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Abstract

The process e+e− → Zγγ → qq̄γγ is studied in 0.5 fb−1 of data collected with
the L3 detector at centre-of-mass energies between 130.1 GeV and 201.7 GeV. Cross
sections are measured and found to be consistent with the Standard Model expec-
tations. The study of the least energetic photon constrains the quartic gauge boson
couplings to −0.008 GeV−2 < a0/Λ2 < 0.005 GeV−2 and −0.007 GeV−2 < ac/Λ2 <
0.011 GeV−2, at 95% confidence level.
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1 Introduction

The LEP data offer new insight into the Standard Model of electroweak interactions [1] by
investigating the production of three gauge bosons. Results were recently reported on studies
of the reactions e+e− → Zγγ [2] and e+e− → W+W−γ [3,4]. This letter describes the extension
of the study of the e+e− → Zγγ process to centre-of-mass energies,

√
s, between 130 and 202

GeV. Final states with hadrons and isolated photons are considered to select Zγγ → qq̄γγ
events.

In the Standard Model, the e+e− → Zγγ process occurs via radiation of photons from the
incoming electron and/or positron. One possible diagram is presented in Figure 1a.

The e+e− → Zγγ signal is defined by phase-space requirements on the energies Eγ and
angles θγ of the two photons, and on the propagator mass

√
s′:

Eγ > 5 GeV (1)

| cos θγ | < 0.97 (2)

|
√

s′ − mZ| < 2ΓZ (3)

where mZ and ΓZ are the Z boson mass and width. In the following, hadronic decays of the Z
boson are considered. Events with hadrons and initial state photons falling outside the signal
definition cuts are referred to as “non-resonant” background.

A single initial state radiation photon can also lower the effective centre-of-mass energy
of the e+e− collision to mZ, with the subsequent production of a quark-antiquark pair. This
photon can be mistaken for the most energetic photon of the e+e− → Zγγ → qq̄γγ process. Two
sources can then mimic the least energetic photon: either the direct radiation of photons from
the quarks or photons originating from hadronic decays, misidentified electrons or unresolved
π0s. These background processes are depicted in Figures 1b and 1c, respectively.

In order to compare experimental results with e+e− → qq̄γγ matrix element calculations,
a further requirement is applied on the angle θγq between the photons and the nearest quark:

cos θγq < 0.98. (4)

This cut avoids collinear divergences. Its inclusion makes the signal definition used here different
from the previous one [2]. Signal cross sections calculated with the KK2f Monte Carlo program
[5] range from 0.9 pb at

√
s = 130.1 GeV down to 0.3 pb at

√
s = 201.7 GeV.

The Zγγ final state could also originate from the s-channel exchange of a Z boson, as
presented in Figure 1d. This process is forbidden at tree level in the Standard Model, but
it is expected to occur in the presence of Quartic Gauge boson Couplings (QGC) beyond the
Standard Model.

2 Data and Monte Carlo Samples

This measurement uses data collected with the L3 detector [6] at LEP in the years from 1995
through 1999, at centre-of-mass energies between

√
s = 130.1 GeV and

√
s = 201.7 GeV, for

a total integrated luminosity of 0.5 fb−1. The centre-of-mass energies and the corresponding
integrated luminosities are listed in Table 1. Given their relatively low luminosities, the

√
s =

130.1 GeV and
√

s = 136.1 GeV data sample are combined into a single luminosity averaged
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sample at
√

s = 133.1 GeV. Similarly the
√

s = 161.3 GeV and
√

s = 172.3 GeV samples are
merged into a single sample at

√
s = 166.8 GeV.

The KK2f Monte Carlo program is used to generate e+e− → qq̄(γγ) events, that are assigned
to the signal or the background according to the criteria (1)−(4). The hadronisation process
is simulated with the JETSET [7] program. Other background processes are generated with
the Monte Carlo programs PYTHIA [7] (e+e− → Ze+e− and e+e− → ZZ), KORALZ [8]
(e+e− → τ+τ−(γ)), PHOJET [9] (e+e− → e+e− hadrons) and KORALW [10] for W+W−

production except for the eνeqq̄′ final states, generated with EXCALIBUR [11].
The L3 detector response is simulated using the GEANT [12] and GHEISHA [13] programs,

which model the effects of energy loss, multiple scattering and showering in the detector. Time
dependent detector inefficiencies, as monitored during data taking periods, are also simulated.

√
s Integrated Luminosity

(GeV) (pb−1)
133.1 12.0
166.8 21.1
182.7 55.3
188.7 176.3
191.6 29.4
195.5 83.7
199.5 82.8
201.7 37.0

Table 1: Average centre-of-mass energies and corresponding integrated luminosities of the data
samples used for this analysis.

3 Event Selection

The e+e− → Zγγ → qq̄γγ selection demands balanced hadronic events with two isolated
photons and small energy deposition at low polar angle. Selection criteria on photon ener-
gies and angles follow directly from the signal definition as Eγ > 5 GeV and | cos θγ | < 0.97.
The invariant mass Mqq̄ of the reconstructed hadronic system, forced into two jets using the
DURHAM algorithm [14], is required to be consistent with a Z boson decaying into hadrons,
72 GeV < Mqq̄ < 116 GeV.

The main background after these requirements is due to the “non-resonant” production
of two photons and a hadronic system. The relativistic velocity βZ = pZ/EZ of the system
recoiling against the photons, calculated assuming its mass to be the nominal Z mass, is larger
for part of these background events than for the signal and an upper cut is used to reject those
events. It is optimised for each centre-of-mass energy, as listed in Table 2.

Other classes of background events, shown in Figure 1b and Figure 1c, are rejected by an
upper bound on the energy Eγ1 of the most energetic photon. This requirement, presented in
Table 2, suppresses the resonant return to the Z, whose photons are harder than the signal ones.
A lower bound of 17◦ on the angle ω between the least energetic photon and the closest jet is also
imposed. This requirement is more restrictive than the similar cut on cos θγq included in the
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signal definition. Data and Monte Carlo distributions of the selection variables are presented
in Figure 2 for the data collected at

√
s = 192 GeV−202 GeV when selection criteria on all the

other variables are applied. Good agreement between data and Monte Carlo is observed.

√
s (GeV) 133.1 166.8 182.7 188.7 191.6 195.5 199.6 201.7
βZ < 0.48 0.61 0.64 0.66 0.66 0.67 0.69 0.70

Eγ1
( GeV) < 31.9 55.0 67.6 69.8 72.8 74.2 75.8 76.6

Table 2: Energy dependent criteria for the selection of e+e− → Zγγ → qq̄γγ events.

4 Results

The signal efficiencies and the numbers of events selected in the data and Monte Carlo samples
are summarised in Table 3. The dominant background is hadronic events with photons. About
half of these are “non-resonant” events. In the remaining cases, they originate either from final
state radiation or are fake photons.

A clear signal structure is observed in the spectra of the recoil mass to the two photons,
as presented in Figure 3 for the

√
s = 192 GeV − 202 GeV data sample and for the total one.

The e+e− → Zγγ → qq̄γγ cross sections, σ, are determined from a fit to the corresponding
spectra at each

√
s. Background predictions are fixed in the fit. The results are listed in Table

4 with their statistical and systematic uncertainties. The systematic uncertainties on the cross
section measurement are of the order of 10% [2]. The main contributions arise from the signal
and background Monte Carlo statistics (6%) and a variation of ±2% of the energy scale of the
hadronic calorimeter (6%). A variation of ±0.5% of the energy scale of the electromagnetic
calorimeter does not yield sizable effects. Other sources of systematic uncertainties are the
selection procedure (3%) and the background normalisation (3%). The latter is estimated
by varying by 10% the normalisation of the “non-resonant” background, as estimated from a
comparison between the KK2f and PYTHIA Monte Carlo predictions for hadronic events with
photons, and by 20% that of the other backgrounds. Uncertainties on the determination of the
integrated luminosity are negligible.

The measurements are in good agreement with the theoretical predictions σSM, as calculated
with the KK2f Monte Carlo program, listed in Table 4. The error on the predictions (1.5%)
is the quadratic sum of the theory uncertainty [5] and the statistical uncertainty of the Monte
Carlo sample generated for the calculation. These results are presented in Figure 4 together
with the expected evolution with

√
s of the Standard Model cross section.

The distribution of the recoil mass to the two photons for the full data sample, presented
in Figure 3b, is fitted to calculate the ratio RZγγ between all the observed data and the signal
expectation. The background predictions are fixed in the fit, which yields:

RZγγ =
σ

σSM
= 0.85 ± 0.11 ± 0.06

in agreement with the Standard Model. The first uncertainty is statistical while the second
is systematic. The correlation of the energy scale and background normalisation uncertainties
between data samples is taken into account.
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√
s(GeV) ε(%) Data Monte Carlo Ns Nqq̄

b NOther
b

133.1 45 4 5.9 ± 0.5 5.0 ± 0.5 0.8 ± 0.2 0.08 ± 0.02
166.8 52 4 6.7 ± 0.3 4.9 ± 0.3 1.4 ± 0.1 0.4 ± 0.1
182.7 51 13 13.6 ± 0.7 10.8 ± 0.6 2.7 ± 0.2 0.06 ± 0.02
188.7 52 38 40.3 ± 2.0 32.5 ± 1.7 7.2 ± 1.1 0.6 ± 0.1
191.6 42 2 5.9 ± 0.4 4.1 ± 0.3 1.8 ± 0.3 0.06 ± 0.02
195.5 46 13 17.5 ± 0.9 12.4 ± 0.7 4.9 ± 0.5 0.2 ± 0.1
199.6 46 14 15.0 ± 0.8 11.5 ± 0.6 3.4 ± 0.5 0.13 ± 0.05
201.7 48 9 6.9 ± 0.5 5.2 ± 0.4 1.7 ± 0.3 0.06 ± 0.02

Table 3: Yields of the e+e− → Zγγ → qq̄γγ selection. The signal efficiencies ε are
given, together with the observed and expected numbers of events. The right half
of the table details the composition of the Monte Carlo samples with Ns denoting
the signal, Nqq̄

b the qq̄ and NOther
b the other backgrounds. The uncertainties are

statistical only.

√
s (GeV) σ (pb) σSM (pb)
133.1 0.70 ± 0.40 ± 0.07 0.923 ± 0.012
166.8 0.17 ± 0.13 ± 0.02 0.475 ± 0.006
182.7 0.36 ± 0.13 ± 0.04 0.379 ± 0.004
188.7 0.34 ± 0.06 ± 0.03 0.350 ± 0.004
191.6 0.09 ± 0.09 ± 0.01 0.326 ± 0.004
195.5 0.30 ± 0.11 ± 0.03 0.321 ± 0.004
199.6 0.28 ± 0.11 ± 0.03 0.304 ± 0.004
201.7 0.50 ± 0.18 ± 0.05 0.296 ± 0.003

Table 4: Results of the measurements of the e+e− → Zγγ → qq̄γγ cross section, σ,
with statistical and systematic uncertainties. The predicted values of cross sections,
σSM, are also listed.

5 Study of Quartic Gauge Boson Couplings

The contribution of anomalous QGCs to Zγγ production is described by two additional dimension-
six terms in the electroweak Lagrangian [15, 16]:

L0
6 = − πα

4Λ2
a0FµνF

µν ~Wρ · ~W ρ

Lc
6 = − πα

4Λ2
acFµρF

µσ ~W ρ · ~Wσ,

where α is the fine structure constant, Fµν is the field strength tensor of the photon and ~Wσ

is the weak boson field. The parameters a0 and ac describe the strength of the QGCs and Λ
represents the unknown scale of the New Physics responsible for the anomalous contributions.
In the Standard Model, a0 = ac = 0. A more detailed description of QGCs has recently
appeared [17]. Indirect limits on QGCs were derived from precision measurements at the Z
pole [18].

Anomalous values of QGCs are expected to manifest themselves via deviations in the total
e+e− → Zγγ cross section, as presented in Figure 4. In the Standard Model, Zγγ production
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occurs via bremsstrahlung with the low energy photon preferentially produced close to the
beam direction. The QGC s-channel production results instead in a harder energy spectrum
and a more central angular distribution of the least energetic photon [16]. Distributions for
this photon of the reconstructed energy, the cosine of the polar angle and the transverse mo-
mentum for the full data sample are compared in Figure 5 with the predictions from signal
and background Monte Carlo. Predictions in the case of a non zero value of a0/Λ2 or ac/Λ2

are also shown. They are obtained by reweighting [2] the Standard Model signal Monte Carlo
events with an analytical calculation of the QGC matrix element [16]. Monte Carlo studies
indicate the transverse momentum as the most sensitive distribution to possible anomalous
QGC contributions. A fit to this distribution is performed for each data sample, leaving one
of the two QGCs free at a time and fixing the other to zero. It yields the 68% confidence level
results:

a0/Λ2 = −0.002+0.003
−0.002 GeV−2 and ac/Λ2 = −0.001+0.006

−0.004 GeV−2 ,

in agreement with the expected Standard Model values of zero. A simultaneous fit to both the
parameters gives the 95% confidence level limits:

−0.008 GeV−2 < a0/Λ2 < 0.005 GeV−2 and − 0.007 GeV−2 < ac/Λ2 < 0.011 GeV−2 ,

as shown in Figure 6. A correlation coefficient of −57% is observed. The experimental sys-
tematic uncertainties and those on the Standard Model e+e− → Zγγ → qq̄γγ cross section
predictions are taken into account in the fit.
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Appendix

To allow the combination of our results with those of the other LEP experiments, the cross
sections σ are also measured in the more restrictive phase space obtained by modifying the
conditions (2) and (4) into | cos θγ | < 0.95 and cos θγq < 0.9, respectively. The results are:

σ(182.7 GeV) = 0.11 ± 0.11 ± 0.01 pb (SM : 0.233 ± 0.003 pb)
σ(188.7 GeV) = 0.28 ± 0.07 ± 0.03 pb (SM : 0.214 ± 0.003 pb)
σ(194.5 GeV) = 0.15 ± 0.07 ± 0.02 pb (SM : 0.197 ± 0.003 pb)
σ(200.2 GeV) = 0.15 ± 0.07 ± 0.01 pb (SM : 0.185 ± 0.003 pb).

The first uncertainty is statistical, the second systematic and the values in parentheses indicate
the Standard Model predictions. The samples at

√
s = 192 GeV−196 GeV and

√
s = 200 GeV−

202 GeV are respectively merged into the
√

s = 194.5 GeV and
√

s = 200.2 GeV ones.
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I.Josa-Mutuberŕıa,24 R.A.Khan,18 D.Käfer,1 M.Kaur,18,♦ M.N.Kienzle-Focacci,19 D.Kim,37 J.K.Kim,41 J.Kirkby,17

D.Kiss,13 W.Kittel,29 A.Klimentov,14,26 A.C.König,29 M.Kopal,44 A.Kopp,46 V.Koutsenko,14,26 M.Kräber,47
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Figure 1: Diagrams of a) the Standard Model contribution to e+e− → Zγγ signal and
“non-resonant” background, b) the background from direct radiation of photon from
the quarks, c) the background from photons, misidentified electrons or unresolved
π0s originating from hadrons and d) the anomalous QGC diagram.
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Figure 2: Distributions of a) the invariant mass Mqq̄ of the hadronic system, b)
the relativistic velocity βZ of the reconstructed Z boson, c) the energy Eγ1 of the
most energetic photon and d) the angle ω between the least energetic photon and
the nearest jet. Data, signal and background Monte Carlo samples are shown for√

s = 192 GeV − 202 GeV. The arrows show the position of the final selection
requirements. In each plot, the selection criteria on the other variables are applied.
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Figure 4: The cross section of the process e+e− → Zγγ → qq̄γγ as a function of the
centre-of-mass energy. The signal is defined by the phase-space cuts of Equations
(1)−(4). The width of the band corresponds to the Monte Carlo statistics and theory
uncertainties. Dashed and dotted lines represent anomalous QGC predictions for
a0/Λ2 = 0.015 GeV−2 and ac/Λ2 = 0.015 GeV−2, respectively.
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Figure 5: Distributions for the least energetic photon. a) the energy Eγ2, b) the
cosine of its polar angle | cos θγ2|, c) its transverse momentum Ptγ2 with respect to
the beam axis. Data, signal and background Monte Carlo are displayed for the full
data sample together with QGC predictions.
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Figure 6: Two dimensional contours for the QGC parameters a0/Λ2 and ac/Λ2.
The fit result is shown together with the Standard Model (SM) predictions.
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