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Abstract can be achieved in a straight forward manner by describing

The 6D beam-beam interaction as developed in 1992 %@e particle motion in the framework of the fully coupled

Hirata, Moshammer and Ruggiero [1, 2] has been extend adimensional formalism and by replacing the electric po-

to include linear coupled motion and an arbitrary cross—entlal of Eq. 1 of an untilted bunch by a new potential

ing plane. Moreover, a synchro-beam mapping is given for
solenoid fields which allows to investigate the beam-beam
kick within a solenoid.

U(z,y; 211, $33;0) = U(&, ; 11, Laa). (3

The coupling has to be considered for the test particle as

well as for the strong bunch.
1 INTRODUCTION

The beam-beam interactions is studied in storage rings in Test particle

order to incorporate the beam-beam kick in the computer

programs MAD [3] and SIXTRACK [4], using the for-  The potential (3) is obtained from (1) by introducing a
malism developed by Hirata, Moshammer and Ruggieritated coordinate system of the test particle (for details
(synchro-beam mapping; a Lorentz boost transforming tHeee Appendix A of [8]):

collision with an angle to a collision head-on). In this ap-

proach the strong bunch is split into several longitudinal 3}": xcos@ + ysin©; (4)
slices where each slice is described by an electromagnetic Y= —asin®+ycosO,

potential of the form ) )
where® denotes the twist angle of the strong bunch given

U(z,y; ¥11,X33) = by:
x2 y2
00 €Xp | — - (1) o5
_Te 211 +u 233+ u du §in20 — _ 13 .
Y0 Jo V2¥11 +u V2833 +u ' VI[Z1 — Xa3]2 +4%%,
Herer, is the classical electron radiug is the gamma of Sy
. . . 11 33
the test particle antl is a6 x 6 matrix where cos 20 = ; (5)
VB — Bas]? + 4%,
Zij =< XT;Xj > — < X; >< Xj > (2)
2%
where the lowercase, y and the uppercask, Y stand for = tan 20 = —ﬁ
11 — 433

the coordinates of the test particle and the strong bunch, re-
spectively. In addition, a new technique of symplectic map-

ping in the six-dimensional phase space, called synchro-
beam mapping (SBM), has been introduced by these au-

thors in Ref. [1]. It allows to include the bunch length effect Fgr the strong beam we have the_ same tra_nsfor—
at the collision point and the energy variation caused bythmatlon (4) for X and ¥ of th_e coordmatesX -
Y, Z: Px, Py, Pz)T. The particle motion can be rep-

electric field of the opposite bunch. This mapping is formufesented as a superposition of eigenmodes as shown in [7]
lated only for head-on collision, but Hirata has shown that Perp 9
a crossing angle can be eliminated by a Lorentz-boost[2]. . = . _ip

Eq. 1 is valid for the case of uncoupled motion. The aim (s) = Z V Ik [0 (s)e™ " +
of this report is to extend the formalism so as to include

6-dimensional linear coupling.

Strong bunch

i, *e'],  (6)
k=IIIIII

wherebywy (s) (k = I,1I,111) describe the eigenmotion

with the linear 6D transfer matrix from longitudinal posi-
2 BEAM-BEAM KICK FOR COUPLED fion s 10 s:

MOTION Uk(s) = M(s, 50)k(s0) (7)
2.1 The electromagnetic field due to a tilteayith
bunch

The generalisation of the analysis in Refs. [1, 2] by includ-

ing coupling and atilted strong bunch (caused by coupling), s the circumference of the accelerator a@the beta-
*Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany  tron tune for the:*® mode). The rotatell can be expressed

M (so + L, s0)(s0) = e~ 2" (s0) (8)
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by the elements of the unrotat&dmatrix:

Y1 =< XZ >
1
= 5 {[211 + 233} + \/[211 — 233]2 + 42%3}
233 =< Y/Z >
1
= 5 {[211 + 233} — \/[211 — 233]2 + 42%3} .
9)
These elements are a function of the eigenvectors:
Y11 =< X2 >= Z 2kak1v}21;
k=I,11,II1
Y33 =< Y2 >= Z 2kak3'l);;3;
k=I,11,I11
Y13 =< XY >= Z Je[vk1viz + Vi Vks].
k=I,11,II1
(10)
Note that
E1=1\/311, B2 = \/3as (11)
are the principal axes of the elliptical cross section
X2 Xz
— +—=—=1 12
BB (12)

in the (X — Y)-plane.

Conversely to Ref. [2], the crossing andle can be

where
-1 0 1 0
-1 0 1 0 O
0 0 0 1
and
H/C — Py Dz
PzC Pz
= PyB 16
p.c — P =1 n (16)
Pyc Py
with
1 0 0 O
o1 01 0 O
00 0 1

and P, being the absolute value of the three-momentum of
the test particle. They describe the connection between the
Cartesian coordinatecg:, yc, 2c¢; Pz, Pyc, P=c; H, t)

with H = ¢P and the accelerator coordinate=(z, y, z;

Dy Dy» D=3 R, s) Of the test particle with the Hamiltonian

h(pz,py,p2) =p- +1— \/(pz +1)2 —p2 —p2. (18)

In this case we had to apply the ultrarelativistic approxima-
tionvg ~ c.
The Lorentz boost

chosen in an arbitrary crossing plane, defined by an angle

« (see Fig. 1). We can write the components of the strong

bunch in a Cartesian coordinate systekh {', Z; P., P,
P,) defined for the laboratory frame:

P, = Psin2¢cosa;
P, = Psin2¢sino; (13)
P, = —Pcos29,

with P the momentum of the bunch.

yYy
.‘ 3 20
Yl X <\7
——————— =

Figure 1: Coordinate system with a crossing arigleand
an arbitrary crossing plane defined by an angle

2.2 Lorentz boost

The following relations of Ref. [2] remain valid:

ct z(s)
T _ x(s)
o | =4l (14)
Yo y(s)
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1/cos¢p —sing —tangsing 0
. —tan¢ 1 tan ¢ 0

Lo = 0 —sin ¢ cos ¢ 0 (19)
0 0 0 1

used in Ref. [2] makes the collision head-on foe 0, so
that the synchro-beam mapping can be applied.

We now include the arbitrary crossing angle by the fol-
lowing similarity transformation:

L=R"LoR (20)
with
1 0 0 0
0 cosa 0 sina
k= 0 0 1 0 (1)
0 —sina 0 cosa
The coordinates in the transformed frame are:
ct* ct
o l=L| T |; (22)
Z0 zC
Y& Yo
H*/c H/c
P | =L P (23)
po po
pZC byC

Inserting Eq. 13 into Eq. 23, we get for the transformed
momentum of the strong buncit{{c = P). P; = 0;
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P; = 0 and the test particlp, = p, = 0, H = cFo is  nally obtain the equations
transformed intg;;, = p; = 0 andH* = cFy = cPycos ¢,
i.e. the collision is indeed head-on. ¥ = zcosatang+ x
Using Eq. 20, the full Lorentz transformation is there- “+h} [z cosasin ¢ + ysin asin @]
fore a transformation from the accelerator coordinates
to Cartesian coordinates, the Lorentz transformation and y* = zsinatan¢ +y

again a backwards transformation to the accelerator coor- +hy [z cos asin ¢ + y sin asin ¢
dinates:
#(0) — 3*(s*) (24) z* = P + hilxcosasin ¢ + ysin asin @l;
(32)
leading to: v Da b cos an ¢
P = Cos 1) cos ¢’
z"(s) z(0) 5
a:*(s*) o l‘(O) . _ Dy _ hsi tan .
Sl =atal (25)  Py= g MmOl
y*(s*) y(0) .
Py = P, —Dgcosatan¢
and —pysinatan¢ + h tan? ¢.
pi(s*) p-(0) The transformatiorC of Eq. 32 can be represented as
pr(s*) | _ Po o1 P (0) the combination of a scale transformation
h = Pgﬁ LB h : (26)
Py(s”) py(0) T, Y, 23 Dw, Py, Pz — T, 23 Das Dy, D= (33)
From Eg. 25 we have: with
s* = —x(0)cosasing —y(0)sinasing  (27) i=ax, =y, 5=z
. . . (34)
so that in genera = 0 is not necessarily transformed Po = 22 By = Py 5 — Pz
to s* = 0. Since we need a transformation fraf(0) to cos ¢ cos ¢ cos ¢

Z*(0*), an additional transformation
and a canonical transformation
T (s*) — 7*(0%) (28)
T, 0, 25 Pas Pys Pz — 55y 2555 0y P2 (35)
has to be performed.
Following Ref. [2], the transformation (28) can be writ-resulting from the generating function
ten as afirst-order Taylor expansion:

FolZ.7.5: 0" p*. p*) = #p* up* —Z
z(x,y,z,px,pyapz) =ITp; +Yp, + Cos¢pz

wi(07) = wi(s") - CTZS* s +Ztan ¢[p} cos a + py sin o (36)
= wi(s*) — h}s* +sin ¢[Z cos a + g sin a]h* (p}, py;, P%)-
= w}(s*) + h}sin ¢[x(0) cos o + y(0) sin o]

] (29)  Thuscis only quasi symplectic; the Jacobian of this trans-
with formation is1/ cos® ¢. This defect of the symplecticity is
restored in the backwards transformatién® after having

w; = (z,9,2); hi= 88* h*(ps. v 05 Ps). (30) applied the beam-beam force.
P; ’

Furthermore we obtain from (26) and the Hamiltonian (18p 3 Beam-beam force

h*(pys vy P2 F5) = We approximate the strong bunch by a number of slices.

(31) Each slice is represented by i (0*) coordinate, which
shall be denoted byf. Taking into account only terms
linear with respect to dynamical variablesdnthe first and

Combining the transformations (25, 26) and (29), we fisecond momenta of the particle distribution at the locations

mh(px,py,pz; Po) = h(p, py, 0% F)-
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of the slices are given by:

Xt = Ztcosasin¢;
Yi = Zfsinasing;

PL= 0
Pl = 0
Pl = 0
o= S
1
i Yoot
22 cosZp
E£3= Y33;
1
She =
44 COSZd) 44,
1
»i, =
12 cos ¢ 12,
1
»h, = by
34 cos ¢ 34
Sls= Tus

Putting Eq. 37 into Egs. 5 and 9 one obtains:

= ¥3(
= Y13(p) 1)
wherego—COS Thus
SL(S) = Sul);
S1(8) = Saa(y); (42)
of(s) = O(yp)

with 11, 333 and© given by 5 and 9.
(37) Furthermore, applying the synchro-beam mapping
(SBM) * for the test particles we get:

Tt = a*+ppS - X1(2Zh);

U=yt +ppS—Yi(Zh); (46)
Z¥= 2z

and
Dy = Dii
Dy = Py 47
. . )P+ (p)? 47
pe= pi- 4

Here we have assumed a (virtual) drift space.
The SBM within a solenoid field can be found in Ap-

t_ .
gf B (g’ _ pendix B of [8].
N %1 - T (38) The patrticle-slice interaction at the CP finally leads to:
z}33 = ;33;
= S (5", 2%) — (z°,7", 2) (48)
i.e. the cross section of the strong bunch remains ugng
changed. Dy — Py —n'Fr;
In orde[ to calcglate the beam-beam kick, we need to Py — Dy —nFy; (49)
transformZ11 andZ33 as well a9 from the interaction Dy — pr—n*F},

point (IP) to the collision point (CP). The distance between

the two points is given by

2=zt

S=25(z2"= 5

Using Egs. 5, 9 and 37 we obtain:

$L(9) =5 {I50(S) + She(S)
+I50(8) - SR + afy (57
5a(5) =5 {I50(5) + She(S)
— JIB1(S) - Bhy(9)2 + 45iy(S)2
with
S1(S) =%1(0) +251,(0)8 + x5,(0)52
= ¥11(0) + 2%12(0)¢ + 22(0)?
=2u(p);
£13(S) = Tl5(0) +254,(0)S + X4,(0)S?
= 233(0) -+ 2234(0)90 + 244(0)(,02
= Ya3(p);
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wherebyn* is the number of particles in the slice and

o - R
(39) Fy = o2 UE 75 20(0), Yas(9); O(0));

9 e A
Fy o= 9 —U(z", 7" S11(p), Ya3(); O(9));
(50)
0 - —% —%, \- S
Fr =550 7% 2ulp), X (9); ©(9)
= 10 0 5 Sule), Sale): ()
295 11 33(p); Oy
5 1The SBM as described in detail in Ref. [1] can be represented by a
Hamiltonian
(40) H = Hpp(2*)d(s*) 43)
with Hpyp, defined implicitly by
exp(: Hpp 1) = Hexp(: F(z*, ZT) :) (44)
zt
and with
F(&*, Z1) = n*U(&",9%; $11, L33) (45)

describing the interaction of a test particle in the weak bunch with a slice
represented by
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with U given by Eq. 3.
Introducing the variables

¥ = wiT + way;
(see Eq. 5) with
w1 =cosO;  wp =sinO, (52)
we can also write:
9 . .
By =50y 2u(e), Zaaly)
0 * kN S
=wi(p)5 U2 ¥ Xn(p), Xas ()
0 * kL% S
—U)2(80) ay* U(E Y 7211«0)7233(@))7
Fr = LU,y S 0), Sesle)
ay* LY 5211 (P), 233 (P
8 * ok, O <
= w2(p) 5 U2, ¥ Xn(p), Zas(p))
0 * k% S
+wi(p) 75 U(@", ¥ B(p), Baalp));  (53)
Fr =2 0 0wy S (9), Sas()
z _285 £a£711¢a33¢
o ou / % ! — 1
5 [W(9)T" +wa(0)y"] 5 — 5

+ Y o) +ul(0)5]
ag* 2 SO 1 SO Yy 2COS¢
oU ., 1

+ai—nzll(¢)2cos¢
oU ., 1

+—8f333 E33(@)—2 pv

The quantitiesv; andw, are determined by Egs. 5 and 52.
Lastly, in order to calculate the derivatives (s) and
wh(s) we use the relations

c0s20 = cos? O —sin? O
=2cos?0 — 1 (55)
=1-2sin0
wi(s) = —cos® = #—0032@'
ds 4cos®O ds ’
=
d . 1 d
wh(s) = %sm(% = 1500 ds cos 20,

(56)
wherebycos 20 has to be taken from Eq. 5.

3 SUMMARY

We have studied the beam-beam interaction for coupled
motion in the framework of the weak-strong formalism tak-
ing into account a tilted cross section of the strong beam in-
duced by linear coupling. This coupling has been included
in the 6D beam-beam formalism of Hirata, Moshammer
and Ruggiero.

The extended formalism also allows for an arbitrary
crossing plane. Furthermore, a SBM-solution for solenoid
fields is derived which allows to investigate the beam-beam
kick within a solenoid.

The equations derived in this paper shall be incorporated
into the tracking codes MAD and SIXTRACK.
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