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Abstract

We describe the fate of the Type I non-BPS D7-brane, which is tachyonic but carries

a non-trivial K-theory Z2 charge. It decays to topologically non-trivial gauge field

configurations on the background D9-branes. In the uncompactified theory the decay

proceeds to infinity, while with a transverse torus the decay reaches a final state, a

toron gauge configuration with vanishing Chern classes but non-trivial Z2 charge.

A similar behaviour is obtained for the type I non-BPS D8-brane, and other related

systems. We construct explicit examples of type IIB orientifolds with non-BPS

D7-branes, which are hence non-supersymmetric, but for which supersymmetry is

restored upon condensation of the tachyon.

We also report on the interesting structure of non-BPS states of type IIA theory in

the presence of an O6-plane, their M-theory lifts, the relation between string theory

K-theory and M-theory cohomology, and its interplay with NS-NS charged objects.

We discuss several new effects, including: i) transmutation between NS-NS and RR

torsion charges, ii) non-BPS states classified by K-theory but not by cohomology in

string theory, but whose lift to M-theory is cohomological.
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1 Introduction

Type I string theory contains certain D-branes with conserved K-theory charges, but

which are nevertheless tachyonic. Specifically, type I non-BPS D̂7- and D̂8-branes
1 carry non-trivial K-theory Z2 charges, but contain world-volume tachyons arising

from strings stretching between the non-BPS brane and the background D9-branes [1].

Given their non-trivial conserved charges, such states must decay not to the vacuum,

but to some other state with their same quantum numbers. In this note we give a

detailed picture of this decay, intending to clarify some confusion in the literature. We

would like to mention however that some of the points have been anticipated in [2, 3].

Intuitively, one expects these branes to decay to gauge field configurations on the

D9-brane world-volume, associated to topologically non-trivial bundles in the correct

K-theory class. In fact, in Section 2 we argue that the D̂7-brane in the uncompactified

theory is unstable against dissolving as a monopole-antimonopole pair in the D9-brane

gauge group. The tachyon has a runaway behaviour and does not reach a minimum

for any finite characteristic size of the gauge field lump. Hence the decay continues to

infinity, leading to an infinitely extended and diluted gauge configuration. If the space

transverse to the D̂7-brane is compactified on a two-torus, the decay reaches a final

state, which we characterize in detail as a Z2 toron of SO(32) gauge theory. We also

describe a T-dual picture in which the decay process is very intuitive, and corresponds

to recombining intersecting D-branes into smooth ones, in the spirit of e.g. [4, 5].

In Section 3 we analyze the decay of the D̂8-brane, whose story is similar. It decays

to a ‘kink’ configuration in the D9-brane gauge group, which in a non-compact setup

does not reach any final state but becomes infinitely extended and diluted. In compact

space it reaches a final state described by a Z2 Wilson line on the D9-branes. In Section

4 we describe related systems of D-branes and O-planes.

In Section 5 we extend on an independent topic, originally motivated by the above

systems. We consider the system of an O6-plane with no overlapping D6-branes. By

the previous analysis this theory contains stable non-BPS D̂4- and D̂5-branes, carrying

Z2 charges. In discussing the M-theory lift of these and other stable non-BPS states in

the configuration, we find multiple interesting issues concerning the nature of NS-NS

and RR charges in the IIA theory, and its M-theory origin. In particular, we find that

certain non-BPS states carrying torsion NS-NS and RR charges are topologically equiv-

alent once lifted to M-theory. We also find non-BPS states in IIA theory whose charge

is classified by K-theory but not by cohomology, but whose M-theory lift corresponds

1We use a bar to denote antibranes, and a hat to denote non-BPS branes
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to M-branes wrapped on torsion cohomology cycles in the Atiyah-Hitchin manifold.

This result is relevant in understanding the appearance of K-theory in string theory

as derived from M-theory, and we explain why it suggests an extension of those in [6].

This section is self-contained, and the reader interested only in these aspects is adviced

to proceed directly to it.

Finally, in the appendix we construct an explicit type IIB orientifold with D̂7-

branes, where a proper understanding of the tachyon is quite essential, since super-

symmetry is restored upon condensation of the D̂7-brane tachyon.

2 The fate of the type I non-BPS D7-brane

2.1 Construction

As described in [7], the type I non-BPS D̂7-brane is constructed as a pair of one D7-

and one D7-brane in type IIB, exchanged by the action of world-sheet parity Ω. In the

world-volume of the 77 pair, before the Ω projection, the 8d spectrum is as follows:

In the 77 sector we have a U(1) gauge boson, one complex scalar, and fermions in the

4 + 4 of the SO(6) Lorentz little group; the 77 sector leads to an analogous piece; the

77 + 77 sector provides one complex tachyon and two fermions in the 4 + 4, all with

with U(1)2 charge (+1,−1). The Ω action exchanges the 77 and 77 sectors, leaving a

group U(1), a complex scalar and vector-like fermions, and maps the 77 + 77 to itself,

projecting out the tachyon and keeping just one set of fermions.

Hence the type I D̂7-brane would appear to be tachyon-free. However, RR tadpole

cancellation in type I requires the presence of a background of 32 D9-branes, the role

of which for the stability of the D̂7-brane was noticed in [1] (see also [8]). In fact, the

79 + 97 sector gives a complex tachyon field, and one chiral fermion, while the 79 + 97

sector gives their Ω image.

Despite the instability associated to this tachyon, the D7-brane is unable to decay

to the vacuum. This follows from the fact that it carries a Z2 charge corresponding

to the non-trivial K-theory class x in KO(S2) = Z2. In fact, as proposed in [7] and

checked in [9], the Z2 charge can be detected by a −1 sign picked up by a D̂0-brane

probe moving around the D̂7-brane in the transverse two-plane. Since the D̂0-brane

transforms as a SO(32) spinor [10], this implies that the K-theory class associated

to the D̂7-brane corresponds to a topologically non-trivial bundle with asymptotic

monodromy in the non-trivial element of Π1(SO(32)) = Z2. This property in fact

characterizes the non-trivial class x in KO(S2) = Z2
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A different way to detect the Z2 charge of the D̂7-brane is to introduce a D5-brane

probe intersecting the D̂7-brane over a four-dimensional space [11]. The intersection

leads to a single four-dimensional Weyl fermion doublet of the D5-brane SU(2) gauge

group. The Z2 global gauge anomaly [12] from this 4d fermion is a reflection of the

non-trivial Z2 charge of the D̂7-brane 2. In fact, the appearance of such fermion

implies that the K-theory class of the D̂7-brane corresponds to a bundle with an odd

number of fermion zero modes of the (real) Dirac operator. By the index theorem

[14], this characterizes the K-theory class of the D̂7-brane as the non-trivial class x in

KO(S2) = Z2.

Hence the type I D̂7-brane carries a topological charge, endowing it with quantum

numbers different from those of the vacuum, to which it cannot decay. It must instead

decay to some state carrying the same Z2 (and no other) charge. Since, from the

viewpoint of the parent type IIB theory, the tachyon triggering the decay arises from

open strings stretching between the D9- and D7-branes (the 79+97 sector giving merely

its Ω image), one is led to suspect that the decay will be roughly speaking a Ω-invariant

version of the much studied tachyon condensation in the Dp-D(p + 2) system (see e.g.

[15]). In fact, our analysis below will make this analogy quite precise, and establish

that the D̂7-brane dissolves as a non-trivial gauge field configuration on the D9-brane

gauge group. Much as in the Dp-D(p + 2) system, for non-compact transverse space

the tachyon condensation does not reach an endpoint and leads to infinitely extended

and diluted gauge configurations. For compact transverse space, however, the tachyon

reaches a minimum and the condensation reaches an endpoint configuration.

2.2 The non-compact case

We have argued that the D̂7-brane is unstable against decay to a topologically non-

trivial gauge bundle on the D9-branes, characterized by the K-theory class x associated

to the D̂7-brane Z2 charge. Indeed, it is easy to describe SO(32) gauge configurations

on R2 carrying such charge. Before going into details, let us emphasize that such

configurations are however not solutions of the equations of motion. A scaling argu-

ment [7] shows that any such lump configuration can lower its energy by increasing its

characteristic size. Hence, the gauge field lumps tend dynamically to become infinitely

2In the non-compact context, this anomaly is presumably cancelled by a (K-theoretic) anomaly

inflow mechanism, implicit in [13]. Hence there is no inconsistency in the configuration, corresponding

to the fact that D-brane charge need not cancel in non-compact space.
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extended and diluted 3. However, it is interesting to explore the properties of the

topological class of such configurations.

In order to describe a simple example, let us split the group SO(32) as SO(30) ×
SO(2), and embed a non-trivial gauge background on the SO(2) factor, of the form

F = f(x1, x2)

(
0 1

−1 0

)
(2.1)

Here f(x1, x2) is a function with compact support in a subset Σ or R2.

We should require proper Dirac quantization for fields in the adjoint of SO(32).

This representation decomposes as 496 = 4350 + 30+1 + 30−1 + 10, with subindices

denoting the SO(2) charge. Hence, Dirac quantization for this representation requires

the integral of f to be 2π times an integer. Choosing the minimum Dirac quantum

∫

Σ

f(x1, x2)dx1dx2 = 2π, (2.2)

quantization is obeyed for the SO(32) adjoint, but not for the SO(32) spinor represen-

tation. Fields in this representation carry charge q = ±1/2 under the SO(2) subgroup,

hence their asymptotic holonomy is

exp(q
∮

∂Σ

A) = exp(q
∫

Σ

F ) = exp(q 2πiσ2) = −12 (2.3)

Hence D̂0-branes pick up a −1 phase in going around the gauge field lump (2.1), which

therefore carries the correct K-theory Z2 charge. Notice that, regarding the SO(2)

subgroup as arising from two D9-branes (related by Ω), the above gauge background

can be seen as a unit Dirac monopole in one D9-brane (we denote it D9+) and an

antimonopole in another (D9−), both being exchanged by Ω.

It is also easy to detect the Z2 topological charge by introducing a D5-brane probe,

spanning the directions x1, x2. The 4d Weyl fermions in doublets of the D5-brane

SU(2) arise from zero modes in the Kaluza-Klein reduction of the 6d fermions in the

59+95 sector, in the presence of the gauge field background. Clearly, strings stretched

between D5-branes and the 30 D9-branes with no gauge flux lead to no contribution

to the 4d global gauge anomaly. However, fermions zero modes arise from strings

stretched between the D5-branes and the D9+-brane (while strings stretched between

the D5- and the D9−-brane are merely their Ω image). The number of fermion zero

modes is given by the index of the (complex) Dirac operator coupled to the monopole

3The absence of a tachyon vacuum manifold allows to avoid the argument in [8]. For more detailed

discussion of the relation, in this example, between the classification of states by K-theory classes vs.

homotopy classes of the vacuum manifold, see [3].
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background. By the index theorem, this number is 1 for the minimum quantum (2.2),

reproducing the correct 4d Weyl fermion global anomaly. The above discussion can

be regarded as a rudimentary computation of the mod two index of the real Dirac

operator of the SO(32) gauge configuration.

Notice that for any such configuration, strings stretched between the 30 D9-branes

with no background, and the D9+- or the D9−-brane lead to additional tachyons, whose

condensation would further break the gauge group. Such strings behave as charged

particles in a magnetic field, and so are localized in R2. The negative squared masses

of the tachyons are related to the gauge field strength at such points. Hence, as the

flux becomes more dilute the masses get less and less tachyonic. This argument also

supports that the system become more and more stable as the gauge lump expands.

2.3 Toroidal transverse space

The situation would be better understood by taking the space transverse to the D̂7-

brane to be a T2, since the size of the gauge field lump would have an upper bound,

and we may expect a well-defined final state. Notice that there is a subtlety in trying

to do so: As discussed in [11], consistency of the configuration requires cancellation of

the K-theory Z2 charge in the compact space, so we have to include at least two D̂7-

branes. The total configuration hence has the same quantum numbers as the vacuum,

to which it could annihilate. However, for our present purposes we may consider one

of the D̂7-branes as spectator, and ignore it in the analysis of the decay of the other.

We will be interested in describing the decay in this setup 4.

2.3.1 A T-dual picture

One advantage in making the transverse space compact is the possibility of using T-dual

pictures to describe the decay process. Considering for simplicity a square two-torus,

and vanishing NS-NS B-field, we may T-dualize along one direction in the torus to get

type I’ theory, as depicted in Fig 1. The O9-plane becomes two O8-planes, and the D9-

branes become D8-branes, all depicted horizontally in the picture. The type IIB D7-D7

pair becomes a pair of oppositely oriented vertical D8-branes, which are exchanged by

4A more suitable system to address the compact setup would be the (isomorphic in other respects)

decay of a non-BPS D(p − 2)-brane in the presence of Dp-branes on top of an Op-plane, See section

4. The existence of this non-BPS brane, its non-trivial Z2 charge, and its tachyon in the p-(p − 2)

sector, are shown in the same way as for the D̂7-brane. For lower p we may consistently compactify

without bothering about tadpole cancellation conditions.

5



D9

��
��
��
��

D7
D9

 T  T 

D8 + O8

D8 

 F 

Figure 1: Schematic picture of the decay of the type I D̂7-brane in the type I and T-dual

type I’ pictures

the orientifold action ΩR, where R is a reflection in the vertical direction. Some useful

references for the T-duality relation and what follows are [16, 4, 5].

The process of dissolving the D7-D7 pair in the D9-branes corresponds in the T-dual

to recombining the intersecting vertical and horizontal D8-branes into a smooth one,

as shown in the figure (see e.g. [4, 5]). The gauge group on the D8-branes is broken

to a subgroup of SO(32), corresponding to the fact that the magnetic flux breaks the

D9-brane group to a subgroup. In particular the above SO(2) monopole-antimonopole

background corresponds to recombining two horizontal D8-branes with the vertical

ones, in a ΩR invariant fashion.

This picture makes it clear that, in the non-compact context (large volume limit

of the original torus, large complex structure of the T-dual torus), the process of

recombination does not reach a final state, but goes on to infinity, since it is always

possible to lower the length of the recombined D-branes by straightening them.

The Z2 charge carried by the configuration is not so manifest in terms of moving

around (the T-dual of) a D̂0-brane. However, it is easily detected by introducing the T-

dual of a D5-brane probe, which is a pair of horizontal D4-branes. The 4d Weyl fermion

arises from the intersection between the D4-branes and the recombined D8-branes.

Finally, this picture makes manifest the evolution of the spectrum of the config-

uration as the recombination proceeds. In particular, the tachyons arising from the

remaining intersections have negative squared masses proportional to the intersection

angles. Hence, it is obvious they become less and less tachyonic as the configuration

relaxes by extending and diluting, as discussed above.
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2.3.2 The final configuration

In the compact context the decay process reaches a final state (equivalently the tachyon

potential has a minimum), whose description and properties we study in this section.

In the type I’ picture it is clear that any intersection implies the existence of a

tachyon triggering recombination. The system does not stabilize until all branes are

aligned in the horizontal direction. This agrees with that configuration being the

minimum energy state with total homology class (32, 0) in T2. The original Z2 charge

is not homological, but rather K-theoretical, and not too manifest in this picture.

Because of this we describe the final state in the original type I picture.

In terms of the original picture, the final state is a D9-brane gauge field configura-

tion, with vanishing Chern classes, and with a topological Z2 charge, characterized by

−1 holonomies in the spinor representation. There is a simple gauge field configuration

satisfying those requirements, a SO(32) toron.

Consider decomposing SO(32) as SO(29)× SO(3). Since SO(3) ≃ SU(2)/Z2, one

can construct a set of two Wilson lines which commute in SO(3) but anticommute in

SU(2). In the two-dimensional representation of SU(2) we can take

P =

(
i 0

0 −i

)
; Q =

(
0 i

i 0

)
(2.4)

which satisfy PQ = −QP . In the three-dimensional representation, the vector of

SO(3), these matrices descend to the (commuting) matrices

γ1 = diag (1,−1,−1) ; γ2 = diag (−1, 1,−1) (2.5)

This construction is equivalent to that of SU(2) toron configurations in [17].

We propose this configuration as the final state for the decay of the type I D̂7-brane.

In fact, the connection is flat and all Chern classes vanish. However, the corresponding

bundle is non-trivial, and carries the correct Z2 charge, as we now discuss 5.

For instance, a D̂0-brane transforms as a SO(32) spinor, hence as a doublet under

the above SU(2). In the presence of such gauge background, it suffers a holonomy

PQP−1Q−1 = −1 when carried along the square surrounding the unit cell in T2. This

characterizes the existence of the correct Z2 charge in the configuration.

It is also easy to detect the Z2 charge by introducing a D5-brane probe wrapped

on T2. The spectrum in the 59+95 spectrum, in the absence of gauge background,

consists of half-hypermultiplets in the representation (2; 32), i.e. an even number of

doublets under the D5-brane SU(2). In the presence of Wilson lines, they decompose

5The Z2 charge of the Wilson lines (2.5) was already noticed in [2].
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as half-hypermultiplets in the (2; 29, 1) + (2; 1, 3). The former are untouched, but the

latter are projected out by the matrices (2.5). We are hence left with an odd number

of Weyl fermions doublets of SU(2), whose contribution to the global gauge anomaly

reflects the non-trivial Z2 charge of the gauge bundle.

Let us conclude this section by pointing out that the final state is unique, up to

gauge transformations. Another interesting property is that the final state in the decay

of the D̂7-brane is supersymmetric, and obviously free of tachyons. This is consistent

with its being the minimum energy configuration in its topological class. This remark

is important in certain applications, like model building. This is illustrated in the

appendix, where we construct a type IIB non-supersymmetric orientifold with D̂7-

branes, with supersymmetry restored upon tachyon condensation.

3 The fate of the type I non-BPS D8-brane

In this section we would like to discuss the decay of the D̂8-brane. Since it is analogous

to the decay of the D̂7-brane in some respects, our treatment is more sketchy.

The type I D̂8-brane can be described in open string theory by imposing Dirichlet

boundary conditions in one direction, say x9, and endowing worldsheet boundaries with

an additional fermion degree of freedom [7]. In the 88 sector, after the Ω projection

one obtains a Z2 (≃ O(1)) gauge group, one real scalar field, and one 9d fermion. In

the 89+98 sector, one obtains a real tachyon and one 9d fermion.

Hence, the D̂8-brane is unstable against condensation of the 89 tachyon. However,

the state carries a non-trivial K-theory Z2 charge, and cannot decay to the vacuum.

The topological Z2 charge can be detected, as proposed in [7] and checked in [9], by

moving a non-BPS D-instanton across the D̂8-brane, since its amplitude picks up a −1

sign in the process. This characterizes the K-theory class of the D̂8-brane to be the

non-trivial class y in KO(S1) = Z2.

An alternative way to detect the Z2 charge is to consider a stack of n type I D1-

branes wrapped along x9. The intersection between the D1- and the D̂8-branes supports

one 1d fermion, leading to a Z2 global gauge anomaly in the O(n) gauge group. The

existence of this fermion zero mode characterizes the K-theory class of the D̂8-brane

as the class y in KO(S1) = Z2.

The D̂8-brane therefore decays not to the vacuum, but to a non-trivial gauge field

configuration on the D9-branes, with non-trivial profile only along x9. By a scaling

argument, such gauge field lumps are not static, but dynamically tend to become

infinitely extended and diluted. The tachyon hence does not have a minimum, but
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rather a runaway behaviour. However, it is interesting to consider intermediate steps

in its condensation.

The gauge configurations in this class are characterized by being pure gauge in

the two asymptotic regions x9 → ±∞, A = gdg−1, with g(x9 → ±∞) in different

connected components of the perturbative D9-brane gauge group O(32). The gauge

field at infinity is associated to the non-trivial class in Π0(O(32)). By using the spectral

flow of the Dirac operator and the index theorem [18], this property ensures that the

type I D-instanton amplitude picks up a −1 factor in crossing the gauge field lump (see

[9] for details). The Z2 charge can also be made manifest by introducing a D1-brane

stretched along x9. By an argument isomorphic to that in the first reference of [10],

or using the index theorem, there is generically one normalizable fermion zero mode in

the 19+91 sector, leading to one 1d fermion and hence to a Z2 global gauge anomaly.

The decay is more tractable by compactifying the transverse space on a circle S1.

Again, this is possible only if one considers an even number of D̂8-branes, all of which

but one are considered as spectators in what follows. (Alternatively, one may consider

the (isomorphic is other respects) decay of a non-BPS D(p − 1)-brane in the presence

of an Op-plane and Dp-branes, see Section 4).

In such configuration, the decay of the D̂8-brane does reach a final state, which is

simply a D9-brane gauge field configuration given by a non-trivial O(32) Z2 Wilson

line, of the form

γ = diag (−1, 131) (3.1)

It is straightforward to check that this configuration carries the correct Z2 charge 6.

The spectrum of strings stretching between a D-instanton and the D9-branes contains

fermion degrees of freedom in the vector of O(32). Hence, in going around the circle,

the D-instanton amplitude picks up a −1 factor, reflecting the Z2 charge carried by

the gauge configuration. Similarly, if we introduce a D1-brane wrapped along the S1,

the 19+91 spectrum contains an odd number of one-dimensional fermions, leading to

a 1d global gauge anomaly which reflects the background Z2 charge.

Hence, very much as for the D̂7-brane, the decay of the D̂8-brane proceeds to

infinity in the non-compact configuration, but reaches a supersymmetric final state in

the compact case, described as a simple D9-brane gauge background.

4 Some related systems

6The Z2 charge of this Wilson line was observed in [2].
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4.1 Lower-dimensional Op-planes

A system analogous to the above ones is that of lower-dimensional non-BPS D̂q-branes

embedded within a set of Dp-branes, on top of a negatively charged Op-plane 7. The

analysis of the open string spectrum is isomorphic to the above, the only difference

being that the number of Dp-branes in unconstrained. For configurations with a non-

vanishing number of Dp-branes there exist non-BPS D(p − 1)- and D(p − 2)-branes

which carry a topological Z2 charge, but contain tachyons in the mixed sector.

As above, one is led to propose that the Dq-brane dissolves into a gauge field

configuration on the orthogonal gauge group on the Dp-branes, which dynamically

becomes infinitely extended and diluted. In fact this is correct in general, save for an

interesting subtlety for configuration with too few Dp-branes.

Consider for instance a D(p − 2)-brane in presence of a single Dp-brane on top of

an Op-plane. There is a p-(p − 2) tachyon triggering a decay of the D(p − 2)-brane

to a gauge background. However, a single Dp-brane is unable to carry a bundle with

the required Z2 charge. The way out of the paradox is to realize that the topological

class of the configuration is defined up to brane-antibrane nucleation/annihilation. The

system hence nucleates additional Dp-Dp pairs 8, leading to an enhanced gauge group

SO(n + 1)×SO(n). Keeping the gauge bundle on the Dp-branes trivial for simplicity,

we may now embed a gauge configuration on the Dp-brane group, carrying the correct

Z2 charge.

The system presents an interesting energetic balance. Nucleation of Dp-Dp pairs is

energetically convenient as long as the pp̄ tachyons lie close to their minimum, namely

the bundles on branes and antibranes do not differ much. This prevents the gauge

field lump to become infinitely extended and diluted, since this would lead to a too

large uncancelled Dp-Dp pair tension. Instead, the gauge field lump stabilizes at a

finite size, which may be estimated as follows. Consider compactifying the two DN

directions in the problem in a square T2, with equal radii R, and nucleate e.g. two

Dp-Dp branes wrapped on it. For any R, a point-like D(p − 2)-brane is tachyonic and

tends to dissolve in the Dp-branes. The opposite situation, with a uniform gauge lump,

given by a a SO(3) Z2-toron, is free of p-p tachyons for small enough R, due to the

effect of the Wilson lines. However, for R larger than the critical value Rc =
√

2α′, a

tachyon develops, suggesting that a uniformly extended lump of size larger than Rc is

7The system may contain additional non-BPS states associated to branes extending away from the

Op-plane. We do not study them in this section, but will play a role in Section 5.3.
8In general, it is allowed to nucleate higher-dimensional branes extending away from the Op-plane.

To simplify the discussion we restrict to Dp-Dp pairs.
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not stable. We take this as evidence for the stability of a configuration of branes and

antibranes, with a gauge lump of characteristic size
√

2α′, as a result of two competing

effects: decreasing the lump size results in energetic cost for the lump itself, while

increasing its size results in energetic cost from the brane-antibrane tensions.

4.2 The USp(32) theory

As another interesting system of D-branes and O-planes, we consider the possible exis-

tence of unstable but non-trivially charged branes in USp(32) type I theory [30]. Recall

this theory is obtained by modding out type IIB theory by Ω, but with an O9-plane

with positive RR charge. The RR tadpole is subsequently cancelled by introducing

32 D9-branes, leading to a gauge group USp(32). D-brane charges are classified by

KSp(Sn) (≃ KO(Sn+4) from Bott periodicity), and lead to Z-valued charges for D1,

D5 and D9-branes, and Z2-valued charges for D̂3, D̂4-branes. The latter are easily con-

structed in string theory (see e.g. [9]): the D̂3-brane is obtained as a type IIB D3-D3

pair, exchanged by Ω; the D̂4-brane is constructed by imposing Dirichlet conditions

in 5 dimensions, and adding a fermion degree of freedom to the worldsheet boundary.

The objects are tachyon-free even when the 32 background D9-branes are taken into

account, and hence are fully stable.

However, such objects can be destabilized in situations where they encounter D5-

branes. These are not present in the ten-dimensional background, but however may

arise in compactifications of the theory (see [31] for examples), where they may be

required for RR tadpole cancellation. Noticing that the gauge group on D5-branes

in orthogonal, the analysis of the D̂3/D5 or D̂4/D5 systems is analogous to that in

previous sections. Specifically, strings in mixed sectors produce tachyons triggering

the decay of the D3-brane (resp. D4-brane) into a codimension two (resp. one) gauge

lump in the D5-brane group. Generalization of these statements to lower dimensional

Op-planes is straightforward.

5 Non-BPS states and cohomology in M-theory

In this section we report on the interesting structure of non-BPS states of type IIA

theory in the presence of an O6-plane. From the above analysis, the theory in the

absence of D6-branes (case on which we center henceforth) contains fully stable non-

BPS states constructed as non-BPS D̂4- and D̂5-branes within the O6-plane. Namely,

they can be constructed as bundles on virtual D6-D6 pairs, associated to the non-

trivial classes in KO(S2) = Z2, KO(S1) = Z2. Our initial motivation was to find the
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M-theory lifts of such states, which must exist given their stability. In answering this

question we will however be drawn to more general, deeper, and in fact more interesting

issues, related to the interplay between K-theory in string theory and cohomology in

M-theory, and hence to the nature of RR and NS-NS charges in string theory. Given

this more general interest, it is convenient to start by reviewing some general results

on the topic.

The notion of K-theory as a classification tool for RR charges in string theory is

natural, since the objects charged under RR fields, D-branes, are naturally endowed

with gauge bundles. Branes of M-theory, however, are not, and K-theory does not

seem to arise in M-theory in the same natural way. Until a more complete framework

is provided (or until it is convincingly shown that it is not required), the simplest

proposal is that charge under the M-theory p-forms is classified by cohomology. This

proposal has passed a first non-trivial check in the beautiful computation in [6], where,

for a large class of configurations, the zero mode piece of the partition function for RR

fields of type IIA on a manifold X10, topologically classified by K-theory, was recovered

from the zero mode piece of the partition function for p-form fields of M-theory on

X10 × S1, as classified by cohomology.

It is important to emphasize that in the configurations under study in [6], in the

string theory side the set of charges provided by K-theory is a subset of those provided

by cohomology. Namely, there exist cohomology classes which do not correspond to

the Chern character of any bundle, or K-theory class of bundles. In the M-theory com-

putation, the starting set of charges is given by cohomology, but the (properly defined)

CGG phase in M-theory leads, upon reduction, to ‘projecting out’ the cohomology

classes not corresponding to K-theory classes of the IIA string configuration.

It is natural to try to extend our understanding of the relation between K-theory in

string theory and its M-theory lift. There are several possible avenues to do so, and we

would like to argue that the study of IIA theory in the presence of an O6-plane explores

some. First, it would be interesting to derive K-theory from M-theory on spacetimes

which are S1 bundles over a 10d spacetime, rather than a Cartesian product. A simple

example of this type is provided by the M-theory lift of the O6-plane, which corresponds

to an Atiyah-Hitchin manifold. A computation along the lines of [6] may be possible,

but is beyond the scope of this note. Second, it is natural to wonder about the M-

theory origin of stable non-BPS states in IIA theory, with charge classified by K-theory

but not by cohomology. In Section 5.3 we will describe one such state in IIA theory

with an O6-plane, and show its M-theory lift corresponds to and M-brane with torsion

cohomological charge. Finally, it would be interesting to explore the role of NS-NS

12



charged objects in the classification of topological charges in string theory. In Section

5.2 we will show that lifting to M-theory sometimes leads to topological equivalences of

torsion NS-NS and RR charges, suggesting the existence of some underlying structure

unifying their description.

Our analysis is far from systematic, in particular given the uncertainty of the correct

framework to carry it out. We expect that our observations concerning the O6-plane

are helpful in finding it.

5.1 Non-BPS states in IIA theory with an O6-plane

Let us consider IIA theory with a negatively charged O6-plane, and no D6-branes. As

argued above, the theory contains certain non-BPS Z2 charged states, constructed from

D̂4- and D̂5-branes within the O6-plane. A unified way to describe these and other

states is to consider branes wrapping non-trivial cycles in the transverse space R3/Z2.

Since we are interested in compact cycles, states are classified by the (co)homology of

RP2, given by (see e.g. [24])

H0(RP2,Z) = Z H0(RP2, Z̃) = 0 H0(RP2,Z) = Z H0(RP2, Z̃) = Z2

H1(RP2,Z) = 0 H1(RP2, Z̃) = Z2 H1(RP2,Z) = Z2 H1(RP2, Z̃) = 0

H2(RP2,Z) = Z2 H2(RP2, Z̃) = Z H2(RP2,Z) = 0 H2(RP2, Z̃) = Z

where Z̃ is the twisted bundle of integers, whose cohomology classifies periods of forms

which change sign in moving around the non-contractible path in RP2.

Two comments are in order: First, D(p+n)-branes wrapped on n-cycles in projective

spaces have been extensively used [2, 20] to classify the possible fluxes giving different

kinds of Op-planes (see e.g. [25, 26, 24, 2, 20]). Here we are interested in wrapping

D(q + n)-branes on n-cycles to obtain q-brane states within Op-planes, for q < p.

Second, the classification given by homology should be refined by using K-theory, as

done for fluxes in [20]. We will not attempt to do so in the present discussion, so our

analysis may miss certain subtle features (like correlations between charges) 9.

The orientifold projection flips the sign of the IIA RR 1-, 5- and 9-forms, and of

the NS-NS 2-form, hence D0-, D4-, D8-branes and fundamental strings (denoted F1’s)

may wrap cycles with non-trivial twisted cohomology. The RR 3- and 7-forms, and the

NS-NS 6-form are invariant, hence D2-, D6- and NS5-brane wrappings are classified by

usual homology classes.
9v2. We would like to thank O. Bergman for pointing out that the 1-brane charges below do not

T-dualize to charges of stable objects in type I theory, hence should not correspond to conserved

K-theory charges in the O6-plane (despite being non-trivial in homology). Therefore a disappearance

of homology classes in going to K-theory seems to be at work, as in [6, 20].
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This construction provides an alternative description for some of the states we

know. For instance, a D4-brane wrapped on the non-trivial class in H0(RP2, Z̃) =

Z2 corresponds to the D̂4-brane directly constructed above. Similarly, a D6-brane

wrapped on the non-trivial class in H1(RP2,Z) = Z2 would correspond to the D̂5-

brane. We would like to emphasize that the Z2 charges of these states define non-

trivial cohomology classes, as opposed to the D̂7- and D̂8-branes in Sections 2, 3. This

difference does not contradict T-duality (which would apply in a compact context),

this being related to the fact that T-duality in general acts not within cohomology but

in derived categories (roughly speaking, K-theory) [21].

Instead of providing a complete classification, we would like to center on Z2 charged

objects with tractable M-theory lifts. So we restrict our attention for instance to:

• a ‘RR’ 4-brane obtained by wrapping a D4-brane on the non-trivial class in

H0(RP2, Z̃) = Z2

• a ‘NS-NS’ 4-brane given by an NS5-brane on the non-trivial class in H1(RP2,Z) =

Z2.

• a ‘RR’ 1-brane obtained by wrapping a D2-brane on the non-trivial class in

H1(RP2,Z) = Z2,

• a ‘NS-NS’ 1-brane given by an F1 on the non-trivial class in H0(RP2, Z̃) = Z2

The M-theory lift of these states is discussed in next subsection.

5.2 Non-BPS states in M-theory and NSNS/RR charge trans-

mutation

The M-theory lift of the background O6-plane is given [19] by an Atiyah-Hitchin man-

ifold XAH, introduced in [22] (see [23] for diverse applications in string theory). To

describe the topology of XAH, consider an S1 bundle over S2, with Euler class −4,

modded out by a Z2 action exchanging antipodal points in S2 and flipping the coordi-

nate in S1. This gives a circle bundle over RP2. XAH is topologically an R2 bundle

over RP2, where the subbundle given by the angular S1 is the above one [19]. This

space is schematically depicted in figure 2a.

When XAH is endowed with a hyperkahler metric, the S1 fiber asymptotes to a

constant radius, while the RP2 grows along the radial direction in the 2-plane fiber.

The geometry is roughly that of a S1 fibration over R3, modded out by Z2, as depicted

in figure 2b. M-theory on XAH reduces, in the limit of small fiber radius, to type IIA
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Figure 2: Schematic picture of XAH, a) as a topological space, b) when endowed with a

hyperkahler metric.

theory with an O6-plane (and without D6-branes). The RP2 within XAH coincides

with the RP2 within R3/Z2 used above in the IIA configuration.

This information is enough to discuss the M-brane wrapping possibilities. In fact,

for the purpose of discussing the lifts of the above states we just need to know that, since

XAH is homotopic to RP2, H1(XAH,Z) = Z2 with generator e.g. the non-contractible

1-cycle in RP2.

This leads to an interesting result. Since a D4-brane lifts to an M5-brane wrapped

on a 1-cycle, it follows that both the NS-NS and the RR 4-branes above correspond

to an M5-brane wrapped on the non-trivial class in H1(RP2,Z) = Z2. This nicely

reproduces the Z2 charge of the objects, but implies a more dramatic consequence.

In fact, since there is only one available 1-cycle, the NS-NS and RR 4-branes have an

identical M-theory lift, and hence are topologically indistinguishable. This is sharp

contrast with the string theory viewpoint, where they would seem to excite different

kinds of fields, NS-NS and RR respectively. However, notice that the fields excited are

pure torsion, so there is no contradiction with familiar intuition about conservation

of NS-NS and RR charge. Similarly, the NS-NS and the RR 1-brane correspond to a

M2-brane on a 1-cycle.

The situation is perhaps more intuitively grasped as follows. The RR D4-brane

is nothing but the familiar D̂4-brane within the O6-plane, analogous to the D̂7-brane

within the O9-plane in section 2. As such one may understand it as a D4-D4 pair

exchanged by the orientifold action. The pair can be moved away from the O6-plane

in a Z2 symmetric fashion, leading to a very simple M-theory lift. It corresponds

to two M5-branes wrapped with opposite orientations on the S1 fiber of XAH, and

sitting at opposite points on the base R3. The topology of the resulting cycle is shown

in figure 3a. The corresponding 1-cycle is a representative of the non-trivial class in
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2  RP

Figure 3: M-theory lift of the RR and NS-NS 4-branes as M5-brane in non-trivial 1-cycles

in XAH.

H1(RP2,Z) = Z2.

On the other hand, the NS-NS 4-brane is a NS5-brane wrapped on the non-

contractible 1-cycle in the RP2 within R3/Z2. It lifts in the obvious fashion to an

M5-brane wrapped on the non-trivial cycle in the RP2 within XAH, providing just

another representative of the same non-trivial class in H1(RP2,Z) = Z2. This cycle is

shown in figure 3b.

It is not difficult to directly show that the two 1-cycles are in fact homologous,

and therefore the above two states carry the same charge. Hence, a single homology

class in M-theory allows to (un)wind torsion objects in the M-theory circle, smoothly

interpolating between branes with torsion charge under NS-NS and RR fields in the

weakly coupled IIA string theory limit.

This result suggests the existence of an underlying framework in string theory,

describing the NS-NS and RR topological sectors and avoiding redundancies like the

one above. Such framework must go beyond the familiar K-theory, which is not suitable

to incorporate NS-NS charge. It is remarkable that M-theory cohomology achieves this

unified description, and we hope that it should reduce to a sensible formalism in the

weakly coupled string theory regime.

5.3 Non-BPS states in M-theory and cohomology

Another issue we would like to address is the M-theory origin of string theory states with

RR charge classified by K-theory but not by cohomology. The O6-plane configuration

provides us with a simple string background with such charges. The question is hence

how M-theory manages to incorporate these charges, i.e. is M-theory cohomology still

enough to take them into account or do they require a more sophisticated framework?

In the following we show one example where M-theory cohomology is still sufficient
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Figure 4: Schematic picture of the M-theory Z2 charged configuration of an M2-brane in a

torsion 3-cycle in XAH.

to take these states into account. The question of whether this remains true for more

general states and configurations remains open, and clearly deserves further study.

The state we would like to study is not in the class considered above. In intuitive

terms, objects with too non-trivial transverse space tend to carry RR charges described

by cohomology. We therefore try to construct our purely K-theoretic state as extended

in directions transverse to the O6-plane.

Consider a pair of (euclidean) D2-, D2-branes, wrapped on the three dimensions

transverse to the O6-plane. This system is similar (and related by T-duality) to a

D ̂(−1)-brane on an O9-plane. In fact, the orientifold projection exchanges the D2- and

the D2-branes, removing their tachyon. More accurately, the tachyon is projected out in

the intersection with the O6-plane, but survives in the bulk of the D2-D2 pair. Hence,

it may trigger asymptotic annihilation of the objects, but not a complete one, since

the state carries non-trivial K-theory Z2 charge. In this section, however, we shall not

be interested in the stability of the objects, rather in their non-trivial charges. The Z2

charge of the above object is easily seen not to correspond to any cohomology class. If

the RR Z2 charge were cohomological, the fact that asymptotic annihilation is possible

indicates that the cohomology class has compact support and should correspond to a

D-brane wrapped on a compact cycle in RP2. However, there is no wrapped D-brane

candidate for it (for instance, a (euclidean) D0-brane cannot wrap a 1-cycle, since

H1(RP2, Z̃) is trivial), hence the Z2 charge is not cohomological.

This state has an interesting and tractable M-theory lift. To describe it, we use a

different description of XAH. As discussed in [22, 19], in a suitable complex structure

XAH can be described by the equation

y2 = x2v − 4x (5.1)

In order to compare with the geometry in the string theory configuration, it is conve-
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nient to describe its asymptotic behaviour by

st = u−4 (5.2)

modded out by the Z2 action s ↔ t, u → −u. Expression (5.1) is obtained by defining

the invariant variables

y = (s − t)u , x = s + t + 2u−2 , v = u2. (5.3)

The fact that the change of variables is singular means that the description (5.2) is

valid only asymptotically, for large u. In this regime, the exponential corrections in

the core of XAH can be ignored, and the geometry reduces to a Taub-NUT space with

‘wrong sign’ charge equal to −4. The Z2 action corresponds to the Z2 reflection implied

by the O6-plane (roughly speaking, one may take u = x8 + ix9, and s/t ≃ ex7+ix10

). It

is also interesting to observe that the C∗ action in XAH, (x, y, v) → (λ2x, λy, λ−2v),

whose U(1) piece is a subgroup of the SO(3) rotational symmetry [19], arises from a

C∗ action (s, t, u) → (λ2s, λ2t, λ−1u), whose U(1) subgroup is a rotation in the string

theory background. Also, the C∗ action (s, t, u) → (λs, λ−1t, u), associated to the U(1)

rotation in the asymptotic circle in ‘Taub-NUT’ does not descend to XAH, which does

not have isometries in the circle fiber.

From the viewpoint of M-theory, the D2-D2 configuration corresponds, far from the

core in XAH, to an M2-brane wrapped on oppositely oriented pieces of 3-cycle, located

at definite positions in the M-theory circle. In the description (5.2), one such 3-cycle

is given by the real condition

s/t = s/t (5.4)

It describes a 3-cycle which spans the R3 base of the ‘Taub-NUT’, and is invariant

under the Z2 action. Moreover, it intersects twice the asymptotic M-theory circle

(given by the U(1) orbit (s, t) → (eiαs, e−iαt)), hence the M2-brane looks like a D2-D2

pair in the string theory limit. A schematic picture of these asymptotics is given in

figure 4a.

The two pieces of 3-cycle are accidentally located at opposite points in the asymp-

totic S1. However, there is no obstruction to approaching them in a Z2 invariant

fashion, and one may be tempted to claim that full annihilation follows. In fact,

asymptotic annihilation is possible (as explained above from the string theory view-

point), but the twisting of the geometry in the core of XAH makes full annihilation

impossible. In order to see that, we need to extend the 3-cycle (5.4) to the interior of

XAH. A suitable 3-cycle in (5.1), asymptoting to (5.4), is given by

y2 v = y2 v (5.5)
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The 3-cycle (5.5) is moreover invariant under the C∗ related to the SO(3) rotational

symmetry of the configuration. An oversimplified picture of this cycle is shown in figure

4b.

In terms of variables in the asymptotic ‘Taub-NUT’, this reads

s/t + t/s = s/t + t/s (5.6)

For |s| much larger that |t|, this reduces to s/t ∈ R, and viceversa, leading to correct

asymptotic behaviour. However, in the near core region, the 3-cycle (5.5) ends up

winding around the S1 fiber in XAH. This wrapping provides the M2-brane a non-

trivial charge, which prevents annihilation in the near core region.

Hence, the 3-cycle is non-trivial, and can be seen to be 2-torsion (two M2-branes

on the 3-cycle can annihilate to nothing by rotating them in the R2 fibers over RP2 in

XAH, more manifest in figure 4b). Hence the purely K-theoretical RR charge for the

string theory non-BPS state arises from a purely cohomological charge in M-theory.

We conclude the discussion by mentioning that, after asymptotic annihilation in the

M-theory configuration, we are left with an M2-brane wrapped on a compact 3-cycle in

XAH. This should be given by the S1 fibration over RP2 mentioned at the beginning of

Section 5.2. In the string theory limit the M2-brane therefore reduces to a fundamental

string wrapped on the RP2 within R3/Z2 (this is possible since H2(RP2, Z̃) = Z2).

Hence, this provides another example of transmutation between RR and NS-NS torsion

charges. Interestingly enough, the charge in this case is not cohomological (but purely

K-theoretical) when interpreted as a RR torsion charge, but is cohomological when

interpreted as NS-NS charge.

The states we have obtained are new non-BPS states in M-theory 10. As discussed,

they extend the results in [6] on the relation between cohomology in M-theory and

K-theory in string theory. We expect further study of more involved configurations to

sharpen this correspondence. For instance, type IIA theory with a positively charged

O6-plane admits diverse stable non-BPS states. Their M-theory lift is most intriguing,

since the O6+-plane lifts to a mysterious frozen D4 singularity [28]. Such states would

presumably shed light into the nature of M-theory brane charges in such background

(see [29] for a recent discussion). Clearly, the task of understanding the nature of the

M-theory 3-form, the framework that classifies its topological sectors, and its relation

to NS-NS, RR charges and to K-theory in string theory will require much more work.

We hope our results are helpful in this quest.

10See e.g. [27] for other approaches to non-BPS physics in M-theory
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A Appendix: Susy restoration in a type IIB orien-

tifold

In this subsection we show that understanding of the decay of the D̂7-brane can im-

prove our understanding of certain compactifications of type I theory. In particular

certain seemingly non-supersymmetric compactifications involving D̂7-branes have re-

stored supersymmetry once the D̂7-brane tachyons relax to their minimum.

A toy version would be to consider type I on T2 with one D̂7-brane and toron wilson

lines turned on the D9-branes. The system breaks supersymmetry, but the D̂7-brane

is unstable against decay to a second toron which ‘unwinds’ the first. The final model

is the standard toroidal compactification of type I, with unbroken supersymmetry.

The model we present is more involved, and certainly more interesting. In par-

ticular, after the decay of the D̂7-branes, the final configuration is supersymmetric,

but has a non-trivial distribution of Z2 charges, arising from different sources, which

nevertheless add up to zero (as required from K-theory RR charge cancellation [11]).

Our starting point is the Ω orientifold of type IIB compactified on T4/Z2, con-

structed in [32, 33] 11. The model contains 32 D9-branes, and 32 D5-branes, as counted

in the covering space. We consider an initial configuration with trivial Wilson lines on

the D9-branes, leading to a U(16) gauge group, and D5-branes e.g. distributed among

the 16 Z2 fixed points, yielding a product gauge group with total rank 16.

An important observation, as discussed in [34], is that there are certain constraints

on the distribution of D5-branes among the Z2 fixed points. In particular, for any four

fixed points lying in a 2-plane, the total number of D5-branes at such points must be

0 mod 4. In [11], this constraint was shown to arise from cancellation of the K-theory

11We hope no confusion arises between the Z2 orbifold group and the Z2 K-theory charges.
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Z2 charges, by showing that configurations not satisfying the condition in [34] lead to

global gauge anomalies on the world-volume of D5-brane probes.

This argument suggests that configurations violating the condition in [34] may

be rendered consistent by introducing type I D̂7-branes cancelling the K-theory Z2

charge. In the following we present such an example, designed so that the set of D̂7-

branes required is relatively simple. Consider a square T4 with radii Ri, and denote

Nm1,m2,m3,m4
the number of D5-branes sitting at the Z2 fixed point with coordinates

xi = miπRi (hence, mi = 0, 1). Consider distributing 20 D5-branes as

N0000 = 2 ; N0100 = 0 ; N1000 = 0 ; N0100 = 0

N0001 = 0 ; N0101 = 2 ; N1001 = 2 ; N0101 = 2

N0010 = 0 ; N0110 = 2 ; N1010 = 2 ; N0110 = 2

N0011 = 0 ; N0111 = 2 ; N1011 = 2 ; N0111 = 2

(A.1)

while the remaining 12 are located e.g. in the bulk in a Z2 invariant fashion. The

distribution (A.1) violates the condition in [34], for instance along the 2-plane defined

by (x1, x2) = (0, 0). The non-cancellation of the Z2 charge is reflected as a global

gauge anomaly on a D5-brane probe located at (x1, x2) = (0, 0), which contains an odd

number of SU(2) doublet Weyl fermions [11].

The full K-theory charge may be cancelled by introducing one D̂7-brane located at

a generic point in the (x1, x2) plane and wrapped on (x3, x4), and one D̂7-brane at a

generic point in the (x3, x4) plane and wrapped on (x1, x2)
12. Any D5-brane probe on

which the background D5-branes induce a Z2 anomaly intersects exactly one D̂7-brane,

inducing a cancelling anomaly. Conversely, D5-brane probes without anomaly from the

background D5-branes do not get any fermions from the D̂7-branes.

The resulting configuration is hence consistent, and seemingly non-supersymmetric

due to the D̂7-branes. An amusing feature is that supersymmetry is broken due to the

necessity of cancelling the (K-theoretical piece of) RR tadpoles, in a spirit similar to

models with branes and antibranes, or non-BPS branes, in the literature [30, 31, 35].

However, the configuration is not stable, and we should study the final state once

the D̂7-brane tachyons relax to their minimum. Since the D̂7-configuration is relatively

simple, so is the answer. The final, tachyon-free and stable, configuration has the same

distribution of D5-branes among the fixed points, but it has non-trivial Wilson lines

turned on the D9-branes. Their gauge group is U(16), and the Wilson lines γi along

xi can be taken

γ1 = diag (1,−1,−1; 1, 1, 1; 110) ; γ3 = diag (1, 1, 1; 1,−1,−1; 110) (A.2)

12Notice that these D̂7-branes in T
4/Z2 are orbifold invariant pairs of D̂7-branes in the double

covering space.
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γ2 = diag (−1, 1,−1; 1, 1, 1; 110) ; γ4 = diag (1, 1, 1;−1, 1,−1; 110) (A.3)

They correspond to two independent torons in the T2’s transverse to the original D̂7-

branes. Notice that, regarded in the parent SO(32), the Wilson lines (say) γ1, γ2

define two torons exchanged by the orbifold group. This simply reflects that a single

D̂7-brane in the quotient can be regarded as two D̂7-branes in T4, exchanged by the

orbifold group.

It is again possible to check that the K-theory Z2 charge of the configuration prop-

erly cancels, for instance by introducing D5-brane probes wrapped on different 2-planes.

Any such probe on which the background D5-branes induce an anomaly, contains a

compensating anomaly from fermions in the 59+95 sectors.

Notice that the final configuration still violates the condition in [34]. However,

such condition was derived only in the absence of D9-brane Wilson lines, and does

not directly apply to our final model. Instead, we have checked the consistency of the

configuration by the introduction of D-brane probes, as suggested in [11]. Our analysis

hence shows how to generalize the condition, and find new models consistent with K-

theory charge cancellation. In the final model cancellation of the Z2 charge is quite

non-trivial, with two kinds of sources (the distribution of background D5-branes, and

the toron D9-brane Wilson lines) cancelling each other.

The final configuration is supersymmetric. Restoration of supersymmetry after

tachyon condensation was not obvious from the initial model. Hence this example il-

lustrates the importance of treating the D̂7-brane decay properly. We hope the remarks

in this paper help in applying this understanding in less academic examples.
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