
STORAGE AND SOFTWARE FOR DATA ANALYSIS

R. Brun1, R.G.Jacobsen2, R.Jones1, J. Moscicki1, M.Nowak1, A.Pfeiffer1, F.Rademakers3

1) CERN, Geneva, Switzerland
2) University of California, Berkeley, USA
3) GSI, Darmstadt, Germany

Abstract
This track combined exposure to the software technologies and packages
relevant for LHC experiments and the engineering aspects of software
development. The lectures provided an overview of LHC++/Anaphe and
ROOT and covered those aspects of software engineering most relevant for
HEP software development. It showed, in a practical sense, how software
engineering can help in the development of HEP applications based on the
LHC++/Anaphe and ROOT software suites and also gave a taste of working
on large software projects that are typical of LHC experiments. A series of
hands-on tutorials performed by the students were based exercises to solve
given problems. The tutorials followed the natural progression of physics
analysis exploring the major packages of LHC++/Anaphe and ROOT on the
way.
This paper presents an overview of the software engineering lectures by
R.Jones, the tutorials and feedback session. Details of the lectures on
LHC++/Anaphe and ROOT are reported in separate papers of these
proceedings.

1. INTRODUCTION TO SOFTWARE ENGINEERING

A definition of what is meant by software engineering gave a starting point for this lecture which then
went on to explain how the scale of the software project determines the software process required to
successfully run the project to completion. Developing a model for a large scale software system prior
to its construction or extension is as essential as having a blue-print for constructing a building. Good
models are necessary for communication between the project stakeholders (members of the
development team, users and management) and to assure architectural soundness. As the complexity
of the software system under development increases so does the importance of good modelling
techniques.

Various processes exist for object-oritened (OO) software (OOIE, OMT, Booch, Fusion,
Syntropy, OOSE, Unified etc.) and have varying definitions for the phases involved during the project.
The history of these OO software development proceses was described and how this lead to the
appearance of the Unified Software Development Process (USDP) as a defacto market standard
taking elements from previous development processes. The authors of USDP recognised the need to
solve recurring architectural problems, such as physical distribution, concurrency, replication,
security, load balancing and fault tolerance. USDP is centred around the architecture of the software
under development and follows a number of iterations driven by use-cases. Each iteration can be
treated as a mini-project resulting in a new release of the software and following all the phases of the
software process.

The importance of a notation to document and visualize the models developed as artifacts of the
process phases was explored and the structure of the Unified Modelling Language (UML) notation



was shown. The UML represents a collection of best engineering practices that have proven successful
in the modelling of large and complex systems. USDP incorporates the UML as a standard into its
development processes and products, which cover disciplines such as requirements management,
analysis & design, programming and testing. The UML can be used on varying software development
projects since it is independent of the process (i.e. USDP) being followed. An overview of the UML
starting with use-cases showed the basic structure of the UML, the notation and types of diagrams that
can be used to describe the software under development. Emphasis was put on use cases as a means of
driving the development and how they are used to capture the requirements. The essential purpose of
the requirements gathering is to aim development towards the right system. This is achieved by
describing the requirements (i.e. the conditions or capabilities to which the system must conform) well
enough so that an agreement can be reached between the stakeholders on what the system should and
should not do. The issues involved in ranking use-cases to determine their priority and establishing
how they map onto the project iterations was described.

Once the use-cases have been explored and ranked attention can move onto establishing the
basic architecture of the software starting with deployment diagrams showing the nodes (processors)
and interconnections (networks) that represent the environment in which the software will run. This
environment is populated with the various modules of the software identifying interfaces to legacy
systems (hardware and software) and the relationships between components. Details of the software
are omitted from such diagrams to allow the basic disposition and architecture to appear.

2. SOFTWARE DESIGN

This lecture carried on the description of architecture and showed how work progresses towards
establishing a more detailed design. The task of design was introduced as consisting of three levels:
architecture, mechanistic and detailed based on the scope of the decisions made. Each level was
further defined to show it’s goals, techniques and deliverables. At the archiecture level the emphasis is
on identifying the major software structures such as subsystems, packages and their interconnections.
At this point it is possible divide the work into smaller tasks based on domains or subsystems that can
be developed by different teams or individuals possibly in parallel. The desirable qualities of
archiectural design was listed including layering sub-sytems to reduce coupling and promote
independence. Other qualities such as well-designed interfaces and scalability were also mentioned but
the most important quality of any design is that it is easily understandable.

At the mechanistic level attention moves to establishing the relationships between groups of
classes (i.e. the mechanisms by which they are linked) and at the detailed level the developer
examines the internal structure of individual classes by identifying necessary attributes and methods.
The transition to implementation is made selecting the appropriate mapping for aspects such as
associations and operations taking into account deployment (e.g. the association between two classes
may be different if they are on separate machines or in separate threads), code ownership and
practicalities linked to the use of underlying software packages. The UML class, sequence and
collaboration diagrams were explained and examples drawn from the exercises. As design progresses
through the three levels, more detail is added to existing diagrams (e.g. adding methods and attributes
to classes) and new ones are drawn.

The concept of patterns that give examples of how several classes can work together in a given
domain to address some problems was introduced. The ability to profit from design approaches used in
other projects was discussed as a means of supplimenting the developers’ knowledge and experience.
Examples of how to apply patterns to analysis and design taken from LHC++/Anaphe and ROOT were
given. While patterns are rightly considered as an excellent aid during analysis and design, the
audience were warned about their abuse and some of their short-comings.



Finally an appreciation of the advantages and problems of UML were described as well as
future likely changes proposed for inclusion in the release 2.0 of the standard scheduled for 2001.

3. SOFTWARE TESTING

This lecture covered the basic principles of software testing and why programs have defects.

The goal of software testing is to ensure the software under development has sufficient quality
by evaluating the artifacts (documents, diagrams, source code etc.) of a project. The intention is to find
defects (bugs) so that they can be removed and demonstrate that the software does meet its
specifications. As a side effect, it builds confidence in the project members that the software is ready
for use.

Testing includes both validation and verification of software. Verification implies executing an
implementation of the software and has traditionally be the focus of software testing in HEP. This
implies that no software testing is performed before an implementation is ready (i.e. once the
requirements, design and implementation phases have been completed). A complimentary activity is
that of validating the artifacts at each stage of the software process. For example, the design diagrams
can be validated to ensure they satisfy all the requirements. The requirements document can be
validated to ensure it is consisitent, complete and feasible.

Once an implementation exists, it can be validated against the design diagrams to ensure it
faithfully realises the design and exhibits general design qualities (listed above). Validation has been
shown to be more effficient that verification because each artifact of the software process is checked
as it is produced and so errors are caught earlier when they cost less to correct.

The different phases of software validation and verification were enumerated and described:

Unit tests – tests peformed on individual classes;

Integration – tests performed on several classes, components or sub-systems to validate their
interfaces;

Regression – repeating previously executed tests after a modification has been made to ensure the
defect has been removed and no new ones have been added;

Acceptance – final testing performed at the user’s site with their data.

Different techniques can be applied for validation and verification. Reviews and inspections are the
most appropriate manner of validating documents, diagrams and source code. Three types of reviews
were listed:

A personal review where an individual developer examines their own artifact individually;

A work-through where a developer presents their artifact to her/his fellow developers (peers) who
are asked to comment and make suggestions;

An inspection which is a structured review involving an inspection leader, the author(s) and a
number of peer reviewers. A number of meeting are held to inspect the artifact and all issues are
logged and followed-up by the authors(s).

A number of elements need to be put in place before a review can take place:

A checklist of the most likely errors must be available to drive the process and indicate to the
reviewers what they should be looking for;

The project stakeholders must accept that a review will “front-load” the cost of a project since the
review will take some effort (even if it is only a couple of hours) and that the development



cannot proceed to the next phase until it is completed while (hopefully) the total amount of
testing required will be reduced;

The review should be seen as a phase of the software process and not a personal assessment of the
authors;

Training will be required for inspection leaders if the process is to run smoothly to a successful
completion in a reasonable amount of time.

As an example, guidelines were shown for inspecting C++ sources code. Much of the work
involved in inspecting source code can be automated using a coding rule checking tool to parses
source code files and produce an evaluation report identifying which guidelines were violated. This
report can then used to make modifications to the source code where necessary but violations of the
guidelines should be accepted where they can be justified.

Techniques for validation were also addressed including black-box and white-box testing. In
black-box testing the specifications and interfaces of the software is validated without examination of
the structure of the source code itself. While in white-box testing, knowledge of the internal structure
of the software is used to develop suitable test-cases. Boundary-value testing (e.g. varying the input
parameters to object methods) was given as an example of black-box testing.

Coverage and path testing where knowledge of the internal structure of the software is used to
develop test-cases that execute as many paths through the code as possible were given as examples of
white-box testing.

Again, CASE tools can help to automate important fractions of the work involved in black and
white box testing. The example of the Insure++ tool which can be used for code coverage of C code
was given. Similarly tools exist for static source code analysis (e.g. LINT, Logiscope), memory leak
checkers (e.g. Purify, Insure++) and boundary checks (e.g. “T” testing tool). Performance of the
software and identification of bottlenecks can be identified by compiler profilers and scripting
languages such as Expect are very useful for writing tests-cases.

Following the assumption that prevention is better than cure, a number of programming
techniques available in many high-level languages were listed as being particularly error prone and
difficult to master. The list includes dynamic memory allocation, parallelism, recursion, floating point
numbers, interrupts and pointers. Unfortunately, these programming techniques are amongst those that
improve the performance or efficiency of software and since HEP software is often at the limit of what
is possible many of these techniques and often necessary.

The lecture concluded with a set of axioms about testing that can improve the way most
software developers approach the subject and by trying to answer the most difficult questions
concerning software testing:

How much testing is enough?

When or why should we stop testing?

When is the software ready to be released?

Since no software can be fully tested the concept of risk-based testing as a means of prioritising
the choice of test-cases to be made was suggested. With such an approach, test-cases are developed to
verify that the most important risks have been addressed while testing on low-priority aspects of the
software may be dropped based on general agreement between stakeholders of the project.



4. LONG-TERM ISSUES OF SOFTWARE

This aim of this lecture was to look at some aspects which affect the long-term well-being of
development projects. Once the software has been developed the emphasis moves to its maintenance.
The cost of software maintenance usually exceeds the cost of software development. There are three
principal types of software maintenance:

perfective - where new functionality is added to the system;

adaptive - where the system is adapted to new enviornments (e.g. ported to a new operating system);

corrective - which is removing defects from the software.

Having defined software maintenance, the lecture moved on to look at how to minimise its cost
and assure successful completion of the project by asking three questions:

Why is the software process so important?

What is so good about iteravtive development anyway?

Why can’t we just get on with writing the code?

To answer the first question, the most common reasons for failure of software projects were
listed. An analogy based on building bridges showed how activities, such as adequate analysis and
design, can be used to avoid them. The second question was addressed by giving an example of what
iterative development means and by showing the unfortunate results of not using it.

Hopefully the students understood that by answering the first two questions the answer to the
third becomes clear. As a means of supporting interative development cycles, configuration
management systems were introduced and the lecture finished by emphasising that software always
costs something (time or money): either some up-front by investing in analysis and design or more
later to fix all the problems.

5. EXERCISES

The hands-on tutorials included a series of exercises to solve given problems. The tutorials followed
the natural progression of physics analysis exploring the major packages of LHC++/Anaphe and
ROOT on the way. The students completed the tutorials in groups of two. The students were required
to develop several C++ programs in succession starting from skeletons:

1. Generate a set of events to be stored on disk according to a defined object model thereby exploring
the issues of data persistency;

2. Build a set of event tags (Ntuples) from data prepared in 1 and identify/calculate interesting event
attributes;

3. Use the minimization packages to find the minima values for a given set of problems
4. Read event tags built in 2 and display the contents. Use the interactive graphical tools to

apply more cuts.

The LHC++/Anaphe and ROOT lectures are documented as separate papers in these
proceedings. Below is a summary of the software engineering lectures by Bob Jones and the feedback
session.

6. FEEDBACK SESSION

The track finished with a feedback session during which answers were given to the questions asked by
the students about different aspects of the software suites covered by the track (ROOT and LHC++).
The JAS software suite, though officially part of another track of the school, was included. The



students had submitted written questions to which the developers of each software suite had provided
written answers. These answers were collected together and put on the school web pages. The major
issues covered by the questions were:

Data storage

Interfacing to external code, experimental packages

Scaling

How does this work relate to GRID?

A subset of the questions were presented during the feedback session for further discussion. The
answers provided by the authors of each software suite were shown and then follow-up questions were
asked by the students. The questions were as follows:

OBJECTIVES AND APPROACH

ROOT

With the ROOT system, written in C++, we provide, among others, an efficient hierarchical
object store, a C++ interpreter, advanced statistical analysis (multi dimensional histogramming,
fitting and minimization algorithms) and visualization tools.

The user interacts with ROOT via a graphical user interface, the command line or batch
scripts. The command and scripting language is C++ (using the interpreter) and large scripts
can be compiled and dynamically linked in.

ROOT also contains a C++ to HTML documentation generation system using the
interpreter's dictionaries (the reference manual on the web is generated that way) and a rich set
of inter-process communication classes (supporting TCP/IP and shared memory). For the
analysis of very large datasets (> TB's) we provide the Parallel ROOT Facility (PROOF).

The system is packaged in a set of modules (shared libraries) which are dynamically
loaded only when needed.

The ROOT project was started in January 1995 to provide a PAW replacement in the
C++/OO world. The first pre-release was in November 1995 (version 0.5) and the first public
release in fall 1996.

LHC++/Anaphe

The Anaphe/LHC++ project aims at replacing the full suite of functionality formerly provided
by CERNLIB. Amongst those packages the analysis tool (Lizard) is one component. It uses a
set of fundamental libraries (like, e.g., HTL, CLHEP, HepODBMS) which have been developed
in the last couple of years in close collaboration with experiments (mainly LHC but also other
CERN and non-CERN experiments) and other HEP projects (such as Geant-4). We try to make
use of good software engineering practices to improve the quality and long-term maintainability
(UML, use cases, tools etc.)

The aim is to provide a flexible, interoperable, customizable set of interfaces, libraries
and tools. Re-use of existing (public domain or commercial) packages as far as possible.
Writing HEP specific adaptations wherever needed. Taking into consideration the huge data
volume expected for LHC, the distributed computing necessary to analyse the data as well as
long-term evolution and maintenance.

The use of an OO DB with transaction safety (locks) guarantees consistency in the
datasets written. This is especially important in a distributed/concurrent environment. The basic



libraries exist since about 1997. Development of some parts (AIDA, Plotter, and Lizard) started
in fall 1999. The first release is scheduled for October 2000.

JAS

Leverage the power of Java as much as possible because:

Provides many of the facilities we need as standard.

Is easy to learn and well matched (in terms of complexity) to physics analysis

Is a mainstream language, so time spent learning it is well spent?

Is a high performance language (see Tony’s talk)

Is a highly productive language (no time wasted debugging core dumps).

JAS has been in development for 4 years (since Hepvis 96)



HOW DOES THE SOFTWARE WORK WITH NON-NATIVE DATA STORAGE?

If an experiment defines its own storage system, can the software suite use it? What capabilities are
lost in that case? Specifically, can ROOT/JAS work with HepODBMS/Objectivity without losing
capability? Can JAS/LHC++ work with ROOT files without losing capability?

JAS

JAS does not have a "native" data format, it can work with any data format for which a DIM
exists. DIM's already exist for PAW, ROOT and Objectivity and many other formats; it is fairly
easy to create new DIMs for experiment specific data.

The more detailed question is harder to answer, the specifics depend mainly on how
completely the DIM has been implemented. For example the current Objectivity DIM is only
able to read HEPTuple data from Objectivity databases. Objectivity does have a Java binding,
so writing a more fully functioned interface is possible, although there are some complications
arising when attempting to read data initially stored into Objectivity from C++, especially if no
thought was given to Java access up front.

ROOT

Root can read any type of data not in Root format. The typical situation is to read ASCII files or
any type of binary data via normal C++.

The h2root program is an example of a C++/Root based program converting PAW files to
Root format.

NASA has implemented an interface between Root and the HDF files that are the
standard for AstroPhysics.

Root has interfaces to RDBMS systems such as MySQL and Oracle. An ODBC/JDBC
interface has been developed by Valery Onuchyin (see link on Root web site). We have tens of
examples of collaborations using their legacy data and processing them with Root.

LHC++/Anaphe

In Lizard you have access to all the experiment's code and data in their native (storage) format
using the Analyzer. If you want to store the histograms/ntuples using their own storage system,
an implementation (adapter) of the Histo/Ntuple Abstract Interfaces is needed.

Questions from the audience:
Q: Can you use ROOT and Objectivity together?
A: (Rene) There are some implementations already developed.
Q: It would be useful to have a standard tool to convert ROOT files to Objectivity...
A: (Rene) We haven't receive any request for this.
Q: How is the distribution of data made in BaBar (is it Objectivity)?
A: (Bob Jacobsen) We use both Objectivity and ROOT. We have observed the same

performance within 10%. We have 8 large sites using Objectivity and many small sites using
ROOT.

Q: Could someone give me a definition of Objectivity?
A: (Andreas) It is a commercial product which enables the user to provide OO schemas to

describe his/her databases. It describes and stores his/her data model in a completely



transparent (to the program) and location independent way. It provides all the regular database
features.

LHC DATA SIZES

What will need to be developed to handle the expected size of LHC data analysis? What are the
current strengths and weaknesses for storing very large amounts of data?

JAS

The strengths of JAS are in its ability to adapt to whatever data format is eventually decided
upon, and to support access to very large datasets using its distributed client-server mode. There
are some weaknesses in the current java.io package when dealing with large amounts of binary
data, but these will be addressed by the addition of a new java.nio package in the next release of
Java (JDK 1.4 scheduled for release next summer). After which there is no reason to expect Java
IO will be any less efficient than C++ IO.

ROOT

Root is assumed to work in conjunction with an RDBMS. The RDBMS handles the run/file
catalog and other data that require locking, journaling, etc. Root files have a current practical
limitation to 2 GBytes. All the hooks are already in Root to support larger file sizes. The Alice
data Challenge has demonstrated the storage of 25 TeraBytes of data with the run catalog
(25000 files) stored in a simple MySQL database. A run catalog of 1000000 files has been
successfully tested with MySQL. Many experiments are currently experimenting with the
combination Root + RDBMS and expect to store several hundred TeraBytes in 2001.

LHC++/Anaphe

In LHC++, there were a number of studies done on how Objectivity/DB scales to store several
petabytes of data. Presently, only the fixed organization of the Object-Identifier limits the
amount of data that can be stored in "small" (few GB) files per Federation.

During the last year, the BaBar experiment has accumulated more than 100 TByte of data in
Objectivity/DB thereby showing scaling behaviour to amounts of data that are only one order of
magnitude lower than the ones expected for LHC.

As stated above, the use of an OO DataBase with transaction safety (locking) guarantees
consistency in the datasets written. This is especially important in a distributed/concurrent
environment.

Questions from the audience:

Q: Is it possible to store files with sizes above 2Gb?
A: (Bob Jacobsen) I don't want too many files but I don't want very big files either.
A: (Rene) ROOT has a current limitation to files of 2 GB. This is the limitation imposed in
general by the OS. All the hooks are in the system to support larger files in a backward
compatible way. You need different separate techniques to store run catalog and events store.
Q: How can we retrieve huge amounts of data rapidly?
A: (Bob Jacobsen) None of these software suites has addressed all the questions, but we know
now what the questions are.
Q: How is Objectivity used in BaBar?



A: (Bob Jacobsen) It is used as an object store, but there is something on top to find where the
event is, so that access to data is location-independent. We created an API on top of
Objectivity to provide this functionality, which is needed by every experiment.
A: (Rene) A remark on performance. In ALICE simulation Objectivity and ROOT differ by a

factor 5 in size. There is a factor from 3 to 5 in real time for accessing data (ROOT being the
faster).
A: (Bob Jacobsen) I have a comment on benchmarks done by people who know their own

system very well and learned the other one in a short time... However Babar created its own
way of retrieving data.

COMPATIBILITY WITH EXTERNAL SOFTWARE

How does the software work with external software such as GEANT4 and GEANT3? What can you
do and not do with them?

JAS

We demonstrated the use of JAS with Geant4 during this school. The Geant4 collaboration is
considering a proposal to adopt the AIDA interface as a standard interface to histogramming in
Geant4, meaning that it will be easy for Geant4 to interact with any AIDA compliant analysis
tool.

We have interfaces with Root, Objectivity, PAW, WIRED, G4, StdHEP, and AIDA. Due
to the simple "plugin" mechanism we expect to develop many more.

ROOT

The Alice collaboration has developed an abstract MC interface in the AliRoot framework. This
abstract interface has currently an implementation (TGeant3) for Geant3 and a set of classes.
TGeant3 is independent of Alice

- AliGeant4 with Alice specific classes for Geant4

- TGeant4: an experiment independent interface to G4 called by AliGeant4

The geometry input and the hits output is MC independent (same classes for Geant3 and
Geant4).

A Root GUI (for GEANT4) has recently been developed in Alice by Isidro Gonzalez.
This work will be presented at the coming Geant4 workshop in October.

Also in Alice, Ivana Hrivnakova who developed the AliGeant4 and TGeant4 classes is
currently working in processing all the G4 classes via rootcint. This work is now close to
completion. Once it is done, the following facilities will be available:

- Automatic I/O of G4 objects

- Automatic inspection and browsing of G4 data structures

- Cint interactive interface to the G4 classes.

LHC++/Anaphe

In Lizard access to Geant-4 (as to any other external software) is through the Analyzer. In
addition, Geant-4 is developing AIDA based Abstract Interfaces to be used in connection with
analysis packages.

As for the experiments, in the context of LHC++ we have been working closely together
with Geant-4 for the design/implementation of the object persistency using an Object Database.



Questions from the audience:

Q: Can LHC++ interface GEANT3?
A: (Andreas) This can be done through the package. Be aware of limitations of using

Fortran code (especially with common blocks) in multi-threaded environments which are
becoming more and more popular.

A: (Rene) GEANT3 and 4 can be interfaced in the same way in ROOT. The idea to develop
an abstract interface in ALIROOT was to easy the transition from GEANT3 to GEANT4.
Thanks to this interface, Alice had the same geometry input and the same output objects with
G3 and G4.

EXISTING EXPERIMENTAL SOFTWARE

If an experiment has an existing software package how do you interface it and how much of its
capability will be available?

JAS

In principle, using a combination of plugins and DIM's you should be able to interface any
experiment to JAS. In practice in depends how "Java Friendly" the experiment is (extensive use
of C++ features such as templates tend to make it more difficult). Well-designed, modular
experiment software also helps. The person who builds the JAS interface will need to learn a
fair bit about Java and JAS, but once that is done it should be easy for other collaborators to use
the interface.

Direct interface with C++ code is currently a weak point of Java, thus direct interface
with C++ experiment code is currently difficult. We expect more and more experiments to adopt
Java as the huge productivity benefits of using Java become more widely appreciated,
meanwhile we are attempting to address this issue via the development of tools such as JACO,
and plan to test this in the context of the Atlas event model. Interfacing with experiment
software in Java (such as LCD) or via some intermediate storage format (e.g. PAW, Objectivity,
ROOT) is comparatively straightforward.

ROOT

There are two ways to use ROOT. As a framework or as toolkit. When using it as a framework
ROOT will control the event loop and call your software. This will allow you to use all ROOT's
capabilities. Or you can use ROOT as a toolkit you keep your event loop and you use ROOT
features like a 'sub-routine library' calling e.g. ROOT's histogramming, I/O, etc. Both
approaches are used by several experiments. ALICE, STAR, etc. use the first, while ATLAS,
LHCb are using the latter.

LHC++/Anaphe

If the experiment's s/w package is independent of the categories used in Lizard, its full
capability is available through the Analyzer. In case the experiment wants to replace one or
more of the categories, one or more Adapter to the Abstract Interface needs to be written (if not
already done).

Questions from the audience:

Q: (Bob Jones) How is it possible to interface the suites with other software components (e.g.
CORBA)?

A: (Andreas) We will address that problem next year.



A: (Bob Jacobsen) It has been done in Babar. We use JAS via CORBA (it is simple to
interface JAVA with CORBA).

A: (Rene) There is no problem, since we already developed socket-based high performance
communication. We could implement CORBA as well.



IF I WANT TO MAKE AN IMPROVEMENT, HOW DO I GO ABOUT IT?

LHC++/Anaphe

For the HEP part of Anaphe/LHC++ download the sources from the CVS repository (or the tgz
file), modify and let us know!

ROOT

Proceed like several thousand people who are already doing this. Subscribe to the roottalk
mailing list, see what happens and feel free to submit your complaints, additions, etc. The Root
web site has a long list of links to users’ contributions. The CREDITS file in the Root source
distribution has a long list of people who have contributed in many different ways to the Root
system.

JAS

JAS is an "Open Source" project. All of the source code is easily available and we use a Java
version of make that allows you to build the system yourself, in the same way on any platform,
using the simple instructions on our web site. (Building JAS from scratch takes less than one
minute, and much less if you only need to recompile files you have changed). Any changes or
additions you make are likely to be happily accepted back into the project.

In addition you can often extend JAS without having to learn the internals of the program
by writing a plugin which adds the extra functionality you require.

The developers have made most decisions (on direction) with feedback from people using
JAS for specific experiments (particularly LCD, Babar). We have a mailing list and bug report
page and encourage feedback and suggestions from anyone (negative feedback is very welcome,
especially if accompanied by suggestions for improvements).

Questions from the audience:
Q: What licences are needed by these software suites for HEP?
A: (Fons) In ROOT we have an Open Source approach.
A: (Bob Jacobsen, on behalf of Tony Johnson) We use an Open Source/GPL approach.
A: (Andreas) For the packages developed by us, we use an Open Source approach. For the

commercial components, you have to simply register with us if you are part of the CERN
research programme, otherwise you have to negociate your own licence. The exact type of
licence for the packages developed by us is not yet defined, will be either GPL or something
very similar.

Q: To what extent is CINT a constraint for people willing to develop new features in
ROOT? If I want to write an extension to a ROOT class, should it be CINT complaint?

A: (Fons) There are no constraints as far as CINT is concerned. You only need to have code
that compiles on all the platforms supported by ROOT (C++ standard compiler).

HOW DOES THE SOFTWARE UTILIZE LARGE PARALLEL FARMS FOR
COMPUTATION?

JAS

JAS has been designed from the outset to run in a "client-server" mode, and to support
distributed data analysis. There are Java bindings to many of the GRID components (e.g.
GLOBUS) and we expect that features of the GRID such as global authentication will be easy to



interface to JAS. We believe that the model of moving the code to the data (rather than vice-
versa) is most applicable to HEP data, and think Java is the best language for exploiting this due
to its high performance and built-in network and code portability features. It has not yet been
tested with very large datasets on large farms, but that will hopefully be done in the coming
year.

ROOT

Following our long experience with parallel architectures in the early 1990s and in particular the
development of the PIAF system for PAW, we developed a first prototype of PROOF in 1997
with the goal of using a parallel cluster in a heterogeneous environment. We are investing a lot
of effort with PROOF to support large parallel farms. This work will be gradually integrated
with the current GRID projects (e.g. Alice has submitted a GRID proposal based on PROOF).

LHC++/Anaphe

This has not yet been studied in the context of Anaphe/LHC++/Lizard. The
analysis/design/implementation of this will start at the beginning of 2001 based on the Globus
GRID toolkit.

CHOICE OF SCRIPTING LANGUAGE

To what extent can a user or experiment choose their scripting language (e.g. Java, Python, CINT,
etc)? Can an experiment choose more than one?

JAS

First, Java is NOT a scripting language. Scripting languages are designed differently from
compiled languages such as Java, C++ and Fortran, and to use a compiled language as a
scripting language or vice-versa would be unwise. Having said that Java does exhibit some of
the advantages sometimes associated with scripting languages, such as very fast compile, load,
run cycle (especially when using dynamic loading to load only your analysis routines, as in
JAS).

We are currently adding support for scripting languages to JAS; we made a demonstration
of beanshell as a scripting language during the school. There are many other scripting languages
available for Java, including JPython, a complete and very fast implementation of Python in
Java. Any Java scripting language can be very easily used with JAS (or any Java program).
There is no technical reason why an experiment should not use more than one.



ROOT

The default command/script interface in Root is based on CINT. If a user does not like CINT,
he can make an interface to other languages such as Python. The Root classes may be invoked
directly. It is worth mentioning that the number of requests for this solution is close to 0.

Subir Sarkar (L3 Bombay and CDF) has developed an interface to the histogramming
package using the Java native interface (JNI) and also a native Java interface to the Root files.

LHC++/Anaphe

In Lizard, the scripting language can be any of those supported by SWIG (www.swig.org)
including Perl, Python, Tcl/Tk, Mzscheme, Ruby and Guile. A module for Java (although this is
not a scripting language) is in preparation.

QUESTION FROM TONY JOHNSON TO THE STUDENTS:

Suppose that during the CSC 2000, the authors of Root, JAS and LHC++ get together and decide they
are wasting time creating similar Analysis systems. Over a late night Ouzo they all decide to work
together on their next project, a system for analysing and predicting the future value of the Euro.

They all immediately quit HEP to form their new start-up company and become fabulously
wealthy. You are assigned to provide support for one of these orphaned analysis packages for the next
5 years of your experiment (15 years if you are working on an LHC experiment). Which one would
you choose?

Votes:

ROOT 25

JAS 17

LHC++ 4 (of which 2 were LHC++ developers)

The other students did not vote. Bob Jacobsen completed this discussion on issues
covered by asking a few questions to the audience:

Are we ready for the LHC?

What’s not yet understood?

What’s still to be built?



SOFTWARE ENGINEERING READING LIST

GENERAL

Software Engineering; Ian Summerville; Addison-Wesley; 1995; ISBN 0-201-42765-6

A Discipline for Software Engineering; Watts S. Humphrey; Addison-Wesley; 1995; ISBN 0-7515-
1493-4

Managing the software process; Watts S. Humphrey; Addison-Wesley; 1989; ISBN 0-201-18095-2

Principles of Software Engineering Management; Tom Gilb; Addison-Wesley; 1988; ISBN 0-201-
19246-2

R.S. Pressman, Software Engineering: A Practitioner's Approach, McGraw Hill, 4th Edition, 1996,
ISBN: 0070521824

The mythical man-month; Frederick P. Brooks, Jr.; Addison-Wesley; 1982; ISBN 0-201-00650-2

Software Quality; Joc Sanders & Eugene Curran; Addison-Wesley; 1994; ISBN 0-201-63198-9

OO ANALYSIS AND DESIGN

Principles of Object-Oriented Analysis and Design; James Martin; Prentice Hall; 1993; ISBN 0-13-
720871-5

Object-Oriented Modeling and Design; James Rumbaugh et al., Prentice Hall; 1991; ISBN 0-13-
629841-9

Object-Oriented Modelling with Syntropy; Steve Cook & John Daniels; 1994; ISBN 0-13-203860-9

Building Object Applications That Work; Scott W. Ambler; 1998; ISBN 0-521-64826-2

UML

Real-Time UML; Bruce Powel Douglass; 1998; ISBN 0-201-32579-9

The Unified Software Development Process; I. Jacobson, G. Booch, J. Rumbaugh; 1998; ISBN 0-201-
57169-2

UML Distilled; Martin Fowler; 1997; ISBN 0-201-32563-2

Applying Uml and Patterns; Craig Larman; ISBN 0137488807

H.E. Eriksson & M. Penker, UML Toolkit, Wiley, 1998, ISBN: 0471191612

UML 2001: A Standardization Odyssey, Cris Kobryn, Comms. Of the ACM, Oct. 1999/Vol. 42, No.
10

ONLINE REFERENCES

Object Management Group http://www.omg.org

Rational Corporation http://www.rational.com

Software Development Magazine http://www.sdmagazine.com

Software Engineering Resources http://www.rspa.com/spi/

Dr. Dobbs Software Tools for the Professional Programmer http://www.ddj.com

Journal of Object Oriented programming http://www.joopmag.com/


