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We construct the higher twist structure functions that describe inclisshagiron decays in regions of phase
space where the hadronic decay products carry high energy but have low invariant mass. We showBhat, for
meson decays, there are four new nonvanishing matrix elements of nonlocal operators. We show that to
subleading twist these decays are parametrized in terms of four functions. We compute the tree-level matching
for a general heavy-to-light current and apply itBe-Xyy. Using a simple model for these functions we
estimate the subleading twist contributions to this decay.
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I. INTRODUCTION 1

f(@)= 5--(BOg(w)[B). €

Inclusive decays oB mesons can be analyzed via an op- B

erator product expansio(OPE [1,2] as a power series in _ _ o .

Agcp/My. At leading order the OPE reproduces the parton! he rate in the shape function region is determined (ay).

model results, while nonperturbative physics is parametrizefowever, since it is a nonperturbative functidw) cannot

by matrix elements of higher-dimensional operators and supPe calculated analytically, and the rate in the shape function

pressed by powers of the heavy quark mass. region is model dependent even at leading order in
In practice, higher-dimensional operators in the OPE areé\ocp/My - o o

only suppressed for sufficiently inclusive observables. In the Unfortunately, forB— X,¢ v decay(and to a lesser extent

resonance regime, where the invariant mass of the final ha@_)xsy), the experimental cuts which must be imposed on
ronic state is restricted to beAZQCD, the decay is no longer he phase space to eliminate large backgrounds foesc
inclusive and it is not surprising that the OPE completelydecay typically put the decay into the shape function region,
breaks down. However, the OPE includes terms suppressegkroducing large model dependence in the predicted rate.
by ExAqco/mk (WhereEy and my are the energy and in- For semileptonich—u decay, this is the case for cuts on
variant mass of the final hadronic statehich are suppressed either the charged lepton energy or, to a lesser extent, the
over most of phase space, but &¢1) in the region of high  hadronic invariant magg}]. This model dependence is a ma-

energy, low invariant mass hadronic states, jor theoretical stumbling block to a precise determination of
the Cabibbo-Kobayashi-Maskawa matrix elem@ff,| from
Exy~my, miNAQCDmb> AéCD_ (1)  inclusive decays.

However, since the distribution functiof8) determines

In this “shape function region” the OPE breaks down, event® Shape of the photon spectrumBr- X,y as well as the
though it is far from the resonance regime. Thus an inclusivéharged lepton or hadronic invariant mass spectruniin
description is still appropriate, but the expansion parameter-X ¢ v, it was suggested a number of years 4§ that
in the OPE has to be modified. It has been shown that the(y) could be measured |B_>Xsy, and then used to extract
most singular terms in the OPE may be resummed into @& | from semileptonic decayThe perturbative corrections

nonlocal operatof3] to the relation between these processes have been intensely
studied in recent yeafs$].
Oy(w)=h,8(w+in-D)h,, 2) In addition to the radiative corrections, however, there are

nonperturbative corrections to the relation between the pho-

wheren# is a lightlike vector in the direction of the final
hadronsh, is a heavy quark effective theof4QET) field IAnother solution is to consider a kinematic cut which is insensi-

and we denote variables normalizedrg by a caret:D* tive to the form of the shape function, such as a cut on the lepton
=D*#/m, . The matrix element of this operator irBameson invariant mas$6] or a combination of leptonic and hadronic invari-
is the light-cone structure function of the meson: ant mass cutg7].
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ton spectrum ir§—>xsy and the lepton or hadronic invariant

mass spectra iB— X, € v. The light-cone distribution func-
tion (3) only resums the most singular terms of the OPE in
the shape function region. There are corrections to this from
less singular terms suppressed RAycp/m;,, analogous to pg=(mpv ~ Q) —1+k
higher-twist corrections to deep inelastic scatterifiyS) 4;mbv+k

[9,10]. These corrections are important for a precision mea-

surement of|V,,| via this method, but have not yet been FIG. 1. Kinematics for a general heavy to light transition.
studied.

In this paper we discuss the subleading corrections téet about the light cone, and the velocity of the heavy quark
heavy-lightB decay in the shape function region by perform-then defines a second lightlike vecto= 2v —n. These vec-
ing a twist expansion rather than the usual OPE in terms ofors satisfy
local operator$.At leading order in the twist expansion we . o o
reproduce the known results, while at subleading order we n’=0=n?, v-n=v-n=1, n-n=2. (7)
find four new nonlocal operators relevant Brdecays. We
compute the tree-level matching for a general heavy-lightn the frame in which thé quark is at rest and the emitted
current and apply it t8— Xyy. We use a simple model for hadrons move in the-z direction, these vectors are given by
these functions to estimate the subleading twist contributiom*=(1,0,0,1),n*=(1,0,0,-1), andv#=(1,0,0,0). We can

to B—Xgy. decompose the metric according to
The techniques developed in this paper have also been o _
used to determine the subleading corrections to the charged gt’=3(n*n"+ n"n*)+gf”, (8

lepton spectrum oB— X,¢ v in [12], where the implications _ o
for the extraction ofV,,| are discussed. Similar results have Which definesg™.

been presented if3]. In the shape function region, the momenta scale as
II. KINEMATICS (Mpo =) -N=m,—g-n~O(m),
We consider a general heavy to light transitioadiative (M —q)-n=mp—0q-N~0(Aqcp),

or semileptoniy, proceeding via the current
k#~O(Aqgcp)- 9
J)=q()T'b(x), ) It is therefore convenient to split the momentugft into

. , . . large and small components,
whereq(x) is a massless quark field addis an arbitrary g P

Dirac matrix. The decay rate is related to the imaginary part gr=QH+ ¢, (10)
of the T product of two heavy-light currents:

where
dl'~—21m(B|7T |B), 5 . - _
Q¥=3(myn“+q-nn¥), €¥=—3(my—q-n)n* (11
where
are O(mp) and O(Aqcp), respectively. The momentum of
L : the light hadronic decay products is
ﬂq)=f d*x T[j(x)j"(0)]e'%, (6)

Py =Mpu* — Q¥ — €+ k*
andq is the momentum transfer.

The kinematics for this process are shown in Fig. 1. As

usual, the heavy quark momentum is split into a large and a _ . . 2
residual piecepf=myv*+k*. In the shape function region and 'so in the ihape function  regidi9) we have py
the final hadronic state has large energy but small invariant O(A qcoMp) <M.
mass, and so its momentum lies close to the light cone. We

introduce a lightlike vecton* to define the expansion of the 1. MATCHING

=3(My—q-n)n*+3(my—q-n)nt+k*, (12

A. Leading order

2ps discussed ifiL1], there are actually two stages of matching: at 1€ expansion in the shape function region differs from
m=m,, QCD is matched onto an intermediate theory with collinearthe usual Ih, expansion because of the additional small
and soft degrees of freedom, while at a lower scale the nonlocdP@rametemy,—q-n; in the usual OPE, terms of order
OPE is performed. Since we are not concerned with summing Suda- ke
kov logarithms in this paper, we may neglect the intermediate
theory. mp—q-n
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are treated as subleading, whereas theyXdtE) in the shape

function region. Thus, instead of resumming terms of this
form to all orders, we perform an OPE in powers of
Aqcp/my, but using scaling th€d). This is analogous to the

twist expansion in DIS.

PHYSICAL REVIEW D68, 094001 (2003

1 . : . 1
2_%<B|('Da)('Du)('Dﬁ)|B>E §(gaﬂ—vavﬁ)vﬂp1.
(20)
For a generab hadron decay there is an additional parity-

Expanding the light-quark propagator shown in Fig. 1 inodd operator at leading twist

powers ofA gcp/my, gives

myp+k-Q—+ 1 #
(M +k—Q—I+ie)?2 2Mp—g-ntk-ntie
A
+O(L°D. (13)
m

Sincek-n and my,—q-n are of the same order, this term

cannot be expanded in powers kfn, and so cannot be
matched onto a finite set of local operators.
Instead, consider the set of operators

Oo(t)=h,(0)E(01)h, (1), (14)
where we use the shorthand notation
B ( nt
W)=y )’ (15)

wheret is dimensionless, to denote fields on the light cone

defined byn*. The path-ordered exponential

ty .
E(t,,t,)=P exp{ —iJ' n-A(t’)dt’) (16)
t

is required to make the operat®y(t) gauge invariant. The

operatorsOy(w) are defined in terms dDy(t) by the linear
combination

1 (= . _ R
Op(®) = Eﬁxdt e 19t0y(t)=h, 8(w+in-D)h,
(17

(where DMEaMHgAZTa) and have the required form for

Pg(t)=h,(0)y*ysE(0)h, (1), (21)

with Pg(w) defined analogously to E¢L7). This operator is

not relevant forB meson decays since its matrix element
vanishes, but it gives a spin dependent contribution\p
decay. A general Dirac structure between heavy quark fields
may be expressed in terms of these four independent matri-
ces via the projection formula

P,[P,=3P,Tr(P,I')—3s,Tr(s"T), (22)

where

Su=P.v,vsP+, (23

andP,=31(1+4).

Since the OPE is performed over a continuously infinite
set of operators labeled hy, the heavy quark expansion in
the shape function region is, as in DIS, a convolution over a
single parameter which may be interpreted as the light-cone
momentum fraction of the heavy quark:

1 %
|m’I(C|)=—2—rnb - dw
AQCD)

My

Co(@)Op(@) +Cs5 (@) Po (@)

+0

: (29)

where theC;’s are perturbatively calculable short distance
coefficients. The tree level matching conditions are easily
obtained from Eqs(13) and (22):

co(v,q,w):gTr(mer)a(l—n-a—w) (25)

C;O(v,q,w)= . Tr(s“ﬂﬁr),s(l_n.a_w)_

5 (26)

the imaginary part of the leading term in the heavy quark

expansion(13). The matrix elements 00y(w) define the
light-cone distribution function of thb quark in aB meson,

f(w)sZi%<5|ﬁu5(w+in-|5)hv|3>. (18)

Expandingf(w) in powers ofin-D gives the series of in-
creasingly singular terms

f(w)=8(w)— )‘—2(5”'(0,)— P1

1
(@)t - - -
6m3 18m3

where

1 — 1
2—%<B|hu(iDa)(iD3)hv|B>Eg(gag—vavg))\l (19

B. Subleading order

Expanding Eq(13) to subleading order in i, , we will
in general match onto nonlocal objects of the fdri]

Opt ity ... ty)
=h,(0)T[iD¥(ty) .. .iD#1-1(t,_1)]h,(ty),
(27)
wherel’=1 or vy, s,
D,(H)=a,+igA%(t)T? (29

is the usual covariant derivative acting at a light-cone coor-
dinate, and we will work for simplicity in the light-cone
gauge n-A=0, in which the path-ordered exponential
E(tl ,t2) = 0 .
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The most general case involves operators in which every
field and derivative is evaluated at a different light-cone co-
ordinate. However for heavy quark decays to subleading or-
der, we find that at maximum only two light-cone coordi-

nates enter. The complete set of operators required is
O (t)=h,(0)[ID#(0)+iD*(t)]h,(t)
P ()=h,(0)[iID(0) +iD (t)]y,sh,(t)
O4(t)=ih,(0)[iD*(0)~iD#(t)]h,(t)
P4 (1) =ih,(0)[iD#(0)~iD*(1)]y,sh,(1)
04(ty,t2) =h, (0){iD#(t1),iD ] (t)}h,(t2)
AD T (t)}yayshy(ts)

O4¥(ty,t) =gh,(0)G**(t)h,(t,)

P4 (ty,t2) =h,(0){iD*(ty)

BAY(t1,t)=gh,(0) G (t1) yayshy(ta),

whereD{'=g/{"D, andg G{"*=i[(iD%"),(iD})] is the gluon
field strength.
The Fourier transformed operatd®s are defined as

(29

1 (e
O‘f(w)zﬁf_ dte Bk (t)

=h,{iD*,&(in-D+w)th, (30)
1
Of(w)=5—| dte'“’tO“(t)

=ih,[iD#,8(in-D+ w)]h,

2 0
o4"( )= x dt, dt, e (@17 @2l
3 (W1,07 om _ ot

x e~ 191204y, 1))

=h,8(in-D+w,){iD#,iD"}

X 8(in-D+wp)h,

=2, I T(a)= [ da{ Co(v.0,0)O() + CE(1.0,0)Po( )]+ 5o

+Cg|#(v q,0)P; a,u(w)]+ 2m, 1%

+Cgllu (U d. wlle)Pl aMV(wlawZ)]+

+0
m

Aéw)

PHYSICAL REVIEW D 68, 094001 (2003

Of{"(wl,wz)z

1) (= .
E) Lmdtldtze"(“’l“"z’tl
X e 11204 (t,t,)
=gh,8(in-D+ w,)G*"8(in-D+wy)h, .
Similarly the Fourier transforms of the’s are
Pt (@)=h{iD#&(in-D+w)}y,ysh,
P4 (0)=ih,[iD* 8(in-D+w)]v.ysh,
P47 (w1,02)=h,8(in-D+w){iD¥,iD}
X 8(in-D+ 1) v, ysh,
P4 (w1,02)=gh,8(in- D+ wp) GH
X 8(in-D+ 1)y, ysh, . (31)

The Feynman rules for the operatd@y—O, in n-A=0
gauge are shown in Fig. 2.

Finally, at subleading order there are also contributions

from the time-ordered products @iy(w) with the sublead-
ing terms in the HQET Lagrangian,

Oun¥) =R (Y)(ID)?h,(y)+ 51, (1), G#*h, ().
32

This yields another two operators

1 e
OT(w)=iJ d4yEJ dte™'“'T(h,(0)h, (1) Oym(y))

1 .
—i 4,, — —lot
Pr o(®) |fd yqu dte o7

X (N,(0) Y4 Y5, (1) Oym(Y))-

At subleading order the nonlocal OPE in Eg4) is

(33

=) [ dorctv.a0

2 fdwldwz[C" (v,0,w1,2)0; ,,(01,w3)

1
fdw[CT(U 0,0)O01(w) +C51(v,9,0) Pt o(w)]

(34)
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Oo(w) O1(w) 0% (w1, w2)
E
k - kK’ k -
f(w+n-k) 2kH6(w +n - k) 2kE K 8(wr + 1 k)o(wr + 1 - k)
Of(w) O3(w) 08" (w1, wa)

aja
~gT* [(p + 2k)1 91" + (p+ 2k)117] x
Swi+n-k)d(w+n-(p+k))

—igTg"* [6(w+k-n) -
§(w+n- (k+p)]

aa
—gTe¢** b(w+k-n) +
dw+n-(k+p))]

O (wr,w2) 05" (w1, w) Of (w1, w2)
A
k 4 k
P
a,a plfa,a, ﬁ’b’;’z plfa,a ,B,b;)z
—igT* (pgl* ~plgk) bl +n-k) @ (gl + PNT T x  ig? (g9 — o9t (T T x

X8 (wz+n- (k+p1+p2)) Swi+n-k)(wa+n-(k+p+p2)) Swr+n-k)(wa+n-(k+p1+pa))
FIG. 2. Feynman rules for nonlocal operat@g— O, in n-A=0 gauge. The Feynman rules fBg— P, are identical except for the
Dirac structure.

The matching at subleading order onto operat@® is
performed in much the same way as for a local OPE. We C4"(v,q,w1,w,)=
have computed the zero, one and two gluon matrix elements
of Eq. (6) in full QCD and expanded the kinematics in pow- - .
ers ofk#/m, and ¢#/m, as described in Sec. Il. Comparing X{&(l—n-q—wl)— 5(1—n-q—w2)}
this to the tree level matrix elements of the operators in Eq. w1~ W7
(30) and (31) gives the matching onto the coefficient func-
tions of these operators. Note that this includes terms from

T o
_Egi

1 —
——=T1r (P, I'Al")
1-n-q

the expansion of the quark field, Cﬁ”(v,q,wl,wg)=ig — ATr[P+Fv‘1(—iaj_‘”)F]
1-n-q
iD -n-q— _ —_n.a—
b=[1+-—+ )h (35) | XATN- 7 @)= 5(17n-q~ wp)
2m, 01— Wy
At tree level, we find Cr(n-q,0)=Co(n-q,w),
and for the corresponding spin dependent operators
7T —_—
CT(anyw):Z Tr ({P+:7#}Fﬁr)
Cé“,’f‘(v,q,w)=fg Tr({s®, y*}T'Al’)
+ ———Tr(P.Ty*T)|8(1-n-q— o)
1-n-q o A
ar . M —Nn.A—
(36) +1_RaTr(s ryT)|6(1—n-g—w)

C’Z‘(v,q,w):(—i);Tr([P+ yHITAT) 8(1—n-q— ) Ce4(v,q,0) =] gTr([s“,y“]ﬁle)ﬁ(l—n~f1—w)
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CE&4"(v,9,01,w)) (where the last equality is due to the Qelta functiand so
the matrix element vanishes. The matrix elemenPf ()
W vanishes since all of its moments with respecttovanish.
o aTr(s I'Ar) Finally, the matrix element oP ,(w) vanishes due to par-
ity.
There is additional information on the remaining new
functions. Starting withg;(w), we find

2mggs(w)=n,(B(v)|Of(w)[B(v))

(B(v)[h,{in-D,8(in-D+w)}h,[B(v))

_7T nv
_ZgL 1—

y S(1-n-q—wy)—8(1—n-q—wy)

w1 W

Cg”‘{“}(n : qvwl 1w2)

1 _
—Trs*T'A(—id!")I]

_(_I)E 1-n-q

—2(my, 0){B(v)|h,8(iD -n+w)h,|B(v))
=—4dmg(Mm, )f(w). (42

8(1-n-9—wy)—8(1—N-q—wp)
X Thus, g1(w) is determined by the leading order structure

w1~ W3
function, g4(w)=—-2(M, w)f(w). Some information can
Cé4(n-q,0)=C&n-q,0). (37 also be obtained on moments of the functpfw,,w,):
IV. MATRIX ELEMENTS gim=(~ 1)m+”f dw;dw,0]0)'gy(w1, )
Matrix elements of the subleading operatd8®), (31) 1 o
and (33) give rise to new, subleading structure functions. :2—<B(u)|hv(in.D)m(iDL)Z(in-D)”hU|B(v)>,
Writing the most general ansatz consistent with the symme- M
tries and the equation of motiony(- D)h=0, we find that (43
only the following matrix elements are nonvanishing .
leading to
(B(v)|0f(w)[B(v))=2mg gs(w)(v*—n*)
00— M
(B(v)|04"(@,,)|B(v))=2Mg gy w1, 05) gt 3
gimO=g®MW=0  m,n+0, (44)

(B(v)|P5(@)|B(v))=2mghy(w)etl ,
where the last equality arises because of the constraints from

(B(v)|Pho(@1,02)|B(v))=2mg hy(w1,03)€ p50p the equations of motiofil4]
mpyvo B —
XgLrgrv (B, (iD,)(iD,) ...(iD, )(iD p)h,|B)
(B(v)[Or(w)[B(v))=2mgt(w), (38) =(Qap—VaVp)Ar, .0 (45)
where we define We can also obtain information on the parity odd operators.
wv_ uvap 39 The functionh,(w) is a genuine new nonperturbative func-
gL =& Tlalg, 39 fion which introduces spin dependent effects. The first three
and £0123= 1 moments of this function are given by
The matrix element of04"(w,,w,) betweenB mesons )
vanishes since no antisymmetric, parity even object can be j dwhi(w)=0, J dw ohy(w)=— e

constructed which is perpendicular to bathand n. Simi-

larly, the matrix element ofP5;(w;,w;) vanishes, since o

there is no parity odd, symmetric object perpendiculav to J' dw w?h(w)= _22 (46)

andn. Due to the equations of motion, the matrix element of mj

04 must be proportional tou*—n#):
4(w) must be proportional touf—n*) where

(B(v)|O5(w)B(v))=a(v*—n*). (40)

1 — 1
_<B|hv(iDa)(iDB)S)\hv|B>E_ievaﬁ)\vv)\Z (47)
Contracting withn* we find 2mg 2

— 1 — 1
a_<B(U)|n_02(w)|B(U)> ) 2_rnB<B|hv(|Da)(|D,u)(|Dﬁ)s)\hv|B>E Eievaﬁ)\UVUMPZ'
—(B(v)|ih,[in-D,8(in-D+w)Ih,|B(v))=0 (41) (48)
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The functionh,(wq,w,) also introduces spin dependent ef- V. APPLICATION TO B—Xgy

fects with the first few moments of the function given by _ . _ ) )
The decayB— X,y is described by the effective Hamil-

hPO=x,, h§O=0=hDD, (49  tonian
Finally we have to consider the functid(w). Since 1, Gﬁ
terms are absent in the total rd®, we have Her=— EthV?sCﬂM)Oﬁ Cee (54)

j dot(w)=0. (50 where
i . e o
Furthermore, the first moment ofw) is related tox; and 0,= zmbSCfW(lJr ve)b FA7, (55)
)\21 327
om f do ot(o) and the dots denote additional operators which we shall ne-
B glect for the purposes of this discussion. This effective

Hamiltonian leads to the Dirac structure

— =i [ a*(BITIIR, (in- BN, 0)Os(0}8) P iAot gLt e
- uHy 5

A+ 3N,

= with
2mg ! (51
while the second moment introduces one new parameter A GEV VEC(1) © (56)
=— ——my.
\/5 th Vs 7{ 1672 b
r
f do 0’ t(w)= 2 (52)  The kinematics of this decay are particularly simple since
b q°=0,

where 3r=—2(7;+37,) and7; are the parameters used in o My
[15,14]. q“zEyn“Ex7n” (57
Combining these results with the known leading twist

contribution(19) leads to . . . :
ibution(19) S and so the large and small kinematical factors defined in Sec.

o Il are
5" (w)+ - -
8m

18m; m,—N-q=my, Mp—N-g=my(1—X). (58)

()= 8(e) — ~L 5"(w)—
(w)=6(w o (w)

N p1 Computing the matching coefficients, we find for the rate
of(w)=—86(w)+—=8(w)+---
2 3
3mg 6m,

r 1
. . &=Fo f(l—x)—2(1—x)f(1—x)+z—mbt(l—x)
hl(w)=Fb5’(w)+ ﬁ@"(&))‘l— cee

° x-S [Gy(1-x)— Hy(1-
Hbl( X) ?[ 2AA1=x)=H(1-x)](,

2\, b
Oo(w1,wp)= T5(w1)5(w2)+ e (59

hy(wy,02) =N8(wq) S(wy)+ - - - where

GZa|V,VE |2 Co(my) |2
, r ro=oF [VisVip| | C7(mp)] e, 60
dw)+ —8(w)+---, (53 3274
2mg

A+ 3\,

tH(w)=—

and
where we have used the relations

£68"(§)=—26'(¢), §£8"(§=-35"(§),

which are true when integrated against a function which is
nonsingular ag—0.

Gy(l-x)= f dw; dw, go(w1, ;)

><[5(1—x—wl)— O(1l—X—wy) 61)

W1~ Wy
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A simple model

Ha(1=x)= J oy dozhy(w,0;) To get some insight into the size of the effect of these new

functions we will use a simple model for these functions
> A(1=X= wy) = H(1=X~ wp) . (62)  Which incorporates the information we have on their mo-
w1~ Wy ments. The following model has been propoéd| for the
leading twist distribution function:

This result can be compared with previous wddé],
where the Ih, expansion has been discussed. This expan- 32m,
sion is recovered by performing a moment expansion of Eq.  fmod @)= Y.
(59). Using Eq.(53) we find A

(1—y)2exp[—%(1—y)2}®(1—y),

G (1—x)=—ﬁ5’(1—X)+-~- Mo @
2 3 y=-——, (68)
A
Hy(1—X)=—Xp8" (L=X)+ - -, (63) B
) where A is the only free parameter. This model therefore
leading to assumes a simple correlation between all higher moments of
f(w).

dr Nit+3Np Ny All of the new subleading twist functions have vanishing
&_FO o(1=x)— 2m? o'(1=x)— 6m2 zeroth moments. In order to construct a model for these sub-

leading functions we use the derivative of the leading twist
function. Normalizing this derivative to match the known

2p1=3p2+ i +373\ P1 L, . ) . .
+ 3 8"(1—x)— 307(1=-X)|. first moments of the subleading functions, we obtain
6my 18m;
0 F o ©) = mod )~ o226 ()
w)= w)— w
This correctly reproduces the leading and subleading twist me me Zmﬁ me

terms of the local Dh, expansiori 16] with the mismatch of

the two results being higher order in the twist expansion. o\

From the matching coefficien{86) we see that the Wilson Gy mod ®) = — e {o). (69)
coefficientsC+ is identical to the leading order coefficient. me 3 ™

This implies that for any current mediating a heavy-to-light

decay the subleading structure functidf®) always arises
in the same linear combination with the leading order func
tion f(w). Thus, we can always combine the functidiis)
andt(w) into a new universal function which is defined by

For the deca)§—>Xsy the two functionsh;(w) andH,(w)
“enter in the combination

Ap(w)=hy(@)+Hz(w)/m. (70)

1
= +— :
Flo)=f(v) 2mbt(w) (65) The zeroth and first moments vanish, while it has a nonvan-

ishing second moment
This new structure function has the moments

A1+ 3\ 2 _ P2
J doF(w)=1, J'da)wF(w)Z ! > 2, f do 0®Ap(w)= m2’ (71
2mg b
Ay In our simple approach to modeling the subleading functions,

j dw 0’F(w)=— —t— (66)  we would obtainAy, ,,{ @)=0, since the first moments of
3mp  2my myh1(®) andH,(w) coincide. To use the information on the

_ ) ) second momen1), we instead moded,(w) by the second
There are three new subleading twist structure functions; thgerivative off

spin independent functio®,(w), as well ash;(w) and
H,(w), which are sensitive to the heavy quark spin. Thus
there are in total four functions parametrizing the heavy-to- 2

p 14
light decays to subleading twist, since we may replace A, mod @) = Z_m%fmod(w)' (72)

mod-

of(w)=oF(o)+ ..., (67)
This leads finally to our model for the differential decay

where the dots denote higher twist terms. spectrum of the deca§ﬂxsy:
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expectations are borne out in our simple model: below
: ~2.1 GeV the corrections to the leading twist are small,
;) since they are only corrections of ord/egCD/ m3 to the lead-

' ing rate. BelowE®~2.4 GeV, the corrections are less than

f(Ew?) 1 or of order=20%, while the twist expansion starts to break
f-(Eo) . down above this cutoff. In the region 2.1 GeE°
Y/leading 0.9 . . Y
twist =2.5 GeV, where the twist expansion should be valid the

08 partial width is between 30% and 90% of the total width,

depending on the exact value of the cut and on the model
parameters.

0.7

0.6

19 2 2.1 22 23 24 \ 25 2.6
E{(GeV) VI. CONCLUSIONS

L . . It has been known for some time that in inclusive hea
FIG. 3. Partially integrated rate/4), normalized to the leading - qy0n decays the naive short distance expansion mus\tlybe
twist result, using the simple model given in Bg3). The solid,  on1ceq by a twist expansion if the phase space is restricted
short-dashed and long-dashed lines correspond 670 MeV, g g region of large energy, low invariant mass final hadronic
470 Me_V and 370 MeV, respectively. T3he I|n_es which rise at thegiates. The leading term, parametrized by the light-cone dis-
end point correspond t@,=(500 MeVy’, while those that go tribution function of the heavy quark in the hadron, is well
down correspond tg,=—(500 MeVy'. The values ofA, have  inyestigated by now, but subleading terms of this expansion
been chosen to reproduce the second moment of the leading ordgiyve not been previously studied. In the present paper we

structure function\;=—0.53\2, have identified the nonlocal operators appearing at sublead-
ing order in the twist expansion. The tree level matching to
dT g 2N, these operators has beep computed for a general bottom had-
— = Lo (2X=1)F o 1 =X) + = friod 1 —X) ron decay and the matrix elements of the subleading opera-
dx 3mg, tors have been parametrized Brmeson decay.

We found that for any inclusiv® meson decay four in-
dependent subleading distribution functions are needed. We
worked out the case foB— Xy in detail. Using a simple
model for the leading and the subleading distribution func-
tions we studied the effects of the subleading terms on the
photon energy spectrum. We found that they had the ex-
pected behavior: in the region where the local OPE is appro-

priate, these corrections were negligible, whereas in the re-
" ﬂf, (1-%)+ ﬁf” (1=} 73 gion where the twist expansion was appropriate, they were of
2 Mo 3 mo order 10—-20 %, depending on the parameters of the model.

Since the leading distribution function is not known,

We can now use this spectrum to analyze the effect of thenuch less to 10—20 % accuracy, these results are of limited
subleading twist contributions to the partially integrated de-ytility for §_>xsy decays(although they do indicate the
cay rate region where the twist expansion breaks dawHdowever,
there are certain relations between the charged lepton energy

—dx, (74) spectrum inB— X,€ v and the photon spectrum B— Xy
xo dx for which the leading distribution function drops d&,17].

In this case, even a model of the subleading distribution
Xmax=Mg/My andx, = 2E%/m,, with ES being a lower cut on  functions provide a useful estimate of the theoretical uncer-
the photon energy. The effects of the subleading shape fungainty in these relations, and the resulting extractiofMf .
tions are shown in Fig. 3, in which we plot the ratio of the This analysis has been performed[i2].
partially integrated rate with and without the subleading
twist contributions as a function of the photon energy cut for ACKNOWLEDGMENTS

various values of the parameteXsandp,. With this simple We thank lain Stewart for comments on this paper. This
model, the curves on this plot should only be taken as agq was supported by the Department of Energy under
estimate of the size of the corrections in different kinematicsant Nos. DOE-FG03-97ER40546 and DOE-ER-40682-
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=mMg/2—Aqcp~2.1 GeV the usual OPE should hold, council of Canada, and by the DFG Graduiertenkolleg “El-
while for mg/2—Aqcp~2.1 GeVSES<mg/2—Adc/Ms  ementarteilchenphysik an Beschleunigern,” from the DFG
~2.5 GeV the twist expansion presented in this paper is apForschergruppe “Quantenfeldtheorie, Computeralgebra und
propriate, with subleading twist corrections naively of orderMonte Carlo Simulationen” and from the Ministeriumirfu
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P2
+—=frod1—X)
2m?

Ni+3N,
=0} (2X=1)| Frnod 1=X) = ——S—frod 1—X%)
2mg

b m,

f(EO) _ i Xmax dI”
Y FO
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