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Abstract
In the energy range of RHIC and LHC the mechanisms of nuclear suppression of char-
monia are expected to be strikingly different from what is known for the energy of
the SPS. One cannot think any more of charmonium produced on a bound nucleon
which then attenuates as it passes through the rest of the nucleus. The coherence
length of charmonium production substantially exceeds the nuclear radius in the new
energy range. Therefore the production amplitudes on different nucleons, rather than
the cross sections, add up and interfere, i.e. shadowing is at work. So far no theoreti-
cal tool has been available to calculate nuclear effects for charmonium production in
this energy regime. We develop a light-cone Green function formalism which incor-
porates the effects of the coherence of the production amplitudes and of charmonium
wave function formation, and is the central result of this paper. We found a substantial
deviation from QCD factorization, namely, gluon shadowing is much stronger for char-
monium production than it is in DIS. We predict for nuclear effects x2 scaling which
is violated at lower energies by initial state energy loss which must be also included in
order to compare with available data. In this paper only the indirect J/Ψs originat-
ing from decay of P -wave charmonia are considered. The calculated xF -dependence
of J/Ψ nuclear suppression is in a good accord with data. We predict a dramatic
variation of nuclear suppression with xF in pA and a peculiar peak at xF = 0 in AA
collisions at RHIC.

1



1 Introduction

Charmonium production off nuclei has drawn much attention during the last two decades
since the NA3 experiment at CERN [1] has found a steep increase of nuclear suppression
with rising Feynman xF . This effect has been confirmed later in the same energy range
[2], and at higher energy recently by the most precise experiment E866 at Fermilab [3]. No
unambiguous explanation for these observations has been provided yet. With the advent
of RHIC new data are expected soon in the unexplored energy range. Lacking a satisfac-
tory understanding of nuclear effects for charmonium production in proton-nucleus collisions
it is very difficult to provide a convincing interpretation of data from heavy ion collisions
experiments [4, 5] which are aimed to detect the creation of a quark-gluon plasma using char-
monium as a sensitive probe. Many of existing analyses rely on an oversimplified dynamics
of charmonium production which fails to explain even data for pA collisions, in particular
the observed xF dependence of J/Ψ suppression. Moreover, sometimes even predictions for
RHIC employ those simple models. It is the purpose of present paper to demonstrate that
the dynamics of charmonium suppression strikingly changes between the SPS and RHIC
energies. We perform full QCD calculations of nuclear effects within framework of the light-
cone Green function approach aiming to explain observed nuclear effects without adjusting
any parameters, and to provide realistic predictions for RHIC.

To avoid a confusion, we should make it clear that we will skip discussion of any mech-
anisms of charmonium suppression caused by the interaction with the produced comoving
matter, although it should be an important effect in central heavy ion collisions. Instead,
we consider suppression which originates from the production process and propagation of
the c̄c pair through the nucleus. It serves as a baseline for search for new physics in heavy
ion collisions.

The present paper is focused on coherence phenomena which are still a rather small
correction for charmonium production at the SPS, but whose onset is already observed at
Fermilab and which are expected to become a dominant effect at the energies of the RHIC
and LHC. One realizes the importance of the coherence effects treating charmonium pro-
duction in an intuitive way as a hard c̄c fluctuation which lose coherence with the projectile
ensemble of partons via interaction with the target, and is thus liberated. In spite of the
hardness of the fluctuation, its lifetime in the target rest frame increases with energy and
eventually exceeds the nucleus size. Apparently, in this case the c̄c pair is freed via inter-
action with the whole nucleus, rather than with an individual bound nucleon as it happens
at low energies. Correspondingly, nuclear effects become stronger at high energies since the
fluctuation propagates through the whole nucleus, and different nucleons compete with each
other in freeing the c̄c. In terms of the conventional Glauber approach it leads to shadowing.
In terms of the parton model it is analogous to shadowing of c-quarks in the nuclear struc-
ture function. It turns out (see Sect. 4) that the fluctuations containing gluons in addition
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to the c̄c pair are subject to especially strong shadowing. Since at high energies the weight
of such fluctuations rises, as well the the fluctuation lifetime, it becomes the main source of
nuclear suppression of open and hidden charm at high energies, in particular at RHIC. In
terms of the parton model shadowing for such fluctuations containing gluons correspond to
gluon shadowing.

The parton model interpretation of charmonium production contains no explicit coher-
ence effects, but they are hidden in the gluon distribution function of the nucleus which
is supposed to be subject to QCD factorization. There are, however, a few pitfalls on this
way. First of all, factorization is exact only in the limit of a very hard scale. That means
that one should neglect the effects of the order of the inverse c-quark mass, in particular
the transverse c̄c separation 〈r2

T 〉 ∼ 1/m2
c . However, shadowing and absorption of c̄c fluc-

tuations is a source of a strong suppression which is nearly factor of 0.5 for heavy nuclei
(see Fig. 4). QCD factorization misses this effect. Second of all, according to factorization
gluon shadowing is supposed to be universal, i.e. one can borrow it from another process
(although we still have no experimental information about gluons shadowing, it only can
be calculated) and use to predict nuclear suppression of open or hidden charm. Again, fac-
torization turns out to be dramatically violated at the scale of charm and gluon shadowing
for charmonium production is much stronger than it is for open charm or deep-inelastic
scattering (DIS) (compare gluon shadowing exposed in Fig. 7 with one calculated in [6] for
DIS). All these important, sometimes dominant effects are missed by QCD factorization.
This fact once again emphasizes the advantage of the light-cone dipole approach which does
reproduce QCD factorization in situations where that is expected to be at work, and it is
also able to calculate the deviations from factorization in a parameter free way.

Unfortunately, none of the existing models for J/Ψ or Ψ′ production in NN collisions
is fully successful in describing all the features observed experimentally. In particular, the
J/Ψ, Ψ′ and χ1 production cross sections in NN collisions come out too small by at least an
order of magnitude [7]. Only data for production of χ2 whose mechanism is rather simple
seems to be in good accord with the theoretical expectation based on the color singlet
mechanism (CSM) [8, 9] treating χ2 production via glue-glue fusion. The contribution of
the color-octet mechanism is an order of magnitude less that of CSM [9], and is even more
suppressed according to [10]. The simplicity of the production mechanism of χ2 suggests
to use this process as a basis for the study of nuclear effects. Besides, about 40% of the
J/Ψs have their origin in χ decays. We drop the subscript of χ2 in what follows unless it is
important.

1.1 What has been understood already

A lot of work has been done already and considerable progress has been achieved in the
understanding of many phenomena related to the dynamics of the charmonium production
and nuclear suppression. We would like to start with reviewing some of these phenomena
which are employed in present paper.

• Relative nuclear suppression of J/Ψ and Ψ′ has attracted much attention. The Ψ′

has twice as large radius as the J/Ψ, therefore should attenuate in nuclear matter much
stronger. However, formation of the wave function of the charmonia takes time, one can-
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not instantaneously distinguish between these two levels. This time interval or so called
formation time (length) is enlarged at high energy EΨ by Lorentz time dilation,

tf =
2EΨ

M2
Ψ′ −M2

J/Ψ

, (1)

and may become comparable to or even longer than the nuclear radius. In this case neither
J/Ψ, nor Ψ′ propagates through the nuclear medium, but a pre-formed c̄c wave packet [11].
Intuitively, one might even expect an universal nuclear suppression, indeed supported by
data [12, 4, 3]. However, a deeper insight shows that such a point of view is oversimplified,
namely, the mean transverse size of the c̄c wave packet propagating through the nucleus
varies depending on the wave function of the final meson which the c̄c is projected to. In
particular, the nodal structure of the 2S state substantially enhances the yield of Ψ′ [13, 14]
(see in [15, 16] a complementary interpretation in the hadronic basis).

• Next phenomenon is related to the so called coherence time. Production of a heavy
c̄c is associated with a longitudinal momentum transfer qc which decreases with energy.
Therefore the production amplitudes on different nucleons add up coherently and interfere
if the production points are within the interval lc = 1/qc called coherence length or time,

tc =
2EΨ

M2
J/Ψ

. (2)

This time interval is much shorter than the formation time Eq, (1). One can also interpret it
in terms of the uncertainty principle as the mean lifetime of a c̄c fluctuation. If the coherence
time is long compared to the nuclear radius, tc ∼> RA, different nucleons compete with
each other in producing the charmonium. Therefore, the amplitudes interfere destructively
leading to an additional suppression called shadowing. Predicted in [13] this effect was
confirmed by the NMC measurements of exclusive J/Ψ photoproduction off nuclei [17] (see
also [14]). The recent precise data from the HERMES experiment [18] for electroproduction
of ρ mesons also confirms the strong effect of coherence time [19].

Note that the coherence time Eq. (2) is relevant only for the lightest fluctuations |c̄c〉.
Heavier ones which contain additional gluons have shorter lifetime. However, at high ener-
gies they are also at work and become an important source of an extra suppression (see in [6]
and Sect. 4). They correspond to shadowing of gluons in terms of parton model. In terms of
the dual parton model the higher Fock states contain additional q̄q pairs instead of gluons.
Their contribution enhances on a nuclear target lead to softening of the xF distribution of
the produced charmonium. This mechanism has been used in [20] to explain xF dependence
of charmonium suppression. However the approach was phenomenological and data were
fitted.

The first attempt to implement the coherence time effects into the dynamics of char-
monium production off nuclei has been done in [21]. However, the approach still was phe-
nomenological and data also were fitted. Besides, gluon shadowing (see Sect. 4) has been
missed.

• The total J/Ψ-nucleon cross section steeply rises with energy, approximately as s0.2.
This behavior is suggested by the observation of a steep energy dependence of the cross
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section of J/Ψ photoproduction at HERA. This fact goes well along with observation of
the strong correlation between xBj dependence of the proton structure function at small
xBj and the photon virtuality Q2: the larger Q2 is (the smaller is its q̄q fluctuation), the
steeper the F2(xBj , Q

2) rises with 1/xBj . Apparently, the cross section of a small size
charmonium must rise with energy faster than what is known for light hadrons. The J/Ψ-
nucleon cross section has been calculated recently in [22] employing the light-cone dipole
phenomenology, realistic charmonium wave functions and phenomenological dipole cross
section fitted to data for F2(x,Q

2) from HERA. The results are in a good accord with data
for the electroproduction cross sections of J/Ψ and Ψ′ and also confirm the steep energy
dependence of the charmonium-nucleon cross sections. Knowledge of these cross sections
is very important for understanding of nuclear effects in the production of charmonia. A
new important observation made in [22] is a strong effect of spin rotation associated with
boosting the c̄c system from its rest frame to the light cone. It substantially increases the
J/Ψ and especially Ψ′ photoproduction cross sections. The effect of spin rotation is also
implemented in our calculations below and it is crucial for restoration of the Landau-Yang
theorem (see Appendix C).

• Initial state energy loss by partons traveling through the nucleus affects the xF distribu-
tion of produced charmonia [23] especially at medium high energies. A shift in the effective
value of x1, which is the fraction of the incident momentum carried by the produced char-
monium, and the steep x1-dependence of the cross section of charmonium production off a
nucleon lead to a dramatic nuclear suppression at large x1 (or xF ) in a good agreement with
data [1, 2]. The recent analyses [24, 25] of data from the E772 experiment for Drell-Yan
process on nuclei reveals for the first time a nonzero and rather large energy loss.

1.2 Outline of the paper

The paper is organized as follows. The light-cone (LC) formalism for gluon-nucleon collision
formulated in the rest frame of the target nucleon is introduced in Sect. 2. As usual, the
amplitude is represented as a convolution in the impact parameter space of the LC wave
functions of the incident gluon and the final charmonium, and the dipole transition cross
section. The latter corresponds to the interaction with the target which causes a transition
between |c̄c〉G and |c̄c〉χ, which are the charm-anticharm pairs with quantum numbers of a
gluon and a χ respectively. The transition amplitude Σtr can be expressed in terms of the
ordinary flavor independent dipole cross section σq̄q of interaction of a colorless q̄q dipole
with a nucleon which is rather well known from phenomenology.

While the perturbative gluon wave function, an analog to the photon one, is known, the
LC wave function of a charmonium needs to be constructed. Even if the wave function in
the rest frame of the charmonium is known, it is not a straightforward procedure to boost it
to the infinite momentum frame. We apply the widely accepted prescription for the Lorentz
boost, which is rather successful in describing data for exclusive photoproduction of char-
monia [22]. It is presented in Appendix A for the case of the χ wave function. One may
not expect important relativistic effects for such a heavy system as a charmonium. Indeed,
it is demonstrated in Appendix B that the distribution over fraction of the χ momentum
carried by the quarks peaks at 1/2 with a tiny width. However, the Melosh spin rotation
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effect is still very important. It is demonstrated in [22] how much it affects the photopro-
duction cross section of J/Ψ and especially Ψ′. In the case of χ gluoproduction inclusion
of the spin rotation restores the Landau-Yang theorem which forbids production of |χ1〉 by
an on-mass-shell gluon. Otherwise, it would be badly violated even in the nonrelativistic
limit where one might expect the spin rotation effects to vanish. What is rather obvious in
the parton model, still needs special efforts to be proven within the LC approach. The fine
tuning leading to cancelation of different parts of the χ1 production amplitude is demon-
strated in Appendix C. This can be considered as another strong support for the Lorentz
boost procedure we are using.

The production of charmonia off nuclei is controlled by few length scales as is discussed
above and in Sect. 3. Once a colorless c̄c wave packet is produced, it is evolving during
propagation through the nucleus due to absorption and transverse motion of the quarks.
The result should be projected to the charmonium wave function. The length scale of the
evolution is controlled by the formation time Eq. (1).

Another much shorter length scale is controlled by the coherence time Eq. (2). At high
energy it becomes long leading to shadowing which enhances the suppression of charmonia.
This is the new phenomenon which is not yet at work at the SPS, but is expected to nearly
saturate at RHIC.

We start with the effects of quantum coherence for simple limiting situations. In Sect. 3.1
we study the case of a very long lf � lc � RA when the transverse quark separation is
frozen by the Lorentz time dilation for the time of propagation through the nucleus. While
the final state absorption occurs with the conventional dipole cross section σq̄q(rT ), it is
not obvious which cross section controls shadowing. It is the key observation of Sect. 3.1
that this is the dipole cross section σ3 of interaction of a colorless system consisting of three
partons, |q̄qG〉. The combined effect of shadowing and absorption is given by Eq. (43) -
(44).

The case of a not too long coherence time lc ∼ RA is considered in Sect. 3.2. Since
lf � lc, the time taken by the produced c̄c for its further development can be rather long,
lf � RA and the transverse size of the c̄c pair can be treated as frozen. Eq. (45) interpolating
between the regimes of very short and long coherence lengths is governed by the longitudinal
momentum transfer qc = 1/lc.

In the general case considered in Sect. 3.3 any of lc and lf can be either short or long
and one must take care of the transverse size fluctuations of a color dipole propagating
through the nucleus. The appropriate approach is the path integral technique summing up
all possible paths of the partons [13]. Evolution of a c̄c wave packet in nuclear medium is
described by the LC Green functions satisfying the two dimensional Schrödinger equations
(52), which are different for colorless and colored dipoles. The central result of this paper,
the amplitude of the process GA → χX is described by Eq. (49) which is illustrated
pictorially in Fig. 3.

Evaluation of the effects of coherence and formation is performed in Sect. 3.4 and the
results are demonstrated in Fig. 4. The nuclear transparency first rises with energy due to
the formation length effects (color transparency), but then, falls down at higher energies
due to growing coherence length.

In Sect. 4 a third scale governing the nuclear effects is introduced. It is related to the

6



higher Fock components in the projectile gluon, |c̄c G〉, |c̄c 2G〉 etc. Since the gluons usually
carry a small fraction of the total momentum, these fluctuations are rather heavy compared
to |c̄c〉, hence they have a coherence time shorter than in Eq. (2). Therefore, the contribution
of these fluctuation to nuclear shadowing which must be associated with gluon shadowing,
is delayed down to smaller values of x2.

First of all one must develop an impact parameter approach for fluctuations containing
gluons. It is quite a difficult task, but it pays off when one needs to calculate shadowing
which is given by a simple eikonalization, or by employing the Green function technique
if x2 is not small enough. This is done in Appendix D and the results are summarized in
Sect. 4.1. It turns out that the twelve Feynman graphs for the LC wave function of the
|c̄cG〉 depicted in Fig. 12 and calculated in Appendix D are reduced to the main contribution
which corresponds to the production of χ directly from the projectile gluon prior or after
the interaction with the target, as is illustrated in Fig. 6. Therefore the dipole formalism
appropriate for gluon shadowing is pretty similar (up to color factors) to that for Drell-
Yan reaction [26, 27, 28, 29]. The LC wave function of the |c̄cG〉 state where the c̄c pair
is colorless, turns out to be very different from that for the |q̄qG〉 fluctuations in DIS
where the strong nonperturbative interaction between the color-octet q̄q and the gluon
substantially diminishes the q̄q – glue separation and reduces shadowing of gluons. Indeed,
gluon shadowing for χ production depicted in Fig. 4.2 is much stronger than calculated for
DIS in [6].

There are some indications that gluons in nuclei may be enhanced at at x2 ∼ 0.1. This
effect increasing the production rate of charmonia at smallxF is discussed and estimated in
Sect. 4.3

More effects are to be included in order to compare with data. In Sect. 5 the corrections
for energy loss by the projectile partons which are due to initial state interactions are
evaluated according to the prescription of [23, 24, 25]. This effect dramatically violates
x2 scaling. While it is the main mechanism shaping the xF dependence of charmonium
suppression at medium high energies (the SPS energy range), its influence is essentially
reduced at Fermilab, and no visible energy loss corrections are expected at RHIC.

Eventually, in order to compare with available data for J/Ψ production off nuclei one
has to make corrections for decay χ → J/Ψ γ. This is done in Sect. 6 and the corrections
are found to be rather small. Indeed, they are basically the same in pN and pA collisions
and essentially cancel out in the ratio.

Incorporating all these effects in our calculations in Sect. 7 we arrive at quite a good
agreement with available data. While energy loss is the dominant effect at 200GeV (Fig. 10),
the steep xF dependence of nuclear suppression at 800GeV (Fig. 5) is a combined effect of
quark and gluon shadowing and energy loss. This is the first manifestation of the onset of
gluon shadowing, but it is expected to to become the main source of charmonium suppression
at RHIC. Our predictions depicted in Fig. 11 demonstrate a dramatic variation of nuclear
suppression versus small xF for pA collisions. Translated into suppression in AA collisions
the same effects form a peculiar narrow peak at xF = 0.

Our conclusions and outlook are presented in Sect. 8. This is the first full QCD calcula-
tion of coherence effects in charmonium production off nuclei demonstrating that coherence
is the dominant phenomenon which governs nuclear suppression of charmonia at the energies
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of RHIC and LHC.

2 The light-cone dipole formalism for charmonium pro-

duction off a nucleon

The important advantage of the light-cone (LC) dipole approach is its simplicity in the
calculations of nuclear effects. It has been suggested two decades ago [30] that quark con-
figurations (dipoles) with fixed transverse separations are the eigenstates of interaction in
QCD. Therefore the amplitude of interaction with a nucleon is subject to eikonalization
in the case of a nuclear target. In this way one effectively sums the Gribov’s inelastic
corrections in all orders.

Assuming that the produced c̄c pair is sufficiently small so that multigluon vertices can
be neglected we can write the cross section for GN → χX) as (see Fig. 1),

σ(GN → χX) =
π

2(N2
c − 1)

∑
a,b

∫
d2kT

k4
T

αs(k
2
T )F(x, k2

T )
∣∣∣Mab(~kT )

∣∣∣2 , (3)

where F(x, k2
T ) = ∂G(x, k2

T )/∂(ln k2
T ) is the unintegrated gluon density, G(x, k2

T ) = x g(x, k2
T )

(x = M2
χ/ŝ); Mab(~kT ) is the fusion amplitude GG→ χ with a, b being the gluonic indexes.

χ

N

G
χ

G

N

Figure 1: Perturbative QCD mechanism of production of the χ states in
a gluon-nucleon collision.

In the rest frame of the nucleon the amplitude can be represented in terms of the c̄c LC
wave functions of the projectile gluon and ejectile charmonium,

Mab(~kT ) =
δab√

6

1∫
0

dα
∫
d2rT

∑
µ̄µ

(
Φµ̄µ

χ (~rT , α)
)∗ [

ei~kT ·~r1 − ei~kT ·~r2

]
Φµ̄µ

G (~rT , α) , (4)

where
~r1 = (1− α)~rT , ~r2 = −~α~rT . (5)

For the sake of simplicity we separate the normalization color factors
〈
c̄c, {8}a

∣∣∣ and

〈c̄c, {1}| from the LC wave function of the gluon and charmonium respectively, and calculate
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the matrix element, 〈
c̄c, {8}a

∣∣∣1
2
λb

∣∣∣c̄c, {1}〉 =
δab√

6
, (6)

which is shown explicitly in (4). Thus, the functions Φµ̄µ
G(χ)(~rT , α) in (4) represent only the

spin- and coordinate dependent parts of the corresponding full wave functions.
The gluon wave function differs only by a factor from the photon one,

Φµ̄µ
G (~rT , α) =

√
2αs

4π

(
ξµ
c

)†
Ô ξ̃µ̄

c̄ K0(ε rT ) , (7)

where ξµ
c is the c-quark spinor, and

ξ̃µ̄
c̄ = i σy ξ

µ̄
c̄

∗
, (8)

Ô = mc ~σ · ~e+ i(1− 2α) (~σ · ~n) (~e · ~∇) + (~e× ~n)~∇ , (9)

ε2 = Q2α(1− α) +m2
c , (10)

~∇ =
d

d~rT
.

The gluon has virtuality Q2 and polarization vector ~e and is moving along the unit vector
~n (in what follows we consider only transversely polarized gluons, ~e · ~n = 0).

The expression for the LC wave function of a charmonium related by the Lorentz boost
from the charmonium rest frame is rather complicated and is moved to Appendix A. This
complexity is a consequence of the nonlocal relation between the LC variables (~rT , α) and
the components of the 3-dimensional relative c̄c radius-vector ~r in the rest frame of the
charmonium. Also the Melosh spin rotation leads to a nontrivial relations between the two
wave functions (see e.g. in [22]). This is a relativistic effect, it vanishes in the limit of small
velocity v → 0 of the quarks in the charmonium rest frame.

A word of caution is in order. In some cases the Melosh spin rotation is important even
in the limit of vanishing quark velocity v → 0. An example is the Landau-Yang theorem
[31] which forbids production of the χ1 state by two massless gluons. However, the LC
approach leads to creation of the χ1 even in the limit v → 0 if the effect of spin rotation
is neglected. It is demonstrated in Appendix B that the Landau-Yang theorem is restored
only if the Melosh spin rotation is included. Such a cancelation of large values is a kind of
fine tuning and is a good support for the procedure of Lorentz boosting which we apply to
the charmonium wave functions.

Since the gluon LC wave function smoothly depends on α while the charmonium wave
function peaks at α = 1/2 with a tiny width estimated in Appendix B, 〈(α− 1/2)2〉 = 0.01,
we can replace the charmonium wave function in the matrix element in (4) with

Φµ̄µ
χ (rT , α) ≈ δ

(
α− 1

2

) ∫
dαΦµ̄µ

χ (rT , α) . (11)

It is convenient to expand the LC charmonium wave function in powers of v. The result
depends on the total momentum J and its projection Jz on the direction ~n. The charmonium
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wave function integrated over α has the form,

∫
dαΦµ̄µ

χ (rT , α) =
(
ξµ
)† [

~σ · ~e± +
1

m
(~e± × ~n) · ~∇− 1

2m2
c

(~e± · ~∇) (~σ · ~∇)

]
ξ̃µ̄W +O(v4) ,

(12)
where

W =
~e± · ~rT

rT

[
R(rT ) +

3

4m2
c

R′′(rT ) +O(v4)

]
, (13)

and R(r) is the radial part of the P-wave charmonium in its rest frame (see derivation in
Appendix A). The new notations for the polarization vectors are,

~e+ = −~ex + i~ey√
2

,

~e− =
~ex − i~ey√

2
. (14)

In what follows we use the LC wave functions of gluons and charmonium in order to
calculate matrix elements of operators which depend only on the LC variables rT and α.
Therefore, for the sake of simplicity we can drop off the indexes µ, µ̄ and summation over
them, i.e. replace ∑

µµ̄

(
Φµµ̄

χ (~rT , α)
)∗

Φµµ̄
G (~rT , α) ⇒ Φ∗

χ(~rT , α) ΦG(~rT , α) (15)

With this convention we can rewrite the cross section Eq. (4) as,

σ(GN → χX) =

1∫
0

dα

1∫
0

dα′
∫
d2rT d

2r′T

×
{
Φ∗

χ(~rT , α) Φχ(~r ′T , α
′) Σtr(~rT , ~r

′
T , α, α

′) ΦG(~rT , α) Φ∗
G(~r ′T , α

′)
}
, (16)

where the transition cross section Σtr is a combination of dipole cross sections,

Σtr(~rT , ~r
′
T , α, α

′) =
1

16

[
σq̄q(~r1 − ~r ′2) + σq̄q(~r2 − ~r ′1)− σq̄q(~r1 − ~r ′1)− σq̄q(~r2 − ~r ′2)

]
, (17)

and ~r1, ~r
′
2 ~r

′
1 and ~r′2 are defined like in Eq. (5). The dipole cross section [30],

σq̄q(rT , s) =
4π

3

∫
d2kT

k4
T

αs(k
2
T )F(x, k2

T )
(
1− ei~kT ·~rT

)
, (18)

corresponds to interaction of a colorless q̄q pair of transverse separation rT with a nucleon
at the squared c.m. energy s and x = 4k2

T/s. The explicit s-dependence of the cross sections
is dropped in Eqs. (16), (17).

Since small distances rT ∼ r ′T ∼ 1/mc dominate in the integral in Eq. (16) one can make
use of the approximation

σq̄q(rT )
∣∣∣
rT→0

= C(s) r2
T , (19)
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then Σtr reduces to the very simple form,

Σtr(~rT , ~r
′
T , α, α

′) =
C(s)

8
(~rT · ~r ′T ) =

∑
λ=1,2

(~eλ
t · ~d) (~eλ

t · ~d ′)∗ , (20)

where

~d =

√
C(s)

8
~rT , ~d ′ =

√
C(s)

8
~r ′T . (21)

The vectors ~eλ
t can be interpreted as a polarization vector of the Weizsäcker-Williams gluon

of the target.
Within this approximation the cross section (16) can be represented in the form,

σ(GN → χX) =
∑
λ

∣∣∣A(λ)
∣∣∣2 , (22)

where

A(λ) =

1∫
0

dα
∫
d2rT Φ∗

χ(~rT , α) (~eλ
T · ~d) ΦG(~rT , α) . (23)

3 Production of charmonia off nuclei: shadowing of

c-quarks

Nuclear effects in the production of a χ are controlled by the coherence and formation lengths
which are defined in (1), (2). One can identify two limiting cases. The first one corresponds
to the situation where both lc and lf are shorter that the mean spacing between bound
nucleons. In this case one can treat the process classically, the charmonium is produced on
one nucleon inside the nucleus and attenuates exponentially with an absorptive cross section
which is the inelastic χ−N one. This simplest case is described in [23, 32].

In the limit of a very long coherence length lc � RA one can think about a c̄c fluctuation
which emerges inside the incident hadron long before the interaction with the nucleus.
Different bound nucleons compete and shadow each other in the process of liberation of this
fluctuation. This causes an additional attenuation in addition to inelastic collisions of the
produced color-singlet c̄c pair on its way out of the nucleus. Since lc � lf an intermediate
case is also possible where lc is shorter than the mean internucleon separation, while lf is of
the order or longer than the nuclear radius.

3.1 The high energy limit, lc � RA

We start with the case of very long coherence and formation lengths, lc, lf � RA. In this
case the incident gluon converts into a color-octet c̄c fluctuation with a lifetime much longer
than the nuclear radius. Therefore one can consider this fluctuation as produced long in
advance and propagating through the whole nucleus as is illustrated in Fig. 2. Then we can
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Figure 2: The incident gluon converts onto a c̄c pair long in advance
of the nucleus. The pair propagates and attenuates with the absorption
cross section σ3(rT ) (see the text) up to the point where it converts
into a colorless c̄c pair with quantum numbers of χ. Then it continues
propagating through the nucleus, and is attenuated with the cross section
σq̄q(rT ).

employ the results of Ref. [33] for the evolution of the density matrix a q̄q (c̄c in our case)
wave packet propagating through the nuclear medium,

R(~rT , ~r
′
T , α, α

′|z) = R(1)(~rT , ~r
′
T , α, α

′|z) P̂1 +
1

8
R(8)(~rT , ~r

′
T , α, α

′|z) P̂8 , (24)

where R(~rT , ~r
′
T , α, α

′|z) is the density matrix of the c̄c propagating through nuclear medium
which depends on the transverse separation ~rT , fraction α of the LC momentum, and on the
longitudinal coordinate z; P̂1 and P̂8 are the projection operators on the singlet and octet
states of the q̄q, respectively, and satisfy the relations,

P̂1 + P̂8 = 1 ;

Tr P̂1 = 1 ; Tr P̂8 = 8 . (25)

The matrices R(1) and R(8) are the solutions of the evolution equations,

dR(1)(~rT , ~r
′
T , α, α

′|z)
d z

= ρA(z)
[
−1

2
Σ(1)R(1)(~rT , ~r

′
T , α, α

′|z)
+ Σ(tr)R(8)(~rT , ~r

′
T , α, α

′|z)
]
, (26)

dR(8)(~rT , ~r
′
T , α, α

′|z)
d z

= ρA(z)
[
8 Σ(tr)R(1)(~rT , ~r

′
T , α, α

′|z)
− Σ(8) R(8)(~rT , ~r

′
T , α, α

′|z)
]
, (27)

where the nuclear density ρA(z) depends on the longitudinal coordinate z and (implicitly)
the impact parameter b. The transition cross section Σtr is defined in (17).

The function
Σ(1) ≡ Σ(1)(~rT , ~r

′
T , α, α

′) = σq̄q(~rT ) + σq̄q(~r
′
T ) (28)

12



is the total cross section for the interaction of a 4-quark ensemble, two color-singlet c̄c pairs,
with a nucleon. Correspondingly,

Σ(8) ≡ Σ(8)(~rT , ~r
′
T , α, α

′) =
1

8

[
2 σq̄q(~r1 − ~r ′2) + 2 σq̄q(~r2 − ~r ′1)

+ 7 σq̄q(~r1 − ~r ′1) + 7 σq̄q(~r2 − ~r ′2)− σq̄q(~r1 − ~r2)− σq̄q(~r
′
1 − ~r ′2)

]
, (29)

is the total cross section, where a 4-quark system consisting of two color-octet c̄c pairs whose
centers of gravity coincide, interact with a nucleon.

The initial conditions for a c̄c pair originating from the projectile gluon are,

R(1)(~rT , ~r
′
T , α, α

′|z)
∣∣∣
z→−∞ = 0 , (30)

R(8)(~rT , ~r
′
T , α, α

′|z)
∣∣∣
z→−∞ = ΦG(~rT , α) Φ∗

G(~r ′T , α
′) . (31)

With the evolution equations (26), (27) we are in position to extend Eq. (16) to the case
of a nuclear target,

σ(GA→ χX) =
∫
d2b

1∫
0

dα

1∫
0

dα′
∫
d2rT d

2r′T Φ∗
χ(~rT , α) Φχ(~r ′T , α

′)

× R(1)(~rT , ~r
′
T , α, α

′|z+) , (32)

where z+ → ∞, and R(1) implicitly depends on the impact parameter b. This expression
includes all the multiple color exchanges between the projectile c̄c pair and bound nucleons
in the target which eventually convert the initial color octet c̄c into the final colorless state
we are interested in.

Color exchanges on different nucleons add up incoherently, and the cross section is rather
small due to smallness of the mean transverse separation for the heavy c̄c pair. Therefore,
we keep only the lowest (first) order in Σtr, but all higher orders in Σ8 and Σ1. Then, the
cross section of the process GA→ χX reads,

σ(GA→ χX) =
∫
d2b

1∫
0

dα

1∫
0

dα′
∫
d2rT d

2r′T

×
{
Φ∗

χ(~rT , α) Φχ(~r ′T , α
′) Σ̃(~rT , ~r

′
T , α, α

′) ΦG(~rT , α) Φ∗
G(~r ′T , α

′)
}
, (33)

where

Σ̃(~rT , ~r
′
T , α, α

′) =
2 Σ(tr)(~rT , ~r

′
T , α, α

′)
Σ(1)(~rT , ~r ′T , α, α′)− Σ(8)(~rT , ~r ′T , α, α′)

×
{
exp

[
−1

2
Σ(8)(~rT , ~r

′
T , α, α

′)T (b)
]
− exp

[
−1

2
Σ(1)(~rT , ~r

′
T , α, α

′)T (b)
]}

. (34)

Here

T (b) =

∞∫
−∞

dz ρA(b, z) , (35)
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is the nuclear thickness function.
Eq. (34) can be modified to a form which makes its physical meaning more transparent

(for the sake of brevity we drop the variables ~rT , ~r
′
T , α, α

′ in functions Σtr, Σ(1) and Σ(8)),

Σ̃(~rT , ~r
′
T , α, α

′) =
∫
d2b

∞∫
−∞

dz ρA(b, z) exp
[
−1

2
Σ(1) T+(b, z)

]

× Σ(tr) exp
[
−1

2
Σ(8) T−(b, z)

]
, (36)

where

T+(b, z) =

∞∫
z

dz′ρA(b, z′)

T−(b, z) =

z∫
−∞

dz′ρA(b, z′)

(37)

Furthermore, we introduce the following notations,

σ3(rT , α) = Σ(8)(~rT , ~r
′
T , α, α

′)
∣∣∣
r′
T =0

=
9

8

[
σq̄q(αrT ) + σq̄q[(1− α)rT ]

]
− 1

8
σq̄q(rT ) ; (38)

∆Σ(8)(~rT , ~r
′
T , α, α

′) = Σ(8)(~rT , ~r
′
T , α, α

′)− σ3(~rT , α)− σ3(~r
′
T , α

′) (39)

Since heavy quarks are expected to be produced with a small separation, we can employ
the approximation (19),

∆Σ(8)(~rT , ~r
′
T , α, α

′) = −1

4

[
7− 9(α + α′) + 18αα′

]
~rT · ~r ′T . (40)

This amplitude describes the diffractive transitions of the c̄c octet accompanied with change
of the orbital momentum and parity of the c̄c pair. Since the color-exchange amplitude also
has this property the product of these two amplitudes corresponds to creation of direct J/Ψ
(Ψ′...) on a nuclear target without radiation of any extra gluons. In this paper, however,
we concentrate on the production of χs and neglect this effect, i.e. replace

Σ(8)(~rT , ~r
′
T , α, α

′) ⇒ σ3(~rT , α) + σ3(~r
′
T , α

′) . (41)

If one uses the small-rT approximation (19) also for Σ(tr), then the cross section Eq. (1.19)
can be represented in the form,

σ(GA→ χX) =
∫
d2b

∞∫
−∞

dz ρA(b, z)
∑
λ

∣∣∣A(λ)(~b, z)
∣∣∣2 , (42)

where

A(λ)(~b, z) =

1∫
0

dα
∫
d2rT Φ∗

χ(~rT , α) Â(λ)(~b, z;~rT , α) ΦG(~rT , α) , (43)
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and

Â(λ)(~b, z;~rT , α) = exp
[
−1

2
σq̄q(rT )T+(b, z)

]
~e

(λ)
T · ~d exp

[
−1

2
σ3(rT , α)T−(b, z)

]
. (44)

The vector ~d is defined in (21).
In Eq. (44) the first exponential factor corresponds to the nuclear attenuation of the χ

produced in the color-exchange rescattering of the projectile c̄c. The second exponential
should be interpreted as nuclear shadowing for the diffractive transition G → c̄c which
preserves the initial quantum numbers and color (see in [34]). The factor ~e

(λ)
T · ~d corresponds

to the amplitude of dipole radiation (or absorption) of a gluon by the color-octet c̄c pair at
the point z of the color-exchange interaction.

3.2 Medium high energies, lc ∼ RA, but lf � RA

Such an energy range is possible only for heavy flavor production due to the relation lf � lc
[13]. In this case we can still treat the final state colorless c̄c pair propagating through
the nucleus as having a frozen transverse separation, while corrections for finiteness of lc
must be done. Correspondingly, the operator Â(λ)(~b, z;~rT , α) has to be modified and can be
represented as a sum of two terms,

Â(λ)(~b, z;~rT , α) = Â
(λ)
1 (~b, z;~rT , α) + Â

(λ)
2 (~b, z;~rT , α) , (45)

where

Â
(λ)
1 (~b, z;~rT , α) = exp

[
i qL z − 1

2
σq̄q(rT )T+(b, z)

]
~e(λ) · ~d ; (46)

Â
(λ)
2 (~b, z;~rT , α) = −1

2
exp

[
i qL z − 1

2
σq̄q(rT )T+(b, z)

]
~e

(λ)
T · ~d

×
z∫

−∞
dz1 exp

[
i qL z1 − 1

2
σ3(rTα)T−(b, z1)

]
σ3(~rT , α) ρA(b, z1) , (47)

where qL = 1/lc is the longitudinal momentum transfer to the nucleus. This expression
interpolates between the high-energy limit lc � RA (qL = 0) where it acquires the form

(44), and the limit of lc shorter than the mean nucleon separation when Â
(λ)
2 → 0. Such

a form of the amplitude Eqs. (45) - (47) was first derived in [35] for inelastic diffractive
photoproduction of J/Ψ off nuclei.

The term A1 in Eq. (45) describes the production of the colorless c̄c pair at (b, z) by
the incident gluon. This pair then attenuates escaping the nucleus, while the gluon has no
initial state interaction (leading to production of a c̄c pair).

The term A2 in Eq. (45) describes the diffractive production of a c̄c pair by the gluon
with the same quantum numbers (except the color dipole moment of the c̄c) at the point
z1 < z. This color-octet c̄c pair propagates and attenuates between the points z1 and z with
the cross section σ3(rT , α). Then at point z it experiences a color exchange interaction and
produces a colorless c̄c pair with the quantum numbers of a χ.

15



In fact, Eq. (45) breaks down towards the low-energy limit at χ energies of a few tens
of GeV because lf becomes comparable with RA and one cannot neglect any more the
fluctuations of the transverse size of the c̄c pair during its propagation through the nucleus.
In this case one should apply the technique of the light-cone Green function describing the
propagation of q̄q pairs [36, 37, 28, 6].

3.3 General case

The transition between the limits of very short and very long coherence lengths is performed
using the prescription suggested in [35] for inelastic photoproduction of J/Ψ off nuclei. The
cross section of χ production off a nucleus can still be represented in the form (42), but the
amplitude A(λ) is modified as,

A(λ)(b, z) =

1∫
0

dα
∫
d2rT

∫
d2r ′T Φ∗

χ(~rT , α) D̂(λ)(~rT , ~r
′
T , α; b, z) ΦG(~r ′T , α) , (48)

where D̂(λ)(~rT , ~r
′
T , α; b, z) is the amplitude of production of a colorless c̄c pair which reaches

a separation ~rT outside the nucleus. It is produced at the point (~b, z) by a color-octet c̄c
with separation r ′T . The amplitude consists of two terms,

D̂(λ)(~rT , ~r
′
T , α; b, z) = D̂

(λ)
1 (~rT , ~r

′
T , α; b, z) + D̂

(λ)
2 (~rT , ~r

′
T , α; b, z) . (49)

Here the first term reads,

D̂
(λ)
1 (~rT , ~r

′
T , α; b, z) = G

(1)
c̄c (~rT , z+;~r ′T , z)~e

(λ) · ~d ′ eiqLz , (50)

where G
(1)
c̄c (~rT , z+;~r ′T , z) is the color-singlet Green function describing evolution of a c̄c wave

packet with initial separation ~r ′T at the point z up to the final separation ~rT at z+ → ∞.
This term is illustrated in Fig. 3a.

There is also a possibility for the projectile gluon to experience diffractive interaction
with production of color-octet c̄c with the same quantum numbers of the gluon at the
point z1. This pair propagates from the point z1 to z as is described by the corresponding
color-octet Green function G

(8)
c̄c and produces the final colorless pair which propagation is

described by the color-singlet Green function, as is illustrated in Fig. 3b. The corresponding
second term in (49) reads,

D̂
(λ)
2 (~rT , ~r

′
T , α; b, z) = −1

2

z∫
−∞

dz1 d
2r′′T G

(1)
c̄c (~rT , z+; r ′′T , z)

× ~e(λ) · ~d ′′G(8)
c̄c (~r ′′T , z;~r

′
T , z1) e

iqLz1 σ3(~r
′
T , α) ρA(b, z1) , (51)

The singlet, G
(1)
c̄c , and octet, G

(8)
c̄c , Green functions describe the propagation of color-

singlet and octet c̄c, respectively, in the nuclear medium. They satisfy the Schrödinger
equations,

i
d

d z
G

(k)
c̄c (~rT , ~r

′
T ; z, z′) =

[
m2

c −∆~rT

2EG α (1− α)
+ V (k)(~rT , α)

]
G

(k)
c̄c (~rT , ~r

′
T ; z, z′) , (52)
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Figure 3: The incident gluon can either produce the colorless c̄c pair with
quantum numbers of χ at the point z (a), or it produces diffractively a
color-octet c̄c with the quantum numbers of the gluon at the point z1
which is then converted into a color singlet state at z (b). Propagation

of a color-singlet or octet c̄c is described by the Green functions G
(1)
c̄c and

G
(8)
c̄c , respectively.

with k = 1, 8 and boundary conditions

G
(k)
c̄c (~rT , ~r

′
T ; z, z′)

∣∣∣
z=z′= δ(~rT − ~r ′T ) . (53)

The imaginary part of the LC potential V (k) is responsible for the attenuation in nuclear
matter,

ImV (k)(~rT , α) = −1

2
σ(k)(rT , α) ρA(b, z) , (54)

where

σ(1)(rT , α) = σq̄q(rT ) ,

σ(8)(rT , α) = σ3(rT , α) . (55)

The real part of the LC potential V (k)(~rT , α) describes the interaction inside the c̄c
system. For the singlet state ReV (1)(~rT , α) should be chosen to reproduce the charmonium
mass spectrum. With a realistic potential (e.g. see in [22]) one can solve Eq. (52) only
numerically. Since this paper is focused on the principal problems of understanding of the
dynamics of nuclear shadowing in charmonium production, we chose the oscillator form of
the potential [6],

ReV (1)(~rT , α) =
a4(α) r2

T

2EG α (1− α)
, (56)

where

a(α) = 2
√
α(1− α)µω , (57)

µ =
mc

2
, ω = 0.3GeV .
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The LC potential (56) corresponds to a choice of a potential,

U(~r) =
1

2
µω~r2 , (58)

in the nonrelativistic Schrödinger equation,[
−∆

2µ
+ U(~r)

]
Ψ(~r) = EΨ(~r) , (59)

which should describe the bound states of a colorless c̄c system. Of course this is an approx-
imation which we are enforced to do in order to solve the evolution equation analytically.

To describe color-octet c̄c pairs we should fix the corresponding potential at

ReV (8)(~rT , α) = 0 , (60)

in order to reproduce the gluon wave function Eq. (7).

3.4 Numerical estimates

In order to keep calculations simple we use the approximation Eq. (19) for the dipole cross
section which is reasonable for small-size heavy quark systems. Then, taking into account
Eqs. (54) - (56) we arrive at the final expressions,

V (k)(rT , α) =
1

2
κ(k) r2

T , (61)

κ(1) =
a4(α)

α(1− α)EG
− iC(s) ρA , (62)

κ(8) = −iC(s) ρA

{
9

8

[
α2 + (1− α)2

]
− 1

8

}
. (63)

Making use of this approximation and assuming a constant nuclear density ρA(b, z) = ρA

the Green functions can be obtained in an analytical form,

G
(k)
c̄c (~rT , ~r

′
T ; z2, z1) =

b(k)

2π sinh(Ω(k) ∆z)

× exp

{
−b

(k)

2

[
~r 2

T + ~r ′ 2T

tanh(Ω(k) ∆z)
− 2~rT · ~r ′T

sinh(Ω(k) ∆z)

]}
, (64)

where

b(k) =
√
κ(k)EG α(1− α) ,

Ω(k) =
b(k)

EG α(1− α)
,

∆z = z2 − z1 .
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With the oscillator potential we have chosen the wave function of χ has a simple form
[6],

Φχ(~rT , α) ∝ (~e+ · ~rT ) exp
(
−1

2
a2(α) r2

T

)
, (65)

which allows to perform analytical integrations over ~rT and ~r ′T in Eq. (48) for the amplitude,

A(λ)(b, z) = N(~e+
∗ · ~eλ)

1∫
0

dα

U(~b, z, α) eiqLz − c(8)

2

z∫
−R(~b)

dz1 ρA(~b, z) eiqLz1 W (~b, z, z1, α)

 .

(66)
Here

U(b, z, α) =
F1(λ1)[

b(1) sinh(φ1) + a2(α) cosh(φ1)
]2 ; (67)

W (b, z, z1, α) =
sinh(φ2)F1(λ2)

b(8)
[
b(8) sinh(φ2) + g2 cosh(φ2)

]2
+

F2(λ2)[
b(8) sinh(φ2) + g2 cosh(φ2)

]3 , (68)

where

F1(λ1) = (1 + λ1) e
λ1 E1(λ1) − 1 ,

F2(λ2) = (λ2
2 + 4 λ2 + 2) eλ2 E1(λ2)− λ2 − 3 , (69)

and E1(x) =
∫∞
1 dt e−xt/t is the integral exponential function. Further notations are

φ1 = Ω(1) ∆z1 , mueller

∆z1 =
√
R2

A − b2 − z ,

φ2 = Ω(8) ∆z2 ,

∆z2 = z − z1 ,

λ1 =
m2

c

[
a2(α) sinh(φ1) + b(1) cosh(φ1)

]
2 b(1)

[
a2(α) cosh(φ1) + b(1) sinh(φ1)

] ,
λ2 =

m2
c

[
g sinh(φ2) + b(8) cosh(φ2)

]
2 b(8)

[
g cosh(φ2) + b(8) sinh(φ2)

] ,
g =

m2
c

2 λ1

,

N =
1

2 π

√
αs C (µω)5/2

mc
.
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We define the nuclear transparency for χ production as

TrA(χ) =
σ(GA→ χX)

Aσ(GN → χX)
. (70)

It depends only on the χ or projectile gluon energy. We plot our predictions for lead
in Fig. 4. Transparency rises at low energy since the formation length increases and the

Figure 4: Nuclear transparency for χ production off lead as function
of energy of the charmonium, or x2 (the upper scale). The solid curve
includes both effects of coherence and formation, while the dashed curve
corresponds to lc = 0. Since transparency scales in x2 according to (71),
values of x2 are shown on the top axis.

effective absorption cross section becomes smaller. This behavior, assuming lc = 0, is
shown by dashed curve. However, at higher energies the coherence length is switched on
and shadowing adds to absorption in accordance to Eq. (44). As a result, transparency
decreases, as is shown by the solid curve. On top of that, the energy dependence of the
dipole cross section makes those both curves for Tra(Eχ) fall even faster.

Apparently, the nuclear transparency depends only on the χ energy, rather than the
incident energy or x1. It is interesting that it lead to the x2 scaling. Indeed, the χ energy

Eχ =
M2

χ

2mN x2

, (71)
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depends only on x2. We show the x2 scale in Fig. 4 (top) along with energy dependence.
We also compare in Fig. 5 the contribution of quark shadowing and absorption (thin solid

curve) with the nuclear suppression observed at 800GeV [3]. Since data are for W/Be ratio,

Figure 5: Tungsten to beryllium cross section ratio as function of Feyn-
man xF for J/Ψ production at proton energy 800GeV . The thin solid
curve represents contribution of initial state quark shadowing and finals
state c̄c attenuation for χ production. The dotted curve includes also
gluon shadowing. The dashed curve is corrected for gluon enhancement
at large x2 (small xF ) using the prescription from [38]. The final solid
curve is also corrected for energy loss and for χ→ J/Ψγ decay. Experi-
mental points are from the E866 experiment [3].

and our constant density approximation should not be applied to beryllium, we assume for
simplicity that all pA cross sections including pN obey the Aα(xF ). We see that the calculated
contribution has quite a different shape from what is suggested by the data. It also leaves
plenty of room for complementary mechanisms of suppression at large xF .
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4 Gluon shadowing

Previously we considered only the lowest |c̄c〉 fluctuation of the gluon what is apparently
an approximation. The higher Fock components containing gluons should be also included.
In fact they are already incorporated in the phenomenological dipole cross section we use,
and give rise to the energy dependence of σN

q̄q. However, they are still excluded from nuclear
effects. Indeed, although we eikonalize the energy dependent dipole cross section the higher
Fock components do not participate in that procedure, but they have to be eikonalized as
well. This corrections, as is demonstrated below, correspond to suppression of gluon density
in nuclei at small x.

The gluon density at small x in nuclei is known to be shadowed, i.e. reduced compared
to a free nucleons. The partonic interpretation of this phenomenon looks very different
dependent on reference frame. In the infinite momentum frame, as was first suggested by
Kancheli [39], the partonic clouds of nucleons are squeezed by the Lorentz transformation
less at small than at large x. Therefore, while these clouds are well separated in longitudinal
direction at large x, they overlap and can fuse at small x, resulting in a diminished parton
density [39, 40].

Different observables can probe this effect. Nuclear shadowing of the DIS inclusive
cross section or Drell-Yan process demonstrate a reduction of the sea quark density at
small x. Charmonium or open charm production is usually considered as a probe for gluon
distribution.

Although observables are Lorentz invariant, partonic interpretation is not, and the mech-
anism of shadowing looks quite different in the rest frame of the nucleus where it should
be treated as Gribov’s inelastic shadowing. This approach seems to go better along with
our intuition, besides, the interference or coherence length effects governing shadowing are
under a better control. One can even calculate shadowing in this reference frame in a pa-
rameter free way (see in [41, 28, 6]) employing the well developed phenomenology of color
dipole representation suggested in [30]. On the other hand, within the parton model one
can only calculate the Q2 evolution of shadowing which is quite a weak effect. The main
contribution to shadowing originates from the fitted to data input.

In the color dipole representation nuclear shadowing can be calculated via simple eikon-
alization of the elastic amplitude for each Fock component of the projectile light-cone wave
function which are the eigenstates of interaction [30]. Different Fock components represent
shadowing of different species of partons. The |q̄q〉 component in DIS or |qγ∗〉 in Drell-
Yan reaction should be used to calculate shadowing of sea quarks. The same components
including also one or more gluons lead to gluon shadowing [42, 6].

In the color dipole approach one can explicitly see deviations from QCD factorization, i.e.
dependence of the measured parton distribution on the process measuring it. For example,
the coherence length and nuclear shadowing in Drell-Yan process vanish at minimal x2 (at
fixed energy) [24, 25], while the factorization predicts maximal shadowing. Here we present
even more striking deviation from factorization, namely, gluon shadowing for charmonium
production turns out to be dramatically enhanced compared to DIS.
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4.1 LC dipole representation for reaction G N → χ G X

In the case of charmonium production different Fock components of the projectile gluon,
|(c̄c)1nG〉 containing a colorless c̄c pair and n gluons (n=0,1...) build up the cross section
of charmonium production which steeply rises with energy (see in [22]). The cross section
is expected to factorize in impact parameter representation in analogy to the DIS and Drell
Yan reaction. This representation has the essential advantage in that nuclear effects can
be easily calculated [26, 28]. Feynman diagrams corresponding χ production associated
with gluon radiation are depicted in Fig. 12 of the Appendix D. We treat the interaction
of heavy quarks perturbatively in the lowest order approximation, while the interaction
with the nucleon is soft and expressed in terms of the gluon distribution. The calculations
performed in Appendix D are substantially simplified if the radiated gluon takes a vanishing
fraction α3 of the total light-cone momentum and the heavy quarkonium can be treated as
a nonrelativistic system. In this case the amplitude of χG production has the simple form
Eq. (D.40) which corresponds to the “Drell-Yan” mechanism of χ production illustrated in
Fig. 6. Correspondingly, the cross section of χ production has the familiar factorized form

χ χ

N

G

Figure 6: The dominant Feynman diagrams contributing to χ production
(see Appendix D).

similar to the Drell-Yan reaction [26, 27, 28],

α3
d σ(GN → χGX)

d α3
=
∫
d2s |ΨGχ(s, α3)|2 σGG [(1− α3)~s, x2/α3] , (72)

where σGG(r, x) = 9/4 σq̄q(r, x) [see Eq. (18)] is the cross section of interaction of aGG dipole
with a nucleon. Ψ(s, α3) is the effective distribution amplitude for the χ−G fluctuation of
a gluon, which is the analog to the γ∗ q fluctuation of a quark,

ΨGχ(s, α3) =
∑
µ̄µ

∫
d2r dαΦµ̄µ

χ (~r, α) Φµ̄µ
G (~r, α)

×
[
ΦcG

(
~s+

~r

2
,
α3

α

)
− ΦcG

(
~s− ~r

2
,
α3

1− α

)]
. (73)

The notations of Appendix D are used here, Φµ̄µ
χ (~r, α) and Φµ̄µ

G (~r, α) are the q̄q LC wave
functions of the χ and gluon, respectively, which depend on transverse separation ~r and
relative sharing α by the q̄q of the total LC momentum. ΦχG(~s, α) is the LC wave function
of a quark-gluon Fock component of a quark given by Eq. (D.36).
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4.2 Gluon shadowing for χ production off nuclei

The gluon density in nuclei is known to be modified, shadowed at small Bjorken x. Corre-
spondingly, production of χ treated as gluon-gluon fusion must be additionally suppressed.
In the infinite momentum frame of the nucleus gluon shadowing should be treated as a
GG → G fusion which diminishes the amount of gluons [39, 40]. In the rest frame of the
nucleus it looks very different as Gribov’s inelastic shadowing [43] related to diffractive gluon
radiation. This frame seems to be more convenient way to calculate gluon shadowing, since
techniques are better developed, and we use it in what follows.

The process GN → χX considered in the previous section includes by default radiation
of any number of gluons which give rise to the energy dependence of the dipole cross section
in (18)

Extending the analogy between the reactions of χG production by an incident gluon and
heavy photon radiation by a quark to the case of nuclear target one can write an expression
for the cross section of reaction GA→ χGX in two limiting cases:

(i) the production occurs nearly instantaneously over a longitudinal distance which is
much shorter than the mean free path of the χG pair in nuclear matter. In this case the
cross sections on a nuclear and nucleon targets differ by a factor A independently of the
dynamics of χG production.

(ii) The lifetime of the χG fluctuation,

tc =
2EG

M2
χG

, (74)

substantially exceeds the nuclear size. It is straightforward to replace the dipole cross section
on a nucleon by a nuclear one [26, 28], then Eq. (72) is modified to

d σ(GA→ χGX)

d (lnα3)
= 2

∫
d2b d2s |ΨGχ(~s, α3)|2

{
1− exp

[
−1

2
σN

GG(~s, x2/α3)TA(b)
]}

. (75)

In order to single out the net gluon shadowing we exclude here the size of the c̄c pair
assuming that the cross section responsible for shadowing depends only on the transverse
separation ~s.

A general solution valid for any value of tc is more complicated and must interpolate
between the above limiting situations.
(iii) In this case one can use the methods of the Landau-Pomeranchuk-Migdal (LPM) theory
for photon bremsstrahlung in a medium generalized for targets of finite thickness in [37, 28].
The general expressions for the cross section which reproduces the limiting cases tc → 0 (i)
and tc →∞ (ii) reads,

d σ(GA→ χGX)

d (lnα3)
=

∫
d2b


∞∫

−∞
dz ρA(b, z)

∫
d2s |ΨGχ(s, α3)|2 σGG [(1− α3)~s, x2/α3]

− 1

2
Re

∞∫
−∞

dz2 ρA(b, z2)

z2∫
−∞

dz1 ρA(b, z1) Σ̃(z2, z1) e
iqL(z2−z1)

 , (76)
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where

Σ̃(z2, z1) =
∫
d2s1 d

2s2 Ψ∗
Gχ(~s2, α3) σ

N
GG(s2, x2/α3)G(~s2, z2;~s1, z1) σ

N
GG(s1, x2/α3) ΨGχ(~s1, α3) .

(77)
Here the Green function G(~s2, z2;~s1, z1) describes propagation of the χG pair which starts
with transverse separation ~s1 at the points with longitudinal coordinates z1 and ands up at
z2 having separation ~s1. It satisfies the Schrödinger type equations,

i
∂G(~s2, z2;~s1, z1)

∂z2
=

[
− ∆s2

2EGα3(1− α3)
− i σN

GG(s2) ρA(B, z2)

]
G(~s2, z2;~s1, z1) ; (78)

i
∂G(~s2, z2;~s1, z1)

∂z1
= −

[
∆s1

2EGα3(1− α3)
− i σN

GG(s1) ρA(B, z1)

]
G(~s2, z2;~s1, z1) . (79)

In the limit z2 − z1 → 0 it should satisfy the condition,

G(~s2, z2;~s1, z1)
∣∣∣
z2=z1

= δ(~s2 − ~s1) . (80)

A full calculation of the cross section of associated χG production off nuclei Eq. (76)
employing the solutions of equations (77) - (80) with realistic shapes of the dipole cross
section and nuclear density can be done only numerically, and is still a challenge for com-
puting. However, the problem can be essentially simplified if the following approximations
are done,

ρA(b, z) = Θ
(
RA −

√
b2 + z2

)
;

σGG(s, x) ≈ CG(x) s2 . (81)

The former is rather realistic for heavy nuclei, while the latter needs special care to be
adjusted to realistic calculations, since the value of factor CG(x) correlates with the mean
separation 〈s〉 which depends on the process.

Calculations of the nuclear cross section with the realistic dipole cross section which
levels off at large separations is complicated only for the transition region of lc ∼ RA. In
the limit of lc → ∞ one can easily perform calculations with any form of the dipole cross
section and adjust the CG(x) to reproduce the cross section of reaction GA→ χGX . Such
a prescription guarantees the correct endpoint behavior at tc � RA and tc → 0, then we
expect the transition region should not be very wrong either.

To single out the correction for gluon shadowing one should compare the cross section
Eq. (76) with the impulse approximation term in which absorption is suppressed,

RG(x2) =
GA(x2)

AGN(x2)
= 1− 1

Aσ(GN → χX)

αmax∫
x2

dα3
dσ(GA→ χGX)

dα3
. (82)

For further calculations and many other applications one needs to know gluon shadowing
as function of impact parameter which is calculated as follows,

RG(x2, b) =
GA(x2, b)

TA(b)GN(x2)
= 1− 1

TA(b) σ(GN → χX)

αmax∫
x2

dα3
dσ(GA→ χGX)

d2b dα3
, (83)
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where dσ(GA → χGX)/d2b dα3 is the function integrated over d2b in (76). The results of
calculations for the b-dependence of gluon shadowing (83) are depicted in Fig. 7 for different

values of x2 as function of thickness of nuclear matter, L =
√
R2

A − b2. The results confirm

Figure 7: Gluon suppression as function of thickness of nuclear matter
with constant density ρA = 0.16 fm−3.

the obvious expectation that shadowing increases for smaller x2 and for longer path in
nuclear matter. One can see that for given thickness shadowing tends to saturate down to
small x2, what might be a result of one gluon approximation. Higher Fock components with
larger number of gluons are switched on at very small x2. At the same time, shadowing
saturates at large lengths what one should have also expected as a manifestation of gluon
saturation. Note that at large x2 = 0.03 shadowing is even getting weaker at longer L.
This is easy to understand, in the case of weak shadowing one can drop off the multiple
scattering terms higher than two-fold one. Then the shadowing correction is controlled
by the longitudinal formfactor of the nucleus which decreases with L (it is obvious for
the Gaussian shape of the nuclear density, but is also true for the realistic Woods-Saxon
distribution).

The next problem we face is how to correct our previous calculations for the calculated
gluon shadowing. The standard parton model prescription is to multiply the cross section
of charmonium production by RG(x2). This may be correct only if the process is so hard
that no nuclear effects except gluon shadowing exists. For instance, this is the case in DIS
for highly virtual longitudinally polarized photons. However, as we calculated and Fig. 4
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demonstrates, multiple interaction of the c̄c pair cannot be ignored, and the parton model
prescription is invalid. To get a correct result one should perform a full calculation of nuclear
effects which involve all Fock components. This is still a challenge, meanwhile one should
look for a reasonable approximation.

Our approximation of the lowest Fock state containing only one gluon corresponds in
term of Regge theory to Pomeron fusion nIP → IP (n=2,3...), while transitions nIP → mIP
(m ≥ 2) are missed. This is explained pictorially in Fig. 8. Although inclusion of the
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Figure 8: Multiple rescattering of a gluonic component of a hadron in
the target rest frame. In t-channel it is interpreted as multi-Pomeron
fusion nIP → IP.

multi-gluon Fock states is problematic, there is a simple and intuitive way to include an
essential part of missed corrections. Intuitively one can say that the projectile high energy
partons experience multiple interactions not with target nucleons, but with gluons at small
x2. Eikonal (Glauber) approximation assumes that the number of gluons is proportional
to the number of nucleons. This is why the eikonal exponent contains a product of the
interaction cross section and nuclear thickness, σ TA(B). It is not true any more if gluon
fusion is at work. The gluon density decreases (the more, the larger the TA is) and one can
easily take it into account renormalizing the nuclear density,

ρA(b, z) ⇒ ρ̃A(b, z) = RG(x2, b) ρA(b, z) . (84)

In this way we do account for the missed nIP → mIP transitions. Indeed, m-fold interaction
associated with mIP exchange is not are not in sequence, this would lead to the famous
AFS (Amati-Fubini-Stangelini) cancelation. The m Pomerons correspond to simultaneous
development of m parton ladders. In our approximation each of this Pomeron ladder is
suppressed by fusion precess which is exactly n′IP → IP in this case. By eikonalizing [see
e.g.Eq. (44)] the result of fusion we correctly involve the higher orders of n′IP → 1IP, as is
illustrated in Fig. 9.

Thus, we correct our results for for gluon shadowing renormalizing the nuclear density
by means of (84). It must be done in the imaginary part of the light-cone potential (54) in
the evolution equation Eq. (52) and also in Eqs. (42) and (51). The numerical results are
depicted by dotted curve in Fig. 5. Apparently, gluon shadowing is stronger at small x2, i.e.
at large xF .
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Figure 9: Multiple rescattering of a projectile hadron (e.g. c̄c) via multi-
Pomeron interactions diminished by nIP → IP fusion.

4.3 Antishadowing of gluons

Nuclear modification of the gluon distribution is poorly known. There is still no experimental
evidence for that. Nevertheless, the expectation of gluon shadowing at small x is very solid,
and only its amount might be disputable. At the same time, some indications exist that
gluons may be enhanced in nuclei at medium small x2 ∼ 0.1. The magnitude of gluon
antishadowing has been estimated in [44] assuming that the total fraction of momentum
carried by gluons is the same in nuclei and free nucleons (there is an experimental support
for it). Such a momentum conservation sum rule leads to a qluon enhancement at medium
x, since gluons are suppressed in nuclei at small x. The effect, up to ∼ 20% antishadowing
in heavy nuclei at x ≈ 0.1, found in [44] is rather large, but it is a result of very strong
shadowing which we believe has been grossly overestimated (see discussion in [6]).

Fit to DIS data based on evolution equations performed in [38] also provided an evidence
for rather strong antishadowing effect at x ≈ 0.1. However, the fit employed an ad hoc
assumption that gluons are shadowed at the low scale Q2

0 exactly as F2(x,Q
2) what might

be true only by accident. Besides, in the x distribution of antishadowing was shaped ad hoc
too.

A similar magnitude of antishadowing has been found in the analysis [45] of data on
Q2 dependence of nuclear to nucleon ratio of the structure functions, FA

2 (x,Q2)/FN
2 (x,Q2).

However it was based on the leading order QCD approximation which is not well justified
at these values of Q2.

Although neither of these results seem to be reliable, similarity of the scale of the pre-
dicted effect looks convincing, and we included the antishadowing of gluons in our calcu-
lations. We use the shape of x2 dependence and magnitude of gluon enhancement from
[38].

5 Energy loss corrections

The mechanism of J/Ψ suppression at large xF due to initial state energy loss of the pro-
jectile partons in nuclei was first suggested back in 1984 [23]. As soon as the incoming
hadron interacts inelastically in the nucleus, the projectile partons (only those which are
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sufficiently soft to be resolved by the soft interaction) lose coherence and start losing energy
for hadronization. If the coherence time of charmonium production is shorter than the mean
internucleon separation in a nucleus, as it was assumed in [23], the projectile parton (gluon)
responsible for charmonium production arrives at the production point with a diminished
energy EG −∆EG. In order to produce a charmonium with the same energy (fixed by the
measurement) as on a proton target the projectile gluon must have an excess in the initial
momentum which leads to a suppression

RG(x1,∆x1) =
gh(x1 + ∆x1)

gh(x1)
, (85)

where gh(x) is the gluon density in the incoming hadron h and

∆x1 =
∆EG

Eh
. (86)

However, with some maybe small probability W0, the incoming hadron may have no
initial state inelastic interactions and produce charmonium in the very first interaction
without any energy loss. Thus the nuclear suppression acquires two contributions [23],

TrA = W0 +
σhN

in

A

∫
d2b

∞∫
−∞

dz2 ρA(b, z)

×
z2∫

−∞
dz1 exp

−σhN
in

z1∫
−∞

dz ρA(b, z)

 RG(x1,∆x1) . (87)

Here the energy loss ∆EG depends on the longitudinal distance z2 − z1 between the first
inelastic interaction and the production point of the charmonium. The probability of no
initial state interaction reads,

W0 =
1

AσhN
in

∫
d2b

[
1− e−σhN

in T (b)
]

=
σhA

in

AσhN
in

. (88)

The second term in (87) is normalized to the probability W1 = 1−W0 of interaction in, the
case of zero energy loss (RG = 1),

W1 =
σhN

in

A

∫
d2b

∞∫
−∞

dz2 ρA(b, z2)

z2∫
−∞

dz1 ρA(b, z1) exp

−σhN
in

z1∫
−∞

dz ρA(b, z)

 . (89)

In order to calculate nuclear suppression (87) we need to know the function dEG/dz
which the rate of energy loss of a gluon propagating through nuclear matter. Energy loss
initiated by the inelastic collision continues with a constant rate like it were in vacuum. One
comes to this conclusion both in the color-string model [23, 46] or treating hadronization as
gluon bremsstrahlung [47, 48]. This so called vacuum energy loss was supposed in [23] to
have a rate −dEG/dz = 3GeV/fm leading to a rather good description of data from the
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NA3 experiment [1]. A substantially larger value −dEG/dz = 5GeV/fm was advocated in
[35] for the intermediate color-octet state in photoproduction of J/Ψ off nuclei.

In fact, there is no controversy here, because in the case of hadroproduction of char-
monium it is more appropriate to rely upon the energy loss of a quark, rather than a
gluon, propagating through a medium. Indeed, it was found in [6] that light-cone gluons
are located at small transverse separation ∼ 0.3 fm from the valence quarks. This is dic-
tated by data for large mass diffraction which corresponds to diffractive gluon radiation and
was interpreted in [6] as a result of a strong nonperturbative interaction of the light-cone
gluons. This observation is in a good accord with other models for the nonperturbative
QCD effects (see discussion in [49]). Thus, only a semi-hard interaction can resolve a gluon
in the constituent quark, while a soft interaction responsible for inelastic interactions of
the incident proton in the nucleus do not see the gluon. The whole constituent quark,
rather than the gluon, is hadronizing and loosing energy propagating through the nucleus.
Therefore, we should expect a rate of energy loss similar to what is observed for Drell-Yan
lepton pair production off nuclei. The recent analysis [24] of data [12] for nuclear sup-
pression in Drell-Yan reaction revealed for the first time a nonzero energy loss for quarks,
−dEq/dz = 2.32 ± 0.52± 0.5GeV/fm. This is compatible with the value 3GeV/fm used
in [23, 46].

Thus, one can calculate the nuclear suppression of charmonium production caused by
energy loss in the same way as for Drell-Yan reaction [24, 25],

REloss
A/N (x1) = W0 +

∞∫
0
dLW1(L)

1∫
(xq)min

d xq F
h
q (xq) d σ

qN
χ (x̃q

1)/d x̃
q
1

1∫
x1

d xq F h
q (xq) d σ

qN
χ (xq

1)/d x
q
1

. (90)

Here F h
q (xq) is the quark distribution function in the incident hadron, and xq and xq

1 =
x1/xq are the fraction of the light-cone momentum of the incoming hadron h carried by the
quark and the fraction of the quark momentum carried by the c̄c, respectively. The lower
integration limit is given by (xq)min = x1 + ∆E/Eh, and x̃q

1 = x1/(xq −∆E/Eh). The cross
section σqN

χ (x̃q
1) of χ production by a constituent quark, q N → χX is assumed to behave

as ∝ (1− xq
1)

2.5 in order to reproduce the observed 1−x1)
5 distribution of J/Ψ production.

At first glance the case of long coherence length is more complicated since the c̄c fluc-
tuation is produced long in advance and propagates through the nucleus rather than the
projectile gluon. However, the soft interaction responsible for the first inelastic h−N colli-
sion (see above) does not discriminate between the gluon and the color-octet c̄c. The same
is true if instead of the light-cone representation one uses the equivalent description of co-
herence via diffractive transition G → c̄c with no color exchange. Therefore, this inelastic
interaction of the projectile hadron and energy loss modify the ratio (86) in the same way
as is described above for the limit of short coherence time. Thus, Eq. (87) is valid in general
case for any values of coherent and formation lengths.

Further, multiple interactions of a parton in a nuclear medium leads to a broadening
of the parton’s transverse momentum and enhanced gluon bremsstrahlung. The rate of
associated induced energy loss rises linearly with the length of the path in nuclear matter
[50], but is a rather small correction to the vacuum energy loss.
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The induced energy loss fluctuates and it becomes an important effect towards the
kinematical limit x1 → 1 where no gluon can be emitted. This of course suppresses the
production rate of charmonium, and more on a nuclear than on a proton target. Indeed,
the projectile gluon experiences broadening of the transverse momentum due to multiple
interactions (see in [51] connection between pT broadening and induced energy loss). As a
result gluon radiation becomes more intensive. The relation between induced energy loss and
nuclear broadening of the mean transverse momentum squared of the quark was established
in [50],

∆E =
3αs

8
∆〈p2

T 〉L , (91)

where the broadening of 〈p2
T 〉 is proportional to the length L of the path in nuclear matter.

The p2
T broadening for J/Ψ was measured in the E772 experiment [52] to be rather small

∆〈p2
T 〉 ≈ 0.5GeV 2 even for tungsten. Therefore the effective rate of induced energy loss

in (91) is about 0.37GeV/fm, nearly an order of magnitude smaller than the the value
of vacuum energy loss we use. We assume that the induced energy loss is incorporated
effectively in dE/dz = −3GeV/fm we use in our calculations.

6 Modification of the xF -distribution by χ → J/Ψ γ

decay

No data is still available for xF -distribution of produced χ, but only for J/Ψ. About 40%
of them originate from the χ → J/Ψ γ decay and have momenta smaller than that of chi.
Therefore we should correct the χ F distribution calculated in previous section to compare
with data for indirect J/Ψ. It would be incorrect, however, to assume isotropic decay of χ
since it is produced polarized.

The structure of the amplitude of decay of the tensor meson (χ2) to two vector mesons
with masses m1 and m2 is fixed by the gauge invariance,

A(T → V1 + V2) ∝ hµν

{[
ẽµ
1 −

(ẽ1p)p
µ

p2

] [
ẽµ
2 −

(ẽ2p)p
µ

p2

]
+
(
µ→ ν

)}
. (92)

Here

ẽµ
1 = eµ

1 −
(e1k2)k

µ
1

k1k2
;

ẽµ
2 = eµ

2 −
(e2k1)k

µ
2

k1k2

, (93)

where e1,2 are the polarization vectors of V1,2,

e1k1 = e2k2 = 0 ; (94)

p is the 4-momentum of the χ2; k1,2 are the 4-momenta of V1 and V2 respectively; hµν = hνµ

is the χ2 polarization tensor satisfying the conditions,

gµνh
µν = 0 ;

pµh
µν = 0 . (95)
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In the rest frame of the χ2 the components of the polarization tensor h00 = h0i = hi0 = 0.
Other components for the state with the projection m = 2 are,

hik(m = 2) = εi+ε
k
+ , (96)

where

~ε+ = − ~ex + ~ey√
2

. (97)

The angular distribution of the decay products relative to the momentum of χ2 has the
form,

dN

d cos θ
∝ (1 + β1 cos2 θ)(1 + β2 cos2 θ) , (98)

where β1, are the velocities of the produced V1,2. In the case of V1 = J/Ψ, V2 = γ we have
β1 ≈ 1/9, β2 = 1.

7 Comparison with available data and predictions for

higher energies

First of all, we checked with data at the energies of the SPS where the coherence length is
rather short and the main effects are absorption and energy loss. With (90) we calculated the
xF dependence of the exponent α(xF ) describing the A-dependence of the J/Ψ production
rate, ∝ Aα(xF ) at 200GeV . We also corrected it for gluon enhancement and χ → J/Ψ γ
decay. The results are compared with data [1] in Fig. 10. The observed steep fall of α is
well reproduced, while at small xF our calculations seem to underestimate the data from
the NA3 experiment. In fact, our calculations for energy loss effect are not trustable at
small xF . Indeed, the suppression caused by the shift of energy depends on how steep
the xq

1 dependence of the cross section qN → χX is, the steeper it is, the stronger is the
suppression. The chosen parametrization dσqN

χ /d xq
1 ∝ (1 − xq

1)
2.5 is valid only at large

xq
1 → 1. This DY cross section in NN collision must be flat around xF = 0, what makes

the suppression by energy loss weaker at small xF .
At higher energy, 800GeV the dynamics of J/Ψ suppression is more complicated and

includes more effects. Now we can apply more corrections to the dotted curve in Fig. 5
which involves only quark and gluon shadowing. Namely, inclusion of the energy loss effect
and decay χ→ J/Ψ γ leads to a stronger suppression depicted by dashed curve. Eventually
we correct this curve for gluon enhancement at x2 ∼ 0.1 (small xF ) and arrive at the final
result shown by thick solid curve.

Since our calculation contains no free parameters we think that the results agree with the
data amazingly well. Some difference in the shape of the maximum observed and calculated
at small xF may be a result of the used parameterization [38] for gluon antishadowing.
We think that it gives only the scale of the effect, but neither the ad hoc shape, nor the
magnitude should be taken literally. Besides, our calculations are relevant only for those
J/Ψs which originate from χ decays which feed only about 40% of the observed ones.

At higher energies of the RHIC and LHC the effect of energy loss is completely gone and
nuclear suppression must expose the x2 scaling. Much smaller x2 can be reached at higher
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Figure 10: xF dependence of nuclear suppression of J/Ψ production at
200GeV in terms of the exponent α characterizing the Aα dependence
of J/Ψ production. Energy loss Eq. (90), absorption, quark shadowing
and gluon enhancement are included in the calculations. The round data
points are from [1], the square point is from [53] .

energies. Our predictions for proton-gold to proton-proton ratio is depicted in Fig. 11. One
can see that at xF > 0.1 shadowing suppresses charmonium production by nearly an order
of magnitude.

We can also estimate the effect of nuclear suppression in heavy ion collisions assuming
factorization,

RAB(xF ) = RpB(xF )RpA(−xF ) . (99)

Our predictions for gold-gold collisions at
√
s = 200GeV are shown by the bottom curve in

Fig. 11. Since factorization is violated this prediction should be verified.

8 Conclusions and outlook

The long standing challenge of explanation of the steep xF dependence of charmonium sup-
pression observed in pA collisions becomes an appealing problem with advent of RHIC and
LHC colliders. A good understanding of the underlying mechanisms is especially important
since charmonium suppression is one of the major probes for the quark-gluon plasma forma-
tion in heavy ion collisions. The conventional mechanisms of charmonium suppression used
as a baseline for new physics in experiments at SPS CERN must be essentially revised. This
demands development of new theoretical tools, and first of all an explanation for already
collected data for charmonium suppression.

Coherent effects or shadowing become the dominant effect which governs charmonium
suppression at RHIC. So far no theoretical tool has been available to deal with this phe-
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Figure 11: Nuclear suppression of J/Ψ production in proton-gold col-
lisions at

√
s = 200GeV as function of xF (the upper curve) and in

gold-gold collisions (bottom curve). Effects of quark and gluon shadow-
ing and gluon antishadowing are included.

nomenon. The main result of present paper is the development of the light-cone dipole
approach describing coherence effects at any energy. It can be structured as follows.

• Final state absorption of the produced colorless c̄c in nuclear matter is accomplished by
initial state shadowing at high energies when the coherence time Eq. (2) is sufficiently
long. A light-cone Green function formalism is developed which describes propagation
of fluctuating color octet (singlet) c̄c wave packets through nuclear matter. This
approach includes both the effects of formation and coherence. It interpolates between
the low energy limit, tf � RA, where only final state absorption causes charmonium
suppression, and the high energy limit, tc � RA where the color octet c̄c fluctuation
is developed long in advance and propagates through the whole nuclear thickness and
is converted to a color singlet. This is an analog to shadowing of c quarks in DIS. Its
existence is a deviation from QCD factorization which is quite strong, an about 50%
effect on heavy nuclei.

• At high energies fluctuations are overwhelmed by gluons which are the source of rising
energy dependence of all cross sections. Such fluctuations are rather heavy and their
lifetime is much shorter than that of a c̄c pair. Only at very high energies these
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gluonic fluctuations live sufficiently long to participate in multiple interactions which
lead to shadowing. This gluon shadowing turns out to be very strong and becomes
the main source of charmonium suppression at RHIC. Again QCD factorization is
strongly violated. Namely, gluon shadowing for colorless c̄c production turns out to
be much stronger than in DIS of open charm production.

• Both mechanisms, shadowing of c quarks and gluons depend only on x2. Although
available data at medium high energies strikingly contradict x2 scaling, it comes from
energy loss effects. Indeed, modification of the x1 distribution by the energy loss de-
pends both on x1 and incident energy. Accidentally, data demonstrate an approximate
xF scaling in the energy interval 200− 800GeV which our calculations confirm. It is
a result of interplay between energy loss and shadowing: the former effects vanishing
with energy, while the latter is rising. Exact x2 scaling is predicted at high energies
(well beyond 1 TeV ) of RHIC and LHC. We predict a very steep variation of charmo-
nium suppression around xF = 0 at RHIC. In fact, it can also be obtained directly from
the E866 data neglecting energy loss corrections at 800GeV . For gold-gold collisions
we predict a peculiar narrow peak at xF = 0.

As a further development we are going to extend this approach to the case of directly
produced J/Ψ and Ψ′. We do not expect the results to be very different what what we found
in this paper. Indeed, the kinematics of decays χ→ J/Ψ γ and |c̄c〉8 → J/ΨG is similar up
to the difference in the invariant masses of the c̄c pairs. However, we demonstrate in Sect. 6
that the decay has practically no effect, and the xF distributions of χ and J/Ψ are nearly
identical.

Another source of direct production is hidden in the nuclear effects for χ production.
Namely, the c̄c pair traveling through nuclear matter and experiencing multiple interactions
changes its spin-orbital structure, therefore it also feeds the Ψ channel. We eliminated this
channel in Sect. 3 projecting the c̄c on the state with the quantum numbers of χ. If to
project the c̄c on the Ψ one gets a cross section comparable with data. Therefore, this
channel of direct Ψ production is important and should be studied.

It is still a challenge how to apply the developed approach to nucleus-nucleus collisions.
The relation Eq. (99) between nuclear effects in pA and AA collisions is just an approxima-
tion based on QCD factorization which as we saw is badly violated. We also hope to make
a progress in this direction.

Note added: Soon after this paper has been submitted to the Los Alamos bulletin
board, another paper was put on the server [57] which focuses at the same problem of
charmonium production at the energies of RHIC. Nuclear suppression at RHIC is predicted
only at very small xF < 0.084 assuming x2 scaling and employing the E866 data [3]. At
larger xF nuclear effects are calculated within model [58] fitted to the E866 data. The
model has enough free parameters to be successful with available data, but it completely
misses the coherence effects, in particular gluon shadowing, which are the main source of
J/Ψ suppression at high energies. Therefore, extrapolation to higher energies beyond the
x2 range of the E866 data should not be trusted.

On the other hand, we do not rely on either x2 scaling (which is still not at work at
800GeV , see Fig. 5), or the E866 data, but directly calculate nuclear effects at the energy of
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RHIC. We compare our parameter free calculations with the E866 data only to demonstrate
agreement.
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Appendix A LC wave functions of the χ states

We are going to establish relation between the wave functions of the 3PJ states (χJ mesons)
in the LC and rest frames. First, the LC wave function in coordinate space,

Φµµ̄
χ (rT , α) =

1

2π

∫
d2pT e

−i~pT ·~rT Φµµ̄
χ (pT , α) , (A.1)

is normalized as,

∑
µµ̄

1∫
0

dα
∫
d2rT

∣∣∣Φµµ̄
χ (rT , α)

∣∣∣2 =
∑
µµ̄

1∫
0

dα
∫
d2pT

∣∣∣Φµµ̄
χ (pT , α)

∣∣∣2 = 1 . (A.2)

The problem of Lorentz boosting of a quarkonium wave function from the rest frame, where
it can be found as a solution of the Schrödinger equation, to the LC frame still has no well
grounded solution. A nonrelativistic two-body system c̄c in its rest frame corresponds to the
full series of Fock states, which include gluons and the sea, in the LC frame. To construct
the wave function for the lowest Fock component c̄c we use the popular recipe suggested in
[54] (see also in [55, 22]),

Φµµ̄
χ (pT , α) =

(
∂ pL(pT , α)

∂ α

) 1
2

Ψµµ̄
χ (~p)

∣∣∣
~p=~pT +pL~n

, (A.3)

where

pL = (α− 1/2) M(pT , α) ,

M2(pT , α) =
m2

c + p2
T

α(1− α)
.

The rest frame wave function Ψµµ̄
χ (~p) for a state with the total angular momentum J and

projection Jz on the direction ~n is a combination of different spin and orbital momenta,

Ψµµ̄
χ (~p) =

∑
m1+m2=Jz

〈1, 1; J, Jz|1, 1;m1, m2〉Sµµ̄
1,m1

ψ1,m2(~p) (A.4)

where the orbital part ψµµ̄
1,m2

(~p) is a Fourier transform of the spatial part of the wave function,

ψ1,m2(~p) =
1

(2π)3/2

∫
d3r ei~p·~r ψ1,m2(~r) . (A.5)
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The latter, as usual, can be represented as a product of the angular and radial r-dependent
parts,

ψ1,m2(~r) = Y1,m2 (~r/r) R1(r) , (A.6)

It is normalized as, ∫
d3r

∣∣∣ψ1,m2(~r)
∣∣∣2 =

∫
dr r2R2

1(r) = 1 . (A.7)

The orbital part has the form,

Y1,m2 (~r/r) =

√
3

4π

~em2 · ~r
r

, (A.8)

where the polarization vectors are defined as,

~em =


~e+ = −(~ex + i~ey)/

√
2 m = 1

~e0 = ~ez = ~n m = 0

~e+ = (~ex − i~ey)/
√

2 m = −1

. (A.9)

They satisfy the relations,

~em · ~ek = δmk ,

~e+ · ~e− = −1 ,

~e+ · ~e+ = ~e− · ~e− = ~e+ · ~e0 = ~e− · ~e0 = 0 . (A.10)

The spin part reads,

Sµµ̄
1,m1

=
1√
2
ξµ
c

†
~σ · ~em1 ξ̃

µ̄
c̄ , (A.11)

where
ξ̃µ̄
c̄ = i σy ξ

µ̄
c̄

∗
, (A.12)

and spinors ξ in the charmonium rest frame are related to those, η, in the LC frame by the
Melosh spin rotation transformation,

ξµ
c = R̂(~pT , α) ηµ

c ,

ξµ̄
c̄ = R̂(−~pT , 1− α) ηµ̄

c̄ . (A.13)

The rotations matrix reads,

R̂(~pT , α) =
mc + αM − i~σ · (~n+ ~pT )√

(mc + αM)2 + p2
T

. (A.14)

Then spin part of the LC wave function takes the form,

Sµµ̄
1,m1

=
1√
2
ηµ

c

†
Âm1(~pT , α) η̃µ̄

c̄ , (A.15)

where
Âm1(~pT , α) = R̂†(~pT , α) (~σ · ~em1) σy R̂

∗(~pT , α) σ−1
y ≡ B̂m1 + Ĉm1 , (A.16)
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B̂m1 =
1

mT

[
mc ~σ · ~em1 + i(~em1 × ~n) · ~pT

]
, (A.17)

Ĉm1 = 2
(~em1 · ~pT )(~σ · ~pT − pL ~σ · ~n) + (~em1 · ~n)(pL ~σ · ~pT + p2

T ~σ · ~n)

mT (2mc +M)
, (A.18)

and mT =
√
m2

c + p2
T .

Appendix B The α distribution of the charmonium

wave function

The α-dependence of the charmonium LC wave function picks at α = 1/2 and has a width
related to the mean longitudinal velocity 〈v2

L〉 of the quarks,〈(
α− 1

2

)2
〉

=
〈p2

L〉
4m2

c

=
1

4
〈v2

L〉 , (B.1)

which is a rather small for nonrelativistic systems.
The relative c̄c velocity can be estimated applying the Virial theorem to the realistic

power-law potential V (r) = −V0+V1(r/r0)
λ which describes well the properties of charmonia

[56]. Then, the mean kinetic energy 〈Ek〉 = mc〈v2〉 is related to the power λ,

〈Ek〉 =
λ

2 + λ

(
MΨ − 2mc + V0

)
, (B.2)

where MΨ is the mass of the charmonium. Using λ = 0.1 and V0 = 8GeV [56] we get
〈v2〉 = 0.21. Since V0 is so large the mean velocity turns out to be nearly the same for all
charmonia (J/Ψ, Ψ′, χ. Numerical calculations [22] confirm this, and also show that the
results is the same for all realistic potentials. This is not surprising since all those potentials
look pretty similar (see in [22]).

Note that the χ states with projections Jz = ±1 are not produced since the gluons are
transversely polarized. The χ2 with Jz = 0 is not produced at all in the nonrelativistic limit
v → 0 [7] and is suppressed by the tiny factor v4. Therefore, only the χ2 with projection
Jz = ±2 is of practical interest.

For the S-wave state the mean longitudinal speed squared in Eq. (B.1) would be 〈v2
L〉 =

〈v2〉/3. However, for the P-wave state with Jz = ±2 we are interested in, the corresponding
factor is even smaller, 〈v2

L〉 = 〈v2〉/5, leading to a very small value of 〈(α − 1/2)2〉 =
〈v2〉/20 = 0.01.

Appendix C Landau-Yang theorem: manifestation of

relativistic effects

Obviously, the spin rotation formalism is rather complicated, and one might hope that
for nonrelativistic systems like charmonium the corrections are small since R̂(~pT , α) → 1
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when v → 0. In many cases it is indeed true, for instance the cross section of charmonium
photoproduction increases by 30% (not a negligible correction either) when the spin-rotation
effects are included [22]. In some cases, however, the spin rotation is very important.
Photoproduction of the 2S state Ψ′, for instance, is enhanced by factor 2 − 3 [22]. In the
case under discussion of hadroproduction of χ states the spin rotations also plays a principal
role. Its suppression leads to a rather intensive production of 3P1 even by two massless
gluons forbidden by the Landau-Yang theorem. We demonstrate here that inclusion of the
spin-rotation resolves this controversy.

Since production of any state with projection Jz = ±1 by two on-mass-shell gluons is
forbidden we should consider only the χ1 state with Jz = 0. Its wave function in the rest
frame is a linear combination of the spin and orbital parts with known Clebsch-Gordan
coefficients,

Ψµµ̄
χ (~p) =

1√
2

[
Sµµ̄

+1 ψ1,−1(~p)− Sµµ̄
−1 ψ1,+1(~p)

]
. (C.1)

Substituting here Eqs. (A.15)-(A.18) we get,

Ψµµ̄
χ (~p) =

1

2
ηµ

c

+ [
(B̂+1 + Ĉ+1)ψ1,−1(~p)− (B̂−1 + Ĉ−1)ψ1,+1(~p)

]
η̃µ̄

c̄ . (C.2)

This expression can be simplified using relations,

ψ1,m(~p) = −i ~em · ~pR1(~p) , (C.3)

where

R1(~p) =

∞∫
0

dr

(
r

p

) 3
2

J3/2(pr)R1(r) , (C.4)

and also,

Ĉ±1 =
2 (~e±1 · ~p) (~σ · ~pT − pL ~σ · ~n)

mT (2mc +M)
. (C.5)

The terms proportional to Ĉ cancel and the wave function of the state with J = 1, Jz = 0
gets the simple form,

Ψµµ̄
χ1

(~p) = −i R1(~p)

2mT

ηµ
c

† {[
mc ~σ · ~e+ + i(~e+ × ~n) · ~pT

]
~e− · ~pT

−
[
mc ~σ · ~e− + i(~e− × ~n) · ~pT

]
~e+ · ~pT

}
η̃µ̄

c̄ . (C.6)

Using this expression we eventually arrive at the LC wave function which has the form,

Φµµ̄
χ1

(~rT , α) =
1

2
ηµ

c

† {[
mc ~σ · ~e+ + i(~e+ × ~n) · ~∇

]
~e− · ~rT

−
[
mc ~σ · ~e− + i(~e− × ~n) · ~∇

]
~e+ · ~rT

}
H(rT ) η̃µ̄

c̄ , (C.7)

where

H(rT ) =
1

mT rT

∞∫
0

dpT p
2
T J1(pT rT )

(
∂pL

∂α

) 1
2

R1(~p) . (C.8)
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Eq. (C.7) can be further simplified taking into account relations,

(~σ · ~e+)~e− − (~σ · ~e−)~e+ = ~σ × (~e− × ~e+) ,

~e+ × ~e− = i~n , ~e+ · ~e− = −1

~e+ × ~n = i~e+ , ~e− × ~n = i~e− ,

(~e+ · ~rT )(~e− · ~rT ) = −r
2
T

2
. (C.9)

The final result reads,

Φµµ̄
χ1

(~rT , α) = − i
2
ηµ

c

†
{

(~σ × ~n) · ~rT H(rT ) +
1

rT

d

d rT

[
r2
T H(rT )

] }
η̃µ̄

c̄ . (C.10)

Now let us consider the function,

A =
∑
µ,µ̄

1∫
0

dα
∫
d2rT Φµµ̄

χ1
(~rT , α)

∗
(~eT · ~rT ) Φµµ̄

G (~rT , α) , (C.11)

which coincides with the amplitude of χ1 production in gluon-nucleon collision up to the

factor
√
C(s)/8, if the approximation of dipole cross section σq̄q(rT , s) = C(s) r2

T is applied.
This amplitude can be represented as,

A = A1 + A2 , (C.12)

where

A1 = im2
c

1∫
0

dα
∫
d2rT (~e× ~n) · ~rT H(rT ) (~e · ~rT )K0(εrT ) ; (C.13)

A2 = i

1∫
0

dα
∫
d2rT

1

rT

d

d rT

[
r2
T H(rT )

]
(~eT · ~rT ) (~e× ~n) · ~∇K0(εrT )

= −i ε
1∫

0

dα
∫
d2rT

1

r2
T

d

d rT

[
r2
T H(rT )

]
(~eT · ~rT ) (~e× ~n) · ~rT K1(εrT ) , (C.14)

using the general property of the spinors η,

∑
µ,µ̄

(
ηµ

c

†
â η̃µ̄

c̄

)∗ (
ηµ

c

†
b̂ η̃µ̄

c̄

)
= Tr

(
â†b̂
)
, (C.15)

where â and b̂ are any two-dimensional matrices.
Integration over azimuthal angle in Eqs. (C.12)-(C.14) can be be performed using rela-

tion,
2π∫
0

dφ rT i rT k = π δik r
2
T , (C.16)
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and we arrive at the following common form for A1 and A2,

A1,2 = i π (~e× ~eT ) · ~n
1∫

0

dα I1,2(α) , (C.17)

where

I1(α) = m2
c

∞∫
0

drT r
3
T K0(εrT )H(rT ) , (C.18)

I2(α) = −ε
∞∫
0

drT rT K1(εrT )
d

d rT

[
r2
T H(rT )

]
. (C.19)

Integration in the last equation can be performed by parts using the relation,

d

d rT
rT K1(εrT ) = −ε rT K0(εrT ) . (C.20)

The result reads,

I1(α) = −ε2
∞∫
0

drT r
3
T K0(εrT )H(rT ) , (C.21)

Thus, we conclude that in the limit of on-mass-shell gluon, (ε→ mc), I2 → −I1, and the
amplitude (C.12) of χ1 production vanishes in accordance with the Landau-Yang theorem.
This is not an obvious result, indeed, the procedure of of Lorentz boost to the infinite
momentum frame for the quarkonium wave function is ill defined, as was mentioned above.
It is important that it survives such a rigorous test and recovers the Landau-Yang theorem
in the light front reference frame.

Appendix D Gluon radiation process:

Ga + N → (c̄c)+
1 + Gb + X

Nuclear shadowing of gluons is treated by the parton model as glue-glue fusion in the infinite
momentum frame of the nucleus. On the other hand, in the rest frame it is expressed in
terms of the Glauber like shadowing for the process of gluon radiation,

Ga +N → (c̄c)+
1 +Gb +X , (D.1)

and production of c̄c pair with positive C-parity in a color-singlet state. Ga,b are gluons in
color states a and b. Switching to impact parameter representation one can easily sum up
all multiple scattering corrections for this reaction on a nucleus, since they take a simple
eikonal form [30]. Besides, one can employ the well developed color dipole phenomenology
with parameters fixed by data from DIS.

The amplitude of the process Eq. (D.1) is described in Born approximation by the set
of 12 Feynman graphs depicted in Fig. 12. The produced c̄c pair is assumed to be colorless
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Figure 12: Born graphs contributing to c̄c pair production accompanied
with radiation of a gluon. The c̄c is in a color-singlet and C-even state.
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and to have positive C-parity. Note that the two sets of diagrams, 1-10 and 11-12, are gauge
invariant over the t-channel gluon, i.e. the two contribution to the cross section are infra-red
stable. However, they correspond to different Fock components of the incident gluon in the
light-cone approach. The first set (1-10) corresponds to a fluctuation containing a colorless
c̄c and a gluon (see below), white the second one (11-12) describes a fluctuation with a
colored c̄c and a gluon. In the latter case the c̄c has to interact with the target to become
colorless, in the same way as for the G → c̄c Fock component considered above in Sect. 3.
The gluon does not interact at all at the Born level, therefore these graphs 11-12 do not
contribute to gluon shadowing.

The amplitude of a colorless c̄c production corresponding to graphs 1-10 has the following
structure,

Aµ̄µ =
10∑
l=1

Aµ̄µ
l , (D.2)

where

Aµ̄µ
l =

i α3/2
s

4
√

3Dl (k2
T + λ2)

8∑
d=1

fabd F
(d)
GN→X(kT , {X}) ξµ

c

†
Γ̂l ξ̄

µ̄
c̄ . (D.3)

Here λ is the effective gluon mass aimed to incorporate confinement, its value we discuss
later. The amplitude F

(d)
GN→X(kT , {X}) determines the unintegrated gluon density as it is

introduced in (3),

∫
d{X}

8∑
d=1

∣∣∣F (d)
GN→X(kT , {X})

∣∣∣2 = 4πF(k2
T , x) . (D.4)

Here

x =
M2(c̄, c, G)

s
; (D.5)

M2(c̄, c, G) =
m2

c + k2
1

α1
+
m2

c + k2
2

α2
+
λ2 + k2

3

α3
, (D.6)

where ~k1, ~k2, ~k3 and α1, α2, α3 are the transverse momenta and fractions of the initial light-
cone momentum of the projectile gluon carried by the produced c̄, c and G (see Fig. 12),
respectively, and

~kT = ~k1 + ~k2 + ~k3 . (D.7)

The c-quark spinors ξ are defined in (8); {X} is the set of variables describing the state X;
the 10 vertex functions Γ̂l read,

Γ̂1 = Û1(~k1, α1) V̂1(~k23, α2, α3) ;

Γ̂2 = −V̂1(~k13, α1, α3) Û1(~k2, α2) ;

Γ̂3 = α1 Û1(~k1, α1) V̂1(~k23 − α3
~kT , α2, α3) ;

Γ̂4 = −α2 V̂2(~k13 − α3
~kT , α1, α3) Û2(~k2, α2) ;

Γ̂5 = α2α3 Û1(~k1 − ~kT , α1) V̂1(~k23, α2, α3) ;

Γ̂6 = −α1α3 V̂2(~k13, α1, α3) Û2(~k2 − ~kT , α2) ;
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Γ̂7 = −2α1 Û1(~k1, α1) V̂1(~k23 + α2
~kT , α2, α3) ;

Γ̂8 = 2α2 V̂2(~k13 + α1
~kT , α1, α3) Û2(~k2, α2) ;

Γ̂9 = −2α2α3 Û1(~k1 − α1
~kT , α1) V̂1(~k23, α2, α3) ;

Γ̂10 = 2α1α3 V̂2(~k13, α1, α3) Û2(~k2 − α2
~kT , α2) . (D.8)

Here

~k13 = α3
~k1 − α1

~k3 ;
~k23 = α3

~k2 − α2
~k3 ;

α1 + α2 + α3 = 1 . (D.9)

The matrixes Û1,2 and V̂1,2 are defined as follows,

Û1(~k1, α1) = mc ~σ · ~e+ (1− 2α1)~e · ~k1 + i (~e× ~n) · ~k1 ;

Û2(~k2, α2) = mc ~σ · ~e+ (1− 2α2)~e · ~k2 + i (~e× ~n) · ~k2 ; (D.10)

labeld4a (D.11)

V̂1(~k23, α2, α3) = (2α2 + α3)~k23 · ~e+ imc α
2
3 (~n× ~e) · ~σ − i α3 (~k23 × ~e) · ~σ ;

V̂2(~k13, α1, α3) = (2α1 + α3)~k13 · ~e+ imc α
2
3 (~n× ~e) · ~σ − i α3 (~k13 × ~e) · ~σ .

(D.12)

The functions Dl in the denominator of (D.3) read,

D1 = ∆0(~k1, α1) ∆2(~k23, α2, α3) ;

D2 = ∆0(~k2, α2) ∆2(~k13, α1, α3) ;

D3 = ∆0(~k1, α1) ∆1(~k1, ~k23 − α3
~kT , α1, α2, α3) ;

D4 = ∆0(~k2, α2) ∆1(~k2, ~k13 − α3
~kT , α2, α1, α3) ;

D5 = ∆1(~k1 − ~kT , ~k23, α1, α2, α3) ∆2(~k23, α2, α3) ;

D6 = ∆1(~k2 − ~kT , ~k13, α2, α1, α3) ∆2(~k13, α1, α3) ;

D7 = ∆0(~k1, α1) ∆1(~k1, ~k23 + α2
~kT , α1, α2, α3) ;

D8 = ∆0(~k2, α2) ∆1(~k2, ~k13 + α1
~kT , α2, α1, α3) ;

D9 = ∆2(~k23, α2, α3) ∆1(~k1 − α1
~kT , ~k23, α1, α2, α3) ;

D10 = ∆2(~k13, α1, α3) ∆1(~k2 − α2
~kT , ~k13, α2, α1, α3) , (D.13)

where

∆0(~k1, α1) = m2
c + k2

1 − α1(1− α1)λ
2 ;

∆2(~k13, α1, α3) = α3
3m

2
c + α1(α1 + α3)λ

2 + k2
13 ;

∆1(~k1, ~k23, α1, α2, α3) = (α1 − α3)(α3m
2
c + α1α2 λ

2) + α1k
2
23 + α2α2 k

2
1 . (D.14)

Functions ∆0, ∆1 and ∆2 are not independent, but satisfy the relation[
∆0(~k1, α1) ∆2(~k23, α2, α3)

]−1
= α1

[
∆0(~k1, α1) ∆1(~k1, ~k23, α1, α2, α3)

]−1

+ α2α3

[
∆2(~k23, α2, α3) ∆1(~k1, ~k23, α1, α2, α3)

]−1
. (D.15)
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The sum of ten amplitudes Eq. (D.3) is convenient to split up to four terms,

M̂ =
10∑
l=1

=
4∑

i=1

M̂i
Γ̂l

Dl
, (D.16)

which can be represented using relation (D.15) in the following form,

M̂1 = α1 ν̂1(~k1, α1)
[
µ̂1(~k1, ~k23, α1, α2, α3) + µ̂1(~k1, ~k23 − α3

~kT , α1, α2, α3)

− 2 µ̂1(~k1, ~k23 + α2
~kT , α1, α2, α3)

]
(D.17)

M̂2 = −α2

[
µ̂2(~k2, ~k13, α2, α1, α3) + µ̂2(~k2, ~k13 − α3

~kT , α1, α2, α3)

− 2µ̂2(~k2, ~k13 + α1
~kT , α1, α2, α3)

]
ν2(~k2, α2) ; (D.18)

M̂3 = α2α3

[
λ̂1(~k1, ~k23, α1, α2, α3) + λ̂1(~k1 − ~kT , ~k23, α1, α2, α3)

− 2λ̂1(~k1 − α1
~kT , ~k23, α1, α2, α3)

]
ρ̂1(~k23, α2, α3) ; (D.19)

M̂4 = −α1α2 ρ̂2(~k13, α1, α3)
[
λ̂2(~k2, ~k13, α1, α2, α3)

+ λ̂2(~k2 − ~kT , ~k13, α1, α2, α3)− 2λ̂2(~k2 − α2
~kT , ~k13, α1, α2, α3)

]
. (D.20)

The following notations are used here,

ν̂1(~k1, α1) =
Û1(~k1, α1)

∆0(~k1, α1)
;

ν̂2(~k2, α2) =
Û2(~k2, α2)

∆0(~k2, α2)
; (D.21)

µ̂1(~k1, ~k23, α1, α2, α3) =
V̂1(~k23, α2, α3)

∆1(~k1, ~k23, α1, α2, α3)
;

µ̂2(~k2, ~k13, α1, α2, α3) =
V̂2(~k13, α1, α3)

∆1(~k2, ~k13, α1, α2, α3)
; (D.22)

λ̂1(~k1, ~k23, α1, α2, α3) =
Û1(~k1, α1)

∆1(~k1, ~k23, α1, α2, α3)
;

λ̂2(~k2, ~k13, α1, α2, α3) =
Û2(~k2, α2)

∆1(~k2, ~k13, α1, α2, α3)
; (D.23)

ρ̂1(~k23, α2, α3) =
V̂1(~k23, α2, α3)

∆2(~k23, α2, α3)
;

ρ̂2(~k13, α1, α3) =
V̂2(~k13, α1, α3)

∆2(~k13, α1, α3)
; (D.24)
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Apparently, the amplitude operators in Eqs. (D.17)-(D.20) vanish, M̂i → 0 when ~kT → 0
what guarantees infra-red stability of the cross section of gluon radiation.

Since the cross section steeply falls down at large k2
T and M̂i(kT = 0) = 0 we can expand

the amplitudes at small kT ,

Mi(kT ) ≈ ~kT

[
∂

∂~kT

M̂i(~kT )

]
kT =0

. (D.25)

Using Eqs. (D.17)-(D.20) we find,

∂M̂1

∂~kT

∣∣∣∣∣
kT =0

≈ −α1 ν̂1
∂µ̂1

∂~k23

(α3 + 2α2) ; (D.26)

∂M̂2

∂~kT

∣∣∣∣∣
kT =0

≈ α1
∂µ̂2

∂~k13

ν̂2 (α3 + 2α1) ; (D.27)

∂M̂3

∂~kT

∣∣∣∣∣
kT =0

≈ −α2α3
∂λ̂1

∂~k2

ρ̂1 (1− 2α1) ; (D.28)

∂M̂4

∂~kT

∣∣∣∣∣
kT =0

≈ α1α3 ρ̂2
∂λ̂2

∂~k2

(1− 2α2) . (D.29)

Using the obvious relations

1− 2α1 = α2 − α1 + α3 ,

1− 2α2 = α1 − α2 + α3 , (D.30)

we conclude that the terms M̂3 and M̂4 in the amplitude of c̄c pair production are negligible
compared to M̂1 and M̂2. Indeed, since the c̄c must be projected on the wave function of
the heavy charmonium, one can make use of the fact that it is a nonrelativistic system, and
that the radiated gluon is predominantly soft, i.e.

|~k1 − ~k2| � mc ,

|α1 − α2| � 1 ,

α3 � 1 . (D.31)

These conditions also help to simplify essentially the Eqs. (D.26) and (D.29) for M̂1 and
M̂2. First of all, for vanishing α3 one can neglect the terms containing the Pauli matrixes
in the definition (D.12) of V̂1 and V̂2 which now commutate with Û1 and Û2.

Further, for small α3 Eq. (D.9) leads to ~k13 ≈ −α1
~k3, ~k23 ≈ −α2

~k3. Since from (D.31) it

follows that α1 ≈ α2 ≈ 1/2 eventually we arrive at ~k13 ≈ ~k23 ≈ −~k3/2. Then the propagator
∆1 can be represented as

∆1 =
1

8
(k2

3 + τ 2) +O[α3(~k1 − ~k2)] ;

τ 2 = λ2 + α3M
2 ;

M = 2mc ≈Mc̄c . (D.32)
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The approximations done we arrive to a simplified form of the amplitude,

M̂ = 2

mc ~σ · ~e+ i (~n× ~k1) · ~e
m2

c + k2
1

− mc ~σ · ~ei (~n× ~k2) · ~e
m2

c + k2
2


×

 2(~k3 − ~kT ) · ~e
(~k3 − ~kT )2 + τ 2

− 2~k3 · ~e
k2

3 + τ 2

 . (D.33)

Here we suppressed in the propagator the term λ2/4 ∼ Λ2
QCD/4 which is tiny compared to

m2
c .
Using Eq. (D.33) the amplitude (D.3) takes the form

Aµ̄µ
ab (~k12, ~k3, ~kT , α3) =

∫
d2b d2s d2r Aµ̄µ

ab (~b, ~s, ~r, α3) exp
[
i(~b · ~kT + ~s · ~k3 + ~r · ~k12

]
, (D.34)

where

Aµ̄µ
ab (~b, ~s, ~r, α3) =

i
√

3

2

8∑
d=1

fabd Φµ̄µ
G (~r, α = 1/2)

×
{

ΦqG

(
~s+

~r

2

) [
γ(d)

(
~b+ ~s, {X}

)
− γ(d)

(
~b− ~r

2
, {X}

)]

− ΦqG

(
~s− ~r

2

) [
γ(d)

(
~b+ ~s, {X}

)
− γ(d)

(
~b+

~r

2
, {X}

)]}
. (D.35)

Here Φµ̄µ
G (~r, α) is the distribution amplitude for a c̄c fluctuation of a gluon given by Eq. (7),

and ΦqG(~s) is the distribution amplitude for a quark-gluon fluctuation of a quark which has
the form,

ΦqG(~r) =
2i

π

√
αs

3
~e · ~∇r K0(τr) . (D.36)

The profile function γ(d)(~b, {X}) in Eq. (D.35) is related to the amplitude F (d)(~kT , {X})
by Fourier transform,

γ(d)(~b, {X}) =

√
αs

2π
√

6

∫
d2kT

k2
T + λ2

e−i~kT ·~b F (d)
GN→X(~kT , {X}) . (D.37)

This profile function is related to the unintegrated gluon density F(kT , x) and the dipole
cross section σq̄q(r, x) by the relation,∫

d2b dΓX

8∑
d=1

∣∣∣γ(d)(~b+ ~r, {X})− γ(d)(~b, {X})
∣∣∣2

=
4π

3
αs

∫
d2kT

k2
T + λ2

(
1− ei~kT ·~r

)
F(kT , x) = σq̄q(r, x) . (D.38)

Now we can calculate the amplitude of χ production accompanied by gluon radiation
which corresponds to the graphs depicted in Fig. 12 with the c̄c pair projected to the wave
function of χ,

Aχ
ab(
~kT , ~k3) =

∑
µ̄µ

∫
dα d2b d2s d2rΦµ̄µ

χ (~r, α)Aµ̄µ
ab (~b, ~s, ~r) exp

[
i(~b · ~kT + ~s · ~k3)

]
. (D.39)
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Note that the typical value of r ∼ 1/mc is much smaller than the mean separation

b ∼ 1/ΛQCD. Therefore, we can use the approximation γ(d)(~b ± ~r, {X}) ≈ γ(d)(~b, {X}) in
Eq. (D.35), then the amplitude Aµ̄µ takes the form which is known for the radiation of a
heavy photon by a quark, i.e. the amplitude of Drell-Yan process [26, 28],

Aχ
ab(
~kT , ~k3, α3) ≈ −i

√
3

2

∑
µ̄µ

∫
d2b d2sΨ(s, α3) exp

[
i(~b · ~kT + ~s · ~k3)

]
×

[
γ(d)

(
~b+ ~s, {X}

)
− γ(d)

(
~b, {X}

)]
, (D.40)

where Ψ(s, α3) defined in (50) is the effective distribution amplitude for s χ−G fluctuation
of a gluon, which is the analog for the γ∗ q fluctuation of a quark.

The two terms in square brackets in (D.40) correspond to the two diagrams in Fig. 6
which are the same as for Drell-Yan reaction if to replace the virtual photon by χ and the
incoming and recoil quarks by gluons. Therefore, it is natural to expect the corresponding
cross section to have the same factorized form as for Drell-Yan reaction. Indeed, squaring
expression Eq. (D.40) and using Eq. (D.38) we arrive at the expression Eq. (49) for the cross
section.
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