to note that we expect no
term s nvolving (a=L ) In(L=a) on the right hand side of () because we
have Im posed tree level In provem ent, and this was indeed seen In our data
analysis. M oreover there are no temm s anl)a=L or 2 %a=L on the kft
hand side above because of Eq. ); thus the coe cilent U ; is (contrary to
Ugy) independent of the renom alization schem e. E stin ates for the coe cients

Uy Vi;::: were obtained for the various data sequences using the m ethods
described in [147.

Now the in provem ent coe cients are determ ined by dem anding that the
renom alized am plitudes approach the continuum lin it with corrections of
O (a2=L2). For the cancellation of the O (a) tem s the follow ing egquations
should be satis ed (for unde ned notation see Appendix B):

h i
1 1 1 1) (1

zZ Z (l)vj() 'y Zmb(l)vé 'y b; )qéo) bi )v6( - Vi+ Vy; (530)
b (1) (1) (1)_(0) (1) (l)i

z zKlq '+ z Mg Bove) BUq) = Q1+ Q1 (531)
h 1 1 1) @ .

zZ Zz mué 'y zmb(l)ué ) Q( )ué - Ui+ U;; (532)
h 1 1 1) (0 1) @ .

z z (l)wé ' Zmb(l)wé )+b;)ré) bi)wé) = Wi+ W1 ;(533)
h 1 1 1) (0 1) (1 .

z z (l)ré - Zmb(l)ré ) bé)wé) Q()ré) = R1+ Rq1:(534)

In these equations all term s involving In provem ent coe cients w hich are nec-
essary also in the untw isted theory, have been collected in the term sU4;::: on
the right hand sides and they are speci ed in equations (B 49)-B_49). Thenu-
m erical values of these In provem ent coe cients, obtained in previousanalyses
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Eﬂ],are:

= 001346(1)Ck ; (5.35)
¢ = 0:005680(2)Cr ; (5.36)
b = 0:06738(4)Cr ; (537)
Y = 007217(2)Ck ; (5.38)
b = 0:41414(4)Cy ; (539)
B = 041492(4)Cy ; (5.40)
B = 0:a1484(4)Cy : (5.41)

Before we proceed w ith the num erical analysis of equations (6.30)-(5.34),
it is essentialto note that using the dentities (B_39)-(B 43) they can be rew rit-
ten as

h i

z zmbo(l)vé b + bgl)qéo) bT(l)vél) = Vi+ Vy; (542)
h (1) 01)_ (0) 1) (1)1

z zm Bg B, B g = Q1+ 013 (5.43)
h 1 o1 1 *

z 7 B! P Blul = Ui up; (5.44)
h 1 1 0 o1 1 i

z 7 BPwl Vgt gy hw (5.45)
h 1 1 0 o1 1 i

z zmbo(l)ré ) 5('3( )w(() ) bl( )ré ' = Ri+Ry; (5.46)

w here the prim ed coe cients appearing here are de ned through

IS AU SR o (547)
b?(1) _ bil) %b%l) ; (5.48)
bi(l) _ bzil) ﬁ%l) ; (5.49)
bo](l) _ bél) Q%l) . (5.50)

In other words, from our equations we can only obtain Inform ation on four
linearly independent com binations of the new in provem ent coe cients ap-
pearing in the twisted theory. This was in fact to be anticipated from our
general discussion in subsect. 2.5, where we argued that we are free to chose
for exam ple the coe cient bfql) aswe please.
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Since our equations are overdeterm ined and also having generated such
a large selection of data sets, we had m any ways to proceed to determ ine
the coe cients b ) ;b(l)(l) ;52(1) and E‘)\O,(l) ,and a m ultitude of consistency checks
on the results. W e st note that if we consider the linear com bination of
am plitudes hga 2zn hp and hgy + 2z hp associated with the PCAC and

PCVC relations respectively we obtain

) 0(1)

22208 = Wi+ w, 27 Up+Up ;0 (551)

U‘O
2
+
R
|

ZszuéO Ri1+R1+ 2z Ui+ U; : (5.52)

W ith know ledge of the right hand sides, each equation determ ines a partic-
ular linear com bination of Im provem ent coe cients. In these equations the
boundary coe cient E‘)il) does not appear as expected. O n the other hand the
coe cient bf(l) is all that appears on the left hand sides of Egs. ), )
for the data setsw ith z, = 0.

By soling sin ultaneously the three equations (5.43), (5.44) and (5.43) or

onedata setwith z, & 0,we could cbtain the three coe cients bo(l) ;52(1) and

bi(l) (and of course analogously for the equations involving the vector current).
W e also extracted the two coe cjentsbo(l);bi(l) by soling jist Eq. ) for
two di erent data sets (of which at least onehas z, & 0).

U nfortunately due to rounding errors, the one-oop cuto e ects lke U,
w ere rarely determ ined better than to w ithin a few percent. T he consequence
of this was that m any routes of analyses describbed above and when applied
to various (com binations of) data sets, led to results for the in provem ent
coe clents with very large errors. Nevertheless there ram ained su ciently
m any analyses w hich delivered useful results w ith relatively sm all errors, and
In these cases allresults w ere consistent w ith each other and w ith our follow ing
\best estin ates":

Y = 0:103(3)Cr ; (5.53)
B = 0035(2)Cr ; (5.54)
Bt = 0086(4)Ck ; (5.55)
B = 0074(3)Cp : (5.56)

A s one practical choice for applications in num erical sin ulations we ad-

vocate B, = % to all orders of perturbation theory, which would result in

setting b;l) = 0 in the above equations.

2Part.‘icu]arly good results were obtained eg.with thedata set z, = 0;z = 0:5; = 0,
where we In fact had data up to L=a = 36.
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6 Conclusions

In this paper we have introduced the setup of O (a) Im proved tw isted m ass
lattice QCD In its sinplest form with two m assdegenerate quarks. In per-
turbation theory to onedoop order we have veri ed that O (a) In provem ent
works out as expected. W e have denti ed the new counterterm s and com —
puted their coe cients at the treelevel and to onedoop order. In practice
perturbative estim ates m ay be satisfactory, as tm Q CD has been prin arily
designed to explore the chiral region of Q CD , where the contribution of the
new counterterm s should be an all anyway. T his expectation is con m ed by
a non-perturbative scaling test in a physically sm all volum e, which em ploys
the perturbative values of the new in provem ent coe cients reported here D@.
H ow ever, a non-perturbative determm ination of som e of the new coe cients is
certainly desirable and m ay be possible along the lines of ref. ].

An interesting aspect of O (@) In proved tmn QCD is the absence of any
new counterterm corresponding to a rescaling of the bare coupling gy. This
singles out the choice for theangle = =2 forwhich the physicalquark m ass
is entirely de ned in tem s of the twisted m ass param eter. A quark m ass
dependent rescaling of gy is hence com pletely avoided, and one m ay hope
that this eases the chiral extrapolation or interpolation of num erical sin ula—
tion data. Furthem ore, using the over-com pleteness of the counterterm s (cf.
subsect. 2.5) to x B, exactly, no tuning is necessary to obtain = =2 up
o 0 (@%) e ects, provided the standard critical m ass m . and the standard
In provem ent coe cients of the m assless theory ¢4, and ¢y are known. W e
also note that, at = =2, both sides of the exact PCVC relation are au—
tom atically renom alized and O (a) In proved. This can be exploited for an
O (a) In proved determ ination of F ], as the vector current at = =2 is
physically Interpreted as the axial current [E].

In the future one m ay wish to extend the fram ework of O (a) in proved
tm QCD to include the heavier quarks in the way suggested in ref. [E]. The
analysis of O (a) counterterm s still rem ains to be done, but we do not expect
any new conceptual problem s here.

Finally, we have de ned the Schrodinger functional for tm Q CD , based
on the appropriate generalisation of Luscher’s transfer m atrix construction
fortm QCD . W e expect that the Schrodinger fuinctional w ill be useful in the
determm ination of hadronicm atrix elem ents along the lines of refs. {L][1d], and
work In this direction is currently In progress @@]

Thiswork is part of the ALPHA collaboration research programme. W e
are gratefulto P A .G rassi for discussions and his collaboration in the tm Q CD
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profct. Thanks also go to M . Luscher, R . Somm er and A .V lJadikas for use-
fi1l com m ents and discussions. S. Sint acknow ledges partial support by the
European Comm ission under grant No.FM BIC T 972442.

A The transfer m atrix for tw isted m ass lattice Q CD

In this appendix we brie y indicate the generalization of the transfer m atrix

construction for twisted m ass lattice QCD with cg, = 0. W e use the original

notation of ref. ] w ith the conventions of ref. @]. T he transfer m atrix as

an operator in Fock space and as an integral kemel w ith respect to the gauge
elds has the structure

TolU ;U %= TY (U K olU;U I, UO); @ 1)
w ith pure gauge kemelK ¢ and the ferm ionic part
Te (U )= det2 B ) exp("P C M)exp( Y oM *): @ 2)

Here, the operators ";(x) are canonical (i is a shorthand for colour, spin and
avour indices) viz.

AN = A oy @A 3)

and B and C arem atrix representations of the di erence operators

X3
B = 1 6 a’ ryTy; A 4)
k=1
X3
C = a k2L + ry)+da g5 @ 5)
k=1

A s in the standard case the positivity of the transfer m atrix hinges on the
positivity of the m atrix B , which is guaranteed for jj jj< 1=6. This is the
standard bound which also ensures that them atrix M ,

B ! ; @ 6)

is wellde ned. No restriction applies to the tw isted m ass param eter, except
that 4 must be real for the transfer m atrix @) to reproduce the tw isted
m ass lattice QCD action.
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B A nalytic expressions for expansion coe cients

In this appendix we provide explicit analytic expressions for the treelevel
am plitudes and the countertem s appearing in egs. (5.17){ (2]) which are
needed to com pute the oneJoop am plitudes up to term s of O (@?). W e have
checked that the analytic expressions correctly reproduce the num erical values
obtained by directly program m ing the correlation functions and counterterm
Insertions.

First wede ne

q_
I = z2 + 32+ 2%, B 1)
co = cosh(! ); (B .2)
si = shh(! ); (B .3)
= lco+ z si; (B 4)
= ! si+ 3z, 005 (B .S5)
where = T=L.Then wehavey = ué0)+ 0 (a%=L?) etc. w ith
0 N !
ué oo o ; B 6)
N (3 24 7224 Zo )
0
vé) = 5 ; B.7)
N z +
o _ Hzlmr ), ® 8)
0 0
wé) = ZZmU(()); (BJ9)
réo) = 27 uéo) : (B .10)

t=2zp + —— (B .11)

and then u, = auél)=L + 0 (@%=L?) etc.w ith

ué = quéo) ; B .12)

AN ' (324 Z22)( 2z + )
(0)
2 = vaO 3 7

B .13)

©0) 4N !z B2+ z°+ 2z, )

R = 2 3 ; (B 14)
wi’ = 2mal?; (B 15)
o= 20 (B 16)
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Sim iarly, ug = aué1)=L + O (a2=L2) etc. w ith

1) 2z si 0)
Ug = Uy 7

(1) 2z si 0) 2N !z ( Zy + )
N/ Vo ot 3 i

(1) 2z si gy N! ! +Z( oo)

= —q, + 3 ;

(1) 2z si 0)

6 = Wqo o 7

w 2z si ) |

r6 = IO .

For the derivatives w ith respect to the m ass param eters we have,

w= C=aj! "+ u”+ 0@y (1= 3;5

w ith
(0) (1) (0) (1)

u; = Zpuy ; uU; = zZuy; ;

and analogous equations hold in all other cases. De ning

1+ z )
X = BErE— ;
1+ z )
Y = —
z ( + Co)
X = —
z ( + si)
Yy = —
one has
(0)
(1) XU.O N Zm
U, = + , 7
(0)

(1 2X Vo N( +zY)
V3 = > ;
(1 2X 0 N z (1 Y )
q3 - 2 4
(1 (1 0)
Ws - 2(2y uy )+uo ) ;

ré b 27 ué l);

B .17)

(B .18)

B .19)

(B 20)

(B 21)

(B 22)

B 23)

(B 24)

(B 25)

(B 26)

B 27)

(B 28)

B 29)

(B 30)

(B 31)
(B 32)



and

WP o= Iy, — ; (B 33)
(1 2x v N2z + 2z, ¥)

Vs = 3 ; (B 34)
(1 g N@Y zm+ )

% = + > ; (B 35)

wé b 27 ué 1); (B 360)

ré - 27 ué b Zuéo): (B .37)

N ote the dentities

0 = 2z ué b 27 ué b uél); (B 38)

0 = 2z Vé b 2% Vé Y v6(1) + Zqéo); (B 39)

0 = 2z q3( b 27 q5( b ) ZVéO); (B 40)

0 = 2z wé b 2Zm wé b wél)+ Zréo); (B 41)

0 = 2z ré b 2Zn r5( b rél) ZWéO) : (B 42)

T he rem aining coe cients to be speci ed are v 4 = avf):L + 0 (@%=L?) and
Wy = awfll)zL + 0 (@%=L?%) w ith

(1) 2N !2

v, = 3 ; (B 43)

4N 13
wl(ll) = : (B 44)

Fially we specify the term s U; ;::: appearing on the right hand side of
equations ){ (5.34):

v, = 20 Yy s 26 0 s vy B 4s)
0; = 'V Z2Pq Vg B+ 207y (B 46)
v, = &Ml 2l Ve e M ® 47)
Wy o= wi 22wl Ve o+ 20w Py 48)
Ry = ' 2l Vg g+ 2pM (B 49)
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