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1. Introduction

The Higgs boson [1] is a fundamental ingredient of the Standard Model (SM), but it

has not yet been observed.

Direct searches at LEP imply a lower limit of MH > 112.3 GeV (at 95% CL) [2] on

the mass MH of the SM Higgs boson. Global SM fits to electroweak precision measure-

ments favour a light Higgs (MH ∼< 200 GeV) [3]. The combination of the preliminary

Higgs boson search results of the four LEP experiments [4, 5] shows an excess of can-

didates, which may indicate the production of a SM Higgs boson with a mass near

115 GeV. The final analysis of the LEP data is expected soon, but it is unlikely that

it can substantially change these results.

After the end of the LEP physics programme, the search for the Higgs boson will

be carried out at hadron colliders. Depending on the luminosity delivered to the CDF

and D0 detectors during the forthcoming Run II, the Tevatron experiments can yield

evidence for a Higgs boson with MH < 180 GeV and may be able to discover (at the

5σ level) a Higgs boson with MH ∼< 130 GeV [6]. At the LHC, the SM Higgs boson can

be discovered over the full mass range up to MH ∼ 1 TeV after a few years of running

[7].

The dominant mechanism for SM Higgs boson production at hadron colliders is

gluon–gluon fusion through a heavy-quark (top-quark) loop [8]. At the Tevatron, this

production mechanism leads to about 65% of the total cross section for producing a

Higgs boson in the mass range MH = 100-200 GeV [6]. At the LHC [9], gg fusion

exceeds all the other production channels by a factor decreasing from 8 to 5 when MH

increases from 100 to 200 GeV. When MH approaches 1 TeV, gg fusion still provides

about 50% of the total production cross section.

QCD radiative corrections at next-to-leading order (NLO) to gg-fusion were com-

puted and found to be large [10, 11, 12]. Since approximate evaluations [13] of higher-

order terms suggest that their effect can still be sizeable, the evaluation of the next-to-

next-to-leading order (NNLO) corrections is highly desirable.

In this paper, we perform a first step towards the complete NNLO calculation. We

use the recently evaluated [14] two-loop amplitude for the process gg → H and the

soft-gluon factorization formulae [15, 16, 17, 18] for the bremsstrahlung subprocesses

gg → Hg and gg → Hgg, Hqq̄, and we compute the soft and virtual contributions to

the NNLO partonic cross section. We also discuss all-order resummation of soft-gluon

contributions to next-to-next-to-leading logarithmic (NNLL) accuracy.

We use the approximation Mt � MH , where Mt is the mass of the top quark. The

results of the NLO calculation in Ref. [12] show that this is a good numerical approx-

imation [13] of the full NLO correction, provided the exact dependence on MH/Mt is

included in the leading-order (LO) term. We can thus assume that the limit Mt � MH

continues to be a good numerical approximation at NNLO.

The hadronic cross section for Higgs boson production is obtained by convoluting

the perturbative partonic cross sections with the parton distributions of the colliding
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hadrons. Besides the partonic cross sections, the other key ingredients of the NNLO

calculation are the NNLO parton distributions. Even though their NNLO evolution

kernels are not fully available, some of their Mellin moments have been computed

[19] and, from these, approximated kernels have been constructed [20]. Recently, the

new MRST [21] sets of distributions became available†, including the (approximated)

NNLO densities, which allows an evaluation of the hadronic cross section to (almost

full) NNLO accuracy.

We use our NNLO result for the partonic cross sections and the MRST parton

distributions at NNLO to compute the Higgs boson production cross section at the

LHC. In this paper, we do not present numerical results for Run II at the Tevatron.

Inclusive production of Higgs boson through gluon–gluon fusion is phenomenologically

less relevant at the Tevatron: it is not regarded as a main discovery channel, because

of the large QCD background [6].

The paper is organized as follows. In Sect. 2 we define the soft-virtual approximation

for the cross section and present our result for the corresponding NNLO coefficient. In

Sect. 3 we discuss soft-gluon resummation for Higgs production at NNLL accuracy,

and we also consider the dominant contributions of collinear origin. In Sect. 4 we

present the quantitative effect of the computed NNLO corrections for SM Higgs boson

production at the LHC. Finally, in Sect. 5 we present our conclusions and we comment

on Higgs boson production beyond the SM.

2. QCD cross section at NNLO

We consider the collision of two hadrons h1 and h2 with centre-of-mass energy
√

s. The

inclusive cross section for the production of the SM Higgs boson can be written as

σ(s, M2
H) =

∑
a,b

∫ 1

0

dx1 dx1 fa/h1(x1, µ
2
F ) fb/h2(x2, µ

2
F )

∫ 1

0

dz δ

(
z − τ

x1x2

)

· σ0 z Gab(z; αS(µ
2
R), M2

H/µ2
R; M2

H/µ2
F ) , (2.1)

where τ = M2
H/s, and µF and µR are factorization and renormalization scales, respec-

tively. The parton densities of the colliding hadrons are denoted by fa/h(x, µ2
F ) and the

subscript a labels the type of massless partons (a = g, qf , q̄f , with Nf different flavours

of light quarks). We use parton densities as defined in the MS factorization scheme.

From Eq. (2.1) the cross section σ̂ab for the partonic subprocess ab → H +X at the

centre-of-mass energy ŝ = x1x2s = M2
H/z is

σ̂ab(ŝ, M
2
H) =

1

ŝ
σ0M

2
H Gab(z) = σ0 z Gab(z) , (2.2)

where the term 1/ŝ corresponds to the flux factor and leads to an overall z factor.

The Born-level cross section σ0 and the hard coefficient function Gab arise from the

phase-space integral of the matrix elements squared.
†We thank J. Stirling for providing us with the new set of distributions.
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The incoming partons a, b couple to the Higgs boson through heavy-quark loops

and, therefore, σ0 and Gab also depend on the masses MQ of the heavy quarks. The

Born-level contribution σ0 is [8]

σ0 =
GF

288π
√

2
|
∑
Q

AQ

(
4M2

Q

M2
H

)
|2 , (2.3)

where GF = 1.16639 × 10−5 GeV−2 is the Fermi constant, and the amplitude AQ is

given by

AQ(x) =
3

2
x
[
1 + (1− x)f(x)

]
,

f(x) =




arcsin2 1√
x

, x ≥ 1

−1

4

[
ln

1 +
√

1− x

1−√1− x
− iπ

]2

, x < 1

. (2.4)

In the following we limit ourselves to considering the case of a single heavy quark, the

top quark, and Nf = 5 light-quark flavours. We always use Mt (Mt = 176 GeV) to

denote the on-shell pole mass of the top quark.

The coefficient function Gab in Eq. (2.1) is computable in QCD perturbation theory

according to the expansion

Gab(z; αS(µ
2
R), M2

H/µ2
R; M2

H/µ2
F ) = α2

S(µ
2
R)

+∞∑
n=0

(
αS(µ

2
R)

π

)n

G
(n)
ab (z; M2

H/µ2
R; M2

H/µ2
F )

= α2
S(µ

2
R) G

(0)
ab (z) +

α3
S(µ

2
R)

π
G

(1)
ab

(
z;

M2
H

µ2
R

;
M2

H

µ2
F

)

+
α4

S(µ
2
R)

π2
G

(2)
ab

(
z;

M2
H

µ2
R

;
M2

H

µ2
F

)
+O(α5

S) , (2.5)

where the (scale-independent) LO contribution is

G
(0)
ab (z) = δag δbg δ(1− z) . (2.6)

The NLO coefficients G
(1)
ab are known. Their calculation with the exact dependence

on Mt was performed in Ref. [12]. In the large-Mt limit (i.e. neglecting corrections

that vanish when MH/Mt → 0) the result is [10, 11]

G(1)
gg (z; M2

H/µ2
R;M2

H/µ2
F ) = δ(1− z)

(
11

2
+ 6ζ(2) +

33− 2Nf

6
ln

µ2
R

µ2
F

)
+ 12D1

+ 6D0 ln
M2

H

µ2
F

+ P reg
gg (z) ln

(1− z)2M2
H

zµ2
F

− 6
ln z

1− z
− 11

2

(1− z)3

z
,

(2.7)

G(1)
gq (z; M2

H/µ2
R; M2

H/µ2
F ) =

1

2
Pgq(z) ln

(1− z)2M2
H

zµ2
F

+
2

3
z − (1− z)2

z
, (2.8)
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G
(1)
qq̄ (z; M2

H/µ2
R; M2

H/µ2
F ) =

32

27

(1− z)3

z
, G(1)

qq (z; M2
H/µ2

R; M2
H/µ2

F ) = 0 , (2.9)

where ζ(n) is the Riemann zeta-function (ζ(2) = π2/6 = 1.645 . . . , ζ(3) = 1.202 . . . ),

and we have defined

Di(z) ≡
[
lni(1− z)

1− z

]
+

. (2.10)

The kernels Pab(z) are the LO Altarelli–Parisi splitting functions for real emission,

P reg
gg (z) = 6

[
1

z
− 2 + z(1− z)

]
, Pgq(z) =

4

3

1 + (1− z)2

z
, (2.11)

and, more precisely, P reg
gg (z) is the regular part (i.e. after subtracting the 1/(1− z) soft

singularity) of Pgg(z).

In Eqs. (2.7)–(2.9) we can identify three kinds of contributions:

• Soft and virtual corrections, which involve only the gg channel and give rise to

the δ(1− z) and Di terms in Eq. (2.7). These are the most singular terms when

z → 1.

• Purely-collinear logarithmic contributions, which are controlled by the regular

part of the Altarelli–Parisi splitting kernels (see Eqs. (2.7), (2.8)). The argu-

ment of the collinear logarithm corresponds to the maximum value (q2
T max ∼

(1 − z)2M2
H/z) of the transverse momentum qT of the Higgs boson. These con-

tributions give the next-to-dominant singular terms when z → 1.

• Hard contributions, which are present in all partonic channels and lead to finite

corrections in the limit z → 1 .

The terms proportional to the distributions Di(z) and δ(1−z) can be used to define

what we call the soft-virtual (SV) approximation. In this approximation only the gg

channel contributes and we have

G
(1)SV
ab (z; M2

H/µ2
R; M2

H/µ2
F ) = δagδbg

[
δ(1− z)

(
11

2
+ 6ζ(2) +

33− 2Nf

6
ln

µ2
R

µ2
F

)

+ 6D0 ln
M2

H

µ2
F

+ 12D1

]
. (2.12)

The SV terms are certainly the dominant contributions to the cross section in the

kinematic region near threshold (τ = M2
H/s ∼ 1). At fixed s, this means that the SV

terms certainly dominate in the case of heavy Higgs bosons. However, these terms can

give the dominant effect even long before the threshold region in the hadronic cross

section is actually approached. This is a consequence of the fact that the partonic cross

section σ̂(ŝ, M2
H) has to be convoluted with the parton densities, and the QCD evolution

of the latter sizeably reduces the energy that is available in the partonic hard-scattering
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subprocess. Thus, the partonic cross section σ̂(ŝ, M2
H) (or the coefficient function G(z))

in the factorization formula (2.1) is typically evaluated much closer to threshold than

the hadronic cross section. In other words, the parton densities are large at small x and

are strongly suppressed at large x (typically, when x → 1, f(x, µ2) ∼ (1−x)η with η∼> 3

and η∼> 6 for valence quarks and sea-quarks or gluons, respectively); after integration

over them, the dominant value of the square of the partonic centre-of-mass energy

〈ŝ〉 = 〈x1x2〉s is therefore substantially smaller than the corresponding hadronic value

s. Note, also, that this effect is enhanced, in gluon-dominated processes, by the stronger

suppression of the gluon density at large x. In the case of Higgs boson production at

the LHC, these features were emphasized in Ref. [13], where the authors pointed out

that the SV approximation gives a good numerical approximation (see also Sect. 4) of

the complete NLO corrections down to low values (MH ∼ 100 GeV) of the Higgs boson

mass.

The NNLO coefficients G
(2)
ab are not yet known. Their computation, including their

exact dependence on Mt, is certainly very difficult, since it requires the evaluation of

three-loop Feynman diagrams.

The computation is certainly more feasible in the large-Mt limit, where one can

exploit the effective-lagrangian approach introduced in Ref. [22] and developed up to

O(α4
S) in Refs. [23, 13]. Using this approach, the contribution of the heavy-quark loop

is embodied by an effective vertex, thus reducing by one the number of loop integrals

to be explicitly carried out.

Within the effective-lagrangian formalism, an important step has recently been

performed by Harlander [14], who has evaluated the two-loop amplitude for the process

gg → H by using dimensional regularization in d = 4− 2ε space-time dimensions. The

two-loop amplitude has poles of the type 1/εn with n = 4, 3, 2, 1. The coefficients of

the poles of order n = 4, 3, 2 had been predicted in Ref. [24]. The agreement [25] with

this prediction is a non-trivial check of Harlander’s result.

To compute the NNLO cross section, the two-loop amplitude for the process gg → H

has to be combined with the phase-space integrals of the squares of the one-loop matrix

element for the process gg → Hg and of the tree-level matrix elements for the processes

gg → Hgg and gg → Hqq̄. We have computed these matrix elements in the limit

where the final-state partons are soft, by using the one-loop and tree-level factorization

formulae derived in Refs. [15, 16] and Refs. [17, 18], respectively. Then, we have carried

out the phase-space integrals by using the technique of Ref. [26]. The result contains

ε-poles and finite terms. The ε-poles (including the single pole 1/ε) exactly cancel

those in the two-loop amplitude [14], thus providing a non-trivial cross-check of our

and Harlander’s results. The remaining finite terms give the complete soft and virtual

contributions to the NNLO cross section.

Details of our calculation will be presented elsewhere [27]. In this paper we limit

ourselves to presenting the final result. We obtain the following soft and virtual con-
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tributions to the NNLO coefficient function G
(2)
gg :

Ggg
(2)SV(z; M2

H/µ2
R, M2

H/µ2
F ) = δ(1− z)

[
11399

144
+

133

2
ζ(2)− 9

20
ζ(2)2 − 165

4
ζ(3)

+

(
19

8
+

2

3
Nf

)
ln

M2
H

M2
t

+ Nf

(
−1189

144
− 5

3
ζ(2) +

5

6
ζ(3)

)

+
(33− 2Nf)

2

48
ln2 µ2

F

µ2
R

− 18 ζ(2) ln2 M2
H

µ2
F

+

(
169

4
+

171

2
ζ(3)− 19

6
Nf + (33− 2Nf) ζ(2)

)
ln

M2
H

µ2
F

+

(
−465

8
+

13

3
Nf − 3

2
(33− 2Nf) ζ(2)

)
ln

M2
H

µ2
R

]

+D0

[
− 101

3
+ 33ζ(2) +

351

2
ζ(3) + Nf

(
14

9
− 2ζ(2)

)
+

(
165

4
− 5

2
Nf

)
ln2 M2

H

µ2
F

− 3

2
(33− 2Nf ) ln

M2
H

µ2
F

ln
M2

H

µ2
R

+

(
133

2
− 45ζ(2)− 5

3
Nf

)
ln

M2
H

µ2
F

]

+D1

[
133− 90ζ(2)− 10

3
Nf + 36 ln2 M2

H

µ2
F

+ (33− 2Nf)

(
2 ln

M2
H

µ2
F

− 3 ln
M2

H

µ2
R

) ]

+D2

[
−33 + 2Nf + 108 ln

M2
H

µ2
F

]
+ 72D3 . (2.13)

Note that our result in Eq. (2.13) gives the complete soft contributions (all the terms

proportional to the distributions Di(z)) to the NNLO coefficient functions G
(2)
ab (z). It

also gives the complete virtual contribution (the term proportional to δ(1− z)) to the

gg channel. The expression in Eq. (2.13) is an approximation of the exact NNLO

calculation in the sense that it differs from G
(2)
ab (z) by terms that are less singular when

z → 1. More precisely, in the large-z limit we have (see Sect. (3))

G(2)
gg (z)−G(2)SV

gg (z) = O(ln3(1− z)) , (2.14)

G(2)
gq (z) = O(ln3(1− z)) , (2.15)

G
(2)
qq̄ (z) ∝ δ(1− z) +O((1− z) ln2(1− z)) , G(2)

qq (z) = O((1− z) ln2(1− z)) .

(2.16)

Note also that, unlike the NLO term G
(1)
ab (z), the NNLO coefficient function G

(2)
ab (z)

is not independent of Mt in the large-Mt limit. The virtual contribution in Eq. (2.13)

contains a term, proportional to lnM2
H/M2

t , that derives from the integration of the

heavy-quark degrees of freedom in the effective lagrangian [23, 13].

Our result in Eq. (2.13) can be useful as a non-trivial check of a future complete

calculation at NNLO. It can also be used to extend the accuracy of the soft-gluon

resummation formalism to NNLL order (see Sect. 3).
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As previously discussed, the SV approximation turns out to be a good numerical

approximation of the full NLO correction for Higgs boson production at the LHC.

Thus, the NNLO-SV result in Eq. (2.13) can also be exploited to obtain an approximate

numerical estimate of the complete NNLO correction (see Sect. 4).

3. Soft-gluon resummation at NNLL accuracy

The soft (and virtual) contributions α2
Sα

n
SDm(z) (with m ≤ 2n − 1) to the coefficient

function Ggg(z) can be summed to all orders in QCD perturbation theory. Using

the soft-gluon resummation formulae that are known at present, we can check the

coefficients of some of the soft contributions presented in Eq. (2.13). The remaining

coefficients can then be used to extend the accuracy of the resummation formulae to

NNLL order. Both points are discussed in this section.

The formalism to systematically perform soft-gluon resummation for processes ini-

tiated by qq̄ annihilation and gg fusion was set up in Refs. [28, 29, 30, 31]. Soft-gluon

resummation has to be carried out in the Mellin (or N -moment) space. The N -moments

GN of the coefficient function G(z) are defined by

GN ≡
∫ 1

0

dz zN−1 G(z) . (3.1)

In N -moment space the soft (or threshold) region z → 1 corresponds to the limit N →
∞, and the distributions Dm(z) lead to logarithmic contributions, Dm(z) → lnm+1 N .

The singular contributions in the large-N limit can be organized in the following all-

order resummation formula:

Ggg, N = Cgg(αS(µ
2
R), M2

H/µ2
R; M2

H/µ2
F ) ∆H

N (αS(µ
2
R), M2

H/µ2
R; M2

H/µ2
F ) +O(1/N) .

(3.2)

The radiative factor ∆H
N embodies all the large contributions ln N due to soft radiation.

The function Cgg(αS) contains all the terms that are constant in the large-N limit and

has a perturbative expansion analogous to Eq. (2.5):

Cgg(αS(µ
2
R),M2

H/µ2
R; M2

H/µ2
F ) =

= α2
S(µ

2
R)

[
1 +

+∞∑
n=1

(
αS(µ

2
R)

π

)n

C
(n)

gg (M2
H/µ2

R; M2
H/µ2

F )

]
. (3.3)

These constant terms are due to virtual contributions, and the perturbative coefficients

C
(n)

gg are thus directly related to the coefficients of the contribution proportional to

δ(1−z) in G
(n)
gg (z). The term O(1/N) on the right-hand side of Eq. (3.2) denotes all the

contributions that are suppressed by some power of 1/N (modulo ln N enhancement)

when N →∞.
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The radiative factor ∆H
N for Higgs boson production has the following general ex-

pression [28, 29, 32]:

∆H
N (αS(µ

2
R), M2

H/µ2
R; M2

H/µ2
F ) =

[
∆g

N(αS(µ
2
R), M2

H/µ2
R; M2

H/µ2
F )

]2

·∆(int)H
N (αS(µ

2
R), M2

H/µ2
R) . (3.4)

Each term ∆g
N embodies the effect of soft-gluon radiation emitted collinearly to the

initial-state partons and depends on both the factorization scheme and the factorization

scale µF . In the MS factorization scheme we have the exponentiated result

∆a
N(αS(µ

2
R), M2

H/µ2
R; M2

H/µ2
F ) = exp

{∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2M2
H

µ2
F

dq2

q2
Aa(αS(q

2))
}

,

(3.5)

where Aa(αS) is a perturbative function

Aa(αS) =
αs

π
A(1)

a +
(αs

π

)2

A(2)
a +

(αs

π

)3

A(3)
a +O(α4

S) . (3.6)

The factor ∆
(int)
N is independent of the factorization scale and scheme and contains the

contribution of soft-gluon emission at large angles with respect to the direction of the

colliding gluons. It can also be written in exponentiated form as

∆
(int)H
N (αS(µ

2
R), M2

H/µ2
R) = exp

{∫ 1

0

dz
zN−1 − 1

1− z
DH(αS((1− z)2M2

H))
}

, (3.7)

where the function DH(αS) for Higgs production has the following perturbative expan-

sion:

DH(αS) =
(αS

π

)2

D
(2)
H +O(α3

S) . (3.8)

The coefficients A(1) and A(2) fully control soft-gluon resummation up to next-to-

leading logarithmic (NLL) accuracy [28, 29, 32]. In the case of a generic incoming

parton a, they are given by

A(1)
a = Ca , A(2)

a =
1

2
CaK , (3.9)

where Ca = CF = 4/3 if a = q, q̄ and Ca = CA = 3 if a = g, while the coefficient K is

the same both for quarks and for gluons [33, 30, 34] and it is given by

K = CA

(
67

18
− π2

6

)
− 5

9
Nf . (3.10)

Expanding the resummation formula (3.2) up toO(α3
S) and transforming the result back

to z-space, it is straightforward to check that we correctly obtain the soft contributions,
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D0(z) and D1(z), to G
(1)SV
ab (z) in Eq. (2.12). By comparison with the virtual term in

Eq. (2.12), we can also extract the coefficient C
(1)

gg in Eq. (3.3):

C
(1)

gg (M2
H/µ2

R; M2
H/µ2

F ) =
11

2
+ 6ζ(2) +

33− 2Nf

6
ln

µ2
R

µ2
F

. (3.11)

Then, we can expand the resummation formula (3.2) up to O(α4
S), and we can compare

the result with our NNLO soft-virtual calculation in Eq. (2.13). It is straightforward to

check that the knowledge of A
(1)
g , A

(2)
g and C

(1)

gg predicts the coefficients of D3(z),D2(z)

andD1(z) in G
(2)SV
gg (z), and that the prediction fully agrees with our result in Eq. (2.13).

The comparison‡ at O(α4
S) and our calculation of the D0 -term in Eq. (2.13) also

allows us to extract the (so far unknown) coefficient D
(2)
H that controls soft-gluon re-

summation at NNLL order. We obtain

D
(2)
H = C2

A

(
−101

27
+

11

3
ζ(2) +

7

2
ζ(3)

)
+ CANf

(
14

27
− 2

3
ζ(2)

)
. (3.12)

Note that the corresponding NNLL coefficient for the Drell–Yan process [35] differs

from D
(2)
H by the simple replacement of colour factors CF → CA. This could have

straightforwardly been predicted from the general structure of the soft-factorization

formulae at O(α2
S) (see Sect. 5 of Ref. [16] and the Appendix of Ref. [18]). The exact

expression of the remaining NNLL coefficient A
(3)
g is still unknown, but an approximate

numerical estimate can be found in Ref. [35].

The integrals over z and q2 in Eqs. (3.5) and (3.7) can be carried out to any re-

quired logarithmic accuracy (see Refs. [32, 35]) and used for phenomenological analyses.

Quantitative studies of soft-gluon resummation effects for Higgs boson production are

left to future investigations.

3.1. Collinear-improved resummation

In Ref. [13] Krämer, Laenen and Spira (KLS) exploited the resummation formalism to

obtain approximate expressions for the NNLO corrections to Higgs boson production.

Their resummation formula is a simplified version of Eq. (3.2) that includes only the

first-order coefficients (the coefficients A(1), C
(1)

and the first-order coefficient β0 in the

expression of the running coupling αS(q
2)). Therefore, the NNLO expressions obtained

in Ref. [13] correctly predict only the coefficients of the contributions D3 and D2 to the

soft and virtual coefficient function G
(2)SV
gg in Eq. (2.13).

KLS also pointed out [13] that the resummation formalism can be extended to

include subdominant contributions in the large-z limit. These contributions are the

terms proportional to powers of ln(1 − z) that appear in Ggg(z) (see, e.g., Eq. (2.7)).

In N -moment space, they lead to contributions of the type 1
N

lnk N , which are usually

‡We can also extract the virtual coefficient C
(2)

gg in Eq. (3.3).
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(and consistently) neglected within the soft and virtual approximation (i.e. in the limit

N →∞).

We agree with KLS that the highest power§ of ln(1 − z) at the n-th perturbative

order, namely, ln2n−1(1−z) in G
(n)
gg (z) (or, equivalently, the term 1

N
ln2n−1 N in G

(n)
gg, N),

can correctly and consistently be implemented in the all-order resummation formula

(3.2). The key observation [13] is that these terms have a collinear origin. They arise

from the transverse-momentum evolution of initial-state collinear radiation up to the

maximum value of qT permitted by kinematics. In the large-z limit, the maximum

value is q2
T max ∼ (1− z)2M2

H , which is very different from the typical hard scale M2
H of

the process. The large transverse-momentum region (1−z)2M2
H < q2

T < M2
H is thus re-

sponsible for the leading ln(1−z)-enhancement. The resummation formalism correctly

embodies the transverse-momentum evolution of soft radiation up to the kinematical

limit (1− z)2M2
H (see Eq. (3.5)). Therefore, the leading collinear enhancement can be

taken into account by supplementing the integrand in Eq. (3.5) with the regular (i.e.

non-soft) part of the Altarelli–Parisi splitting function (see Eq. (2.11)). Both for the

qq̄ annihilation (Drell–Yan process) and gg fusion (Higgs production) channels, we can

simply perform the following replacement on the right-hand side of Eq. (3.5):

zN−1 − 1

1− z
A(1)

a → zN−1 − 1

1− z
A(1)

a + zN−1 1

2
P reg

aa (z) =

=

[
zN−1 − 1

1− z
− zN−1

]
A(1)

a +O(1/N2) . (3.13)

Having performed the replacement of Eq. (3.13) in ∆a
N , we can insert its ensu-

ing collinear-improved expression in Eq. (3.2). The resummed expression for the N

moments of the coefficient function Ggg, N can then be expanded in powers of αS in

the large-N limit by consistently computing and keeping all the terms of the type

α2
Sα

n
S

1
N

ln2n−1 N . Transforming the result back to z-space, this procedure gives the

soft and virtual contributions to G
(n)
gg (z) plus its leading subdominant correction (the

contribution proportional to ln2n−1(1− z)) when z → 1.

We name soft-virtual-collinear (SVC) approximation this improved version of the

SV expressions in Eqs. (2.12) and (2.13). We find

G(1)SVC
gg (z; M2

H/µ2
R; M2

H/µ2
F ) = G(1)SV

gg (z; M2
H/µ2

R; M2
H/µ2

F )− 12 ln(1− z) , (3.14)

G(2)SVC
gg (z; M2

H/µ2
R; M2

H/µ2
F ) = G(2)SV

gg (z; M2
H/µ2

R; M2
H/µ2

F )− 72 ln3(1− z) . (3.15)

The coefficient of ln(1−z) in Eq. (3.14) correctly reproduces that obtained by the exact

NLO expression in Eq. (2.7). The coefficient of ln3(1−z) in Eq. (3.15) agrees with that

computed in Ref. [13].

The numerical study of Ref. [13] shows that the effect of the contribution ln(1− z)

at NLO is not small (see also Sect. 4), in particular at low values of the Higgs boson

§As for lower powers, KLS acknowledge [13] that their result is not complete.
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mass. Therefore, in our estimate (Sect. 4) of the NNLO corrections to Higgs boson

production at the LHC, we consider both the SV approximation in Eq. (2.13) and the

SVC approximation in Eq. (3.15). In the gg partonic channel we thus neglect NNLO

of the type

G(2)
gg (z)−G(2)SVC

gg (z) = O(ln2(1− z)) , (3.16)

Note, however, that the coefficient function of the gq channel still contains contri-

butions proportional to ln(1 − z) at NLO (see Eq. (2.8)) and to ln3(1 − z) at NNLO

(see Eq. (2.15)). We do not consider the latter. At low values of the Higgs boson mass

their effect is small, because the parton density luminosity of the gq channel is smaller

than that of the gg channel. The effect increases by increasing the Higgs boson mass.

4. Numerical results at the LHC

In this section we study the phenomenological impact of the higher-order QCD cor-

rections on the production of the SM Higgs boson at the LHC, i.e. proton–proton

collisions at
√

s = 14 TeV. We recall that we include the exact dependence on Mt in

the Born-level cross section σ0 (see Eq. (2.3)), while the coefficient function Gab(z) is

evaluated in the large-Mt approximation. At NLO [12, 13] this is a very good numer-

ical approximation when MH ≤ 2Mt, and it is still accurate to better than 10% when

MH ∼< 1 TeV.

Unless otherwise stated, cross sections are computed using the new MRST2000

[21] sets of parton distributions, with densities and coupling constant evaluated at

each corresponding order, i.e. using LO distributions and 1-loop αS for the LO cross

section, and so forth. The corresponding values of Λ
(5)
QCD (αS(MZ)) are 0.132 (0.1253),

0.22 (0.1175) and 0.187 GeV (0.1161), at 1-loop, 2-loop and 3-loop order, respectively.

In the NNLO case we use the ‘central’ set of MRST2000, obtained from a global fit

of data (deep inelastic scattering, Drell–Yan production and jet ET distribution) by

using the approximate NNLO evolution kernels presented in Ref. [20]. The result

we refer to as NNLO-SV (SVC) corresponds to the sum of the LO and exact NLO

(including the qg and qq̄ channels) contributions plus the SV (SVC) corrections at

NNLO, given in Eq. (2.13) (Eq. (3.15)). The LO and NLO results obtained by using

the CTEQ5 distributions [36] are very similar to the ones computed with the MRST2000

sets (the differences are smaller than the uncertainties arising, for instance, from scale

dependence). Therefore, we will not show those results ¶.
The comparison between different sets of parton distributions, however, cannot be

regarded as a way to quantitatively estimate the uncertainty on the parton distribu-

tions. The theoretical and experimental errors that affect present determinations of the

¶Larger deviations (for instance, the NLO cross section increases by ∼ 10% for MH = 100 − 200
GeV) appear when comparing to the GRV98 distributions [37], where both the gluon distribution and
the value of αS(MZ) are different from those of MRST2000 and CTEQ5.
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parton distributions are typically larger [38] than the differences between the parton

distribution sets provided by different groups [21, 36, 37]. In the case of Higgs boson

production at the LHC, the study of the CTEQ Collaboration [39] recommends an

uncertainty of about ±10% on the corresponding gluon–gluon and quark–gluon parton

luminosities.

Figure 1: Scale dependence of the Higgs production cross section for MH = 115 GeV at LO,
NLO, NNLO-SV and NNLO-SVC.

We begin the presentation of our results by showing in Fig. 1 the scale dependence

of the cross section for the production of a Higgs boson with MH = 115 GeV. The scale

dependence is analysed by varying the factorization and renormalization scales by a

factor of 4 up and down from the default value MH . The plot on the left corresponds

to the simultaneous variation of both scales, µF = µR = χ MH , whereas the plots in

the centre and on the right correspond, respectively, to the results of the independent

variation of the factorization or renormalization scale, keeping the other scale fixed at

the default value.

As expected from the QCD running of αS, the cross sections typically decrease

when µR increases around the characteristic hard scale MH . In the case of variations of

µF , we observe the opposite behaviour. In fact, the cross sections are mainly sensitive

to partons with momentum fraction x ∼ 10−2, and in this x-range scaling violation

of the parton densities is (moderately) positive. As a result, the scale dependence is

mostly driven by the renormalization scale, because the lowest-order contribution to

the process is proportional to α2
S, a (relatively) high power of αS.

Figure 1 shows that the scale dependence is reduced when higher-order corrections

are included and, in the case of the factorization-scale dependence, a maximum appears

at NNLO-SV and NNLO-SVC, showing the improved stability of the result. Also

note that there is an increase in the scale dependence when going from NNLO-SV
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to NNLO-SVC. This is due to the fact that the dominant collinear terms included

in the SVC approximation give a sizeable contribution and are scale-independent (see

Eqs. (3.14) and (3.15)), so their effect cannot be compensated by scale variations.

Similar results are obtained for higher masses, with a reduction in the scale dependence

when approaching high mass values.

Figure 2: K-factors for Higgs production for the full NLO result and the NLO-SV, NLO-
SVC, NNLO-SV and NNLO-SVC approximations.

The impact of higher-order corrections is usually studied by computing K-factors,

defined as the ratio of the cross section evaluated at each corresponding order over

the LO result. The K-factors are shown in Fig. 2 where the bands account for the

‘theoretical uncertainty’ due to the scale dependence, quantified by using the minimum

and maximum values of the cross sections when the scales µR and µF are varied (simul-

taneously and independently, as in Fig. 1) in the range 0.5 ≤ χ, χR, χF ≤ 2. The LO

result that normalizes the K-factors is computed at the default scale MH in all cases.

The plot on the left-hand side of Fig. 2 shows the uncertainty at LO and compares

the exact NLO result with the NLO-SV and NLO-SVC approximations. In the case of

light Higgs production, the NLO-SV approximation tends to underestimate the exact

result by about 15 to 20%, whereas the NLO-SVC approximation only slightly overes-

timates it, showing the numerical importance of the term ln(1− z) added in the SVC

approximation. Nevertheless, all the results agree within the theoretical bands: this

confirms the validity of the large-z approximation to estimate higher-order corrections,

and, in particular, allows us to assume that a similar situation occurs at NNLO. As

expected, the agreement between the three results improves for larger masses.

The right-hand side of Fig. 2 shows the SV and SVC results at NNLO. Again, the

SVC band sits higher than the SV one, the ratio of the corresponding cross sections
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being almost the same as the one at NLO, as shown in the inset plot. The contribution

from non-leading terms lnk(1 − z), with k < 3 (which are not under control within

the SVC approximation), is not included, but it is expected to be numerically less

important‖.
As is well known, the customary procedure (that we also are using) of varying the

scales to estimate the theoretical uncertainty can only give a lower limit on the ‘true’

uncertainty. This is well demonstrated by Fig. 2, which shows no overlap between the

LO and NLO bands. However, the NLO and NNLO bands do overlap, thus suggesting

that the perturbative expansion begins to converge from NNLO. Note also that the

size of the NNLO bands is smaller than that of the NLO bands: the scale dependence

at NNLO is smaller than at NLO.

Considering the results obtained at NLO, it is reasonable to expect the full NNLO

K-factor to lie inside the SV and SVC bands, and most probably, closer to the SVC

one. In particular, for a light Higgs boson (MH ∼< 200 GeV), this expectation would

correspond to an increase of 15 to 25% with respect to the full NLO result, i.e. a

factor of about 2.2 to 2.4 with respect to the LO result. Taking into account that the

NLO result increases the LO cross section by about 90% our result anticipates a good

convergence of the perturbative series.

Figure 3: Cross section for Higgs boson production at the LHC in the NNLO-SV and NNLO-
SVC approximations.

In Fig. 3 we present the NNLO-SV and SVC cross sections as a function of the Higgs

mass and including the corresponding uncertainty bands computed as defined above. To

facilitate the comparison with other calculations and more refined predictions, we report

the values of the cross sections for the production of a Higgs boson with MH = 115

‖We have tried to add a term ln2(1 − z) with a coefficient as large as that of the term ln3(1 − z),
finding only a small (about 5%) modification.
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Figure 4: Cross section for Higgs production with MH = 115 GeV computed using different
NLO and NNLO parton distributions and coupling constant.

GeV. The NNLO-SVC band corresponds to σ = 43.51-58.56 pb (50.13 pb at the default

scales), the NNLO-SV to σ = 37.73-45.69 pb (41.66 pb at the default scales), whereas

for the full NLO it is σ = 34.14-48.48 pb (40.37 pb at the default scales).

Finally we want to quantify the effect of the (approximated) NNLO parton distri-

butions in the gluonic channel. In Fig. 4 we study this effect for the NNLO-SV result

at MH = 115 GeV, by plotting the cross section as a function of the scale. We use

different combinations of NNLO and NLO parton distributions and coupling constant

expressions. The inset plot shows the ratio R of the different results with respect to the

one obtained by using NNLO distributions and 3-loop αS. The use of NNLO distribu-

tions and 3-loop αS reduces the NNLO cross section by 10% with respect to the result

that would be obtained if NLO distributions and 2 loop αS were used. Since the values

of αS(MZ) from MRST2000 are very similar at 2 and 3 loops and the typical scale

of the process is not far from MZ , the effect of going from 2 to 3 loops αS amounts

to only 1/3 of the 10% change. The biggest effect comes from the difference in the

distributions, mostly due to the decrease of the NNLO gluon density at small x [21].

Similar results are obtained in the SVC approximation and for different masses.

5. Conclusions

In this paper we have studied the QCD corrections to Higgs boson production through

gluon–gluon fusion in hadronic collisions, within the framework of the large-Mt approx-

imation. Using a recent result for the two-loop correction to the gg → H amplitude [14]
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and the soft-factorization formulae for soft-gluon emission at O(α2
S) [15, 16, 17, 18] we

have evaluated the soft and virtual QCD correction to this process at NNLO (SV ap-

proximation). We have also considered [13] the leading ln3(1−z) contribution from the

collinear region (SVC approximation). Our result for the coefficient G
(2)SV
gg in Eq. (2.13)

is consistent with the present knowledge of soft-gluon resummation at NLL accuracy;

it also allows us to fix the NNLL coefficient D
(2)
H in Eq. (3.8).

We have then studied the phenomenological impact of our results at the LHC by

using the (approximate) NNLO set MRST2000 of parton distributions [21]. We have

shown that the exact NLO result lies in between the NLO-SV approximation and the

NLO-SVC approximation, the latter being a better numerical approximation in the

case of low values of the Higgs boson mass. Comparing the results in the SV and

SVC approximations at NNLO for a light Higgs (MH ∼< 200 GeV), we estimate that the

NNLO correction will increase the NLO result between 15 and 25%.

The results presented here are a first consistent (though approximate) estimate

of QCD corrections to Higgs boson production through gg fusion at NNLO and will

eventually be a stringent check of a future full NNLO calculation.

In this paper we have only considered the production of the SM Higgs boson. The

Minimal Supersymmetric extension of the Standard Model (MSSM) leads to two CP-

even neutral Higgs bosons [1]. They are produced by gg fusion through loops of heavy

quarks (top, bottom) and squarks. For small values (tanβ∼< 5) of the MSSM parameter

tanβ, the NLO QCD corrections to this production mechanism are comparable (to

better than 10%) [12, 40, 9] to those for SM Higgs boson production. Therefore, the

NNLO K-factors computed in this paper could also be applicable to MSSM Higgs boson

production.

Note added: The calculation of the soft and virtual NNLO corrections to Higgs

boson production has independently been performed in Ref.[41]. The method used in

Ref.[41] is different from ours. The analytical results fully agree.
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