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1. Introduction

The Higgs boson [1] is a fundamental ingredient of the Standard Model (SM), but it
has not yet been observed.

Direct searches at LEP imply a lower limit of My > 112.3 GeV (at 95% CL) [2] on
the mass My of the SM Higgs boson. Global SM fits to electroweak precision measure-
ments favour a light Higgs (My <200 GeV) [3]. The combination of the preliminary
Higgs boson search results of the four LEP experiments [4, 5] shows an excess of can-
didates, which may indicate the production of a SM Higgs boson with a mass near
115 GeV. The final analysis of the LEP data is expected soon, but it is unlikely that
it can substantially change these results.

After the end of the LEP physics programme, the search for the Higgs boson will
be carried out at hadron colliders. Depending on the luminosity delivered to the CDF
and DO detectors during the forthcoming Run II, the Tevatron experiments can yield
evidence for a Higgs boson with My < 180 GeV and may be able to discover (at the
50 level) a Higgs boson with My <130 GeV [6]. At the LHC, the SM Higgs boson can
be discovered over the full mass range up to My ~ 1 TeV after a few years of running
[7].

The dominant mechanism for SM Higgs boson production at hadron colliders is
gluon—gluon fusion through a heavy-quark (top-quark) loop [8]. At the Tevatron, this
production mechanism leads to about 65% of the total cross section for producing a
Higgs boson in the mass range My = 100-200 GeV [6]. At the LHC [9], gg fusion
exceeds all the other production channels by a factor decreasing from 8 to 5 when My
increases from 100 to 200 GeV. When My approaches 1 TeV, gg fusion still provides
about 50% of the total production cross section.

QCD radiative corrections at next-to-leading order (NLO) to gg-fusion were com-
puted and found to be large [10, 11, 12]. Since approximate evaluations [13] of higher-
order terms suggest that their effect can still be sizeable, the evaluation of the next-to-
next-to-leading order (NNLO) corrections is highly desirable.

In this paper, we perform a first step towards the complete NNLO calculation. We
use the recently evaluated [14] two-loop amplitude for the process gg — H and the
soft-gluon factorization formulae [15, 16, 17, 18] for the bremsstrahlung subprocesses
gg — Hg and g9 — Hgg, Hqq, and we compute the soft and virtual contributions to
the NNLO partonic cross section. We also discuss all-order resummation of soft-gluon
contributions to next-to-next-to-leading logarithmic (NNLL) accuracy.

We use the approximation M; > My, where M, is the mass of the top quark. The
results of the NLO calculation in Ref. [12] show that this is a good numerical approx-
imation [13] of the full NLO correction, provided the exact dependence on My /M, is
included in the leading-order (LO) term. We can thus assume that the limit M; > My
continues to be a good numerical approximation at NNLO.

The hadronic cross section for Higgs boson production is obtained by convoluting
the perturbative partonic cross sections with the parton distributions of the colliding



hadrons. Besides the partonic cross sections, the other key ingredients of the NNLO
calculation are the NNLO parton distributions. Even though their NNLO evolution
kernels are not fully available, some of their Mellin moments have been computed
[19] and, from these, approximated kernels have been constructed [20]. Recently, the
new MRST [21] sets of distributions became available', including the (approximated)
NNLO densities, which allows an evaluation of the hadronic cross section to (almost
full) NNLO accuracy.

We use our NNLO result for the partonic cross sections and the MRST parton
distributions at NNLO to compute the Higgs boson production cross section at the
LHC. In this paper, we do not present numerical results for Run II at the Tevatron.
Inclusive production of Higgs boson through gluon—gluon fusion is phenomenologically
less relevant at the Tevatron: it is not regarded as a main discovery channel, because
of the large QCD background [6].

The paper is organized as follows. In Sect. 2 we define the soft-virtual approximation
for the cross section and present our result for the corresponding NNLO coefficient. In
Sect. 3 we discuss soft-gluon resummation for Higgs production at NNLL accuracy,
and we also consider the dominant contributions of collinear origin. In Sect. 4 we
present the quantitative effect of the computed NNLO corrections for SM Higgs boson
production at the LHC. Finally, in Sect. 5 we present our conclusions and we comment
on Higgs boson production beyond the SM.

2. QCD cross section at NNLO

We consider the collision of two hadrons h; and hy with centre-of-mass energy /s. The
inclusive cross section for the production of the SM Higgs boson can be written as
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where 7 = M% /s, and pup and pg are factorization and renormalization scales, respec-

tively. The parton densities of the colliding hadrons are denoted by f,/x(x, #7) and the
subscript @ labels the type of massless partons (a = g, ¢y, Gy, with N; different flavours
of light quarks). We use parton densities as defined in the MS factorization scheme.

From Eq. (2.1) the cross section &, for the partonic subprocess ab — H + X at the
centre-of-mass energy § = 11795 = M7 /2 is

A 1
Gar(8, M}) = 3 ooM3 Gup(2) = 09 2 Gup(2) , (2.2)

where the term 1/§ corresponds to the flux factor and leads to an overall z factor.
The Born-level cross section oy and the hard coefficient function G, arise from the
phase-space integral of the matrix elements squared.

fWe thank J. Stirling for providing us with the new set of distributions.



The incoming partons a,b couple to the Higgs boson through heavy-quark loops
and, therefore, oy and G, also depend on the masses My of the heavy quarks. The
Born-level contribution oy is [8]

0= s | S o () (2.3

where Gr = 1.16639 x 107° GeV~? is the Fermi constant, and the amplitude Ag is
given by

3
Ag(z) = ix[l +(1-— x)f(x)} ,
1
in? — >1
B arcsin 7z x>
flw) = 1+vi=w
4 1—v1l—z

In the following we limit ourselves to considering the case of a single heavy quark, the
top quark, and N; = 5 light-quark flavours. We always use M; (M; = 176 GeV) to

denote the on-shell pole mass of the top quark.

2 (2.4)
m} ,x <1

The coefficient function G, in Eq. (2.1) is computable in QCD perturbation theory
according to the expansion
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where the (scale-independent) LO contribution is
GO (2) = 64y 64y 6(1 — 2) . (2.6)

The NLO coefficients G((llb) are known. Their calculation with the exact dependence
on M; was performed in Ref. [12]. In the large-M; limit (i.e. neglecting corrections
that vanish when My /M; — 0) the result is [10, 11]
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where ((n) is the Riemann zeta-function (¢(2) = 72/6 = 1.645..., ((3) = 1.202...),
and we have defined

G (2 M2 /12 M2 [ 1) L G (e My i M [uz) =0, (2.9)

Di(z) = [%] R (2.10)

The kernels P, (z) are the LO Altarelli-Parisi splitting functions for real emission,

. 1 41+ (1-2)?

P8(z) =6 [; —2+2(1— z)} . Pulz) = F— (2.11)
and, more precisely, P;8(z) is the regular part (i.e. after subtracting the 1/(1 — z) soft
singularity) of P, ().

In Egs. (2.7)—(2.9) we can identify three kinds of contributions:

e Soft and virtual corrections, which involve only the gg channel and give rise to
the §(1 — z) and D; terms in Eq. (2.7). These are the most singular terms when
z— 1.

e Purely-collinear logarithmic contributions, which are controlled by the regular
part of the Altarelli-Parisi splitting kernels (see Eqs. (2.7), (2.8)). The argu-
ment of the collinear logarithm corresponds to the maximum value (¢% .. ~
(1 — 2)2M% /=) of the transverse momentum gr of the Higgs boson. These con-
tributions give the next-to-dominant singular terms when z — 1.

e Hard contributions, which are present in all partonic channels and lead to finite
corrections in the limit z — 1 .

The terms proportional to the distributions D;(z) and §(1 — z) can be used to define
what we call the soft-virtual (SV) approximation. In this approximation only the gg
channel contributes and we have
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The SV terms are certainly the dominant contributions to the cross section in the
kinematic region near threshold (7 = M7 /s ~ 1). At fixed s, this means that the SV
terms certainly dominate in the case of heavy Higgs bosons. However, these terms can
give the dominant effect even long before the threshold region in the hadronic cross
section is actually approached. This is a consequence of the fact that the partonic cross
section (8, M?%) has to be convoluted with the parton densities, and the QCD evolution
of the latter sizeably reduces the energy that is available in the partonic hard-scattering



subprocess. Thus, the partonic cross section (8, M%) (or the coefficient function G(z))
in the factorization formula (2.1) is typically evaluated much closer to threshold than
the hadronic cross section. In other words, the parton densities are large at small x and
are strongly suppressed at large = (typically, when z — 1, f(z, u?) ~ (1—x)" withn 2 3
and 1 =2 6 for valence quarks and sea-quarks or gluons, respectively); after integration
over them, the dominant value of the square of the partonic centre-of-mass energy
(8) = (w129)s is therefore substantially smaller than the corresponding hadronic value
s. Note, also, that this effect is enhanced, in gluon-dominated processes, by the stronger
suppression of the gluon density at large x. In the case of Higgs boson production at
the LHC, these features were emphasized in Ref. [13], where the authors pointed out
that the SV approximation gives a good numerical approximation (see also Sect. 4) of
the complete NLO corrections down to low values (My ~ 100 GeV) of the Higgs boson
mass.

The NNLO coefficients Gfb) are not yet known. Their computation, including their
exact dependence on M;, is certainly very difficult, since it requires the evaluation of
three-loop Feynman diagrams.

The computation is certainly more feasible in the large-M; limit, where one can
exploit the effective-lagrangian approach introduced in Ref. [22] and developed up to
O(ad) in Refs. [23, 13]. Using this approach, the contribution of the heavy-quark loop
is embodied by an effective vertex, thus reducing by one the number of loop integrals
to be explicitly carried out.

Within the effective-lagrangian formalism, an important step has recently been
performed by Harlander [14], who has evaluated the two-loop amplitude for the process
gg — H by using dimensional regularization in d = 4 — 2¢ space-time dimensions. The
two-loop amplitude has poles of the type 1/€" with n = 4,3,2,1. The coefficients of
the poles of order n = 4,3, 2 had been predicted in Ref. [24]. The agreement [25] with
this prediction is a non-trivial check of Harlander’s result.

To compute the NNLO cross section, the two-loop amplitude for the process gg — H
has to be combined with the phase-space integrals of the squares of the one-loop matrix
element for the process gg — Hg and of the tree-level matrix elements for the processes
g9 — Hgg and g9 — Hqq. We have computed these matrix elements in the limit
where the final-state partons are soft, by using the one-loop and tree-level factorization
formulae derived in Refs. [15, 16] and Refs. [17, 18], respectively. Then, we have carried
out the phase-space integrals by using the technique of Ref. [26]. The result contains
e-poles and finite terms. The e-poles (including the single pole 1/¢) exactly cancel
those in the two-loop amplitude [14], thus providing a non-trivial cross-check of our
and Harlander’s results. The remaining finite terms give the complete soft and virtual
contributions to the NNLO cross section.

Details of our calculation will be presented elsewhere [27]. In this paper we limit
ourselves to presenting the final result. We obtain the following soft and virtual con-



tributions to the NNLO coefficient function G(g2g):
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Note that our result in Eq. (2.13) gives the complete soft contributions (all the terms
proportional to the distributions D;(z)) to the NNLO coefficient functions G( )( ). It
also gives the complete virtual contribution (the term proportional to 6(1 — 2)) to the
gg channel. The expression in Eq. (2.13) is an approximation of the exact NNLO
calculation in the sense that it differs from G'fb) (z) by terms that are less singular when
z — 1. More precisely, in the large-z limit we have (see Sect. (3))

G (2) = GV (2) = O(In’(1 — 2)) (2.14)

Ggl)(z) = O(ln*(1 - 2)) , (2.15)

GP(2) x 6(1—2) + O((1 — 2)In*(1 - 2)) , GP(2) = O((1 - 2)In*(1—2)) .
(2.16)

Note also that, unlike the NLO term GS))(Z), the NNLO coefficient function Gﬁ)(z)
is not independent of M, in the large-M; limit. The virtual contribution in Eq. (2.13)
contains a term, proportional to In M% /M?, that derives from the integration of the
heavy-quark degrees of freedom in the effective lagrangian [23, 13].

Our result in Eq. (2.13) can be useful as a non-trivial check of a future complete
calculation at NNLO. It can also be used to extend the accuracy of the soft-gluon
resummation formalism to NNLL order (see Sect. 3).



As previously discussed, the SV approximation turns out to be a good numerical
approximation of the full NLO correction for Higgs boson production at the LHC.
Thus, the NNLO-SV result in Eq. (2.13) can also be exploited to obtain an approximate
numerical estimate of the complete NNLO correction (see Sect. 4).

3. Soft-gluon resummation at NNLL accuracy

The soft (and virtual) contributions a2aD,,(z) (with m < 2n — 1) to the coefficient
function Gy4(2) can be summed to all orders in QCD perturbation theory. Using
the soft-gluon resummation formulae that are known at present, we can check the
coefficients of some of the soft contributions presented in Eq. (2.13). The remaining
coefficients can then be used to extend the accuracy of the resummation formulae to
NNLL order. Both points are discussed in this section.

The formalism to systematically perform soft-gluon resummation for processes ini-
tiated by ¢g annihilation and gg fusion was set up in Refs. [28, 29, 30, 31]. Soft-gluon
resummation has to be carried out in the Mellin (or N-moment) space. The N-moments
G of the coefficient function G(z) are defined by

Gy = /Oldz MG (2) . (3.1)

In N-moment space the soft (or threshold) region z — 1 corresponds to the limit N —
00, and the distributions D,,(z) lead to logarithmic contributions, D,,(z) — In™"' N.
The singular contributions in the large-N limit can be organized in the following all-
order resummation formula:

Gygn = Cyglas(up), Mi/ i My /1) AR (as(pg), My /wa; M /u) + O(1/N) .
(3.2)

The radiative factor A¥ embodies all the large contributions In N due to soft radiation.
The function Cy,(as) contains all the terms that are constant in the large-N limit and
has a perturbative expansion analogous to Eq. (2.5):

Cglas(ph). My [ uh; M 13) =

+0c0 2 n
Ny (O‘S“‘R)) T ML ME L) . (33)
n=1
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These constant terms are due to virtual contributions, and the perturbative coefficients

622) are thus directly related to the coefficients of the contribution proportional to

d(1—2)in Gg;)(z). The term O(1/N) on the right-hand side of Eq. (3.2) denotes all the
contributions that are suppressed by some power of 1/N (modulo In N enhancement)
when N — oc.



The radiative factor AY for Higgs boson production has the following general ex-
pression [28, 29, 32]:

2
AN (os(pf), My /1 Mg /i) = [A%(as(uk), M /i My / 1))

ANV (as (i), M 1) (3.4)

Each term A%, embodies the effect of soft-gluon radiation emitted collinearly to the

initial-state partons and depends on both the factorization scheme and the factorization
scale pp. In the MS factorization scheme we have the exponentiated result

) S o 1 SN-1_ 1 (1—2)2M% dq2 )
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where A,(ag) is a perturbative function
2 3
Ag(ag) = 224D 4 (O‘—) AD 4 (O‘—) A® 1 O(ad) . (3.6)
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The factor Ag\i,nt) is independent of the factorization scale and scheme and contains the
contribution of soft-gluon emission at large angles with respect to the direction of the
colliding gluons. It can also be written in exponentiated form as

1 N-1
in z —1
A (as(d). M ) =exp { [ dz T Dalas( - 22ME) ). (37
0
where the function Dy (ag) for Higgs production has the following perturbative expan-
sion:
e 2
Duas) = (=) D +0(ad) . (3.8)

The coefficients A and A® fully control soft-gluon resummation up to next-to-
leading logarithmic (NLL) accuracy [28, 29, 32]. In the case of a generic incoming
parton a, they are given by

1
AV =, N”:EQK, (3.9)

a

where C, = Cr =4/3 if a = q,G and C, = C4 = 3 if a = g, while the coefficient K is
the same both for quarks and for gluons [33, 30, 34] and it is given by

67 5
K=Cy|—=—-——|—=Ny. 3.10

A(18 6) 9 (310)
Expanding the resummation formula (3.2) up to O(ad) and transforming the result back
to z-space, it is straightforward to check that we correctly obtain the soft contributions,



Dy(z) and Dy(z), to GS))SV(Z) in Eq. (2.12). By comparison with the virtual term in
Eq. (2.12), we can also extract the coefficient 5;;) in Eq. (3.3):

—(1) 11 33 —2N; . pu?
F

(3.11)
Then, we can expand the resummation formula (3.2) up to O(ag), and we can compare
the result with our NNLO soft-virtual calculation in Eq. (2.13). It is straightforward to
check that the knowledge of A}, AP and 52) predicts the coefficients of Ds(2), Da(2)
and Dy (z) in Gfg)sv(z), and that the prediction fully agrees with our result in Eq. (2.13).

The comparison* at O(ad) and our calculation of the Dy-term in Eq. (2.13) also

allows us to extract the (so far unknown) coefficient Dg) that controls soft-gluon re-
summation at NNLL order. We obtain

D =4~ + 5@+ 56 +Cay (7 -50)) . (a2
Note that the corresponding NNLL coefficient for the Drell-Yan process [35] differs
from Dg) by the simple replacement of colour factors Cr — C4. This could have
straightforwardly been predicted from the general structure of the soft-factorization
formulae at O(a?) (see Sect. 5 of Ref. [16] and the Appendix of Ref. [18]). The exact
expression of the remaining NNLL coefficient Aég) is still unknown, but an approximate
numerical estimate can be found in Ref. [35].

The integrals over z and ¢* in Eqgs. (3.5) and (3.7) can be carried out to any re-
quired logarithmic accuracy (see Refs. [32, 35]) and used for phenomenological analyses.
Quantitative studies of soft-gluon resummation effects for Higgs boson production are
left to future investigations.

3.1. Collinear-improved resummation

In Ref. [13] Kramer, Laenen and Spira (KLS) exploited the resummation formalism to
obtain approximate expressions for the NNLO corrections to Higgs boson production.
Their resummation formula is a simplified version of Eq. (3.2) that includes only the
first-order coefficients (the coefficients A(l),ﬁ(l) and the first-order coefficient 3, in the
expression of the running coupling as(¢?)). Therefore, the NNLO expressions obtained
in Ref. [13] correctly predict only the coefficients of the contributions D3 and D, to the
soft and virtual coefficient function GéZQ)SV in Eq. (2.13).

KLS also pointed out [13] that the resummation formalism can be extended to
include subdominant contributions in the large-z limit. These contributions are the
terms proportional to powers of In(1 — z) that appear in Gy,(z) (see, e.g., Eq. (2.7)).
In N-moment space, they lead to contributions of the type % In* N, which are usually

#We can also extract the virtual coefficient 6;29) in Eq. (3.3).



(and consistently) neglected within the soft and virtual approximation (i.e. in the limit
N — 0).

We agree with KLS that the highest power® of In(1 — 2) at the n-th perturbative
order, namely, In**~!(1—2) in G’g;)(z) (or, equivalently, the term + In**~" N in G(gZ?N),
can correctly and consistently be implemented in the all-order resummation formula
(3.2). The key observation [13] is that these terms have a collinear origin. They arise
from the transverse-momentum evolution of initial-state collinear radiation up to the
maximum value of ¢r permitted by kinematics. In the large-z limit, the maximum
value is g2 .. ~ (1 — 2)2M%, which is very different from the typical hard scale M7 of
the process. The large transverse-momentum region (1 —2)2M% < g3 < M% is thus re-
sponsible for the leading In(1 — z)-enhancement. The resummation formalism correctly
embodies the transverse-momentum evolution of soft radiation up to the kinematical
limit (1 — 2)*M% (see Eq. (3.5)). Therefore, the leading collinear enhancement can be
taken into account by supplementing the integrand in Eq. (3.5) with the regular (i.e.
non-soft) part of the Altarelli-Parisi splitting function (see Eq. (2.11)). Both for the
qq annihilation (Drell-Yan process) and gg fusion (Higgs production) channels, we can
simply perform the following replacement on the right-hand side of Eq. (3.5):

AN | 1
(1) A(l) N-1 — pres _
1— 2 o 7 1— 2 a+z 2aa(2)
_[AT = ] 4o 2
- |5 A1 AD 4 O(1/N?) | (3.13)
—Z

Having performed the replacement of Eq. (3.13) in A%, we can insert its ensu-
ing collinear-improved expression in Eq. (3.2). The resummed expression for the N
moments of the coefficient function G4, y can then be expanded in powers of ag in
the large-N limit by consistently computing and keeping all the terms of the type
o@,ag%ln%’l N. Transforming the result back to z-space, this procedure gives the
soft and virtual contributions to Gg;)(z) plus its leading subdominant correction (the
contribution proportional to In**~!(1 — 2)) when z — 1.

We name soft-virtual-collinear (SVC) approximation this improved version of the
SV expressions in Egs. (2.12) and (2.13). We find

GV (s M s M3y i) = G5 (2 M s M3y /i) — 12 (1 —2) , (3.14)

99

GOSVO (2 M} 1y M} 1) = G5V (25 M [y My i) — T2 In®(1— 2) . (3.15)

The coefficient of In(1—z) in Eq. (3.14) correctly reproduces that obtained by the exact
NLO expression in Eq. (2.7). The coefficient of In*(1 — z) in Eq. (3.15) agrees with that
computed in Ref. [13].

The numerical study of Ref. [13] shows that the effect of the contribution In(1 — z)
at NLO is not small (see also Sect. 4), in particular at low values of the Higgs boson

§As for lower powers, KLS acknowledge [13] that their result is not complete.
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mass. Therefore, in our estimate (Sect. 4) of the NNLO corrections to Higgs boson
production at the LHC, we consider both the SV approximation in Eq. (2.13) and the
SVC approximation in Eq. (3.15). In the gg partonic channel we thus neglect NNLO
of the type
G’;?(z) - Gfg)svc(z) = O(In*(1 — 2)) , (3.16)
Note, however, that the coefficient function of the gg channel still contains contri-
butions proportional to In(1 — z) at NLO (see Eq. (2.8)) and to In*(1 — 2) at NNLO
(see Eq. (2.15)). We do not consider the latter. At low values of the Higgs boson mass
their effect is small, because the parton density luminosity of the gg channel is smaller
than that of the gg channel. The effect increases by increasing the Higgs boson mass.

4. Numerical results at the LHC

In this section we study the phenomenological impact of the higher-order QCD cor-
rections on the production of the SM Higgs boson at the LHC, i.e. proton—proton
collisions at /s = 14 TeV. We recall that we include the exact dependence on M; in
the Born-level cross section oy (see Eq. (2.3)), while the coefficient function G(2) is
evaluated in the large-M; approximation. At NLO [12, 13] this is a very good numer-
ical approximation when My < 2M,, and it is still accurate to better than 10% when
My <1 TeV.

Unless otherwise stated, cross sections are computed using the new MRST2000
[21] sets of parton distributions, with densities and coupling constant evaluated at
each corresponding order, i.e. using LO distributions and 1-loop ag for the LO cross
section, and so forth. The corresponding values of AS)CD (ag(Myz)) are 0.132 (0.1253),
0.22 (0.1175) and 0.187 GeV (0.1161), at 1-loop, 2-loop and 3-loop order, respectively.
In the NNLO case we use the ‘central’” set of MRST2000, obtained from a global fit
of data (deep inelastic scattering, Drell-Yan production and jet Ep distribution) by
using the approximate NNLO evolution kernels presented in Ref. [20]. The result
we refer to as NNLO-SV (SVC) corresponds to the sum of the LO and exact NLO
(including the gg and ¢g channels) contributions plus the SV (SVC) corrections at
NNLO, given in Eq. (2.13) (Eq. (3.15)). The LO and NLO results obtained by using
the CTEQ) distributions [36] are very similar to the ones computed with the MRST2000
sets (the differences are smaller than the uncertainties arising, for instance, from scale
dependence). Therefore, we will not show those results Y.

The comparison between different sets of parton distributions, however, cannot be
regarded as a way to quantitatively estimate the uncertainty on the parton distribu-
tions. The theoretical and experimental errors that affect present determinations of the

YLarger deviations (for instance, the NLO cross section increases by ~ 10% for Mz = 100 — 200
GeV) appear when comparing to the GRV98 distributions [37], where both the gluon distribution and
the value of ag(Mz) are different from those of MRST2000 and CTEQ5.
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parton distributions are typically larger [38] than the differences between the parton
distribution sets provided by different groups [21, 36, 37]. In the case of Higgs boson
production at the LHC, the study of the CTEQ Collaboration [39] recommends an
uncertainty of about +10% on the corresponding gluon—gluon and quark—gluon parton
luminosities.

20

—— NNLO-SV/SVC My=115 GeV |
Co o NIO MRST2000

.. 0 i 1
0 PR PSP YN YOO PP P SR INPRRUPRN IO RS PSP PN FPOYY OOPL P RSP ENPRRUPRN Y PP I DU PR )0 ) ISR SR O
0.3 050710 2.0 3.0 0.3 050.71.0 2.0 3.0 03 050.71.0 2.0 3.0

X XF XR

Figure 1: Scale dependence of the Higgs production cross section for My = 115 GeV at LO,
NLO, NNLO-SV and NNLO-SVC.

We begin the presentation of our results by showing in Fig. 1 the scale dependence
of the cross section for the production of a Higgs boson with My = 115 GeV. The scale
dependence is analysed by varying the factorization and renormalization scales by a
factor of 4 up and down from the default value My. The plot on the left corresponds
to the simultaneous variation of both scales, ur = ur = x My, whereas the plots in
the centre and on the right correspond, respectively, to the results of the independent
variation of the factorization or renormalization scale, keeping the other scale fixed at
the default value.

As expected from the QCD running of ag, the cross sections typically decrease
when pg increases around the characteristic hard scale My. In the case of variations of
1, we observe the opposite behaviour. In fact, the cross sections are mainly sensitive
to partons with momentum fraction x ~ 1072, and in this z-range scaling violation
of the parton densities is (moderately) positive. As a result, the scale dependence is
mostly driven by the renormalization scale, because the lowest-order contribution to
the process is proportional to a2, a (relatively) high power of ag.

Figure 1 shows that the scale dependence is reduced when higher-order corrections
are included and, in the case of the factorization-scale dependence, a maximum appears
at NNLO-SV and NNLO-SVC, showing the improved stability of the result. Also
note that there is an increase in the scale dependence when going from NNLO-SV
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to NNLO-SVC. This is due to the fact that the dominant collinear terms included
in the SVC approximation give a sizeable contribution and are scale-independent (see
Egs. (3.14) and (3.15)), so their effect cannot be compensated by scale variations.
Similar results are obtained for higher masses, with a reduction in the scale dependence
when approaching high mass values.

NNLO—SVC
30r NLO—SVC L2 s eI o0
NLO KR RIKRIRL K KKK X HKHK
CREEERRLRLLIAIILII IR
S '(’"”A’%’6’5""“’"‘eAeAeAQAA’A’"A’A
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Figure 2: K-factors for Higgs production for the full NLO result and the NLO-SV, NLO-
SVC, NNLO-SV and NNLO-SVC approzimations.

The impact of higher-order corrections is usually studied by computing K-factors,
defined as the ratio of the cross section evaluated at each corresponding order over
the LO result. The K-factors are shown in Fig. 2 where the bands account for the
‘theoretical uncertainty’ due to the scale dependence, quantified by using the minimum
and maximum values of the cross sections when the scales ur and pup are varied (simul-
taneously and independently, as in Fig. 1) in the range 0.5 < x, xg, Xr < 2. The LO
result that normalizes the K-factors is computed at the default scale My in all cases.

The plot on the left-hand side of Fig. 2 shows the uncertainty at LO and compares
the exact NLO result with the NLO-SV and NLO-SVC approximations. In the case of
light Higgs production, the NLO-SV approximation tends to underestimate the exact
result by about 15 to 20%, whereas the NLO-SVC approximation only slightly overes-
timates it, showing the numerical importance of the term In(1 — z) added in the SVC
approximation. Nevertheless, all the results agree within the theoretical bands: this
confirms the validity of the large-z approximation to estimate higher-order corrections,
and, in particular, allows us to assume that a similar situation occurs at NNLO. As
expected, the agreement between the three results improves for larger masses.

The right-hand side of Fig. 2 shows the SV and SVC results at NNLO. Again, the
SVC band sits higher than the SV one, the ratio of the corresponding cross sections
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being almost the same as the one at NLO, as shown in the inset plot. The contribution
from non-leading terms In"(1 — 2), with k& < 3 (which are not under control within
the SVC approximation), is not included, but it is expected to be numerically less
important/.

As is well known, the customary procedure (that we also are using) of varying the
scales to estimate the theoretical uncertainty can only give a lower limit on the ‘true’
uncertainty. This is well demonstrated by Fig. 2, which shows no overlap between the
LO and NLO bands. However, the NLO and NNLO bands do overlap, thus suggesting
that the perturbative expansion begins to converge from NNLO. Note also that the
size of the NNLO bands is smaller than that of the NLO bands: the scale dependence
at NNLO is smaller than at NLO.

Considering the results obtained at NLO, it is reasonable to expect the full NNLO
K-factor to lie inside the SV and SVC bands, and most probably, closer to the SVC
one. In particular, for a light Higgs boson (My <200 GeV), this expectation would
correspond to an increase of 15 to 25% with respect to the full NLO result, i.e. a
factor of about 2.2 to 2.4 with respect to the LO result. Taking into account that the
NLO result increases the LO cross section by about 90% our result anticipates a good
convergence of the perturbative series.

100.0

&
50.0 5--\\ MRSTZ2000 B

10.0

5.0

a(pb)

1.0

0.5

200 400 600 800 1000
My (GeV)

Figure 3: Cross section for Higgs boson production at the LHC in the NNLO-SV and NNLO-
SVC approzimations.

In Fig. 3 we present the NNLO-SV and SVC cross sections as a function of the Higgs
mass and including the corresponding uncertainty bands computed as defined above. To
facilitate the comparison with other calculations and more refined predictions, we report
the values of the cross sections for the production of a Higgs boson with My = 115

IWe have tried to add a term In*(1 — z) with a coefficient as large as that of the term In*(1 — z),
finding only a small (about 5%) modification.
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Figure 4: Cross section for Higgs production with My = 115 GeV computed using different
NLO and NNLO parton distributions and coupling constant.

GeV. The NNLO-SVC band corresponds to o = 43.51-58.56 pb (50.13 pb at the default
scales), the NNLO-SV to o = 37.73-45.69 pb (41.66 pb at the default scales), whereas
for the full NLO it is 0 = 34.14-48.48 pb (40.37 pb at the default scales).

Finally we want to quantify the effect of the (approximated) NNLO parton distri-
butions in the gluonic channel. In Fig. 4 we study this effect for the NNLO-SV result
at My = 115 GeV, by plotting the cross section as a function of the scale. We use
different combinations of NNLO and NLO parton distributions and coupling constant
expressions. The inset plot shows the ratio R of the different results with respect to the
one obtained by using NNLO distributions and 3-loop ag. The use of NNLO distribu-
tions and 3-loop ag reduces the NNLO cross section by 10% with respect to the result
that would be obtained if NLO distributions and 2 loop ag were used. Since the values
of ag(Myz) from MRST2000 are very similar at 2 and 3 loops and the typical scale
of the process is not far from My, the effect of going from 2 to 3 loops ag amounts
to only 1/3 of the 10% change. The biggest effect comes from the difference in the
distributions, mostly due to the decrease of the NNLO gluon density at small = [21].
Similar results are obtained in the SVC approximation and for different masses.

5. Conclusions
In this paper we have studied the QCD corrections to Higgs boson production through

gluon—gluon fusion in hadronic collisions, within the framework of the large- M, approx-
imation. Using a recent result for the two-loop correction to the gg — H amplitude [14]
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and the soft-factorization formulae for soft-gluon emission at O(a2) [15, 16, 17, 18] we
have evaluated the soft and virtual QCD correction to this process at NNLO (SV ap-
proximation). We have also considered [13] the leading In®(1 — 2) contribution from the
collinear region (SVC approximation). Our result for the coefficient G(QZ)SV in Eq. (2.13)
is consistent with the present knowledge of soft-gluon resummation at NLL accuracy;
it also allows us to fix the NNLL coefficient Dg) in Eq. (3.8).

We have then studied the phenomenological impact of our results at the LHC by
using the (approximate) NNLO set MRST2000 of parton distributions [21]. We have
shown that the exact NLO result lies in between the NLO-SV approximation and the
NLO-SVC approximation, the latter being a better numerical approximation in the
case of low values of the Higgs boson mass. Comparing the results in the SV and
SVC approximations at NNLO for a light Higgs (Mg <200 GeV), we estimate that the
NNLO correction will increase the NLO result between 15 and 25%.

The results presented here are a first consistent (though approximate) estimate
of QCD corrections to Higgs boson production through gg fusion at NNLO and will
eventually be a stringent check of a future full NNLO calculation.

In this paper we have only considered the production of the SM Higgs boson. The
Minimal Supersymmetric extension of the Standard Model (MSSM) leads to two CP-
even neutral Higgs bosons [1]. They are produced by gg fusion through loops of heavy
quarks (top, bottom) and squarks. For small values (tan 3 < 5) of the MSSM parameter
tan 3, the NLO QCD corrections to this production mechanism are comparable (to
better than 10%) [12, 40, 9] to those for SM Higgs boson production. Therefore, the
NNLO K-factors computed in this paper could also be applicable to MSSM Higgs boson
production.

Note added: The calculation of the soft and virtual NNLO corrections to Higgs
boson production has independently been performed in Ref.[41]. The method used in
Ref.[41] is different from ours. The analytical results fully agree.
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