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Light-cone distribution functions for B decays at subleading order in 1Õmb
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We construct the higher twist structure functions that describe inclusiveb hadron decays in regions of phase
space where the hadronic decay products carry high energy but have low invariant mass. We show that, forB
meson decays, there are four new nonvanishing matrix elements of nonlocal operators. We show that to
subleading twist these decays are parametrized in terms of four functions. We compute the tree-level matching

for a general heavy-to-light current and apply it toB̄→Xsg. Using a simple model for these functions we
estimate the subleading twist contributions to this decay.
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I. INTRODUCTION

Inclusive decays ofB mesons can be analyzed via an o
erator product expansion~OPE! @1,2# as a power series in
LQCD/mb . At leading order the OPE reproduces the par
model results, while nonperturbative physics is parametri
by matrix elements of higher-dimensional operators and s
pressed by powers of the heavy quark mass.

In practice, higher-dimensional operators in the OPE
only suppressed for sufficiently inclusive observables. In
resonance regime, where the invariant mass of the final h
ronic state is restricted to be&LQCD

2 , the decay is no longe
inclusive and it is not surprising that the OPE complet
breaks down. However, the OPE includes terms suppre
by EXLQCD/mX

2 ~whereEX and mX are the energy and in
variant mass of the final hadronic state! which are suppresse
over most of phase space, but areO(1) in the region of high
energy, low invariant mass hadronic states,

EX;mb , mX
2;LQCDmb@LQCD

2 . ~1!

In this ‘‘shape function region’’ the OPE breaks down, ev
though it is far from the resonance regime. Thus an inclus
description is still appropriate, but the expansion param
in the OPE has to be modified. It has been shown that
most singular terms in the OPE may be resummed int
nonlocal operator@3#

O0~v!5h̄vd~v1 in•D̂ !hv , ~2!

where nm is a lightlike vector in the direction of the fina
hadrons,hv is a heavy quark effective theory~HQET! field
and we denote variables normalized tomb by a caret:D̂m

[Dm/mb . The matrix element of this operator in aB meson
is the light-cone structure function of the meson:
0556-2821/2003/68~9!/094001~10!/$20.00 68 0940
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f ~v!5
1

2mB
^BuO0~v!uB&. ~3!

The rate in the shape function region is determined byf (v).
However, since it is a nonperturbative function,f (v) cannot
be calculated analytically, and the rate in the shape func
region is model dependent even at leading order
LQCD/mb .

Unfortunately, forB̄→Xu, n̄ decay~and to a lesser exten
B̄→Xsg), the experimental cuts which must be imposed
the phase space to eliminate large backgrounds fromb→c
decay typically put the decay into the shape function regi
introducing large model dependence in the predicted r
For semileptonicb→u decay, this is the case for cuts o
either the charged lepton energy or, to a lesser extent,
hadronic invariant mass@4#. This model dependence is a m
jor theoretical stumbling block to a precise determination
the Cabibbo-Kobayashi-Maskawa matrix elementuVubu from
inclusive decays.

However, since the distribution function~3! determines
the shape of the photon spectrum inB̄→Xsg as well as the
charged lepton or hadronic invariant mass spectrum inB̄

→Xu, n̄, it was suggested a number of years ago@5# that
f (y) could be measured inB̄→Xsg, and then used to extrac
uVubu from semileptonic decay.1 The perturbative correction
to the relation between these processes have been inte
studied in recent years@8#.

In addition to the radiative corrections, however, there
nonperturbative corrections to the relation between the p

1Another solution is to consider a kinematic cut which is insen
tive to the form of the shape function, such as a cut on the lep
invariant mass@6# or a combination of leptonic and hadronic invar
ant mass cuts@7#.
©2003 The American Physical Society01-1
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BAUER, LUKE, AND MANNEL PHYSICAL REVIEW D 68, 094001 ~2003!
ton spectrum inB̄→Xsg and the lepton or hadronic invarian
mass spectra inB̄→Xu, n̄. The light-cone distribution func-
tion ~3! only resums the most singular terms of the OPE
the shape function region. There are corrections to this fr
less singular terms suppressed byLQCD/mb , analogous to
higher-twist corrections to deep inelastic scattering~DIS!
@9,10#. These corrections are important for a precision m
surement ofuVubu via this method, but have not yet bee
studied.

In this paper we discuss the subleading corrections
heavy-lightB decay in the shape function region by perform
ing a twist expansion rather than the usual OPE in term
local operators.2 At leading order in the twist expansion w
reproduce the known results, while at subleading order
find four new nonlocal operators relevant forB decays. We
compute the tree-level matching for a general heavy-li
current and apply it toB̄→Xsg. We use a simple model fo
these functions to estimate the subleading twist contribu
to B→Xsg.

The techniques developed in this paper have also b
used to determine the subleading corrections to the cha
lepton spectrum ofB̄→Xu, n̄ in @12#, where the implications
for the extraction ofuVubu are discussed. Similar results ha
been presented in@13#.

II. KINEMATICS

We consider a general heavy to light transition~radiative
or semileptonic!, proceeding via the current

j ~x!5q̄~x!Gb~x!, ~4!

whereq(x) is a massless quark field andG is an arbitrary
Dirac matrix. The decay rate is related to the imaginary p
of the T product of two heavy-light currents:

dG;22 Im^BuT uB&, ~5!

where

T~q!5E d4x T@ j ~x! j †~0!#eiqx, ~6!

andq is the momentum transfer.
The kinematics for this process are shown in Fig. 1.

usual, the heavy quark momentum is split into a large an
residual piece,pb

m5mbvm1km. In the shape function region
the final hadronic state has large energy but small invar
mass, and so its momentum lies close to the light cone.
introduce a lightlike vectornm to define the expansion of th

2As discussed in@11#, there are actually two stages of matching:
m5mb , QCD is matched onto an intermediate theory with colline
and soft degrees of freedom, while at a lower scale the nonl
OPE is performed. Since we are not concerned with summing S
kov logarithms in this paper, we may neglect the intermedi
theory.
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m

-

to

of

e

t

n

en
ed

rt

s
a

nt
e

jet about the light cone, and the velocity of the heavy qu
then defines a second lightlike vectorn̄52v2n. These vec-
tors satisfy

n2505n̄2, v•n5v•n̄51, n•n̄52. ~7!

In the frame in which theb quark is at rest and the emitte
hadrons move in the1z direction, these vectors are given b
nm5(1,0,0,1), n̄m5(1,0,0,21), andvm5(1,0,0,0). We can
decompose the metric according to

gmn5 1
2 ~nmn̄n1nnn̄m!1g'

mn , ~8!

which definesg'
mn .

In the shape function region, the momenta scale as

~mbv2q!•n̄5mb2q•n̄;O~mb!,

~mbv2q!•n5mb2q•n;O~LQCD!,

km;O~LQCD!. ~9!

It is therefore convenient to split the momentumqm into
large and small components,

qm[Qm1,m, ~10!

where

Qm5 1
2 ~mbn̄m1q•n̄nm!, ,m52 1

2 ~mb2q•n!n̄m ~11!

are O(mb) and O(LQCD), respectively. The momentum o
the light hadronic decay products is

pq
m5mbvm2Qm2,m1km

5 1
2 ~mb2q•n̄!nm1 1

2 ~mb2q•n!n̄m1km, ~12!

and so in the shape function region~9! we have pq
2

5O(LQCDmb)!mb
2 .

III. MATCHING

A. Leading order

The expansion in the shape function region differs fro
the usual 1/mb expansion because of the additional sm
parametermb2q•n; in the usual OPE, terms of order

km

mb2q•n

t
r
al
a-
e

FIG. 1. Kinematics for a general heavy to light transition.
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LIGHT-CONE DISTRIBUTION FUNCTIONS FORB . . . PHYSICAL REVIEW D68, 094001 ~2003!
are treated as subleading, whereas they areO(1) in the shape
function region. Thus, instead of resumming terms of t
form to all orders, we perform an OPE in powers
LQCD/mb , but using scaling the~9!. This is analogous to the
twist expansion in DIS.

Expanding the light-quark propagator shown in Fig. 1
powers ofLQCD/mb gives

mbv”1k”2Q” 2 ł

~mbv1k2Q2 l 1 i e!2
5

1

2

n”

mb2q•n1k•n1 i e

1OS LQCD

mb
D . ~13!

Since k•n and mb2q•n are of the same order, this term
cannot be expanded in powers ofk•n, and so cannot be
matched onto a finite set of local operators.

Instead, consider the set of operators

Õ0~ t !5h̄v~0!E~0,t !hv~ t !, ~14!

where we use the shorthand notation

c~ t ![c S nt

mb
D , ~15!

where t is dimensionless, to denote fields on the light co
defined bynm. The path-ordered exponential

E~ t1 ,t2!5P expS 2 i E
t1

t2
n•Â~ t8!dt8D ~16!

is required to make the operatorÕ0(t) gauge invariant. The
operatorsO0(v) are defined in terms ofÕ0(t) by the linear
combination

O0~v!5
1

2pE2`

`

dt e2 ivtO0~ t !5h̄vd~v1 in•D̂ !hv

~17!

~where Dm[]m1 igAm
a Ta) and have the required form fo

the imaginary part of the leading term in the heavy qu
expansion~13!. The matrix elements ofO0(v) define the
light-cone distribution function of theb quark in aB meson,

f ~v![
1

2mB
^Buh̄vd~v1 in•D̂ !hvuB&. ~18!

Expandingf (v) in powers ofin•D̂ gives the series of in-
creasingly singular terms

f ~v!5d~v!2
l1

6mb
2
d9~v!2

r1

18mb
3
d-~v!1•••

where

1

2mB
^Buh̄v~ iD a!~ iD b!hvuB&[

1

3
~gab2vavb!l1 ~19!
09400
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2mB
^Bu~ iD a!~ iD m!~ iD b!uB&[

1

3
~gab2vavb!vmr1 .

~20!

For a generalb hadron decay there is an additional parit
odd operator at leading twist

P̃0
a~ t !5h̄v~0!gag5E~0,t !hv~ t !, ~21!

with P0
a(v) defined analogously to Eq.~17!. This operator is

not relevant forB meson decays since its matrix eleme
vanishes, but it gives a spin dependent contribution toLb
decay. A general Dirac structure between heavy quark fie
may be expressed in terms of these four independent m
ces via the projection formula

P1GP15 1
2 P1Tr~P1G!2 1

2 smTr~smG!, ~22!

where

sm[P1gmg5P1 , ~23!

andP1[ 1
2 (11v” ).

Since the OPE is performed over a continuously infin
set of operators labeled byv, the heavy quark expansion i
the shape function region is, as in DIS, a convolution ove
single parameter which may be interpreted as the light-c
momentum fraction of the heavy quark:

Im T~q!52
1

2mb
E

2`

`

dvFC0~v!O0~v!1C5,0
a ~v!P0,a~v!

1OS LQCD

mb
D G , ~24!

where theCi ’s are perturbatively calculable short distan
coefficients. The tree level matching conditions are ea
obtained from Eqs.~13! and ~22!:

C0~v,q,v!5
p

2
Tr~P1Ḡn”G!d~12n•q̂2v! ~25!

C5,0
a ~v,q,v!52

p

2
Tr~saḠn”G!d~12n•q̂2v!. ~26!

B. Subleading order

Expanding Eq.~13! to subleading order in 1/mb , we will
in general match onto nonlocal objects of the form@10#

ÕG
m1 , . . . ,mn21~ t1 , . . . ,tn!

5h̄v~0!G@ iD m1~ t1! . . . iD mn21~ tn21!#hv~ tn!,

~27!

whereG51 or gag5,

Dm~ t ![]m1 igAm
a ~ t !Ta ~28!

is the usual covariant derivative acting at a light-cone co
dinate, and we will work for simplicity in the light-cone
gauge n•A50, in which the path-ordered exponenti
E(t1 ,t2)50.
1-3
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The most general case involves operators in which ev
field and derivative is evaluated at a different light-cone
ordinate. However for heavy quark decays to subleading
der, we find that at maximum only two light-cone coord
nates enter. The complete set of operators required is

Õ1
m~ t !5h̄v~0!@ iD m~0!1 iD m~ t !#hv~ t !

P̃1,a
m ~ t !5h̄v~0!@ iD m~0!1 iD m~ t !#gag5hv~ t !

Õ2
m~ t !5 i h̄v~0!@ iD m~0!2 iD m~ t !#hv~ t !

P̃2,a
m ~ t !5 i h̄v~0!@ iD m~0!2 iD m~ t !#gag5hv~ t !

Õ3
mn~ t1 ,t2!5h̄v~0!$ iD'

m~ t1!,iD'
n ~ t1!%hv~ t2!

P̃3,a
mn ~ t1 ,t2!5h̄v~0!$ iD'

m~ t1!,iD'
n ~ t1!%gag5hv~ t2!

Õ4
mn~ t1 ,t2!5gh̄v~0!G'

mn~ t1!hv~ t2!

P̃4,a
mn ~ t1 ,t2!5gh̄v~0!G'

mn~ t1!gag5hv~ t2!, ~29!

whereD'
m5g'

mnDn andg G'
mn5 i @( iD'

m),(iD'
n )# is the gluon

field strength.
The Fourier transformed operatorsOi are defined as

O1
m~v!5

1

2pE2`

`

dt e2 ivtÕ1
m~ t !

5h̄v$ iD
m,d~ in•D̂1v!%hv ~30!

O2
m~v!5

1

2pE2`

`

dt e2 ivtÕ2
m~ t !

5 i h̄v@ iD m,d~ in•D̂1v!#hv

O3
mn~v1 ,v2!5S 1

2p D 2E
2`

`

dt1 dt2 e2 i (v12v2)t1

3e2 iv1t2Õ3
mn~ t1 ,t2!

5h̄vd~ in•D̂1v2!$ iD'
m ,iD'

n %

3d~ in•D̂1v1!hv
09400
ry
-
r-

O4
mn~v1 ,v2!5S 1

2p D E
2`

`

dt1 dt2 e2 i (v12v2)t1

3e2 iv1t2Õ4
mn~ t1 ,t2!

5gh̄vd~ in•D̂1v2!G'
mnd~ in•D̂1v1!hv .

Similarly the Fourier transforms of theP̃i ’s are

P1,a
m ~v!5h̄v$ iD

m,d~ in•D̂1v!%gag5hv

P2,a
m ~v!5 i h̄v@ iD m,d~ in•D̂1v!#gag5hv

P3,a
mn ~v1 ,v2!5h̄vd~ in•D̂1v2!$ iD'

m ,iD'
n %

3d~ in•D̂1v1!gag5hv

P4,a
mn ~v1 ,v2!5gh̄vd~ in•D̂1v2!G'

mn

3d~ in•D̂1v1!gag5hv . ~31!

The Feynman rules for the operatorsO02O4 in n•A50
gauge are shown in Fig. 2.

Finally, at subleading order there are also contributio
from the time-ordered products ofO0(v) with the sublead-
ing terms in the HQET Lagrangian,

O1/m~y!5h̄v~y!~ iD !2hv~y!1
g

2
h̄v~y!smnGmnhv~y!.

~32!

This yields another two operators

OT~v!5 i E d4y
1

2pE dt e2 ivtT„h̄v~0!hv~ t !O1/m~y!…

PT,a~v!5 i E d4y
1

2pE dt e2 ivtT

3„h̄v~0!gag5hv~ t !O1/m~y!…. ~33!

At subleading order the nonlocal OPE in Eq.~24! is
22mb Im T~q!5E dv@C0~v,q,v!O0~v!1C5,0
a ~v,q,v!P0,a~v!#1

1

2mb
(

i 51,2
E dv @Ci

m~v,q,v!Oi ,m~v!

1C5,i
a,m~v,q,v!Pi ,a,m~v!#1

1

2mb
(

i 53,4
E dv1dv2@Ci

mn~v,q,v1 ,v2!Oi ,mn~v1 ,v2!

1C5,i
a,mn~v,q,v1 ,v2!Pi ,a,mn~v1 ,v2!#1

1

2mb
E dv@CT~v,q,v!OT~v!1C5,T

a ~v,q,v!PT,a~v!#

1OS LQCD
2

mb
2 D . ~34!
1-4
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FIG. 2. Feynman rules for nonlocal operatorsO02O4 in n•A50 gauge. The Feynman rules forP02P4 are identical except for the
Dirac structure.
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The matching at subleading order onto operators~29! is
performed in much the same way as for a local OPE.
have computed the zero, one and two gluon matrix elem
of Eq. ~6! in full QCD and expanded the kinematics in pow
ers ofkm/mb and,m/mb as described in Sec. II. Comparin
this to the tree level matrix elements of the operators in
~30! and ~31! gives the matching onto the coefficient fun
tions of these operators. Note that this includes terms fr
the expansion of theb quark field,

b5S 11
iD”

2mb
1 . . . Dhv . ~35!

At tree level, we find

C1
m~v,q,v!5

p

4 FTr ~$P1 ,gm%Ḡn”G!

1
4

12n̄•q̂
Tr~P1Ḡg'

mG!Gd~12n•q̂2v!

~36!

C2
m~v,q,v!5~2 i !

p

4
Tr~@P1 ,gm#Ḡn”G!d~12n•q̂2v!
09400
e
ts

.

m

C3
mn~v,q,v1 ,v2!52

p

2
g'

mn
1

12n̄•q̂
Tr ~P1Ḡn”G!

3Fd~12n•q̂2v1!2d~12n•q̂2v2!

v12v2
G

C4
mn~v,q,v1 ,v2!5 i

p

2

1

12n̄•q̂
Tr@P1Ḡn” ~2 is'

mn!G#

3Fd~12n•q̂2v1!2d~12n•q̂2v2!

v12v2
G

CT~n•q,v!5C0~n•q,v!,

and for the corresponding spin dependent operators

C5,1
a,m~v,q,v!52

p

4 FTr~$sa,gm%Ḡn”G!

1
4

12n̄•q̂
Tr~saḠg'

mG!Gd~12n•q̂2v!

C5,2
a,m~v,q,v!5 i

p

4
Tr~@sa,gm#Ḡn”G!d~12n•q̂2v!
1-5
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C5,3
a,mn~v,q,v1 ,v2!

5
p

2
g'

mn
1

12n̄•q̂
Tr~saḠn”G!

3Fd~12n•q̂2v1!2d~12n•q̂2v2!

v12v2
G

C5,4
a,mn~n•q,v1 ,v2!

5~2 i !
p

2

1

12n̄•q̂
Tr@saḠn” ~2 is'

mn!G#

3Fd~12n•q̂2v1!2d~12n•q̂2v2!

v12v2
G

C5,T
a ~n•q,v!5C5,0

a ~n•q,v!. ~37!

IV. MATRIX ELEMENTS

Matrix elements of the subleading operators~30!, ~31!
and ~33! give rise to new, subleading structure function
Writing the most general ansatz consistent with the sym
tries and the equation of motion (iv•D)h50, we find that
only the following matrix elements are nonvanishing

^B~v !uO1
m~v!uB~v !&52mB g1~v!~vm2nm!

^B~v !uO3
mn~v1 ,v2!uB~v !&52mB g2~v1 ,v2!g'

mn

^B~v !uP2,a
m ~v!uB~v !&52mB h1~v!«',a

m

^B~v !uP4,a
mn ~v1 ,v2!uB~v !&52mB h2~v1 ,v2!«rsab

3g'
mrg'

nsvb

^B~v !uOT~v!uB~v !&52mBt~v!, ~38!

where we define

«'
mn5«mnabvanb , ~39!

and«012351.
The matrix element ofO4

mn(v1 ,v2) betweenB mesons
vanishes since no antisymmetric, parity even object can
constructed which is perpendicular to bothv and n. Simi-
larly, the matrix element ofP3,a

mn (v1 ,v2) vanishes, since
there is no parity odd, symmetric object perpendicular tov
andn. Due to the equations of motion, the matrix element
O2

m(v) must be proportional to (vm2nm):

^B~v !uO2
m~v!B~v !&5a~vm2nm!. ~40!

Contracting withnm we find

a5^B~v !un•O2~v!uB~v !&

5^B~v !u i h̄v@ in•D,d~ in•D̂1v!#hvuB~v !&50 ~41!
09400
.
e-

e

f

~where the last equality is due to the delta function! and so
the matrix element vanishes. The matrix element ofP1,a

m (v)
vanishes since all of its moments with respect tov vanish.
Finally, the matrix element ofPT,a(v) vanishes due to par
ity.

There is additional information on the remaining ne
functions. Starting withg1(v), we find

2mBg1~v!5nm^B~v !uO1
m~v!uB~v !&

5^B~v !uh̄v$ in•D,d~ in•D̂1v!%hvuB~v !&

522~mb v!^B~v !uh̄vd~ iD̂ •n1v!hvuB~v !&

524mB~mb v! f ~v!. ~42!

Thus, g1(v) is determined by the leading order structu
function, g1(v)522(mb v) f (v). Some information can
also be obtained on moments of the functiong2(v1 ,v2):

g2
(m,n)5~21!m1nE dv1dv2v1

nv2
mg2~v1 ,v2!

5
1

2mB
^B~v !uh̄v~ in•D !m~ iD'!2~ in•D !nhvuB~v !&,

~43!

leading to

g2
(0,0)5

2l1

3
,

g2
(m,0)5g2

(0,n)50, m,n5” 0, ~44!

where the last equality arises because of the constraints
the equations of motion@14#

^Buh̄v~ iD a!~ iD n1
! . . . ~ iD nn

!~ iD b!hvuB&

5~gab2vavb!An1 . . . nn
. ~45!

We can also obtain information on the parity odd operato
The functionh1(v) is a genuine new nonperturbative fun
tion which introduces spin dependent effects. The first th
moments of this function are given by

E dvh1~v!50, E dv v h1~v!52
l2

mb
,

E dv v2h1~v!5
r2

mb
2

~46!

where

1

2mB
^Buh̄v~ iD a!~ iD b!slhvuB&[

1

2
i enablvnl2 ~47!

1

2mB
^Buh̄v~ iD a!~ iD m!~ iD b!slhvuB&[

1

2
i enablvnvmr2 .

~48!
1-6
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The functionh2(v1 ,v2) also introduces spin dependent e
fects with the first few moments of the function given by

h2
(0,0)5l2 , h2

(1,0)505h2
(0,1). ~49!

Finally we have to consider the functiont(v). Since 1/mb
terms are absent in the total rate@2#, we have

E dv t~v!50. ~50!

Furthermore, the first moment oft(v) is related tol1 and
l2,

2mBE dv v t~v!

52 i E d4x^BuT$@ h̄v~ in•D̂ !hv#~0!O1/m~x!%uB&

52mB

l113l2

mb
, ~51!

while the second moment introduces one new paramete

E dv v2 t~v!5
t

mb
2

, ~52!

where 3t522(T113T2) andTi are the parameters used
@15,16#.

Combining these results with the known leading tw
contribution~19! leads to

f ~v!5d~v!2
l1

6mb
2
d9~v!2

r1

18mb
3
d-~v!1•••

v f ~v!5
l1

3mb
2
d8~v!1

r1

6mb
3
d9~v!1•••

h1~v!5
l2

mb
d8~v!1

r2

2mb
2
d9~v!1•••

g2~v1 ,v2!5
2l1

3
d~v1!d~v2!1•••

h2~v1 ,v2!5l2d~v1!d~v2!1•••

t~v!52
l113l2

mb
d8~v!1

t

2mb
2
d9~v!1•••, ~53!

where we have used the relations

jd9~j!522d8~j!, jd-~j!523d9~j!,

which are true when integrated against a function which
nonsingular asj→0.
09400
t

s

V. APPLICATION TO B̄\XSg

The decayB̄→Xsg is described by the effective Hamil
tonian

Heff52
GF

2

A2
VtbVts* C7~m!O71 . . . , ~54!

where

O75
e

32p2
mbs̄smn~11g5!b Fmn, ~55!

and the dots denote additional operators which we shall
glect for the purposes of this discussion. This effect
Hamiltonian leads to the Dirac structure

G52 iA smn«mqn~11g5!

with

A5
GF

2

A2
VtbVts* C7~m!

e

16p2
mb . ~56!

The kinematics of this decay are particularly simple sin
q250,

qm5Egn̄m[x
mb

2
n̄m ~57!

and so the large and small kinematical factors defined in S
II are

mb2n̄•q5mb , mb2n•q5mb~12x!. ~58!

Computing the matching coefficients, we find for the ra

dG

dx
5G0H f ~12x!22~12x! f ~12x!1

1

2mb
t~12x!

1
1

mb
h1~12x!2

1

mb
2 @G2~12x!2H2~12x!#J ,

~59!

where

G05
GF

2auVtsVtb* u2uC7~mb!u2

32p4
mb

5 , ~60!

and

G2~12x!5E dv1 dv2 g2~v1 ,v2!

3Fd~12x2v1!2d~12x2v2!

v12v2
G ~61!
1-7
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H2~12x!5E dv1 dv2 h2~v1 ,v2!

3Fd~12x2v1!2d~12x2v2!

v12v2
G . ~62!

This result can be compared with previous work@16#,
where the 1/mb expansion has been discussed. This exp
sion is recovered by performing a moment expansion of
~59!. Using Eq.~53! we find

G2~12x!52
2l1

3
d8~12x!1•••

H2~12x!52l2d8~12x!1•••, ~63!

leading to

dG

dx
5G0F d~12x!2

l113l2

2mb
2

d8~12x!2S l1

6mb
2

1
2r123r21T113T2

6mb
3 D d9~12x!2

r1

18mb
3
d-~12x!G .

~64!

This correctly reproduces the leading and subleading tw
terms of the local 1/mb expansion@16# with the mismatch of
the two results being higher order in the twist expansi
From the matching coefficients~36! we see that the Wilson
coefficientsCT is identical to the leading order coefficien
This implies that for any current mediating a heavy-to-lig
decay the subleading structure functionst(v) always arises
in the same linear combination with the leading order fu
tion f (v). Thus, we can always combine the functionsf (v)
and t(v) into a new universal function which is defined b

F~v!5 f ~v!1
1

2mb
t~v!. ~65!

This new structure function has the moments

E dvF~v!51, E dv v F~v!5
l113l2

2mb
2

,

E dv v2F~v!52
l1

3mb
2

1
t

2mb
3

. ~66!

There are three new subleading twist structure functions;
spin independent functionG2(v), as well ash1(v) and
H2(v), which are sensitive to the heavy quark spin. Th
there are in total four functions parametrizing the heavy-
light decays to subleading twist, since we may replace

v f ~v!5v F~v!1 . . . , ~67!

where the dots denote higher twist terms.
09400
n-
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A simple model

To get some insight into the size of the effect of these n
functions we will use a simple model for these functio
which incorporates the information we have on their m
ments. The following model has been proposed@17# for the
leading twist distribution function:

f mod~v!5
32mb

p2L̄
~12y!2expF2

4

p
~12y!2GQ~12y!,

y52
mb v

L̄
, ~68!

where L̄ is the only free parameter. This model therefo
assumes a simple correlation between all higher moment
f (v).

All of the new subleading twist functions have vanishin
zeroth moments. In order to construct a model for these s
leading functions we use the derivative of the leading tw
function. Normalizing this derivative to match the know
first moments of the subleading functions, we obtain

Fmod~v!5 f mod~v!2
l113l2

2mb
2

f mod8 ~v!

G2 mod~v!52
2l1

3
f mod8 ~v!. ~69!

For the decayB̄→Xsg the two functionsh1(v) andH2(v)
enter in the combination

Dh~v!5h1~v!1H2~v!/mb . ~70!

The zeroth and first moments vanish, while it has a nonv
ishing second moment

E dv v2Dh~v!5
r2

mb
2

. ~71!

In our simple approach to modeling the subleading functio
we would obtainDh,mod(v)[0, since the first moments o
mbh1(v) andH2(v) coincide. To use the information on th
second moment~71!, we instead modelDh(v) by the second
derivative of f mod:

Dh,mod~v!5
r2

2mb
2

f mod9 ~v!. ~72!

This leads finally to our model for the differential deca
spectrum of the decayB̄→Xsg:
1-8
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dGmod

dx
5G0F ~2x21!Fmod~12x!1

2l1

3mb
2

f mod8 ~12x!

1
r2

2mb
3

f mod9 ~12x!G
5G0H ~2x21!F f mod~12x!2

l113l2

2mb
2

f mod8 ~12x!G
1

2l1

3mb
2

f mod8 ~12x!1
r2

2mb
3

f mod9 ~12x!J . ~73!

We can now use this spectrum to analyze the effect of
subleading twist contributions to the partially integrated d
cay rate

Ĝ~Eg
0!5

1

G0
E

x0

xmax dG

dx
dx, ~74!

xmax5mB /mb andx052Eg
0/mb , with Eg

0 being a lower cut on
the photon energy. The effects of the subleading shape f
tions are shown in Fig. 3, in which we plot the ratio of th
partially integrated rate with and without the subleadi
twist contributions as a function of the photon energy cut
various values of the parametersL̄ andr2. With this simple
model, the curves on this plot should only be taken as
estimate of the size of the corrections in different kinema
regions. Recall that we expect that for a photon cutEg

0

&mB/22LQCD;2.1 GeV the usual OPE should hol
while for mB/22LQCD;2.1 GeV&Eg

0&mB/22LQCD
2 /mB

;2.5 GeV the twist expansion presented in this paper is
propriate, with subleading twist corrections naively of ord
LQCD/mb;10%. For Eg

0*mB/22LQCD
2 /mB;2.5 GeV we

are in the resonance region, and the twist expansion is
pected to break down. From the figure we see that th

FIG. 3. Partially integrated rate~74!, normalized to the leading
twist result, using the simple model given in Eq.~73!. The solid,

short-dashed and long-dashed lines correspond toL̄5570 MeV,
470 MeV and 370 MeV, respectively. The lines which rise at
end point correspond tor25(500 MeV)3, while those that go
down correspond tor252(500 MeV)3. The values ofl1 have
been chosen to reproduce the second moment of the leading

structure function,l1520.53L̄2.
09400
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expectations are borne out in our simple model: bel
;2.1 GeV the corrections to the leading twist are sm
since they are only corrections of orderLQCD

2 /mb
2 to the lead-

ing rate. BelowEg
0;2.4 GeV, the corrections are less tha

or of order620%, while the twist expansion starts to bre
down above this cutoff. In the region 2.1 GeV&Eg

0

&2.5 GeV, where the twist expansion should be valid
partial width is between 30% and 90% of the total widt
depending on the exact value of the cut and on the mo
parameters.

VI. CONCLUSIONS

It has been known for some time that in inclusive hea
hadron decays the naive short distance expansion mus
replaced by a twist expansion if the phase space is restri
to a region of large energy, low invariant mass final hadro
states. The leading term, parametrized by the light-cone
tribution function of the heavy quark in the hadron, is we
investigated by now, but subleading terms of this expans
have not been previously studied. In the present paper
have identified the nonlocal operators appearing at suble
ing order in the twist expansion. The tree level matching
these operators has been computed for a general bottom
ron decay and the matrix elements of the subleading op
tors have been parametrized forB meson decay.

We found that for any inclusiveB meson decay four in-
dependent subleading distribution functions are needed.
worked out the case forB̄→Xsg in detail. Using a simple
model for the leading and the subleading distribution fun
tions we studied the effects of the subleading terms on
photon energy spectrum. We found that they had the
pected behavior: in the region where the local OPE is app
priate, these corrections were negligible, whereas in the
gion where the twist expansion was appropriate, they wer
order 10–20 %, depending on the parameters of the mod

Since the leading distribution function is not know
much less to 10–20 % accuracy, these results are of lim
utility for B̄→Xsg decays~although they do indicate the
region where the twist expansion breaks down!. However,
there are certain relations between the charged lepton en
spectrum inB̄→Xu, n̄ and the photon spectrum inB̄→Xsg
for which the leading distribution function drops out@8,17#.
In this case, even a model of the subleading distribut
functions provide a useful estimate of the theoretical unc
tainty in these relations, and the resulting extraction ofuVubu.
This analysis has been performed in@12#.
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