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Abstract

The 6D beam-beam interaction as developed in 1992 by
Hirata, Moshammer and Ruggiero [1, 2] has been extended
to include linear coupled motion and an arbitrary cross-
ing plane. Moreover, a synchro-beam mapping is given for
solenoid fields which allows to investigate the beam-beam
kick within a solenoid.

1 INTRODUCTION

The beam-beam interactions is studied in storage rings in
order to incorporate the beam-beam kick in the computer
programs MAD [3] and SIXTRACK [4], using the for-
malism developed by Hirata, Moshammer and Ruggiero
(synchro-beam mapping; a Lorentz boost transforming the
collision with an angle to a collision head-on). In this ap-
proach the strong bunch is split into several longitudinal
slices where each slice is described by an electromagnetic
potential of the form

U(x, y; Σ11, Σ33) =

− re

γ0

∫ ∞

0

exp
(
− x2

2Σ11 + u
− y2

2Σ33 + u

)
√

2Σ11 + u
√

2Σ33 + u
du.

(1)

Herere is the classical electron radius,γ0 is the gamma of
the test particle andΣ is a6 × 6 matrix where

Σij ≡< XiXj > − < Xi >< Xj > (2)

where the lowercasex, y and the uppercaseX , Y stand for
the coordinates of the test particle and the strong bunch, re-
spectively. In addition, a new technique of symplectic map-
ping in the six-dimensional phase space, called synchro-
beam mapping (SBM), has been introduced by these au-
thors in Ref. [1]. It allows to include the bunch length effect
at the collision point and the energy variation caused by the
electric field of the opposite bunch. This mapping is formu-
lated only for head-on collision, but Hirata has shown that
a crossing angle can be eliminated by a Lorentz-boost [2].

Eq. 1 is valid for the case of uncoupled motion. The aim
of this report is to extend the formalism so as to include
6-dimensional linear coupling.

2 BEAM-BEAM KICK FOR COUPLED
MOTION

2.1 The electromagnetic field due to a tilted
bunch

The generalisation of the analysis in Refs. [1, 2] by includ-
ing coupling and a tilted strong bunch (caused by coupling)
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can be achieved in a straight forward manner by describing
the particle motion in the framework of the fully coupled
6-dimensional formalism and by replacing the electric po-
tential of Eq. 1 of an untilted bunch by a new potential

Û(x, y; Σ̂11, Σ̂33; Θ) ≡ U(x̂, ŷ; Σ̂11, Σ̂33). (3)

The coupling has to be considered for the test particle as
well as for the strong bunch.

Test particle

The potential (3) is obtained from (1) by introducing a
rotated coordinate system of the test particle (for details
see Appendix A of [8]):

x̂ = x cosΘ + y sin Θ;
ŷ = −x sin Θ + y cosΘ,

(4)

whereΘ denotes the twist angle of the strong bunch given
by:

sin 2Θ = − 2Σ13√
[Σ11 − Σ33]2 + 4Σ2

13

;

cos 2Θ =
Σ11 − Σ33√

[Σ11 − Σ33]2 + 4Σ2
13

;

=⇒ tan 2Θ = − 2Σ13

Σ11 − Σ33

(5)

Strong bunch

For the strong beam we have the same transfor-
mation (4) for X and Y of the coordinates~X ≡
(X, Y, Z; PX , PY , PZ)T . The particle motion can be rep-
resented as a superposition of eigenmodes as shown in [7]

~X(s) =
∑

k=I,II,III

√
Jk[~vk(s)e−iφk + ~vk

∗eiφk ], (6)

whereby~vk(s) (k = I, II, III) describe the eigenmotion
with the linear 6D transfer matrix from longitudinal posi-
tion s0 to s:

~vk(s) = M(s, s0)~vk(s0) (7)

with

M(s0 + L, s0)~vk(s0) = e−i2πQk~vk(s0) (8)

(L is the circumference of the accelerator andQk the beta-
tron tune for thekth mode). The rotated̂Σ can be expressed
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by the elements of the unrotatedΣ-matrix:

Σ̂11 ≡< X̂2 >

=
1
2

{
[Σ11 + Σ33] +

√
[Σ11 − Σ33]2 + 4Σ2

13

}

Σ̂33 ≡< Ŷ 2 >

=
1
2

{
[Σ11 + Σ33] −

√
[Σ11 − Σ33]2 + 4Σ2

13

}
.

(9)
These elements are a function of the eigenvectors:

Σ11 ≡< X2 >=
∑

k=I,II,III

2Jkvk1v
∗
k1;

Σ33 ≡< Y 2 >=
∑

k=I,II,III

2Jkvk3v
∗
k3;

Σ13 ≡< XY >=
∑

k=I,II,III

Jk[vk1v∗k3 + v∗k1vk3].

(10)
Note that

E1 =
√

Σ̂11, E2 =
√

Σ̂33 (11)

are the principal axes of the elliptical cross section

X̂2

E1
+

X̂2

E2
= 1 (12)

in the(X̂ − Ŷ )-plane.
Conversely to Ref. [2], the crossing angle2φ can be

chosen in an arbitrary crossing plane, defined by an angle
α (see Fig. 1). We can write the components of the strong
bunch in a Cartesian coordinate system (X , Y , Z; Px, Py ,
Pz) defined for the laboratory frame:

Px = P sin 2φ cosα;
Py = P sin 2φ sinα;
Pz = −P cos 2φ,

(13)

with P the momentum of the bunch.

y~

x

y

x~
α

 2φ

Figure 1: Coordinate system with a crossing angle2φ and
an arbitrary crossing plane defined by an angleα.

2.2 Lorentz boost

The following relations of Ref. [2] remain valid:


ct
xC

zC

yC


 = A




z(s)
x(s)

s
y(s)


 (14)

where

A = A−1 =




−1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


 (15)

and 


H/c − P0

pxC

pzC − P0

pyC


 = P0B




pz

px

h
py


 (16)

with

B = B−1 =




1 0 0 0
0 1 0 0
1 0 −1 0
0 0 0 1


 (17)

andP0 being the absolute value of the three-momentum of
the test particle. They describe the connection between the
Cartesian coordinate (xC , yC , zC ; pxC , pyC , pzC ; H, t)
with H = cP and the accelerator coordinate~x =(x, y, z;
px, py, pz; h, s) of the test particle with the Hamiltonian

h(px, py, pz) = pz + 1 −
√

(pz + 1)2 − p2
x − p2

y. (18)

In this case we had to apply the ultrarelativistic approxima-
tion v0 ≈ c.

The Lorentz boost

L0 =




1/ cosφ − sinφ − tanφ sin φ 0
− tanφ 1 tanφ 0

0 − sinφ cosφ 0
0 0 0 1


 (19)

used in Ref. [2] makes the collision head-on forα = 0, so
that the synchro-beam mapping can be applied.

We now include the arbitrary crossing angle by the fol-
lowing similarity transformation:

L = R−1L0R (20)

with

R =




1 0 0 0
0 cosα 0 sin α
0 0 1 0
0 − sinα 0 cosα


 . (21)

The coordinates in the transformed frame are:


ct∗

x∗
C

z∗C
y∗

C


 = L




ct
xC

zC

yC


 ; (22)




H∗/c
p∗xC

p∗zC

p∗yC


 = L




H/c
pxC

pzC

pyC


 . (23)

Inserting Eq. 13 into Eq. 23, we get for the transformed
momentum of the strong bunch (H/c = P ): P ∗

x = 0;
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P ∗
y = 0 and the test particlepx = py = 0, H = cP0 is

transformed intop∗x = p∗y = 0 andH∗ = cP ∗
0 = cP0 cosφ,

i.e. the collision is indeed head-on.

Using Eq. 20, the full Lorentz transformation is there-
fore a transformation from the accelerator coordinates
to Cartesian coordinates, the Lorentz transformation and
again a backwards transformation to the accelerator coor-
dinates:

~x(0) → ~x∗(s∗) (24)

leading to:




z∗(s∗)
x∗(s∗)

s∗

y∗(s∗)


 = A−1L A




z(0)
x(0)

0
y(0)


 (25)

and




p∗z(s∗)
p∗x(s∗)

h∗

p∗y(s
∗)


 =

P0

P ∗
0

B−1L B




pz(0)
px(0)

h
py(0)


 . (26)

From Eq. 25 we have:

s∗ = −x(0) cosα sinφ − y(0) sin α sin φ (27)

so that in generals = 0 is not necessarily transformed
to s∗ = 0. Since we need a transformation from~x(0) to
~x∗(0∗), an additional transformation

~x∗(s∗) → ~x∗(0∗) (28)

has to be performed.

Following Ref. [2], the transformation (28) can be writ-
ten as a first-order Taylor expansion:

w∗
i (0∗) = w∗

i (s∗) − dw∗
i (0∗)
ds∗

s∗

= w∗
i (s∗) − h∗

i s
∗

= w∗
i (s∗) + h∗

i sin φ[x(0) cos α + y(0) sin α]
(29)

with

wi ≡ (x, y, z); h∗
i =

∂

∂p∗i
h∗(p∗x, p∗y, p

∗
z; P

∗
0 ). (30)

Furthermore we obtain from (26) and the Hamiltonian (18):

h∗(p∗x, p∗y, p∗z; P
∗
0 ) =

1
cos2 φ

h(px, py, pz; P0) = h(p∗x, p∗y, p
∗
z; P

∗
0 ). (31)

Combining the transformations (25, 26) and (29), we fi-

nally obtain the equations

x∗ = z cosα tanφ + x
+h∗

x[x cos α sin φ + y sin α sin φ]

y∗ = z sin α tanφ + y
+h∗

y[x cos α sin φ + y sin α sin φ]

z∗ =
z

cosφ
+ h∗

z[x cosα sinφ + y sin α sin φ];

p∗x =
px

cosφ
− h cosα

tanφ

cosφ
;

p∗y =
py

cosφ
− h sinα

tan φ

cos φ
;

p∗z = pz − px cosα tanφ
−py sin α tanφ + h tan2 φ.

(32)

The transformationL of Eq. 32 can be represented as
the combination of a scale transformation

x, y, z; px, py, pz → x̃, ỹ, z̃; p̃x, p̃y, p̃z (33)

with

x̃ = x, ỹ = y, z̃ = z;

p̃x =
px

cosφ
, p̃y =

py

cosφ
, p̃z =

pz

cosφ

(34)

and a canonical transformation

x̃, ỹ, z̃; p̃x, p̃y, p̃z → x∗, y∗, z∗; p∗x, p∗y, p∗z (35)

resulting from the generating function

F2(x̃, ỹ, z̃; p∗x, p∗y, p
∗
z) = x̃p∗x + ỹp∗y +

z̃

cosφ
p∗z

+z̃ tanφ[p∗x cosα + p∗y sin α]
+ sin φ[x̃ cosα + ỹ sin α]h∗(p∗x, p∗y, p∗z).

(36)

ThusL is only quasi symplectic; the Jacobian of this trans-
formation is1/ cos3 φ. This defect of the symplecticity is
restored in the backwards transformationL−1 after having
applied the beam-beam force.

2.3 Beam-beam force

We approximate the strong bunch by a number of slices.
Each slice is represented by itsZ∗(0∗) coordinate, which
shall be denoted byZ†. Taking into account only terms
linear with respect to dynamical variables inL, the first and
second momenta of the particle distribution at the locations
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of the slices are given by:

X† = Z† cosα sin φ;
Y † = Z† sinα sinφ;
P †

X = 0;
P †

Y = 0;
P †

Z = 0;
Σ†

11 = Σ11;

Σ†
22 =

1
cos2 φ

Σ22;

Σ†
33 = Σ33;

Σ†
44 =

1
cos2 φ

Σ44;

Σ†
12 =

1
cosφ

Σ12;

Σ†
34 =

1
cosφ

Σ34;

Σ†
13 = Σ13.

(37)

Putting Eq. 37 into Eqs. 5 and 9 one obtains:

Θ† = Θ;
Σ̂†

11 = Σ̂11;
Σ̂†

33 = Σ̂33;
Σ̂†

13 = Σ̂13,

(38)

i.e. the cross section of the strong bunch remains un-
changed.

In order to calculate the beam-beam kick, we need to
transformΣ̂†

11 andΣ̂†
33 as well asΘ† from the interaction

point (IP) to the collision point (CP). The distance between
the two points is given by

S = S(z∗, Z†) =
z∗ − Z†

2
(39)

Using Eqs. 5, 9 and 37 we obtain:

Σ̂†
11(S) =

1
2

{
[Σ†

11(S) + Σ†
33(S)]

+
√

[Σ†
11(S) − Σ†

33(S)]2 + 4Σ†
13(S)2

}
;

Σ̂†
33(S) =

1
2

{
[Σ†

11(S) + Σ†
33(S)]

−
√

[Σ†
11(S) − Σ†

33(S)]2 + 4Σ†
13(S)2

}
;

(40)
with

Σ†
11(S) = Σ†

11(0) + 2Σ†
12(0)S + Σ†

22(0)S2

= Σ11(0) + 2Σ12(0)ϕ + Σ22(0)ϕ2

≡ Σ11(ϕ);
Σ†

33(S) = Σ†
33(0) + 2Σ†

34(0)S + Σ†
44(0)S2

= Σ33(0) + 2Σ34(0)ϕ + Σ44(0)ϕ2

≡ Σ33(ϕ);

Σ†
13(S) = Σ†

13(0) + [Σ†
14(0) + Σ†

23(0)]S + Σ†
24(0)S2

= Σ13(0) + [Σ14(0) + Σ23(0)]ϕ + Σ24(0)ϕ2

≡ Σ13(ϕ)
(41)

whereϕ =
S

cosφ
. Thus:

Σ̂†
11(S) = Σ̂11(ϕ);

Σ̂†
33(S) = Σ̂33(ϕ);

Θ†(S) = Θ(ϕ)
(42)

with Σ̂11, Σ̂33 andΘ given by 5 and 9.
Furthermore, applying the synchro-beam mapping

(SBM) 1 for the test particles we get:

x̄∗ = x∗ + p∗xS − X†(Z†);
ȳ∗ = y∗ + p∗yS − Y †(Z†);
z̄∗ = z∗

(46)

and
p̄∗x = p∗x;
p̄∗y = p∗y;

p̄∗z = p∗z − (p∗x)2 + (p∗y)2

4
.

(47)

Here we have assumed a (virtual) drift space.
The SBM within a solenoid field can be found in Ap-

pendix B of [8].
The particle-slice interaction at the CP finally leads to:

(x̄∗, ȳ∗, z̄∗) → (x̄∗, ȳ∗, z̄∗) (48)

and
p̄∗x → p̄∗x − n∗F ∗

x ;
p̄∗y → p̄∗y − n∗F ∗

y ;
p̄∗z → p̄∗z − n∗F ∗

z ,
(49)

wherebyn∗ is the number of particles in the slice and

F ∗
x =

∂

∂x̄∗ Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); Θ(ϕ));

F ∗
y =

∂

∂ȳ∗ Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); Θ(ϕ));

F ∗
z =

∂

∂z̄∗
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); Θ(ϕ))

=
1
2

∂

∂S
Û(x̄∗, ȳ∗; Σ̂11(ϕ), Σ̂33(ϕ); Θ(ϕ))

(50)

1The SBM as described in detail in Ref. [1] can be represented by a
Hamiltonian

H = Hbb(~x
∗)δ(s∗) (43)

with Hbb defined implicitly by

exp(: Hbb :) =
∏
Z†

exp(: F (~x∗, Z†) :) (44)

and with
F (~x∗, Z†) = n∗U(x̂∗, ŷ∗; Σ̂11, Σ̂33) (45)

describing the interaction of a test particle in the weak bunch with a slice
represented byZ†
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with Û given by Eq. 3.
Introducing the variables

x∗ = w1x̄
∗ + w2ȳ

∗;
y∗ = −w2x̄

∗ + w1ȳ
∗ (51)

(see Eq. 5) with

w1 = cosΘ; w2 = sin Θ, (52)

we can also write:

F ∗
x =

∂

∂x̄∗U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

= w1(ϕ)
∂

∂x∗U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

−w2(ϕ)
∂

∂y∗U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ));

F ∗
y =

∂

∂ȳ∗U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

= w2(ϕ)
∂

∂x∗U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

+w1(ϕ)
∂

∂y∗U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ));

F ∗
z =

1
2

∂

∂S
U(x∗, y∗; Σ̂11(ϕ), Σ̂33(ϕ))

=
∂U

∂x∗ [w′
1(ϕ)x̄∗ + w′

2(ϕ)ȳ∗]
1

2 cosφ

+
∂U

∂y∗
[−w′

2(ϕ)x̄∗ + w′
1(ϕ)ȳ∗]

1
2 cosφ

+
∂U

∂Σ̂11

Σ̂′
11(ϕ)

1
2 cos φ

+
∂U

∂Σ̂33

Σ̂′
33(ϕ)

1
2 cos φ

(53)

with U defined in Eq. 1; the prime denotes differentia-
tion with respect tos. Expressions for the terms∂U/∂x∗,
∂U/∂y∗, ∂U/∂Σ̂11 and∂U/∂Σ̂33 appearing in Eq. 53 can
be found in Ref. [1] (see Eqs. 21, 22, 86, 87) for a tri-
gaussian distribution.

The termŝΣ′
11(ϕ) andΣ̂′

33(ϕ) in Eq. 53 may be obtained
by using Eqs. 9 and 10 and by taking into account, that the
eigenvectors~vk(s) (k = I, II, III) obey the equations of
motion. A drift space reads:

d

ds
vk1 = vk2;

d

ds
vk3 = vk4;

d

ds
vk2 =

d

ds
vk4 = 0.

(54)

The quantitiesw1 andw2 are determined by Eqs. 5 and 52.
Lastly, in order to calculate the derivativesw′

1(s) and
w′

2(s) we use the relations

cos 2Θ = cos2 Θ − sin2 Θ
= 2 cos2 Θ − 1
= 1 − 2 sin2 Θ

(55)

=⇒




w′
1(s) ≡

d

ds
cosΘ =

1
4 cosΘ

d

ds
cos 2Θ;

w′
2(s) ≡

d

ds
sinΘ = − 1

4 sinΘ
d

ds
cos 2Θ,

(56)
wherebycos 2Θ has to be taken from Eq. 5.

3 SUMMARY

We have studied the beam-beam interaction for coupled
motion in the framework of the weak-strong formalism tak-
ing into account a tilted cross section of the strong beam in-
duced by linear coupling. This coupling has been included
in the 6D beam-beam formalism of Hirata, Moshammer
and Ruggiero.

The extended formalism also allows for an arbitrary
crossing plane. Furthermore, a SBM-solution for solenoid
fields is derived which allows to investigate the beam-beam
kick within a solenoid.

The equations derived in this paper shall be incorporated
into the tracking codes MAD and SIXTRACK.
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