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1. Introduction

No known experimental constraint firmly excludes the possibility that Kaluza Klein (KK)

excitations of the graviton propagating in δ ≥ 2 large extra dimensions will affect future

particle physics experiments [1, 2]1. After removing all non propagating degrees of freedom

by a suitable choice of coordinates, many authors computed the signals of KK graviton

emission at tree level [4, 5, 6]. Some authors also considered 1-loop effects [6, 7, 8, 9, 10]:

since they affect observables measured with higher precision, they can compete with tree

level effects. The result was not the expected one. Consider for example the graviton

correction to the Higgs mass. At first sight one would estimate it as

δm2
h ∼

∑

n

∫

k

(mhk/M4)
2

(k2 +m2
n)(k

2 +m2
h)

∼
∑

n

m2
hΛ

2

(4π)2M2
4

∼ m2
h

(

Λ

MD

)2+δ

(1.1)

where MD, M4 are the gravitational scales of the D-dimensional and 4-dimensional theory

respectively, and Λ ∼ MD parameterizes the unknown quantum gravity ultraviolet cutoff.

At a closer look [6, 7, 8, 9] the effect seems to be much larger. To understand that, consider

the propagator for the physical J = 2 nth KK graviton with mass mn and 4-momentum

kµ [4, 6]

G(n)
µν G

(m)
ρσ =

iδn,−m

(k2 −m2
n)

1

2
(tµρtνσ + tµσtνρ −

2

3
tµνtρσ) (1.2)

where tµν ≡ ηµν − kµkν/m
2
n. If the terms enhanced by powers of k/mn were to fully

contribute to quantum corrections, the k factors would give a highly ultraviolet (UV)

divergent loop effect. More importantly, when δ < 4 the 1/mn factors would also give a

strong infrared (IR) enhancement of the sum over KK modes. At the end the correction

would be a factor (MDR)
4−δ larger than the naive one in eq. (1.1), where R is the size of

the extra dimensions. This kind of behavior, indeed observed in [6, 7, 8, 9], would exclude

the possibility that δ < 4 large extra dimensions (i.e. R ≫ 1/MD) solve the hierarchy

problem.

The above argument on the fate of the k/mn terms must however be wrong, and for

a very simple reason. Indeed one could choose to fix the D-dimensional reparametrization

invariance by the de Donder gauge choice, in which the graviton propagator contains no

k/mn terms. This is in complete analogy with the case of a massive vector boson, where the

propagator contains k/mn terms in the unitary gauge, while no such term is present in the

Feynman gauge. Therefore k/mn terms cannot affect gauge-invariant physical observables.

This suggests that there must be something missing or incorrect in the computations so

far performed.

The purpose of the present paper is to devise all the elements that are needed for a

fully consistent computation. The guideline is to respect the full D-dimensional general

coordinate covariance. First of all it is crucial to fix the gauge by the Faddeev-Popov

1The case δ = 2 is excluded by bounds on emission of KK modes with a small mass <
∼ 100 MeV in

supernovae [1, 3], if the extra dimensions are flat. In principle, one could save collider signals (due to heavy
KK modes) by assuming that the compact dimensions are curved on length scales >

∼ (100MeV)−1, so that
the light KK are lifted.
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procedure and to choose a covariant regulator. If the regulation of the loop integral is

not performed with the due care, spurious UV and IR divergences can appear. Secondly,

one has to remember that the position of the brane depends on the system of coordinates,

and therefore brane fluctuations (branons) must be taken into account in order to respect

general covariance. Finally one must carefully identify which are the physical observables

in the presence of gravity: misidentification of the true observables can yield spurious gauge

dependence and IR divergences.

One of our results is that all the puzzling effects found in the existing literature cancel

out in a fully consistent calculation when one computes physical observables. For example

the Higgs mass term and the oblique S, T, U parameters [11] are not physical observables

(except in particular cases). So they receive gauge dependent quantum gravity corrections,

which in some cases are even enhanced by powers of RMD. These infrared pathologies,

which would invalidate perturbation theory (for instance RMD ∼ 1015 if R ∼ mm and

MD ∼ TeV), are absent in the corrections that affect the corresponding physical observ-

ables, the pole higgs mass and the ǫ1, ǫ2, ǫ3 parameters [12].

In our study we treat quantum gravity and the brane by the method of effective field

theory (EFT) [13, 14]. We do so in the absence of a realistic fundamental description of

the SM on a brane2. The effective Lagrangian summarizes all our low energy knowledge

of gravitational interactions with SM particles. By our method we could perform a fully

consistent computation of the 1-loop quantum gravity corrections to electroweak precision

observables. However the dominant effects are strictly speaking uncalculable, as they are

saturated in the UV where we loose control of the theory. We can only parameterize these

effects in terms of a UV cutoff Λ3. The calculable piece is the one saturated in the infrared,

but this is only of order (MZ/MD)
2+δ. Therefore, introducing a UV cut-off Λ, we will only

compute a particular combination of observables, which is affected by just a few simple

Feynman diagrams. For the full set of observables we will limit ourselves to a qualitative

discussion.

While the discussion of the phenomenology is somewhat limited by the powerlike UV

divergences, we stress that the main goal of the present paper is conceptual. In this respect

the most important (and new) result is that brane motions have to be properly taken into

account. In order to understand this issue better we have also considered the case of a

brane living at an orbifold fixed point, for which the branons are projected out. In this

case gauge independence of observables is met through tadpole diagrams specific of orbifold

compactifications, rather than by branon loops. The technology developed in this paper

may prove useful in future work. One possible application is the brane to brane mediation

of supersymmetry breaking through bulk gravity at 1-loop. This effect is computable and

2Interesting attempts based on D-brane intersections [15] give ‘semi-realistic’ models with extra charged
matter with respect to the SM. The stability of these configurations is an open question.

3A string model could provide a physical realization of this cut off. However at the level of the present
model building technology there are many free parameters specifying the moduli and the brane configura-
tion [15, 16, 17]. Therefore, even if we were able to reproduce the SM, the predictive power on quantum
corrections (for example on the muon g−2) would probably be limited. Of course it would still be important
to have one such model. Indeed it would also be interesting to have a field theoretic brane model in the
spirit of [18, 19].
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represents the leading correction to anomaly mediated soft terms: depending on its sign it

may cure the tachyon problem of anomaly mediation.

The paper is structured as follows. In section 2 we discuss our Lagrangian and the

effective field theory philosophy. We also introduce various gauge fixing conditions for

the gravitational field and explain the rôle of the branons. In section 3 we calculate the

corrections to the masses of scalars and vectors, on and off the brane. We explain what

gauge independence means in quantum gravity, and show that physical quantities are

gauge independent. We also give the example of a brane at an orbifold fixed point, for

which branons are not needed. In section 4 we derive experimental bounds on low energy

quantum gravity from precision measurements and from the anomalous magnetic moment

of the µ. In section 5 we summarize. Finally in the appendices we describe how to derive

graviton-matter vertices and collect our results for the corrections to brane observables.

2. Effective Lagrangians for gravitons and branes

2.1 Pure gravity

We study gravity in R
d × M where the extra dimension M is a compact manifold of

dimension δ. Not knowing which manifold is of physical interest (if any), we consider

the simplest one: a δ-torus T δ with a single radius R and volume V = (2πR)δ . We

perturbatively expand the classical Einstein-Hilbert action around the flat metric gMN =

ηMN + κhMN , ηMN = (+1,−1,−1,−1, . . . ) in terms of the graviton field hMN :

S =
M̄D−2

D

2

∫

dDX
√
g R

=
1

2

∫

dDX
(

− hMN
✷hMN + h✷h− 2hMN∂M∂Nh+ 2hMR∂R∂Sh

S
M

)

+O(κ).

(2.1)

where D = d + δ, h ≡ hMM and we used ηMN to raise and lower indices. We use upper

(lower) case latin letters for D-dimensional (extra-dimensional) indices and Greek letters

for d-dimensional indices; in particular we decompose the D-dimensional coordinates as

XM = (xµ, yi). We do not fix d = 4 since we will use dimensional regularization. Following

the notation of ref. [4] we have defined

κ2 ≡ 4M̄2−D
D , M̄d−2

d = V M̄D−2
D = RδMD−2

D (2.2)

M̄d is the effective reduced Planck mass as measured by a d-dimensional observer, M̄D

is the corresponding parameter in D dimension and MD is defined by (2.2). With this

convention the equations of motion read:

RMN − 1

2
gMNR = − 1

M̄D−2
D

TMN (2.3)

Before inverting the quadratic term in eq. (2.1) to obtain the propagators, one must fix

the reparametrization invariance; we follow the Faddeev-Popov procedure and introduce a

set of ξ-gauges by adding to the Lagrangian the gauge-fixing term LGF = −F 2/ξ, where

FN = ∂µ(hµN − 1

2
ηµNh) + ξ∂i(hiN − 1

2ξ
ηiNh). (2.4)
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This particular choice breaks the D-dimensional Lorentz symmetry of the flat background

metric for generic values of ξ and interpolates between the usual de Donder and unitary

gauge, obtained respectively in the limit ξ → 1,∞. The functional integral gets multiplied

by the Faddeev-Popov determinant, exponentiated in the usual way by introducing ‘ghost’

fields ηM , η̄M :

Lghost =

∫

dDX dDX ′ η̄N (X)
δFN (X)

δλM (X ′)

∣

∣

∣

λ=0
ηM (X ′) (2.5)

where λ is the gauge parameter for reparametrizations.

The kinetic term for the graviton field is a (messy) 3 × 3 matrix which mixes tensor

hµν , vector hµi and scalar hij modes. Since interactions are more easily written in terms

of the hµν , hµi and hij components of the D-dimensional graviton field hMN , it is more

convenient to write the propagator in this basis rather than in the gauge-dependent mass

eigenstate basis. For example matter fields confined on a straight d-dimensional brane at

leading order couple only to the tensorial hµν mode.

By decomposing the graviton field hMN in its Fourier harmonics

hMN (x, y) =
1√
V

∑

n∈Zδ

h
(n)
MN (x) ein·y/R (2.6)

and integrating the Einstein-Hilbert Lagrangian over the extra-coordinates, one obtains

the d-dimensional Lagrangian for KK modes.

Notice that ∂ihiN can be interpreted as Goldstone bosons eaten in a gravitational

Higgs mechanism to form massive tensors and vectors. We are classifying particles by

the d-dimensional Poincarè group. By this interpretation, eq. (2.4) is the analogue of ’t

Hooft’s ξ gauge in spontaneously broken gauge theories. For ξ → ∞ we get the unitary

gauge [4, 6] in which only the physical degrees of freedom propagate. In this limit the ξ

gauge propagator for the modes hMN = (hµν , hij , hµj) simplifies to

h
(n)
MNh

(n′)
M ′N ′ =

1

2

iδn,−n′

(k2 −m2
n)

·






tµµ′tνν′ + tµν′tµ′ν − 2
D−2tµνtµ′ν′

2
D−2Pi′j′tµν 0

2
D−2Pijtµ′ν′ Pii′Pjj′ + Pij′Pji′ − 2

D−2PijPi′j′ 0

0 0 −Pii′tµµ′







(2.7)

where k is the d-dimensional momentum,

Pij ≡ δij −
ninj
n2

, tµν ≡ ηµν −
kµkν
m2

n

(2.8)

and m2
n = n2/R2 is the mass squared for the nth KK excitation, having defined n2 ≡

−ninjηij = ninjδij . In appendix A we derive this propagator by working in the unitary

gauge with physical fields. As usual ‘Goldstone’ bosons and ‘ghosts’ get infinitely massive

when ξ → ∞ but they do not decouple: loop corrections computed in the unitary gauge

(ξ = ∞) by propagating only the physical fields are different from the limit ξ → ∞ of

loop effects computed in a ξ gauge [20]. Of course the mismatch disappears in physical

quantities.
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For ξ = 1 we get instead the de Donder gauge, where the propagator has the covariant

form:

hMNhM ′N ′ =
i

2K2
(ηMM ′ηNN ′ + ηMN ′ηNM ′ − 2

D − 2
ηMNηM ′N ′) (2.9)

where K is the D-dimensional momentum. In matrix notation, for the single KK mode:

h
(n)
MNh

(n′)
M ′N ′ =

1

2

iδn,−n′

(k2 −m2
n)

·






ηµµ′ηνν′ + ηµν′ηνµ′ − 2
D−2ηµνηµ′ν′

2
D−2δi′j′ηµν 0

2
D−2δijηµ′ν′ δii′δjj′ + δij′δji′ − 2

D−2δijδi′j′ 0

0 0 −δii′ηµµ′







(2.10)

We have thus shown that the propagator in the de Donder and unitary gauges has the

same form up to longitudinal k/mn terms. For compactness, we do not write explicitly the

propagator in a generic ξ-gauge.

2.2 Gravity and branes

We want to study quantum gravity corrections to the physical observables of a field theory

living on a d-dimensional brane in a δ-dimensional compact space M. At the end we will

identify the brane theory with the Standard Model. The gravitational Lagrangian has been

discussed in the previous subsection. We now discuss the brane Lagrangian.

We use an effective field theory (EFT) approach where the fundamental description of

the particles and of the brane is not specified [14]. In the regime of validity of EFT, the

particles are treated as point-like and the brane is treated as infinitely thin in the extra

dimensions. This requires a little explanation. If ρ is the brane true transverse size, our

EFT is only valid at energy scales ≪ 1/ρ. The brane also generally has a finite tension

τ ≡ fd. This gives rise to a gravitational field behaving like fd/Md+δ−2
D rδ−2 ≡ (rG/r)

δ−2

at a distance r far away from the brane in the extra space. We focus on δ > 2 (for

δ = 2 the background is locally flat with a conical singularity at the brane position).

The gravitational radius rG controls the distance at which the geometry is curved. One

can then think of different possibilities for the brane structure. If ρ > rG the brane is

similar to a big star where the geometry nowhere strongly deviates from the flat, and

1/ρ truly represents the UV cut-off of our EFT. On the other hand for ρ ≪ rG it is the

gravitational radius that sets the UV cut-off. Physics at energies > 1/rG would probe

the gravitational structure of the brane, which is non-universal and model dependent.

One example is a black brane where at r ∼ rG a black-hole horizon is present. Another

different example is given by the solution studied in [21], where there is no horizon and

a naked singularity is avoided by a finite brane size. In the latter case the coupling of

bulk gravitons to the brane is dramatically changed at energies > 1/rG. As we are only

interested in universal features we will assume that the UV cut off ΛUV that limits the

use of our EFT is bounded by min(1/ρ, 1/rG). In the regime of validity of EFT we can

treat the background metric as approximately flat and treat the effects of the brane tension
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as perturbations. Notice indeed that at energy E the latter are controlled by the small

parameter Eδ−2fd/Md+δ−2
D ≡ (ErG)

δ−2 < (ΛUVrG)
δ−2 ≪ 1 .

Two possibilities are given: either the brane can freely move in the bulk or sit at

a fixed point, if the compact space M has any. Let us consider the former case first.

The immersion of the brane in the D-dimensional space is parameterized by D functions

XM (z), where zµ are the d local coordinates on the brane. The brane action must be

invariant under both D-dimensional coordinate changes (under which XM transform and

zµ are unchanged) and under reparametrizations of the brane coordinates zµ. An invariant

brane action can be built using the induced metric

gindµν (z) =
∂XM (z)

∂zµ
∂XN (z)

∂zν
gMN (X(z)). (2.11)

Since gindµν is a scalar underD-dimensional reparametrizations, we only need to respect brane

reparametrizations by the use of gindµν itself. The description of the brane position by the

XM (z) is of course redundant. We can eliminate this redundancy by using the remaining

gauge freedom represented by brane reparametrizations. We stress that we cannot use D-

dimensional diffeomorphisms for which the gauge has been completely fixed in the previous

section. A convenient choice of brane coordinates is xµ = zµ, yi = ξi(xµ). This choice

completely fixes brane reparametrizations without the need of introducing additional ghost

fields (the ghost determinant is trivial) [14]. We call the ξi branons.

As we said the branons cannot be thrown away because we have already completely

fixed the D-dimensional reparametrization gauge invariance. However in the previous sec-

tion one could have chosen a different class of coordinate gauges, one in which the brane

always sits at a given point in M. This different choice would explicitly break translation

invariance in the extra dimensions. What becomes of the branons in these different gauges?

They are still there but as longitudinal modes of a combination of graviphotons: the bra-

nons can indeed be interpreted as the Goldstone bosons of broken translation invariance

in the extra dimensions [14]. We find it more convenient to gauge fix the graviton in the

more standard way and keep the branons. Notice that, consistently with their Goldstone

character, in the limit in which gravity decouples (MD → ∞) the branons survive. Their

physical effects can therefore be studied independently of gravity [22]. Quantum fluctua-

tions of the branons are controlled by 1/τ (the analogue of 1/f2π for pions) and become

non-perturbative at an energy E >
√
4πf (E > 4πfπ for pions). Therefore the tension τ

sets another sure upper bound on the regime of applicability of EFT.

In terms of the branons ξi the induced metric is

gindµν = gµν − gµigνjg
ij + (Dµξi)(Dνξj)g

ij ≡ ηµν + h̃µν (2.12)

where Dµξi ≡ ∂µξi + gµi and the metric gMN is evaluated at the brane location yi = ξi.

For 1-loop computations we need h̃µν up to quadratic order in ξ

h̃µν = κhµν + (∂µξi)(∂νξ
i) + κ(ξi∂ihµν + hiµ∂νξ

i + hiν∂µξ
i) + · · · (2.13)
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where now h is the graviton field evaluated at the brane rest position yi = 0. The brane

Lagrangian is given by

Sbrane =

∫

d4x

[

− τ
√

det gindµν + LSM + · · ·
]

(2.14)

where LSM is the covariant brane Lagrangian (that we will identify with the SM La-

grangian), while the dots indicate all terms involving higher derivatives, the Riemann

tensor for the induced metric [23] or the extrinsic curvature. By expanding the tension

term up to quadratic order in the branons and gravitons we get

Lmix = −τ
2

[

(∂µξi)(∂
µξi) + κ(hµµ + ξi∂ih

µ
µ + 2hiµ∂

µξi) + κ2Bµνρσhµνhρσ
]

+ · · · (2.15)

which shows a mixing between ξ and h (see appendix B for the definition of the tensor B).

As we will discuss shortly, in order to consistently compute virtual graviton effects this

mixing has to be taken into account. Notice also that there is a linear term in h, since the

massive brane is a source of gravity. We will comment below about when and how can this

term be neglected. The interaction of gravitons and branons with SM fields is encoded in

the covariant dependence of LSM on the induced metric. At quadratic order we have

LSM = LSM + κLµν h̃µν + κ2Lµνµ′ν′h̃µν h̃µ′ν + · · · (Tµν ≡ −2Lµν) (2.16)

where the explicit formulae are given in appendix B.

2.3 Gravity and vector bosons

In section 2.1 we have described the gauge fixing procedure for a theory of pure gravity.

If gauge fields AM are present, the Lagrangian has both internal and gravitational gauge

invariance, which can be fixed through a delta functional δ(F (h,A))

F (h,A) = [f1(h,A), f2(h,A)]

in the functional integral imposing f1(A,h) = 0, f2(A,h) = 0. This is equivalent to adding

the gauge fixing term LGF = −f21 /ξ − f22 /2ζ in the Lagrangian and the Faddeev-Popov

determinant in the functional integral

det
δF (h,A)

δλ
= det

(

δf1/δλ1 δf1/δλ2
δf2/δλ1 δf2/δλ2

)

(2.17)

where λ1, λ2 are the gauge parameters for diffeomorphisms and internal gauge transforma-

tions respectively. δf2/δλ1 is generically non zero because vector bosons are ‘charged’ under

gravity. However the graviton field is neutral under charge transformations, so that for a

reasonable gauge-fixing function f1 which doesn’t involve the vector bosons (in particular

for f1 as in eq. (2.4)) the determinant factorizes:

det
δF

δλ
= det

δf1
δλ1

· det δf2
δλ2

(2.18)
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and the two factors can be exponentiated separately in the usual way. Notice that it is

convenient to choose a non covariant gauge-fixing f2 for the photons in order to avoid

additional couplings with gravitons. (A non-covariant f2 should not cause any panic:

reparametrizations are already broken by the gravitational gauge fixing f1). We have

explicitly checked that the simple gauge fixing

LGF = − 1

2ζ
(∂MANη

MN )2 (2.19)

gives the same results as other more involved choices.

In a theory with vectors that acquire mass Mv through the Higgs mechanism, as in

the Standard Model, the gauge-fixing term will contain the Goldstone bosons φG field as

well. Even with the simple gauge fixing

LGF = − 1

2ζ
(∂MANη

MN −MvζφG)
2 (2.20)

there is a cubic vector-Goldstone-graviton interaction: in a generic metric the gauge

fixing does not fully cancel the kinetic mixing between the Goldstones and the vector

(MvAM∂NφGg
MN√

g) present in the Lagrangian. Such gauge fixing can be easily adapted

to vector bosons confined on a brane.

2.4 Gravity and fermions

Finally, we sketch how to extend our analysis to the important case of fermions. It is

well known that GL(D) does not admit spinor representations and in order to deal with

fermions, we need some extra structure: the vierbein EA
M and its inverse E M

A defined by

gMN = ηAB E
A
ME

B
N EA

ME
M
B = δAB . (2.21)

Where capital letters from the beginning of the latin alphabet A,B,C, . . . denote D-

dimensional Lorentz indices. The vierbein basis definition introduces an additional gauge

symmetry, besides diffeomorphisms, due to the freedom in (2.21) to rotate E acting with

a local SO(D− 1, 1) transformation. In absence of torsion, the compatibility condition be-

tween the metric and the connection ω, allows to express the latter in terms of the vierbein

E. Then, once the vierbein is defined, the introduction of spinors is rather straightforward

(see for instance [24]), a collection of the relevant formulae can be found in appendix B.

Around a flat background we can parametrize the vierbein as EA
M = δAM +κBA

M . In terms

of the quantum field BA
M the metric fluctuation is then

h
MN

= B
MN

+B
NM

+ κBO
M
B

ON
. (2.22)

where BMN = ηMAB
A
N and similarly all indices are raised and lowered by the Minkowski

metric ηAB . The gravitational action, when expressed in terms of E (or equivalently in

terms of B), is invariant under the infinitesimal local Lorentz transformation

δBA
M = κ−1ΩA

B(X)
(

δAM + κBB
M

)

, ΩAB(X) = −ΩBA(X). (2.23)
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A convenient gauge choice is [25]

B
MN

− B
NM

= 0, (2.24)

The great advantage of (2.24) is that Lorentz ghosts are absent [25] and that it makes

possible the elimination of the vierbein fields, order by order in κ, in favor of the quantum

metric h [26]. Indeed, in the gauge (2.24) one can easily express B in terms of h by solving

(2.22)

B
MN

=
1

2
h

MN
− 1

8
κhA

M
h

AN
+ O(κ2). (2.25)

As a result, even when fermions are present, at the perturbative level, the quantum fluc-

tuations of the geometry are encoded in h and our formalism can be applied without

modifications.

A similar procedure can be applied to fermions living on a (d − 1)-brane. These are

spinors of SO(d−1, 1) and in order to write an invariant Lagrangian one needs the induced

vierbein on the brane, which is now a d × d matrix eaµ. In what follows we indicate by

lower-case latin letters a, b, c, . . . the d-dimensional Lorentz indices. In ref. [14] it was

shown how to construct eaµ out of EA
M and of the brane immersion XM (z). Basically it

has the form

eaµ(z) = Ra
AE

A
M (X(z)) ∂µX

M (z) (2.26)

where Ra
A is a SO(D − 1, 1) rotation matrix which depends on EA

M and XM (z). Under a

SO(D − 1, 1) rotation EA
M → Ω(X)ABE

B
M , the induced vierbein undergoes a SO(d − 1, 1)

rotation eaµ → ω(z)abe
b
µ. By fixing the brane reprametrizations keeping just the branons

(as done in the previous section) and by fixing D-dimensional Lorentz transformations as

shown in this section, eaµ is written as a function of ξi(x) and hMN . However it is a fairly

complicated expression. Calculations can be simplified by using the local Lorentz symmetry

eaµ → ωa
b (x)e

b
µ to rotate the induced vierbein to a more convenient form (fermions rotate

ψα → ωα
βψ

β by the spinorial representation ωα
β ). Precisely as we did with EA

M it is useful

to rotate eaµ to a symmetric matrix

eaµ = δaµ + baµ ηνab
a
µ = ηµab

a
ν (2.27)

from which by using gindµν = eaµe
aν and eq. (2.12) we obtain the analogue of eq. (2.25)

bµν =
1

2
h̃µν −

1

8
h̃ρµh̃ρν +O(h̃3). (2.28)

3. Loop corrections to brane observables

We now have all the ingredients to perform some illustrative computations. We will focus

on the one loop correction to the masses of scalars and vectors living on the brane.

In order to do a meaningful computation we must employ a regularization that respects

D-dimensional reparametrization invariance. The result will depend on the choice of the

regulator. The simplest thing could be cutting the loop integrals at Λ. Since this is

not an invariant regulator, we would get a meaningless result that also depends on the
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choice of the loop integration momentum. A better possibility consists in dividing all

graviton propagators by some power of (1 − p2/Λ2). It is possible to obtain this Pauli-

Villars (PV) regulator in a covariant way by adding to the action suitable higher derivative

reparametrization invariant terms involving just the metric. We will instead employ the

standard extension of dimensional regularization to the case in which both continuum and

discrete momentum are involved (see the appendices for details). Of course by this method

we are only sensitive to the “physical” logarithmic divergences, while all power divergences

are automatically removed. Nonetheless from our results it will be clear that by choosing

a regulator sensitive to power divergences (like PV) for the sum over KK we would still

not have the ΛR terms of ref.s [6, 7, 8, 9] in physical quantities.

3.1 Brane in a torus

Consider now the one-loop graviton correction to the pole mass m0 of a minimally coupled

scalar living on a straight brane located at the point yi = 0 of a torus T δ. As we explained

in section 2.2, in the regime of validity of EFT (E < 1/rG) the brane tension can be

treated as a perturbation in the gravitational dynamics. Therefore it makes sense to

expand the corrections to our observables in a power series in τ . Let us focus on the

lowest order effects, i.e. those that go like τ0 4. The diagrams that contribute at order

τ0 are shown in fig. 1. Notice that diagrams (d) and (e) also involve branons: in these

diagrams the τ−1 from branon propagation is compensated by the τ1 in the graviton-

branon mixing insertion. Notice also that the tadpole diagram (c) gives no contribution.

Due to momentum conservation in the extra dimensions (valid at zeroth order in τ) only

the zero modes mediate this tadpole, these are the 4d graviton and the radion. Whatever

mechanism stabilizes the radion giving also a vanishing effective 4d cosmological constant

generates a tadpole that cancels (c) exactly at the minimum of the radion potential. Of

course exact cancellation of the 4d cosmological constant requires the usual fine tuning.

Now, the genuine graviton diagrams (a) and (b) give a correction

δm2
0(a + b) =

i

M̄d−2
d

∑

n

∫

k
〈φ(−p)| − 2LµνLρσ + 4iLµνρσ |φ(p)〉(h(n)µν h

(−n)
ρσ ) (3.1)

where p2 = m2
0 is the squared momentum of the on-shell scalars (m0 is the tree level mass).

The branon contributions (d) and (e) give

δm2
0(d + e) =

i

M̄d−2
d

〈φ(−p)|Tµµ|φ(p)〉
∑

n

∫

k
Fn(k) (3.2)

where 〈φ(−p)|Tµµ|φ(p)〉 = 2m2
0 and Fn(k) represents the contribution of the loop in

fig. (1d,e). The sum of all contributions in the interpolating ξ gauge defined in section

4Notice that there are also corrections from pure branon exchange, which go like inverse powers of τ and
which persist when gravity is turned off. The lowest, physically meaningful correction of this type to the
scalar mass comes at two loops and goes like δm0/m0 ∼ m8

0/τ
2. The 1/τ effects can be bigger than the

gravitational ones we study, but they are physically independent [22]. Thus it makes sense to focus only on
the latter.
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a’ c e

a b d

Figure 1: One-loop gravitational corrections to the pole mass of a scalar on a brane from gravitons
(diagrams a,b,c) and from graviton/branon mixing (diagrams d,e) at zeroth order in the brane
tension. The mass of a vector particle on a brane also gets corrections from vector-Goldstone-
graviton vertices (diagram a′). Gravitons (branons, scalars, vectors, Goldstones) are drawn as
pig-tail (dot-dashed, dashed, wavy, dashed-wavy) lines.

2 gives

δm2
0 =

m2
0

32M̄d−2
d π2d(d+ δ − 2)

∑

n

{

f(ξ, d, δ)A0(m
2
n)− d(d − 2)(δ − 4)A0(m

2
0)+

4d
[

(d− 2)m2
n − 2(d+ δ − 3)m2

0

]

B0(m
2
0,m

2
n,m

2
0) + dδ(d − 2)m2

nB1(m
2
0,m

2
n,m

2
0)
}

(3.3)

f(ξ, d, δ) =4(2ξ − 1)d/2−1
[

2− δ(2ξ − 1)(ξ − 1)− ξ(10− 3d+ 3ξ(d− 4))
]

+

2ξd/2
[

3dδ + dξ(δ − 2) + d2(ξ + 1) + 4− 12ξ + 2δ(ξ + δ − 4)
]

+

2(d− 2)
[

− δ + 2d(d+ δ − 2)
]

where the Passarino-Veltman functions A0, B0, B1 are defined in appendix D, where we

describe how the cutoff-independent contribution can be extracted. The mass correction

is multiplicative as expected for a minimally coupled scalar: for vanishing tree level mass

the scalar is derivatively coupled to gravity. Although in this expression all the terms

enhanced by 1/m4
n found in [6, 7, 8, 9] cancel out mode by mode, we do not obtain a

gauge-independent result. However the ξ dependent term in δm2
0/m

2
0, only depends on

MD and R (and the UV cut-off ΛUV if dimensional regularization is abandoned) but not

on m2
0 itself. So it looks like a universal effect. Indeed one finds the same gauge dependent

piece in the correction to the mass of a vector particle. In short the correction to the pole

mass of a spin s = {0, 1} particle on the brane can be written as

δm2
s = 2m2

sG(MDR) +m2
s∆s(ms, µ̄, R,MD) (3.4)

where G is the only gauge dependent factor, while ∆0,∆1 are gauge-independent (µ̄ is the

renormalization scale). Explicit expressions for these functions can be found in appendix C.

Similarly we find that for a localized photon the gravitational correction to the electric

charge e has a gauge-dependent factor equal to [e]G, where [e] = 2 − d/2 denotes the

dimension of the electric charge in d dimensions. The moral of these results is that the

gauge dependence can be reabsorbed by changing the normalization of the graviton field

– 12 –



gMN . In more physical terms, gauge dependent terms amount to a change of the mass

unit: all the dimensionless quantities that we have computed (like m0/m1) are gauge

independent. In the presence of gravity only dimensionless quantities are real observables,

as they are invariant under rescaling of the metric5. As a simple further check we have also

computed the corrections to the masses of bulk particles. In particular we have focused on

the n = 0 modes of fields with spin s = {0, 1} and bulk mass {m′
0,m

′
1}. Again, we obtain

δm′2
s = 2m′2

s G+m′2
s ∆

′
s. (3.5)

where the gauge dependent part is the same as for brane modes but the physically mean-

ingful piece ∆′
s is, as expected, different. Notice that bulk particles do not couple directly

to branons, so that there is no analogue of diagrams (d) and (e) for them. On the other

hand the bulk modes couple directly to the hiµ and hij pieces of the graviton field, which

was not the case for the brane modes. In view of these differences, the fact that the gauge

depended piece is always the same is a rather non trivial check.

A concluding remark on the 1/m4
n terms found in [6, 7, 8, 9] is in order. These terms

come only from diagram (a), so that the branons play no role in the cancellation of these

effects in physical quantities. Furthermore, it is clear that terms of this type could not be

physical, as they cannot arise in the ξ = 1 gauge. However in gauge dependent quantities

they can appear. In the appendix we give the expression of the scalar self-energy at the

off-shell point pext = 0, where these unphysical effects are indeed present. Notice that if

they appeared in physical quantities there would really be an enhancement of the result

by some power of the radius R (IR divergences cannot be thrown away!).

So far we have only considered observables that do not depend at tree level on the

size R of the compact extra dimension. A gauge invariant result is obtained in a slightly

more complicated way when one considers observables like m0/MPl or the ratio between

pole masses of different KK excitations. The reason is that R itself is gauge dependent: a

discussion of this issue, including a geometrical explanation of this statement, is presented

in subsection 3.2.

3.2 Gauge independence of physics and geometry

In this section we want to extend our discussion of gauge invariance to generic observables

that depend on the size R of the extra dimensions. To be concrete we will compare two

gauge choices, unitary (U) and de Donder (DD). The compact manifold is assumed to be

a δ-torus.

The previous results could be restated as follows: in order to get the same physics in

the U and DD gauges, all the tree level mass parameters mU and mDD in the two gauges

should be related by

m2
U = m2

DD

[

1 + [m2](GU −GDD)
]

= m2
DDλ1 [m2] = 2, (3.6)

where the G’s are the universal quantities given in appendix C. Similar relations hold for

parameters with different mass dimensions. This is equivalent to taking as background

5The gauge dependence of pole masses in quantum gravity was already found and discussed in ref. [27].
In the next section we will give a simple geometrical explanation.
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metrics λ1ηMN and ηMN in respectively the U and DD gauge, but keeping the same tree

level mass parameters (i.e. mDD). This is easily seen because the tree level Klein-Gordon

operator in U gauge is λ−1
1 ηMN∂M∂N +m2

DD.

This argument is basically correct, but not completely. The point is that since the

space is not isotropic (there are δ compact directions) the metric rescaling factor λ does

not have to be the same for all directions. Then, compatibly with the symmetries of the

system, we expect in general the backgrounds

gDD
MN =

(

ηµν 0

0 ηij

)

gUMN =

(

λ1ηµν 0

0 λ2ηij

)

(3.7)

with λ1 6= λ2. These relative backgrounds have to be chosen in order to get the same

results in the two gauges. Notice that we keep the same periodicity yi ∼ yi + 2πR on the

torus. Then, at tree level, the proper length of the period of the torus is rescaled by a

factor
√
λ2 in the unitary gauge. In the same gauge the mass shell condition for the mode

{ni} is

(ηµν∂µ∂ν +
λ1
λ2

n2

R2
+ λ1m

2)φn = 0 (3.8)

so that R as defined through KK masses is rescaled by
√

λ2/λ1 at tree level, and not by√
λ2. Finally the tree level d-dimensional Newton constant GN = 1/(Md+δ−2

D Rδ) in the U

gauge is given by GU
N = GNλ

−δ/2
2 λ

1−d/2
1 . By writing λi = 1 + ci, at lowest order in the ci

we then have the tree level relations

mU =mDD(1 +
c1
2
)

RU =RDD(1 +
c2
2

− c1
2
) (3.9)

(GN )U =(GN )DD(1 + (1− d

2
)c1 −

δ

2
c2)

where the radius is here defined through the KK masses. In our calculations so far we

only considered the masses of brane modes or bulk zero modes, which do not depend on

the radius at tree level. This is why one universal rescaling λ1 was enough to eliminate

spurious gauge effects. By considering the quantum corrections to KK masses or to the d-

dimensional Newton constant one finds extra gauge dependence. However we have checked

by explicit calculations that it can all be eliminated consistently with eq. (3.9). The

corrections to KK masses represent just a direct generalization of the computation of the

previous section. On the other hand, the Newton constant requires to compute also the

correction to the graviton-matter vertex and to the graviton propagator. Few relevant

Feynman diagrams are shown in fig. 2. This is a lengthy computation6 upon which the

gauge dependence in eq. (3.9) is a non-trivial check. At one loop, we find

6For example in the unitary gauge the diagram 2a is obtained by summing 2.588.740 terms. All compu-
tations in this work have been done with Mathematica [28].
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a b c d

Figure 2: The corrections to the Planck mass is obtained by combining corrections to the gravi-
ton propagator (we show the relative Feynman diagrams. Diagram b contains a ghost loop) with
corrections to the graviton/matter vertex and with corrections to the matter propagator.

λ1 = 1 +
d2 + d(2δ − 1) + δ(δ − 3)

8π2M̄d−2
d d(d+ δ − 2)

∑

n

A0(m
2
n)

λ2 = 1 +
d

8π2M̄d−2
d

∑

n

A0(m
2
n)

(3.10)

It is interesting to re-derive the quantities λ1, λ2 in a purely geometrical way. For instance

λ2 is fixed by the coordinate independent proper period of the torus. We can easily show

this for the case δ = 1, d = 4 (the latter choice being made just to simplify the notation).

In order to do so we must (arbitrarily) pick a path around the compact dimension, and

make sure that working in different gauges the path is kept unchanged. It is convenient to

simply pick the path P defined in unitary coordinates by xµ = 0, y5 = τ with τ going from

0 to 2πR. Actually any path in the family xµ = const, y5 = τ (τ = [0, 2πR]) would give the

same result as it is equivalent by translation invariance of the background7. Notice also

that in a general coordinate choice, xµ is not constant along P. In an arbitrary coordinate

system the definition XM (τ) of P depends also on the metric itself. It is easy to work out

this dependence. The quantity

L =

〈
∫

P

√

gMN ẊMẊNdτ

〉

(3.11)

must be gauge independent, being the expectation value of a gauge invariant operator.

Comparing the calculation of L in the U and DD gauges, we get at 1-loop order

L =2πR +
c2
2

− κ2

8
〈h(0)55 h

(0)
55 〉U = 2πR− κ2

8
〈h(0)55 h

(0)
55 〉DD

+
κ2

2

∑

n 6=0

[

ηµν〈h(n)5µ h
(−n)
5ν 〉DD +

1

4

(ηµν〈∂µh(n)55 ∂νh
(−n)
55 〉DD

m2
n

− 〈h(n)55 h
(−n)
55 〉DD

)

]

.

In the unitary gauge only the scalar zero mode (radion) h55 contributes to L, while in the

DD gauge extra contributions from KK graviphotons and graviscalars show up (the latter

is zero in dimensional regularization). However in the U gauge there is the tree level term

c2. Notice that in both gauges the gravitational field h is defined to have no tadpoles. This

equation fixes c2 and the result agrees with what found for the physical parameters.

7This is an important point since by construction the unitary coordinate frame, defined by the request
that g55 and gµ5 be independent of y5, is truly a family of gauges. This is because the unitary form of the
metric is preserved by the “zero mode” coordinate changes xµ

→ xµ+ǫµ(x), y5
→ y5+ǫ5(x) (corresponding

to 4-dimensional diffeomorfisms and to the circle isometry). Then since our path P is defined in a family of
gauges it truly designates a family of paths. It is manifest that this family corresponds to the paths related
to P by translation in x. They all have the same length.
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Figure 3: A diagram of order τ1.

Finally we can fix c1 by considering the volume element in the two gauges

〈
∫

T δ

√
g dδy ddx

〉

U

=

〈
∫

T δ

√
g dδy ddx

〉

DD

(3.12)

where we have fully integrated on the torus T δ. This equality ensures that the non-

compact coordinates x represent the same physical distance in the two gauges. The mass

of a particle, as defined by the x dependence of the propagator, has then to be the same

in the two gauges. Taking the background into account, eq. (3.12) reads at 1-loop

(2πR)δ
[

1 +
δc2
2

+
dc1
2

+ 〈Ô〉U
]

= (2πR)δ
[

1 + 〈Ô〉DD

]

(3.13)

where

Ô =
κ2

8

∑

n

(ηMNηRS − 2ηMRηNS)h
(n)
MNh

(−n)
RS . (3.14)

Using the previous result for c2 we determine c1 in agreement with eq. (3.10).

3.3 Higher orders in the brane tension

We have only studied the terms of zeroth order in the tension τ , but things should work

out in a similar way order by order in τ . These higher order effects come not only from

branon insertion in the diagrams of fig. (1a) and (1b) but also from extra tadpoles. Indeed

at order τ there is already at the tree level the tadpole of fig. (3). It corresponds to the

brane self gravitational field. Of course if we treat the brane as a thin object this field

is infinite at the brane itself. This is a UV divergence which is eliminated by adding the

suitable counterterms (amounting to a renormalization of the unit length on the brane).

Applying our regulator (see appendix D) we get from fig. (3), for d = 4

δm2
0 = m2

0

µ4

M2
4R

δ

8(δ − 2)

(δ + 2)

∑

n

1

m2
n

= m2
0

µ4

M2+δ
D Rδ−2

8(δ − 2)

(δ + 2)
I1 (3.15)

where I1 is a constant defined in appendix D. The R dependence is insensitive to the

UV cut-off: it measures the deformation of the brane self field due to the finite volume,

so it is a well defined quantity in the EFT approach. Notice also that fig. (3) is a brane-

to-brane exchange of a bulk graviton like those considered in various phenomenological

studies [4, 29]. At one loop fig. (3) is dressed into extra tadpole diagrams: we expect that

inclusion of these tadpoles will be essential to get gauge independent results at linear order

in τ .
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3.4 Brane in an orbifold

In section 2.2 we explained that, for a brane living on a smooth space, the branons have

to be kept in order to preserve general covariance. Then we have explicitly shown that the

branons are needed to restore reparametrization gauge independence of quantum gravity

corrections. In this section we show an example of how things work for a brane stuck at a

fixed point of an orbifold. Now the brane cannot move, i.e. there is no branon degree of

freedom. But at the same time the group of diffeomorfisms is also changed. Indeed when

dealing with fixed points it is even superfluous to talk about a brane: at these points we

can localize degrees of freedom and interactions respecting the orbifold reparametrization

invariance. For simplicity we will consider the simplest case of a brane in R
d×S1/Z2. The

space S1/Z2 is a line segment, obtained identifying points in a circle of radius R according

to the Z2 reflection:

y ∼ 2πR− y; y ∈ [0, 2πR] (3.16)

which has 0, πR as fixed points. The invariance of the line element ds2 under Z2 implies

that under the orbifold reflection the metric components hµν , hij and the ghost field ηµ are

even, while hµi and ηi are odd. A generic field f(x, y) can be Fourier decomposed according

to its parity:

f(x, y) =

+∞
∑

n=0

f (n)(x)Ψn(y), Ψn(y) =







an cos(ny/R) even

bn sin(ny/R) odd

a0 =
1√
2πR

, b0 = 0 an = bn =
1√
πR

n 6= 0.

(3.17)

Odd fields do not have a zero mode. We can use the same gauge fixing for reparametrization

invariance as before.

The group of diffeomorfisms on the orbifold is defined by the transformations xµ →
fµ(x, y), y → f5(x, y) with fµ even and f5 odd under orbifold reflection (both fµ and

f5 have period 2πR). Notice that the boundaries y = 0 and y = πR are left fixed. A

brane at y = 0 remains a brane at y = 0 in all reference frames. Even if we do not let

the brane fluctuate we still obtain consistent results. On the other hand for a brane at

a generic y 6= 0, πR, its position depends on the reference frame and we are forced to let

it fluctuate. What is special about the fixed points is that we have thrown away enough

gauge degrees of freedom (gµ5(y = 0, πR) = 0) that we can live without branons. Let us

see this explicitly.

The computation of the gravitational corrections in the orbifold geometry is similar

to the previous ones, but with some important differences. Consider the case of a brane

sitting at a generic point y. Contrary to the circle case, the y dependence in the coupling

between matter on the brane and gravity does not cancel out in physical amplitudes;

for instance, the cross section for the production of an individual KK graviton mode is

proportional to cos2(ny/R). It is not a surprise that this factor depends on y: S1/Z2 is not

an homogeneous space. Similarly, the branon contribution in graviton loops gets multiplied

by a factor sin2(ny/R), showing that their presence is not necessary when y = 0. However,
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having altered by a y-dependent factor the relative weight between graviton and branon

effects, we apparently no longer get a gauge invariant result. We now show that we must

take into account a new type of graviton tadpoles that were absent on a homogenous space.

The conservation law of fifth dimensional momentum is altered since some of the

harmonics are projected out by the Z2 symmetry. In a vertex with three lines carrying

momenta ni ≥ 0, i = 1, 2, 3 along the fifth dimension it reads n1 ± n2 ± n3 = 0. The

propagator of matter on the brane is corrected by new tadpole diagrams, like (1c), but

with non zero extra-dimensional momentum 2n on the tadpole graviton line. The blob in

fig. (1c) can be either a graviton loop or a gravitational ghost loop. Notice that, while

tadpoles with a zero momentum internal line (n = 0) are assumed to be exactly canceled

by a suitable stabilization mechanism, the same type of diagrams with non zero n must be

taken into account and they are crucial to recover gauge invariance for brane observables.

Let us focus for instance on the mass correction δm2
0 for a scalar on a brane at a generic

y. Notice that for y 6= 0, πR the brane is free to move, so branons must be kept. We get

δm2
0 =

∑

n

[

2 cos2(ny/R)F (n)(gravitons) + 2 sin2(ny/R)F (n)(branons)+

cos(2ny/R)F (n)(tadpole)
]

= m2
0

(

2G(MDR) + ∆̃0(m0, y,R,MD, µ̄)
)

(3.18)

The contribution from the nth KK mode in the graviton diagrams of fig. (1a,b) is exactly

the same as in the torus, except for an overall factor 2 cos2(ny/R) coming from the graviton

wave function. The contribution F (n)(branons) from diagrams in fig. (1d,e) gets instead an

overall y-dependent factor 2 sin2(ny/R). The final result for δm2
0 has the same structure

of eq. (3.4), but now the gauge invariant piece ∆̃0 is a function of y. Finally, the tadpole

contribution comes in the right way to cancel mode by mode the y-dependence in the gauge

variant term G. This is consistent with the mass correction for the zero mode of a scalar

propagating in the bulk, which has the same form as in the torus case (see eq. (3.5)), and

it represents a non trivial check on the result. In the special case of a brane sitting at the

fixed points 0, πR the branon contribution vanishes and gauge invariance of the pole mass

is met just through tadpole diagrams.

As a final remark, we notice that because of the modified momentum conservation law

in the orbifold, the zero mode of a bulk field mixes with its KK excitations at one loop

level. The relevant diagrams are those in fig.s (1a,b,c) with discrete momentum n in the

internal loop and 0, 2n in the external legs. This effect however is relevant only at order

κ4 and can be safely neglected.

4. Phenomenology

In the previous sections we have explained how to consistently compute quantum gravity

corrections using an effective field theory (EFT). A possible physical application is the

computation of graviton loop corrections to electroweak precision observables (EWPO)

and to the anomalous moment of the muon in brane models with large extra dimensions

and a TeV-scale D-dimensional Planck mass. Unfortunately our knowledge of the low
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energy effective theory of gravity only allows to reliably compute corrections of little phe-

nomenological interest. Basically, the EFT allows to compute those contributions that are

saturated in the infrared, i.e. at the scale of the relevant external momenta. For instance,

the calculable corrections to EWPO go like (MZ/MD)
2+δ (or (MZ/MD)

2+δ lnMZ) by sim-

ple dimensional analysis. These effects go to zero very quickly whenMD is raised, becoming

negligible already for MD below a TeV. On the other hand, the contributions from the re-

gion of large virtual loop momenta gives in principle a much larger effect. However, being

saturated in the UV region, where we do not control the EFT, these contributions are not

calculable. This problem already affects tree level virtual graviton effects.

We can however estimate graviton effects by introducing an explicit UV cutoff Λ.

The corrections to EWPO will scale like M2
ZΛ

δ/M2+δ
D . The unknown physical cutoff could

perhaps be produced by string theory, or could be related to the inverse brane width or even

to just the brane tension [30]. Since we do not know we must keep Λ as a phenomenological

parameter and discuss its physical meaning and plausible value.

Virtual graviton corrections (even at tree level) cannot be computed from Einstein

gravity as much as electroweak quantum corrections cannot be computed from Fermi the-

ory. In the latter case the complete theory is known and perturbative: by comparing to the

full theory one sees that correct estimates are obtained by cutting off power divergent four-

fermion loops at a “small” scale Λ ∼ MW ≈ gG
−1/2
F rather than at the larger Λ ≈ G

−1/2
F .

At least at a qualitative level, the gravitational Λ can be given a similar physical meaning.

4.1 Strong vs weak gravity: NDA estimates

Therefore we first identify the value ΛS of Λ that corresponds to strongly coupled quantum

gravity8. This can be done by adapting to our case the naive dimensional analysis (NDA)

technique developed to estimate pion interactions below the QCD scale [31] (NDA has

already been applied to brane models [32]). NDA allows to estimate the size of the effects

from a strongly coupled theory up to coefficients of order 1 but including all the geometric

dependence on powers of π. By applying NDA, we estimate

Λ2+δ
S ≈ π2−δ/2Γ(2 + δ/2)M2+δ

D (4.1)

In the range of interesting δ, ΛS is not much larger than MD.

We first discuss the particular case Λ = ΛS : diagrams with any number of graviton lines

give comparable contributions, and NDA allows to estimate their size. Tree level exchange

of gravitons generates the effective dimension 8 operator T ≡ T 2
µν−T 2

µµ/(δ+2) [4, 5, 6]. Its

coefficient in the effective Lagrangian is divergent, and NDA estimates it to be ≈ π2/Λ4
S .

This operator is however not the most important in low energy phenomenology, because at

loop level gravitons generate dimension 6 four fermion operators with coefficient ≈ π2/Λ2
S .

On the other hand the operator W a
µνB

µνH†τaH is generated with coefficient ≈ g2g1/Λ
2
S

with no π2 enhancement. This property is shared by other operators that require the

exchange of virtual gauge bosons. This is because we are assuming that the weak gauge

couplings remain weak up to the cutoff.

8In the context of string theory this corresponds to a situation where the string coupling is essentially
at the self dual point.
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Figure 4: Compilation of collider bounds on graviton phenomenology in the plane (MD,Λ/MD)
for δ = 3 (left) and δ = 6 (right).

By drawing a few Feynman graphs one can see that tree level exchange of gravitons

(and therefore the operator T ) does not affect precision observables at the Z-resonance.

Moreover the four fermion operators induced by double graviton exchange are of neutral

current type, so they do not directly affect µ decay and are therefore not constrained by

high precision data. µ-decay is affected by one loop diagrams with a W and a graviton:

their coefficient is only ≈ g22/Λ
2
S .

Indeed by a simple analysis one finds that all dimension six operators that affect EWPO

have a coefficient ≈ g22/Λ
2
S ≈ 1/Λ2

S . As shown in [33] EWPO set a bound ΛS > (5÷10)TeV

on a generic set of dimension 6 operators that conserve baryon, lepton and flavor numbers

and CP. This bound seems rather strong when compared to the sensitivity to direct graviton

emission expected at the next colliders. Furthermore since mtop ≈ 175GeV a real solution

of the hierarchy problem should cutoff the quadratically divergent top correction to the

Higgs mass at a much lower value of Λ ≈ 300GeV. Our assumption Λ = ΛS corresponds

however to one of the most constrained scenarios: LEP data strongly disfavor new strongly

coupled physics in the electroweak sector. The situation becomes worse if we assume that

also the gauge couplings get strong at Λ = ΛS .

In order to obtain a more acceptable phenomenology one can assume that the UV

cut-off Λ happens to be smaller than ΛS , so that gravity does not become strong and

dominant graviton corrections to EWPO are dominated by one loop diagrams (presumably

a complete theory will not contain only gravitons). In the next subsections we ‘compute’

the graviton corrections to the electroweak observables (expressed in terms of the ǫ1, ǫ2, ǫ3
parameters [12]) and to the anomalous magnetic moment of the muon. In agreement with

NDA estimates, the final result is of the form

δǫi ≈
M2

Z

Λ2
S

(

Λ

ΛS

)δ

, δaµ ≈
m2

µ

Λ2
S

(

Λ

ΛS

)δ

where the factors of order one depend on the choice of cutoff. Not knowing which is the

physical cutoff, we use dimensional regularization: with this choice loop integrals do not
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give powers of Λ. However, since we are considering a higher dimensional theory, powers

of Λ arise from divergent sums over the KK levels of the gravitons. A different choice of

the cutoff would give different results.

In fig. 4 we summarize the present situation of collider graviton phenomenology by

collecting the various bounds in the plane (MD,Λ/MD):

• The vertical bound comes from emission of real gravitons [4] at LEP2 and Teva-

tron [34]. It does not depend on Λ (as long as the energy of the collider is less than

Λ) because it is the only bound on really computable effects.

• Virtual exchange of gravitons at tree level generates the operator T . Its coefficient

depends on the cutoff Λ so that it cannot be computed from the low energy EFT (in

the literature there exists a variety of estimates [4, 6, 29], freely dubbed “formalisms”,

and a corresponding variety of experimental bounds [34]). The coefficient can be

estimated to be ≈ π2δ(δ + 2)Λδ−2/2(δ − 2)Λδ+2
S . The experimental constraints [34]

give the slightly oblique bound in fig. 4.

• At one loop gravitons affect precision observables and aµ in a way that again depends

on the cutoff. The green line shows the values necessary to produce the observed

anomaly in aµ. The bound parallel to it comes from precision observables.

If the cutoff Λ is due to quantum gravity, Λ/MD parameterizes how strongly coupled

gravity is: this explains why virtual graviton effects give the strongest (weakest) bound

when Λ>∼MD (Λ<∼MD). Strongly coupled gravity is obtained for Λ/MD ∼ (1÷4) if δ = 3

and for Λ/MD ∼ (1 ÷ 2) if δ = 6. EWPO bounds have been estimated in a conservative

way, assuming a typical 0.1% error. We see that setting Λ = MD as assumed in many

analyses is a significant but arbitrary restriction: Λ is a relevant free parameter. In the

most generic case the cutoff could even be not universal, so that different corrections are

cut off by different Λ. We repeat that bounds that depend on Λ can at best be considered

as semi-quantitative.

The presence of a cut-off Λ can have an impact on the studies of graviton emission at

future colliders. If Λ is smaller than
√
s, real graviton signals are suppressed (but some

new physics should show up). On the other hand, if Λ/MD is too big, real graviton signals

(γ+ missing energy) are forbidden by precision tests or subdominant with respect to γ+

missing energy effects due to dimension six operators like eēνν̄ [4], generated by virtual

gravitons at one loop with coefficient ∼ π2Λ2δ+2/Λ2δ+4
S . However there exists a range of

MD and Λ (not too small and not too large) where real graviton emission is the dominant

discovery mode. For instance one can see this by considering the case of a e+e− collider at√
s = 1 TeV [4].

Can the apparent excess aexpµ − aSMµ = (4.3 ± 1.6) · 10−9 recently measured by [35] be

produced by gravitons without conflicting with the EWPO bounds? In the SM, electroweak

corrections have been clearly seen in the ǫi, but only affect aµ at a level comparable to

its present experimental error. The naive (and maybe correct) expectation is that even in

the gravitational case the ǫi are a more significant probe than aµ. However, taking into

– 21 –



account that we can only perform estimates, it could not be impossible that the anomaly

in aµ [35] be produced by gravity without conflicting with the EWPO bounds, even if the

physical cutoff has a ‘universal’ nature (for example if it is related to the size of the brane)

as assumed in fig. 4. If this is the case, improved measurements of the ǫi parameters should

be able to find a positive signal.

4.2 Electroweak precision observables

As discussed in the previous sections, unphysically large corrections cancel out when cor-

rectly computing physical observables. Previous analyses have studied certain combinations

of the vacuum polarizations of the vector bosons

Πij
µν(k

2) = −iηµνΠij(k2) + kµkν terms, i, j = {W,Z, γ}

known as S, T, U parameters [11], often employed to parameterize new physics present only

in the vector boson sector. However these are not physical observables because gravity

does not couple only to vector bosons9. As found in [7], in the unitary gauge gravitons

give corrections to such parameters that unphysically increases with increasing MD.

Since graviton loops are flavour universal (and neglecting the bottom quark mass)

gravitational corrections to the various EWPO can be condensed in three parameters that

are usually chosen to be ǫ1, ǫ2, ǫ3. The corrections to the physical EWPO are obtained by

combining in a non immediate but standard way [12] various form factors. Specializing the

general expressions to the case of gravity, the ǫ parameters are given by

ǫ1 =2δg − δG

G
− δM2

Z

M2
Z

−Π′
ZZ(M

2
Z) (4.2)

ǫ2 =2c2δg − δG

G
− δM2

W

M2
W

+ s2
δα

α
− c2Π′

ZZ(M
2
Z) (4.3)

ǫ3 =2c2δg − c2
δα

α
− c2Π′

ZZ(M
2
Z) (4.4)

where

• δM2
i ≡ −Πii(M

2
i ) are the correction to the pole mass of the vector bosons and

Π′(k2) ≡ dΠ(k2)/dk2.

• δα = −Πγγ(0) is the correction to the electric charge;

• δg is the common correction to the vector and axial form factors (gravity respects

parity) in the Zµf f̄ interactions of an on-shell Z boson

−i e
2sc

f̄γµ(gV − γ5gA)(1 + δg)f

excluding the contribution from the Z vacuum polarization.

• δG is the correction to the µ→ eν̄eνµ decay amplitude.

9Various studies on different new physics scenarios use the S, T, U approximation outside its domain of
applicability.
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• s2 ≡ 1− c2 ≡ [1−
√

1− 4πα/
√
2GM2

Z ]/2 ≈ 0.2311

Although it would be straightforward to perform a complete analysis, we will only study

the gravitational correction to the combination

ǭ ≡ ǫ1 − ǫ2 −
s2

c2
ǫ3 =

δM2
W

M2
W

− δM2
Z

M2
Z

(4.5)

chosen because it only involves the simplest-to-compute form factors. Physically, this

observable amounts to testing the tree level SM prediction MW = cMZ using the value

of the weak angle given by the forward-backward asymmetries in Z → ℓ+ℓ− decays, not

affected by graviton loop effects. The experimental value of ǭ (obtained from a fit of

LEP and SLD data) is ǭ = (12.5 ± 1)10−3 and agrees with the SM prediction (for a light

higgs). The gravitational correction is given in appendix C in terms of Passarino-Veltman

functions. Since the heaviest KK give the dominant effect, we can explicitly write the

graviton effect in the limit mn ≫MZ as

δǭ ≈
∑

n

s2M2
Z

M̄2
4 (4π)

2

[

40 + 25δ

6 + 3δ
(
1

ǫ
+ ln

µ̄2

m2
n

) +
424 + 546δ + 137δ2

18(2 + δ)2

]

where we set d = 4 − 2ǫ. We can estimate the graviton correction by keeping only the

logarithmic term, setting µ̄ = Λ and cutting off the sum at n < RΛ. This gives

δǭ ≈ s2M2
Z

M2
D

(

Λ

MD

)δ 5(8 + 5δ)

48Γ(2 + δ/2)π2−δ/2
.

The result has a strong dependence on Λ and the numerical coefficient is specific of the form

of the cutoff that we have chosen to employ. We explicitly see that spurious IR divergences

do not affect this physical observable.

Notice that ǭ is suppressed by a power of s2 but it is not affected by theoretical

uncertainties in δα. Therefore precision searches for MD could be improved by a factor

∼ 3 if, by producing ∼ 109 Z bosons at an eē linear collider, the errors on MW and on the

effective weak angle extracted from the leptonic asymmetries could be reduced by a factor

∼ 10.

4.3 Anomalous magnetic moment of the µ

Since the µ anomalous magnetic moment is zero at tree level, the reparametrization gauge

dependence of the unit of mass does not affect the one loop gravitational correction to aµ.

Only few Feynman diagrams contribute. As noticed in [36], the 1/ǫ poles cancel out when

computing the loop integrals using dimensional regularization around d = 4. At leading

order in mµ we find, again using a sharp cut off for the sum over KK modes

δaµ =
m2

µ

M2
D

(

Λ

MD

)δ 34 + 11δ

96Γ(2 + δ/2)π2−δ/2
.
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Apparently this result agrees with the one found by [10]10. Again the result strongly

depends on the value of the cutoff Λ. We cannot claim that it has the same sign as the

apparent excess recently measured by [35]: we have employed dimensional regularization

for loop integrals but other regularizations (e.g. dimensional reduction, Pauli-Villars,. . . )

would give a different result. Unlike ǭ, δaµ is a sum of contributions from graphs with

different graviton interactions. One can obtain any sign for δaµ e.g. by cutting off µ̄µh

and γγh vertices with different form factors: δaµ is finite but dominated by loop momenta

around the cutoff. In particular one gets, at leading order in mµ

δaµ = 0

if the cutoff acts in the same way on both type of contributions. This is for example the case

of a Pauli-Villars cutoff on the graviton. By working in the De Donder gauge (where the

only dependence on the graviton mass comes from the 1/(k2 −m2
n) factor in the graviton

propagator) and knowing that aµ is dimensionless and finite, it is not difficult to realize

that it is zero.

5. Conclusions

We discussed various subtleties that arise when computing quantum gravity 1-loop effects

in models with large extra dimensions and matter confined to a brane. Our computations

are based on an effective field theory (EFT) description of quantum gravity and of the

brane. A sensible result is obtained after correctly identifying physical observables and

after taking brane fluctuations into account. Graviton tadpoles are relevant for branes

living in non-homogeneous spaces (like orbifolds). For branes living at orbifold fixed points

consistency is met, as expected, even in the absence of brane fluctuations. In particular

we explain in a geometric way why the units of length in ‘longitudinal’ and ‘transverse’

directions depend on the reparametrization gauge fixing procedure.

We regard these results as theoretically interesting, although the truly calculable effects

in the EFT approach have a limited phenomenological relevance. The most relevant effects

come from the region of large virtual momenta where the EFT description breaks down.

This is why in the second part of the paper we have abandoned the strict EFT approach and

modeled these UV effects by introducing a hard momentum cut-off Λ. This is the best that

can be done, without having a fundamental theory that allows real computations. We stress

however that our previous understanding of how to get gauge independent results is still

important in this phenomenological approach. As an application we have studied virtual

graviton corrections to precision observables and to the muon anomalous magnetic moment,

focusing on models with large extra dimensions. Even at tree level, virtual graviton effects

are divergent and must be regulated. Virtual graviton effects in collider phenomenology

have been so far studied assuming a particular value of Λ. However Λ is an important free

parameter that — at least at an qualitative level — controls how strongly coupled gravity

10[10] separately computes the gauge-dependent ‘graviton’ and ‘radion’ contributions in the unitary gauge.
We find a different result in both cases (the radion coupling used in [10] is valid only on shell), but this
discrepancy luckily cancels out when summing the two contributions.
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is. Depending on the value of Λ, one loop effects can give the dominant bound on low scale

quantum gravity.
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A. Graviton propagators in the unitary gauge

We derive here the propagators for the physical fields in the unitary gauge. Expanding the

metric gMN = ηMN + κhMN around the flat space solution we obtain the Lagrangian in

eq. (2.1). We recall that we decompose the D dimensional graviton hMN as hµν , hµi and hij
(where µ, ν are 4-dimensional indices and i, j span the extra δ dimensions). In this appendix

we fix for simplicity d = 4. Due to D-dimensional reparametrization invariance not all the

components of these fields correspond to propagating degrees of freedom. The physical

fields are the ones contained in the Riemann tensor 2RRMSN = h(RN,MS) − h(MN,RS) (as

in the electromagnetic case the physical fields are contained in the field strength tensor)

Gµν =− 2∂i∂jRiµjν = hµν − ∂i∂(µhν)i + ∂µ∂ν∂i∂jhij (A.1)

Vµi =+ 2∂j∂nRjµin = hµi − ∂i∂nhµn − ∂µ∂jhij + ∂µ∂i∂j∂nhjn (A.2)

Sij =− 2∂m∂nRimjn = hij − ∂n∂(ihj)n + ∂i∂j∂m∂nhmn (A.3)

For simplicity, the above equations are written assuming units such that ∂i∂i = 1. These

expressions can be written in a compact form by defining Qµ ≡ ∂̂ihµi, P ≡ ∂̂i∂̂jhij and

Pi = ∂̂jhij − ∂̂iP , where ∂̂i ≡ ∂i/
√

∂j∂j . These considerations suggest to rewrite the

Lagrangian in terms of a new set of fields [4] Gµν , Vµi, Sij, H, Qµ, Pi, P related to hMN

by

hµν =Gµν −
c

4− 1
(ηµν +

∂µ∂ν
∂2i

)H + ∂µQν + ∂νQµ − ∂µ∂νP (A.4)

hij =Sij +
c

δ − 1
(ηij − ∂̂i∂̂j)H + ∂̂iPj + ∂̂jPi + ∂̂i∂̂jP (A.5)

hµi =Vµi + ∂µPi + ∂̂iQµ (A.6)

and subject to the constraints

∂iVµi = ∂iSij = ∂iPi = 0, Sii = 0

We have introduced the field H in order to make Sij traceless. By choosing c2 = 3(δ −
1)/(δ + 2), H is canonically normalized. The D-dimensional Lagrangian becomes

L =− 1

2
H( + ∂2k)H − 1

2
Sij( + ∂2k)Sij − V µi[( + ∂2k)ηµν − ∂µ∂ν ]V

ν
i +

1

2
Gµ

µ( + ∂2k)G
ν
ν −

1

4
Gµν( + ∂2k)Gµν +Gµρ∂ρ∂σG

σ
µ −Gρ

ρ∂µ∂νG
µν .

(A.7)
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As expected, it does not depend on Qµ, Pi and P and there is no mixing between the fields

Gµν , H, Sij, Vµi. It is now trivial to perform a mode expansion: the extra dimensional

Laplacian ∂2k becomes a mass term. The propagators can be obtained by inverting the

kinetic terms in eq. (A.7). It is useful to show explicitly how the ‘graviton’ Gµν and the

‘scalar’ H combine to give a unitary-gauge propagator equal to the de-Donder propagator,

up to longitudinal terms. For example, the hµνhµ′ν′ propagator is

h(n)µν h
(n′)
µ′ν′ =G

(n)
µν G

(n′)
µ′ν′ +

δ − 1

3(δ + 2)
tµνtµ′ν′H

(n)H(n′) =

iδn,−n′

2(k2 −m2
n)

(

tµµ′tνν′ + tµν′tνµ′ − 2

2 + δ
tµνtµ′ν′

)

(A.8)

In particular we see that we cannot omit the ‘scalar’ contributions, if we want to obtain

a gauge invariant result. It would be easy to include a small mass term for the H(n)

fields, eventually generated by the unknown mechanism that stabilizes the size of the extra

dimensions.

B. Graviton vertices

We define gµν ≡ ηµν + κhµν , g ≡ |det gµν | and give explicit expressions for the expansion

up to second order in the graviton field hµν of

√
g =1 + κAαβhαβ + κ2A′αβγδhαβhγδ + · · · (B.1)

√
ggµν =ηµν + κBµναβhαβ + κ2B′µναβγδhαβhγδ + · · · (B.2)

√
ggµρgνσ =ηµρηνσ + κCµνρσαβhαβ + κ2C ′µνρσαβγδhαβhγδ + · · · (B.3)

In the vierbein formalism the spin connection is given by

ωa
cd = eµa ωµ

cd = eµa

(

eνc ∂[µe
d
ν] − eνd ∂[µe

c
ν]

)

− eρc eσd ∂[ρe
m
σ] ηma , (B.4)

We expand around the flat background δaµ, e
a
µ = δaµ + κ baµ. As discussed in section 2.4, the

gauge choice b[µν] = 0 allows to express bµν in terms of hµν

bµν =
1

2
hµν − κ

8
hαµ hαν + O(κ2) (B.5)

Using (B.4), (B.5) and

eµa = δµa − κ bµa + κ2 bµαb
α
a + O(κ3) (B.6)

one can find the gravitational couplings for fermions.

With these expressions it is straightforward to find the graviton vertices arising from

Lagrangians like

L =
√
g

[

gµν
(∂µφ)(∂νφ)

2
−
m2

φ

2
φ2 − 1

4
gµρgνσFµνFρσ − m2

A

2
gµνAµAν+

i

2

(

ψ eµa γ
aDµψ − D†

µψ e
µ
a γ

a ψ
)

]

– 26 –



where Fµν ≡ ∂µAν − ∂νAµ and Dµψ = ∂µψ + 1
2ωµ

ab γab ψ, γ
ab = 1

4 [γ
a, γb]. The expansion

in powers of h is easily obtained from

gµν =ηµρ[δνρ − κhνρ + κ2(hh)νρ − κ3(hhh)νρ + · · · ] (B.7)

√
g =1 + κ

Trh

2
+ κ2

[

Tr2 h

8
− Trh2

4

]

+ κ3
[

Tr3 h

48
− TrhTr h2

8
+

Trh3

6

]

+ · · · (B.8)

Therefore

Aαβ =
1

2
ηαβ (B.9)

Bµναβ =4A′µναβ =
1

2
(ηµνηαβ − ηµαηνβ − ηµβηνα) (B.10)

B′µναβγδ =
1

4
ηµνBαβγδ − 1

2

(

ηµαBγδνβ + ηναBγδµβ
)

(B.11)

Cµνρσαβ =
[1

2
ηµρηνσηαβ − ηµαηβρηνσ − ηναηβσηµρ

]

(B.12)

C ′µνρσαβγδ =
[1

4
Bαβγδηµρηνσ + 2ηγµηαρηδβηνσ − ηγδηαµηβρηνσ + ηαµηβρηγνηδσ

]

(B.13)

These expressions are valid in any number of dimensions. Brane fluctuations can be incor-

porated in hµν , as discussed in eq. (2.12).

To compute the corrections to the graviton propagator and to the graviton vertex

it is necessary to have the 3 and 4 graviton interactions. They can be easily derived

by expanding the Einstein-Hilbert Lagrangian in powers of the graviton field using e.g.

Mathematica [28]. For this reason we do not write explicitlt the long expressions for such

vertices.

C. Results

In this appendix we collect the explicit results for the corrections to the propagator of a

spin 0,1 particle confined on a brane with dimension d living in R
d × T δ. As discussed in

sec. 3, generically the correction to a physical quantity O with canonical dimension dO has

the form

δO/O = dOG(MDR) + ∆(O, R,MD, µ) (C.1)

where the gauge dependence is encoded in the function G. The splitting in a ‘gauge-

dependent’ and ‘gauge-independent’ part is ambiguous unless a reference gauge is chosen

in which by definition one sets Gref = 0. We choose in the de Donder gauge Gde Donder = 0.

All the results for physical quantities are computed in this gauge. The results are expressed

in terms of Passarino-Veltman functions A0, B0,1, defined in appendix D.

For the pole mass correction for a scalar (s = 0) and a massive vector (s = 1) on the

brane we find

Gunitary = −
∑

n

A0(m
2
n)

[

d2 + (δ − 3)δ + d(2δ − 1)
]

16π2M̄d−2
d d(d+ δ − 2)

(C.2)
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∆0 =
1

64π2M̄d−2
d d(d+ δ − 2)

∑

n

{

2d(2− d)(δ − 4)A0(m
2
0) + f1(d, δ)A0(m

2
n)+

8d
[

m2
n(d− 2)− 2m2

0(d+ δ − 3)
]

B0(m
2
0,m

2
n,m

2
0) + 2dδ(d − 2)m2

nB1(m
2
0,m

2
n,m

2
0)
}

(C.3)

∆1 =
1

64π2M̄d−2
d d(d− 1)(d+ δ − 2)

∑

n

{

f2(d, δ)A0(m
2
1) + (d− 1)f1(d, δ)A0(m

2
n)−

8d
[

2m2
1(d− 1)(d + δ − 3) +m2

n(d− 2)(d + 2δ + 1)
]

B0(m
2
1,m

2
n,m

2
1)+

2d(d − 2)
[

2d2 + 3d(δ − 2)− 7δ
]

m2
nB1(m

2
1,m

2
n,m

2
1)
}

(C.4)

with

f1(d, δ) = 4
[

2d3 − d(δ − 6) + 2d2(δ − 3) + 2δ(δ − 2)
]

f2(d, δ) = 2d(2− d)
[

4 + 2d2 + δ + d(3δ − 2)
] (C.5)

We computed also the graviton correction to the photon propagator, verifying that it is

transverse if one uses the simple gauge fixing of eq. (2.19). If instead the gauge fixing

function contains the graviton field, in general transversality will be lost, due to a modifi-

cation of the related Ward identity (of course this does not mean that the photon acquires

a mass). As the simple QED case, Ward identities imply that the photon self energy at

zero momentum gives the correction to the electric charge. We find

∆e = −
∑

n

A0(m
2
n)

(d− 4)
[

d3 + d2(δ − 5) + d(8− 3δ) + 2δ(δ + 2)
]

32π2M̄d−2
d d(d+ δ − 2)

(C.6)

For comparison with the existing literature, we also write the expression of the scalar self-

energy at zero momentum Σ(0). As discussed in the text, for this unphysical quantity the

gauge dependent part is non-universal. In the de Donder and in the unitary gauge we find

Σ(0)de Donder =
m2

0

32π2M̄d−2
d (d+ δ − 2)

∑

n

1

(m2
0 −m2

n)
{

[

m2
0g1(d, δ) +m2

ng2(d, δ)
]

A0(m
2
n) + 2d(δ − 2)m2

0A0(m
2
0)
}

(C.7)

Σ(0)unitary =
m2

0

32π2M̄d−2
d (d+ δ − 2)

×
∑

n

1

m4
n(m

2
0 −m2

n)
{

2m2
0

[

m4
nd(δ − 2)− 2m2

nm
2
0(δ − 2) +m4

0(d+ δ − 3)
]

A0(m
2
0)+

(d− 1)m4
n

[

m2
0

(

d2 + d(δ − 2)− 2
)

−m2
n(d− 2)(d + δ)

]

A0(m
2
n)
}

(C.8)

with

g1(d, δ) = d2(d− 1)− 4d+ δ(4 + d)(d− 1) + 2δ2

g2(d, δ) = 4δ − (d+ δ)
[

2δ + d(d− 1)
] (C.9)

From these expressions it is clear that 1/m4
n terms found in [7, 8, 9] are an artifact of the

unitary gauge and have no physical meaning.
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D. Regularized sums and integrals

The results of our 1-loop computations can be expressed as the sum over KK modes of

basic Passarino-Veltman functions [37]. Generically these expressions are divergent and

need to be regulated. After doing that one can extract the calculable finite parts that are

determined by the EFT [13]. These are terms that either depend on the radius R or depend

non-analytically on the kinematic variables. In this appendix we focus for illustration on

these calculable terms and disregard the uncalculable UV saturated contribution, which

were the subject of our phenomenological discussion.

The main point is to regularize the integral and the series consistently; we choose for

this the dimensional technique, extending the physical dimension of the extra space and of

the brane δ, d, to generic values

δ̄ = δ − ǫ; d̄ = d− ǫ

rescaling the Planck mass in the Lagrangian as Md+δ−2
D → Md+δ−2

D µd̄+δ̄−d−δ and conse-

quently
1

M̄d−2
d

≡ 1

MD−2
D Rδ

→ µ2ǫ

MD−2
D Rδ̄

and taking the limit ǫ→ 0 at the end. Defining the Passarino-Veltman functions A0, B0,1

A0(m
2) = −i(4π)2

∫

ddq

(2π)d
1

q2 −m2

B0(p
2,M2,m2) = −i(4π)2

∫

ddq

(2π)d
1

(q2 −M2)[(q + p)2 −m2]

B1(p
2,M2,m2) =

−i(4π)2
p2

∫

ddq

(2π)d
p · q

(q2 −M2)[(q + p)2 −m2]

(D.1)

the following expressions are sufficient to compute the gravitational corrections in ap-

pendix C
∑

n∈Zδ

A0(m
2
n)

∑

n∈Zδ

m2α
n B0,1(m

2,m2
n,m

2) α = 0, 1 (D.2)

together with the series

Iα =
∑

n∈Zδ

1

n2α
(D.3)

To illustrate the technique we compute explicitly
∑

nB0(m
2,m2

n,m
2). First of all we

introduce a Feynman parameter x, rescale the integration variable q → q/R and isolate

the zero point in the series

∑

n∈Zδ̄

B0(m
2,m2

n,m
2) =

− 4i

(2π)d̄−2

∫ 1

0
dx
[

∑

n∈Zδ̄−{0}

∫

dd̄q
(
√
x/R)d̄−4

[q2 − n2 − a2(x)]2
+

∫

dd̄q
1

[q2 − (1− x)2m2]2

]

(D.4)
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where a2(x) = R2m2(1 − x)2/x. Then we Wick-rotate and evaluate the first term using

the Schwinger’s proper time method

∑

n∈Zδ̄−{0}

∫

dd̄q
1

[q2 + n2 + a2(x)]2
=

∑

n∈Zδ̄−{0}

∫ ∞

0
dt

∫

dd̄q
t

Γ(2)
e−t(q2+n2+a2)

=π2
∫ ∞

0
dy
[

Bδ̄(y)− 1
]

e−yπa2y1−d̄/2

(D.5)

where we have performed the gaussian integral over q and introduced the special function

B(s) ≡
∞
∑

n=−∞

e−πn2s (D.6)

The integral in eq. (D.5) converges at y → ∞ thanks to the exponential behavior of the B
function, but it diverges at y → 0. To extract the singularity it is useful the property

B(s) = s−1/2B(1
s
) (D.7)

which is easily derived from the Poisson formula. Using eq. (D.7) we can split the integra-

tion interval and change variable y → 1/y in the first integral

I ≡
(

∫ 1

0
+

∫ ∞

1

)

dy y1−d̄/2e−yπa2
[

Bδ̄(y)− 1
]

=

∫ ∞

1
dy
[

Bδ̄(y)− 1
](

y1−d̄/2e−yπa2 + y(d̄+δ̄−3)/2e−πa2/y
)

+

∫ ∞

1
dy e−πa2/yyd̄/2−3

(

yδ̄/2 − 1
)

(D.8)

Again, the first integral is convergent, while the second term must be (dimensionally)

regularized. Because a(x) ≥ 0 in x ∈ [0, 1] and noting that for β ≥ 0

∫ ∞

1
dy yαe−β/y = βα+1Γ(−α− 1)−

∫ ∞

1
dy y−(α+2)e−βy (D.9)

we can isolate the divergent piece in the Γ function through an analytical continuation in

the physical region d̄+ δ̄ ≥ 0

I =

∫ ∞

1
dy
[

Bδ̄(y)− 1
](

y1−d̄/2e−yπa(x)2 + y(d̄+δ̄)/2−3e−πa(x)2/y
)

+

∫ ∞

1
dy y1−d̄/2e−πya(x)2

(

1− y−δ̄/2
)

+

[

πR2m2 (1− x)2

x

](d̄+δ̄)/2−2

Γ(2− d̄+ δ̄

2
)−

[

πR2m2 (1− x)2

x

]d̄/2−2

Γ(2− d̄

2
)

(D.10)

It’s not difficult to verify that the last (divergent) term is exactly canceled by the the zero

mode contribution of the series in eq. (D.4). Putting together the remaining terms we
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obtain

∑

n∈Zδ̄

B0(m
2,m2

n,m
2) =

1

(2πR)d̄−4

∫ 1

0
dx xd̄/2−2

{

f1(mR,x, d̄, δ̄) +

[

πR2m2 (1− x)2

x

](d̄+δ̄)/2−2

Γ(2− d̄+ δ̄

2
)
}

(D.11)

where we have defined

f1(mR,x, d, δ) =

∫ ∞

1
dy
{

[Bδ(y)− 1]
(

y1−d/2e−yπa2(x) + y(d+δ)/2−3e−πa2(x)/y
)

+

e−yπa2(x)y1−d/2
(

1− y−δ/2
)

}

(D.12)

The Γ function in eq. (D.11) has poles for negative integer arguments and before taking

the limit ǫ → 0 we must distinguish the two cases of even and odd (d + δ). If (d + δ) is

even, a logarithmic term appears

F (d̄, δ̄)
µ2ǫ

Rδ̄

∑

n∈Zδ̄

B0(m
2,m2

n,m
2) =

F (d, δ)

(2π)d−4

∫

dxxd/2−2

{ 1

Rd+δ−4
f1(mR,x, d, δ) +

md+δ−4

Γ ((d+ δ)/2 − 1)

[

−π(1− x)2

x

](d+δ)/2−2

(1

ǫ
+ log

µ2

m2
+ log

2
√
x

(1− x)2
− γE +

1

F (d, δ)

dF

dǫ

∣

∣

∣

ǫ=0

)}

(D.13)

where F (d, δ) is a generic function of d, δ which multiplies the integral in the physical

amplitudes and the factor 1/Rδ̄ comes from the graviton wave function normalization. By

subtracting just the pole 1/ǫ we get the loop correction in the MS scheme. Notice that the

finite part contains a scheme independent logm term. When (d+ δ) is odd we find instead

a finite result

F (d̄, δ̄)
µ2ǫ

Rδ̄

∑

n∈Zδ̄

B0(m
2,m2

n,m
2) =

F (d, δ)

(2π)d−4

∫

dxxd/2−2

{ 1

Rd+δ−4
f1(mR,x, d, δ) +md+δ−4 Γ

(

2− d+ δ

2

)[

π(1− x)2

x

](d+δ)/2−2
}

(D.14)

Although there is no logarithm, the term md+δ−4 represents a scheme independent finite

effects as it depends non analytically on the Lagrangian parameterm2. The same technique

can be used to compute the finite part of the other integrals in eq. (D.2) and the series in

eq. (D.3); here we collect only the final results omitting the derivation (for d > 2, α < δ/2)

∑

n∈Zδ̄

A0(m
2
n) =

−4π

(2πR)d−2

[

∫ ∞

1
dy [Bδ(y)− 1]yd/2

(

1 + yδ/2−2
)

+
2

d− 2
− 2

d+ δ − 2

]

(D.15)

Iα =
πα

Γ(α)

[

∫ ∞

1
dy [Bδ(y)− 1](yα−1 + yδ/2−1−α)− 1

α
− 1

δ/2 − α

]

(D.16)
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Notice that the sum of the A0(m
2
n) function has no 1/ǫ pole. The special cases I0, I1 are

needed respectively to evaluate terms
∑

A0(m
2
0,1) in the results of the previous section and

the series of eq. (3.15)

I0 = −1

I1 = π
[

∫ ∞

1
dy [Bδ(y)− 1](1 + yδ/2−2)− δ

δ − 2

] (D.17)

Finally, for (d+ δ) even

F (d̄, δ̄)
µ2ǫ

Rδ̄

∑

n∈Zδ̄

m2
nBi(m

2,m2
n,m

2) = −δF (d, δ)
(2π)d−3

∫

dxxd/2−2ui(x)

{ 1

Rd+δ−2
f2(mR,x, d, δ) +

md+δ−2

Γ ((d+ δ)/2)

[

−π(1− x)2

x

](d+δ)/2−1

(1

ǫ
+ log

µ2

m2
+ log

2
√
x

(1− x)2
− γE +

1

F (d, δ)

dF

dǫ

∣

∣

∣

ǫ=0
− 1

δ

)}

(D.18)

while for (d+ δ) odd

F (d̄, δ̄)
µ2ǫ

Rδ̄

∑

n∈Zδ̄

m2
nBi(m

2,m2
n,m

2) = −δF (d, δ)
(2π)d−3

∫

dxxd/2−2ui(x)

{ 1

Rd+δ−2
f2(mR,x, d, δ) +md+δ−2 Γ

(

1− d+ δ

2

)[

π(1− x)2

x

](d+δ)/2−1
}

(D.19)

where i = 0, 1 and u0(x) = 1, u1(x) = (x− 1) and we have defined

f2(mR,x, d, δ) =

∫ ∞

1
dy e−yπa2(x)

[

2B′(y)Bδ−1(y) + y−(d+δ)/2
]

−
∫ ∞

1
dy e−πa2(x)/yy(d+δ)/2−2

[

2yB′(y)Bδ−1(y) + (B(y)− 1)Bδ−1(y)
]

(D.20)
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