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1. Introduction

Lattice QCD with Wilson quarks [1] is widely used to compute hadronic observ-

ables and matrix elements from first principles. It is a gauge invariant regularization

with an ultra-local action and an exact global flavour symmetry, but all axial sym-

metries are explicitly broken by the Wilson term. The latter fact is usually not

considered a fundamental problem, as chiral symmetry can be restored by introduc-

ing appropriate counterterms. Well-known examples are the additive quark mass
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renormalization, the renormalization of the non-singlet axial current and the mixing

pattern of the ∆S = 2 effective weak hamiltonian. The corresponding scale indepen-

dent renormalization constants can be determined both in perturbation theory and

non-perturbatively, by imposing continuum chiral Ward identities as normalization

conditions [2, 3].

As a result chiral symmetry is restored up to cutoff effects, and the problem

has thus been solved from a field theoretical point of view. However, the absence

of an exact chiral symmetry has further consequences in practical applications, as

it implies that the Wilson-Dirac operator is not protected against zero modes. This

is not a problem in principle, as the functional integral over Grassmann variables

cannot diverge. After integration over the quark fields, a small eigenvalue of the

Wilson-Dirac operator appears both in the fermionic determinant and in the quark

propagators entering the correlation functions. Fermi statistics then implies that the

limit of a vanishing eigenvalue is always regular. Despite this fact, numerical simula-

tions with some of the standard algorithms may still experience technical problems.

In particular, one may suspect that accidental zero modes are at the origin of long

autocorrelation times which have been observed in numerical simulations with the

hybrid Monte Carlo algorithm [4].

A conceptual problem arises in the so-called quenched approximation, which con-

sists in neglecting the fermionic determinant. The contribution of a small eigenvalue

to a fermionic correlator is then not balanced by the determinant, leading to large

fluctuations in some of the observables which completely compromise the ensemble

average [5]. Gauge field configurations where this happens are called “exceptional”

and various recipes of how to deal with them have appeared in the literature [6]–[8].

Strictly speaking, the quenched approximation with Wilson fermions is ill-defined, as

the absence of zero modes is only guaranteed for rather heavy quarks. We emphasise

that this problem is common to all lattice regularizations with Wilson type fermions.

However, its practical relevance in a given physical situation depends on all the de-

tails of the chosen lattice action, and on the statistics one would like to achieve in

numerical simulations. For example, with non-perturbatively O(a) improved Wilson

quarks [9, 5] and the standard Wilson plaquette action, the problem is felt when the

quark masses become somewhat lighter than the strange quark’s mass [10]. If the

quark mass is further decreased, the frequency of (near-) exceptional configurations

strongly increases. As the problem becomes even more pronounced with increasing

lattice volume [5], it is clear that the approach to the chiral limit with Wilson type

quarks is limited by the zero mode problem rather than by finite volume effects.

To solve the aforementioned practical and conceptual problems we propose to

add a non-standard mass term to the (improved) Wilson quark action. The lattice

Dirac operator for two quark flavours then reads

DtmQCD = DW +m0 + iµqγ5τ
3 , (1.1)
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where DW denotes the massless Wilson-Dirac operator and m0 is the standard bare

quark mass. Further, µq which multiplies a term with non-trivial flavor structure

(τ 3 is a Pauli matrix acting in flavour space) is referred to as the twisted mass

parameter. This action first appeared in a paper of Aoki [11], who introduced the

twisted mass term in order to probe the phase structure of the pure Wilson theory.

Later, Aoki and Gocksch [12] realized the important property that the Dirac operator

(1.1) has no zero modes (for µq 6= 0). It is thus a method to regulate the exceptional
configurations in a satisfactory field–theoretical way. In ref. [13] the action was

briefly mentioned in this context, however implying a limiting procedure µq → 0 at
the end, as µq was considered an unphysical parameter. In contrast, our proposal,

first presented in [14],1 is to interpret this theory as an alternative regularization of

QCD with two mass degenerate quarks, where the physical quark mass is determined

by a combination of both mass parameters. In particular, at finite physical quark

mass the twisted mass parameter remains finite too, and the zero mode problem is

solved with no need for an extrapolation. We will refer to this approach as QCD

with a chirally twisted mass term, or twisted mass QCD (tmQCD) for short.

Since tmQCD is renormalizable by power counting and classically related to

QCD by a non-singlet axial transformation of the quark fields, there is little doubt

that tmQCD is equivalent to QCD at the quantum level. Furthermore the axial

rotation of the fundamental fields induces a mapping between composite fields. One

may hence think of this transformation as a change of variables which leaves the

physical content of the theory unchanged.

In this paper we want to make precise the correspondence between tmQCD and

QCD with standard quark mass parameterization at the level of the renormalized

correlation functions and discuss the implications of this correspondence for the case

of lattice tmQCD with Wilson quarks. To this end we first regularize both tmQCD

and standard QCD using Ginsparg-Wilson quarks (section 2). In this framework the

bare correlation functions can be related by a change of variables in the functional

integral. Renormalization will be discussed in section 3, in particular we identify

renormalization schemes which preserve the relations between the bare correlation

functions. Based on universality, it will then be clear how to proceed if the regular-

ization does not respect chiral symmetry, and we discuss in detail the case of Wilson

quarks (section 4). We conclude with a few remarks concerning current and future

work on tmQCD (section 5).

2. Twisted mass QCD and Ginsparg-Wilson quarks

We start with classical continuum considerations, and then discuss the regularization

with Ginsparg-Wilson fermions. In particular we use a formulation which hides the

1The project was however initiated in 1997.
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lattice peculiarities as much as possible, so that naive continuum relations carry over

essentially unchanged to the lattice regularized theory.

2.1 Classical continuum theory

We consider the continuum limit of the twisted mass QCD action,2

SF[ψ, ψ̄] =

∫
d4x ψ̄

(
D/+m+ iµqγ5τ

3
)
ψ , (2.1)

where Dµ = ∂µ +Gµ denotes the covariant derivative in a given gauge field Gµ, and

τ 3 is the third Pauli matrix acting in flavour space. The axial transformation

ψ′ = exp(iαγ5τ 3/2)ψ, ψ̄′ = ψ̄ exp(iαγ5τ 3/2) , (2.2)

leaves the form of the action invariant, and merely transforms the mass parameters

m′ = m cos(α) + µq sin(α), (2.3)

µ′q = −m sin(α) + µq cos(α). (2.4)

In particular, the standard action with µ′q = 0 is obtained if the rotation angle α
satisfies the relation

tanα = µq/m . (2.5)

Chiral symmetry of the massless action leads to the definition of the Noether currents,

Aaµ = ψ̄γµγ5
τa

2
ψ , V aµ = ψ̄γµ

τa

2
ψ , (2.6)

which are only partially conserved at non-zero mass parameters. More precisely, the

so-called PCAC and PCVC relations take the form

∂µA
a
µ = 2mP

a + iµqδ
3aS0 , (2.7)

∂µV
a
µ = −2µq ε3abP b , (2.8)

where we have defined the pseudo-scalar and scalar densities,

P a = ψ̄γ5
τa

2
ψ , S0 = ψ̄ψ . (2.9)

The axial transformation of the quark and anti-quark fields induces a transformation

of the composite fields. For example, the rotated axial and vector currents read,

A′aµ ≡ ψ̄′γµγ5
τa

2
ψ′ =

{
cos(α)Aaµ + ε

3ab sin(α)V bµ (a = 1, 2),

A3µ (a = 3),
(2.10)

V ′aµ ≡ ψ̄′γµ
τa

2
ψ′ =

{
cos(α)V aµ + ε

3ab sin(α)Abµ (a = 1, 2),

V 3µ (a = 3),
(2.11)

2We adhere to the convention that γ-matrices are hermitian, {γµ, γν} = 2δµν , with µ, ν, . . .
ranging from 0 to 3, and we set γ5 = γ0γ1γ2γ3.
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and similarly, the rotated pseudo-scalar and scalar densities are given by

P ′a =

P
a (a = 1, 2),

cos(α)P 3 + i sin(α)
1

2
S0 (a = 3) ,

(2.12)

S ′0 = cos(α)S0 + 2i sin(α)P 3 . (2.13)

It is easy to verify that the rotated currents and densities satisfy the PCAC and

PCVC relations (2.7), (2.8), with the transformed parameters m′ (2.3) and µ′q (2.4).
In particular these relations assume their standard form,

∂µA
′a
µ = 2m

′P ′a , ∂µV
′a
µ = 0 , (2.14)

if α is related to the mass parameters as in eq. (2.5).

Finally, we note that the tmQCD and standard QCD actions are exactly related

by the transformation (2.2) and therefore share all the symmetries. However, in the

chirally twisted basis the symmetry transformations may take a somewhat unusual

form. For example, a parity transformation is realized by

ψ(x) −→ γ0 exp(iαγ5τ
3)ψ(x0,−x) , (2.15)

ψ̄(x) −→ ψ̄(x0,−x) exp(iαγ5τ 3)γ0 , (2.16)

and similar expressions can be obtained for the isospin and the remaining discrete

symmetries. It is then straightforward to infer the behaviour of composite fields

under these transformations.

2.2 Ginsparg-Wilson quarks

We now replace continuous euclidean space time by a hyper-cubic lattice with spacing

a, and we choose some standard lattice action for the gauge fields. The precise choice

will not be important in the following, but for definiteness we may take Wilson’s

original plaquette action. As for the quark fields we assume that the lattice Dirac

operator satisfies the Ginsparg-Wilson relation [15],

Dγ5 + γ5D = aDγ5D . (2.17)

This relation arises naturally in the construction of fixed point actions [16], and an

explicit solution for D has been given by Neuberger [17]. In the following we assume

that D is a local operator [18] which satisfies eq. (2.17) and has the conjugation

property D† = γ5Dγ5. It then follows that the matrix [19],

γ̂5
def
= γ5(1− aD) , (2.18)

is hermitian and unitary. The massless action of a quark doublet

SF = a
4
∑
x

ψ̄Dψ , (2.19)
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has a global SU(2)×SU(2) invariance [20] which can be parameterised by the trans-
formation

ψ′ = exp(iωaV τ
a/2) exp(iωbAγ̂5τ

b/2)ψ ,

ψ̄′ = ψ̄ exp(iωaAγ5τ
a/2) exp(−iωbV τ b/2) . (2.20)

Here ωaV,A (a = 1, 2, 3) are real parameters, τ
a are the Pauli matrices acting on the

flavour indices, and repeated indices are summed over. Note that these transforma-

tions have the same form as in the continuum, except for the appearance of γ̂5. To

mask this difference we follow refs. [21, 19] and define left handed fields

ψL =
1

2
(1− γ̂5)ψ , ψ̄L = ψ̄

1

2
(1 + γ5) , (2.21)

and analogously the right handed fields with the complementary projectors. The

massless action splits into left and right handed parts due to the identity

ψ̄Dψ = ψ̄LDψL + ψ̄RDψR , (2.22)

and the transformation rules for the chiral fields are exactly as in the continuum. In

particular it is straightforward to construct composite fields which transform among

each other under a chiral transformation. Examples are the isosinglet scalar and the

isovector pseudo-scalar densities which may be defined through

S0 ≡ ψ̄LψR + ψ̄RψL = ψ̄

(
1− 1
2
aD

)
ψ (2.23)

P a ≡ ψ̄L
τa

2
ψR − ψ̄R τ

a

2
ψL = ψ̄γ5

τa

2

(
1− 1
2
aD

)
ψ . (2.24)

One finds

S ′0 ≡ S0[ψ′, ψ̄′] = cos(ωA)S0 + 2i sin(ωA)uaAP
a , (2.25)

where ωA denotes the modulus of the vector (ω
1
A, ω

2
A, ω

3
A), and u

a
A = ωaA/ωA is a

unit vector. Similarly, P ′a can be expressed as a linear combination of S0 and P a,
and we have thus found a multiplet of bare lattice operators transforming under the

lattice symmetry in the same way as their continuum counterparts. To define the

Ginsparg-Wilson regularization of tmQCD we now use the scalar and pseudo-scalar

densities for the mass terms, i.e. we write

SF = a
4
∑
x

[
ψ̄Dψ +mS0 + 2iµqP

3
]
. (2.26)

From the preceding discussion it is then clear that the transformation

ψ′ = exp(iβγ̂5τ 3/2)ψ , ψ̄′ = ψ̄ exp(iβγ5τ 3/2) , (2.27)

does not change the form of the action, as it corresponds to the special choices

ωaV = 0 and ω
a
A = β δ3a in eq. (2.20). Its effect can thus be absorbed in a change of

the parameters as in eqs. (2.3), (2.4) with angle β, and the standard QCD action is

recovered if β = α with α defined as in (2.5).
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2.3 Functional integral

We are now prepared to define the functional integral of lattice regularized tmQCD

with Ginsparg-Wilson quarks. Denoting the sum of the Wilson plaquette and the

fermionic action by S, the partition function is defined by

Z =
∫
D[ψ̄, ψ]D[U ] e−S . (2.28)

The physical content of the theory can be extracted from its correlation functions,

i.e. n-point functions of the form

〈O(x1, . . . , xn)〉 = Z−1
∫
D[ψ, ψ̄]D[U ] e−SO(x1, . . . , xn) , (2.29)

where O(x1, . . . , xn) is a product of local gauge invariant composite fields which are

localised at the space time points x1, . . . , xn. In the following we will sometimes

indicate the functional dependence upon the quark and anti-quark fields in square

brackets, i.e. we set O ≡ O[ψ, ψ̄].

If one restricts the theory to a finite physical space time volume, e.g. by imposing

periodic boundary conditions, the functional integral at fixed lattice spacing is a well

defined finite dimensional integral, and it is then possible to perform a change of

variables of the form (2.27). As the transformation matrices are special unitary,

the jacobian is unity. Since the form of the action is preserved by this change of

variables, the whole effect is a transformation of the parameters in the action and of

the composite fields, viz.

〈O(x1, . . . , xn)〉(m,µq) =
〈
Õ(x1, . . . , xn)

〉
(m′,µ′q)

. (2.30)

Here the field Õ is implicitly defined through

Õ[ψ′, ψ̄′] = O[ψ, ψ̄] , (2.31)

with the transformed quark and anti-quark fields in eq. (2.27). The subscript of the

expectation values reminds us of the transformations of the parameters in the action

as in eqs. (2.3), (2.4) but with angle β. Eq. (2.30) is an exact identity and defines

the starting point for the statement of the aforementioned equivalence between the

renormalized theories.

In order to prepare the ground for the discussion of the renormalization procedure

we proceed a little further. First we notice that the combination

(m′)2 + (µ′q)
2 = m2 + µ2q , (2.32)

is left invariant by the chiral rotation, so that it is convenient to use polar mass

coordinates,

m =M cos(α) , µq =M sin(α) , (2.33)
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with radial massM and the angle α chosen according to eq. (2.5). Second, as the bare

theory has an exact chiral symmetry, it is useful to decompose operators in multiplets

which transform irreducibly under the chiral flavour symmetry transformation. We

will denote the irreducible components of the composite fields by φ
(r)
kA(x), where r

labels the representation, k identifies the multiplet and A labels the members of the

multiplet. The general SU(2)× SU(2) transformation (2.20) is then represented by
a matrix R(r), viz.

φ
(r)
kA[ψ

′, ψ̄′] = R(r)AB(ωV;ωA)φ
(r)
kB[ψ, ψ̄] . (2.34)

Simple examples are the multiplets of the scalar and pseudo-scalar densities, (1
2
S0,

iP a), and of the currents (ψ̄Lγµ
τa

2
ψL, ψ̄Rγµ

τa

2
ψR).

Without loss of generality we may restrict attention to n-point functions of such

fields, and the identity (2.30) then takes the form〈
φ
(r1)
k1A1
(x1) · · ·φ(rn)knAn

(xn)
〉
(M,α)

=

=

{
n∏
i=1

R
(ri)
AiBi
(−β)

}〈
φ
(r1)
k1B1
(x1) · · ·φ(rn)knBn

(xn)
〉
(M,α−β)

, (2.35)

where we have used polar mass coordinates in the subscript, and the shorthand

notation

R(r)(β) ≡ R(r) (0; 0, 0, β) , (2.36)

for the rotation induced by the axial U(1) transformation (2.27). Note that we may

choose the angle β independently of α, and with the choice β = α the r.h.s. of

eq. (2.35) consists of correlation functions with the standard QCD parameterisation

of the mass term.

2.4 Ward identities

Symmetries in Quantum Field Theories are usually expressed in terms of the Ward

identities which follow from infinitesimal symmetry transformations. This has the ad-

vantage that identities are obtained between correlation functions which are defined

within the same theory, even in the presence of explicit breaking terms. To derive

the Ward identities we start by introducing the space-time dependent variations of

the quark and anti-quark fields,

δaA(ω)ψ(x) = ω(x)
τa

2
(γ̂5ψ)(x) , δaA(ω)ψ̄(x) = ψ̄(x)γ5

τa

2
ω(x) ,

δaV(ω)ψ(x) = ω(x)
τa

2
ψ(x) , δaV(ω)ψ̄(x) = −ψ̄(x)

τa

2
ω(x) ,

(2.37)
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with some real-valued function ω(x). The action on arbitrary composite fields is

defined by treating the variations like ordinary derivatives. The variation of the

action (2.26) then yields

δaA(ω)S = −a4
∑
x

ω(x)
{
∂∗µA

a
µ(x)− 2mP a(x)− iµqδ3aS0(x)

}
,

δaV(ω)S = −a4
∑
x

ω(x)
{
∂∗µV

a
µ (x) + 2µqε

3abP b(x)
}
, (2.38)

with the pseudoscalar and scalar densities as defined above, and where the diver-

gences of the symmetry currents are given by

∂∗µA
a
µ(x) =

(
1− am

2

){
ψ̄(x)

τa

2
(Dγ̂5ψ)(x)− (ψ̄D)(x)τ

a

2
(γ̂5ψ)(x)

}
+

+
i

4
aµq

{
ψ̄(x)τ 3τa(Dψ)(x)− (ψ̄Dγ̂5)(x)τ 3τa(γ̂5ψ)(x)

}
, (2.39)

∂∗µV
a
µ (x) =

(
1− am

2

){
ψ̄(x)

τa

2
(Dψ)(x)− (ψ̄D)(x)τ

a

2
ψ(x)

}
+

+
i

4
aµq

{
ψ̄(x)τ 3τa(Dγ̂5ψ)(x)− (ψ̄Dγ̂5)(x)τ 3τaψ(x)

}
. (2.40)

Note that these expressions vanish exactly upon summation over x, so that the exis-

tence of the currents is guaranteed by the lattice Poincaré lemma [22]. The symmetry

currents themselves will not be needed in the following. Explicit expressions for the

massless case can be found in [23], for example, but one should keep in mind that the

integration of eqs. (2.39), (2.40) is ambiguous by terms with vanishing divergence.

The Ward identities now take the generic form

〈(δaX(ω)S)O〉 = 〈δaX(ω)O〉 , X = A,V , (2.41)

where O denotes some product of local composite fields. This is an exact identity, as
the space-time dependent change of variables can be made in the functional integral.

However, the variation of the composite fields does not exactly transform members

of a given multiplet among each other.3 Rather there are extra terms, which arise

due to the non-trivial space-time structure of γ̂5. For instance, the axial variation of

the pseudo-scalar density is given by

δaA(ω)P
b(y) =

1

2
δabω(y)S0(y) +

1

8
a ψ̄(y)τ bτaγ5 ([ω,D]γ̂5ψ) (y) . (2.42)

We now first assume that ω is non-zero only in a single lattice point x 6= y. Eq. (2.42)
then reduces to

δaA(ω)P
b(y) = −1

8
a ω(x)ψ̄(y)τ bτaγ5D(y, x) (γ̂5ψ) (x), (2.43)

3We thank L. Giusti for drawing our attention to this problem. Although this was known in the

literature (cf. e.g. [23]) it has been overlooked by us in an earlier version of this paper.
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where D(y, x) denotes the kernel of the Ginsparg-Wilson Dirac operator. Locality of

the Ginsparg-Wilson action then implies that the r.h.s. of eq. (2.43) is exponentially

small as long as the distance between x and y is large in lattice units. We find that this

structure is generic and therefore conclude that the bare PCAC and PCVC relations

hold up to exponentially small corrections, provided all operators in the correlation

function keep a large distance (in lattice units) from the space-time region where the

action is varied.

We now assume that ω is constant in a space-time region R,

ω(x) =

{
1, if x ∈ R
0, otherwise,

(2.44)

which leads to

δaA(ω)P
b(y) =


1

2
δabS0(y) +

1

8
a5
∑
x/∈R

ψ̄(y)γ5τ
bτaD(y, x)(γ̂5ψ)(x), if y ∈ R,

−1
8
a5
∑
x∈R

ψ̄(y)γ5τ
bτaD(y, x)(γ̂5ψ)(x), if y /∈ R,

(2.45)

Again, locality of the action implies that the extra terms are exponentially small in

both cases, provided one has

min
x∈R
||x− y|| � a, if y /∈ R (2.46)

min
x/∈R
||x− y|| � a, if y ∈ R . (2.47)

Furthermore, we note that the above example of the pseudoscalar density is generic as

the difference to naive continuum considerations always consists of terms involving

the lattice Dirac operator. Up to exponentially small corrections, the bare Ward

identities (2.41) can therefore be written in the continuum like form

a4
∑
x∈R

〈(
∂∗µA

a
µ(x)− 2mP a(x)− iµqδ3aS0(x)

) n∏
i=1

φ
(ri)
kiAi
(xi)

〉
=

= −i
∑
i|xi∈R

(
T
(ri)
A

)a
AiB

〈
φ
(r1)
k1A1
(x1) · · ·φ(ri)kiB(xi) · · ·φ

(rn)
knAn
(xn)

〉
, (2.48)

a4
∑
x∈R

〈(
∂∗µV

a
µ (x) + 2µqε

3abP b(x)
) n∏
i=1

φ
(ri)
kiAi
(xi)

〉
=

= −i
∑
i|xi∈R

(
T
(ri)
V

)a
AiB

〈
φ
(r1)
k1A1
(x1) · · ·φ(ri)kiB(xi) · · ·φ

(rn)
knAn
(xn)

〉
, (2.49)

where we have assumed the conditions (2.46), (2.47) to hold with y replaced by xi, for

all i = 1, . . . , n. We have omitted the subscript (M,α) of the correlation functions,
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and the expansion,

R
(r)
AB(ωV;ωA) = δAB − ωaV

(
T
(r)
V

)a
AB
− ωaA

(
T
(r)
A

)a
AB
+O(ω2) , (2.50)

defines the anti-hermitian generators of infinitesimal SU(2)× SU(2) rotations in the
representation r.

3. Equivalence between the renormalized theories

We discuss under which conditions the identity (2.35) holds in terms of renormalized

correlation functions. Without loss one may restrict attention to correlation functions

of composite fields which keep a physical distance from each other.

3.1 Renormalized tmQCD

So far we have dealt with the theory at fixed lattice spacing a, and it is not obvious

that the theory has a continuum limit. We assume that infrared divergences of the

correlation functions are properly taken care of e.g. by working in a finite volume

with a suitable choice of boundary conditions. Note that this also ensures analyticity

of the correlation functions in the mass parameters. However, we expect that our

conclusions will be valid more generally.

In perturbation theory, it has been shown that lattice QCD with Ginsparg-

Wilson quarks is renormalizable [24], and we shall assume that this remains true

beyond perturbation theory. While this result has been obtained for massless QCD,

we do not expect any additional complication here, as both twisted and standard

mass terms can be viewed as super-renormalizable interaction terms which do not

modify the power counting.

The entire physical information of QCD is contained in the correlation func-

tions of gauge invariant composite fields. Having introduced the lattice regularized

path integral and assuming non-perturbative renormalizability, we may completely

avoid gauge fixing, and we may also avoid the renormalization of the fundamental

fields, which only play the rôle of integration variables. We are thus left with the

renormalization of the bare parameters of the action, and the renormalization of the

composite fields which enter the correlation functions. The symmetries of the lattice

regularized theory are the same as in the continuum except for the continuous space-

time symmetry being replaced by the symmetry group of the hyper-cubic lattice. It

then follows that renormalized parameters take the form,

g2R = Zgg
2
0 , mR = Zmm, µR = Zµµq , (3.1)

where the renormalization constants are functions,

Z = Z(g20, aµ, µq/µ,m/µ) , (3.2)

and µ denotes the renormalization scale.
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Even though chiral symmetry is also broken by the mass terms it is customary to

renormalize operators such that the chiral multiplet structure of the massless theory

carries over to the renormalized theory. Renormalized operators then are of the form

(φR)
(r)
kA = Zk

(
φ
(r)
kA + c

(r,r′)
kk′;AA′a

dk′−dkφ(r
′)
k′A′

)
, (3.3)

where dk and dk′ are the mass dimensions of the fields in the multiplets k and k
′.

The structure of this equation follows from the well-known result of renormalization

theory which states that composite fields mix under renormalization with all fields

of equal or lower dimension, which transform identically under all the symmetries of

the regularized theory. We assume here that dk′ < dk, i.e. either there is no mixing

with fields of equal mass dimensions, or this has already been taken into account by

choosing a basis where the renormalization matrix is diagonal at the renormalization

scale µ. Hence the c-coefficients in eq. (3.3) only multiply operators with lower

dimensions, and this implies that they cannot depend on the renormalization scale

µ [25]. While the multiplicative renormalization constants Zk are of the form (3.2),

the c-coefficients may thus be considered functions of the bare parameters, g20, am

and aµq. Note that the multiplet structure of the bare theory is respected by the

assignment of a common renormalization constant to all members of a multiplet.

In the following we shall assume that the renormalization of the theory and the

composite fields works out along these lines. While this is guaranteed in perturba-

tion theory, the non-perturbative renormalization of power divergent operators may

require an additional effort. In particular, it may be necessary to first implement

Symanzik’s improvement programme to sufficiently high order in the lattice spacing

a before the power divergences can be subtracted in an unambiguous way.

3.2 A special choice of renormalization scheme

We would like to identify renormalization schemes where the equation (2.35) carries

over to the renormalized theory, with renormalized fields of the form (3.3). First of

all, we notice that the exact PCAC and PCVC relations of the bare theory imply that

µq and m can be renormalized by the same renormalization constant. We may thus

choose Zm = Zµ implying a multiplicative renormalization of the bare radial mass

M by the same constant. Furthermore, α is not renormalized as it is determined by

the ratio of the mass parameters. As the effect of the chiral rotation is a change of α,

we would like to choose all multiplicative renormalization constants independently

of this angle, i.e.

Z = Z(g20, aµ,M/µ) . (3.4)

A simple example is a mass-independent renormalization scheme which is obtained

by renormalizing the theory in the chiral limit [26]. As we have assumed an in-

frared regularization to be in place, such renormalization schemes do exist and it

12
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is then obvious that eq. (2.35) holds for the renormalized correlation functions of

multiplicatively renormalizable operators, viz.〈
(φR)

(r1)
k1A1
(x1) · · · (φR)(rn)knAn

(xn)
〉
(MR,α)

=

=

{
n∏
i=1

R
(ri)
AiBi
(−β)

}〈
(φR)

(r1)
k1B1
(x1) · · · (φR)(rn)knBn

(xn)
〉
(MR,α−β)

. (3.5)

The expectation values in the renormalized theory are defined as in the bare the-

ory, except that the bare parameters are expressed in terms of the renormalized

parameters MR and gR. Note that eq. (3.5) is again an exact identity, if this is true

for (2.35) and provided the renormalization constants are chosen exactly as specified

above (i.e. not only up to cutoff effects).

The case of power divergent operators is slightly more complicated. In general, if

eq. (3.5) is to be satisfied the c-coefficients cannot be independent of α. For example,

the renormalized scalar and pseudo-scalar densities are of the form

i(PR)
a = ZP

(
iP a + δa3a−3cP

)
, (3.6)

1

2
(SR)

0 = ZS

(
1

2
S0 + a−3cS

)
, (3.7)

with ZS = ZP, and it is well-known that cP vanishes at µq = 0.

Rather than being independent of α, the additive counterterms satisfy a co-

variance condition. More precisely, assuming that all multiplicative renormalization

constants are of the form (3.4), the requirement that eqs. (2.35) and (3.5) hold si-

multaneously implies,

R
(r)
AB(−β)c(r,r

′)
kk′;BC(g

2
0, aM, α− β) = c(r,r′)kk′;AB(g

2
0, aM, α)R

(r′)
BC(−β) , (3.8)

where only the index B is summed, all others being fixed. In the example of the

pseudo-scalar and scalar densities one finds the equations(
cP(α)

cS(α)

)
=

(
cos β sin β

− sin β cos β
)(

cP(α− β)
cS(α− β)

)
, (3.9)

where we have only indicated the dependence upon the angle. It is obvious that

c2P + c
2
S is independent of α and due to the vanishing of cP(0), the solution can be

parameterised as follows,

cP(α) = cS(0) sin(α) , cS(α) = cS(0) cos(α) . (3.10)

In other words, if the renormalization problem for the scalar density can be solved

in standard QCD, the solution at all other values of α is given by these equations.
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3.3 Differential equation in α

The requirements for the renormalization scheme are best characterised by a differ-

ential equation in α. We start by considering the third flavour component of the

axial Ward identity (2.48), chose the region R to be the space-time manifold itself

and obtain the exact identity of the bare theory,

∂

∂α

∣∣∣∣
M,g0

〈
n∏
i=1

φ
(ri)
kiAi
(xi)

〉
(M,α)

=

=
n∑
i=1

T
(ri)
AiB

〈
φ
(r1)
k1A1
(x1) · · ·φ(ri)kiB(xi) · · ·φ

(rn)
knAn
(xn)

〉
(M,α)

, (3.11)

where T (r) ≡ (T (r)A )3. Note in particular that the normalising factor of the path
integral is independent of α and hence does not generate a disconnected contribution.

Next we recall that analyticity of the renormalized correlation functions in the

mass parameters mR and µR is guaranteed by the infrared cutoff. Therefore, also

their derivative with respect to α must exist, as the relation

∂

∂α

∣∣∣∣
MR,gR

= mR
∂

∂µR

∣∣∣∣
mR,gR

− µR ∂

∂mR

∣∣∣∣
µR,gR

, (3.12)

follows directly from the definition of the (renormalized) polar mass coordinates [cf.

eq. (2.33)]. Differentiating a renormalized n-point function at fixed renormalized

parameters, applying the chain rule and using eq. (3.11), one obtains the differential

equation,(
∇α −

n∑
i=1

lki

)〈
(φR)

(r1)
k1A1
(x1) · · · (φR)(rn)knAn

(xn)
〉
(MR,α)

=

=
n∑
i=1

T
(ri)
AiB

〈
(φR)

(r1)
k1A1
(x1) · · · (φR)(ri)kiB(xi) · · · (φR)

(rn)
knAn
(xn)

〉
(MR,α)

. (3.13)

Here the differential operator ∇α is defined through

∇α def= ∂

∂α

∣∣∣∣
MR,gR

+ lMMR
∂

∂MR

∣∣∣∣
α,gR

+ lgg
2
R

∂

∂g2R

∣∣∣∣
α,MR

, (3.14)

and the coefficients are given by

lX =
∂ logZX
∂α

∣∣∣∣
M,g0

, X =M, g, k1, . . . , kn . (3.15)

With a suitable choice of the irrelevant parts of the renormalization counterterms

eq. (3.13) holds exactly at finite lattice spacing. The very existence of the differen-

tiated correlation function then leads to a constraint for the additive counterterms,
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viz.

∂

∂α

∣∣∣∣
M,g0

c
(r,r′)
kk′;AC =

{
T
(r)
ABc

(r,r′)
kk′;BC − c(r,r

′)
kk′;ABT

(r′)
BC

}
. (3.16)

As one might expect, integrating eq. (3.16) from α to α−β reproduces the covariance
relation (3.8). Note however, that eq. (3.16) holds without assuming eq. (3.4).

To relate the renormalized correlation functions defined at two different values of

the angle α one just has to integrate the differential equation (3.13). It is possible to

formally write down the general solution. However, we do not find this particularly

illuminating and therefore just mention that the general relation is much more com-

plicated than eq. (3.5). The question then arises under which conditions the relation

does take the simple form (3.5). For this to work out, the l.h.s. of eq. (3.13) should

reduce to the partial derivative with respect to α, i.e. one requires[
lMMR

∂

∂MR

∣∣∣∣
α,gR

+ lgg
2
R

∂

∂g2R

∣∣∣∣
α,MR

−
n∑
i=1

lki

]
×

×
〈
(φR)

(r1)
k1A1
(x1) · · · (φR)(rn)knAn

(xn)
〉
(MR,α)

= 0. (3.17)

Note that such an equation must hold for all renormalized correlation functions.

Therefore, unless MR and gR are related in a special way, the lX must all vanish,

i.e. the multiplicative renormalization constants all take the form (3.4).

We finally remark that eq. (3.13) expresses the re-parameterisation invariance of

the theory: an infinitesimal change of quark variables of the form (2.27) is compen-

sated by a change of α, MR and gR. Our derivation makes use of the axial Ward

identity as the change of variables (2.27) corresponds to a special chiral symmetry

transformation. However, more general changes of variables can be considered using

rather general results of renormalization theory.

3.4 The rôle of the Ward identities

Eq. (3.5) is the relation between renormalized tmQCD and QCD in its simplest form.

Its infinitesimal version is eq. (3.13) with vanishing coefficients lX (3.15). We have

argued that it is possible to renormalize the Ginsparg-Wilson regulated theory such

that eq. (3.5) holds, and we have worked out the conditions on the renormalization

constants in this regularization. Based on universality one thus expects that tmQCD

in other, not necessarily chirally invariant regularizations can again be renormalized

such that eq. (3.5) is satisfied up to cutoff effects. At least in perturbation theory

this can be proved rigorously.

In view of the formulation of tmQCD with Wilson quarks, we would like to em-

phasise the rôle of the renormalized tmQCD Ward identities, which are of the same

form as eqs. (2.48), (2.49). As is well-known, the Ward identities ensure that the
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renormalized composite fields form chiral multiplets, and fix the absolute normaliza-

tion of the symmetry currents. Furthermore, the mass parameters are renormalized

inversely to the pseudo-scalar and scalar densities, and this implies that one may set

mR =MR cosα, µR =MR sinα , (3.18)

with the angle α which remains unrenormalized.

We are now going to demonstrate that the renormalized tmQCD Ward identities

also imply that certain linear combinations of the correlation functions satisfy the

Ward identities of standard QCD. In the following we assume the continuum limit has

been taken and use a shorthand notation for the renormalized correlation functions,

G ≡
〈
(φR)

(r)
kA(y)Oext

〉
(MR,α)

, (3.19)

where Oext is some product of renormalized fields which are localized in the exterior of
the finite physical space-time region R. Furthermore we assume y ∈ R and denote by
GaA,V,P and GS the same correlation functions with an insertion of ∂µ(AR)

a
µ, ∂µ(VR)

a
µ,

(PR)
a and (SR)

0 at the space-time point x, integrated over the region R with respect

to x. The renormalized Ward identities may then be written in the form

GaA − 2MR
{
cos(α)GaP + i sin(α)δ

3aGS
}
= −iT aAG ,

GaV + 2MR sin(α)ε
3abGbP = −iT aVG , (3.20)

where the abbreviation

T aXG ≡
(
T
(r)
X

)a
AB

〈
(φR)

(r)
kB(y)Oext

〉
(MR,α)

(3.21)

has been used for X = A,V.

We now consider the two linear combinations

cG1A + sG
2
V − 2MR {c cosα + s sinα}G1P = −i

(
cT 1A + sT

2
V

)
G , (3.22)

cG2V − sG1A − 2MR {c sinα− s cosα}G1P = −i
(
cT 2V − sT 1A

)
G . (3.23)

Multiplying both sides of the equation by the matrices R(r)(α), setting

RαG ≡ R
(r)
AB(α)

〈
(φR)

(r)
kB(y)Oext

〉
(MR,α)

(3.24)

and also defining

G1A′ ≡ cG1A + sG2V , G2V′ ≡ cG2V − sG1A , (3.25)

we then find

RαG
1
A′ − 2MR {c cosα + s sinα}RαG1P=−iRα

(
cT 1A + sT

2
V

)
G ,

RαG
2
V′ − 2MR {c sinα− s cosα}RG1P=−iRα

(
cT 2V − sT 1A

)
G . (3.26)
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We notice that in order to preserve the canonical normalization of the primed cur-

rents, one needs c2 + s2 = 1, i.e. we may set

c = cos(α′), s = sin(α′) . (3.27)

It is then clear that the standard Ward identities can be obtained by choosing α′ = α,
and provided the equations

R
(r)
AB(α)

(
c
(
T
(r)
A

)1
BC
+ s
(
T
(r)
V

)2
BC

)
R
(r)
CD(−α) =

(
T
(r)
A

)1
AD

, (3.28)

R
(r)
AB(α)

(
c
(
T
(r)
V

)2
BC
− s(T (r)A )1BC)R(r)CD(−α) = (T (r)V )2AD , (3.29)

hold. By differentiating with respect to α and using the Lie algebra of the SU(2)×
SU(2) generators,[

T aA, T
b
A

]
= εabcT cV ,

[
T aA, T

b
V

]
= εabcT cA ,

[
T aV, T

b
V

]
= εabcT cV , (3.30)

one arrives at the conclusion that eqs. (3.28), (3.29) are indeed satisfied. Note that

the same procedure applies to the remaining flavour components of the Ward iden-

tities. Hence, the validity of the tmQCD Ward identities implies that

• there exist particular linear combinations of correlation functions which satisfy
the standard QCDWard identities for two degenerate quark flavours with mass

MR,

• the linear combinations only depend on the angle α, which is determined by
the ratio of the quark mass parameters which appear in the Ward identities.

In particular it is clear that the angle α has no physical significance. We may start

with any value of α and still obtain the standard chiral flavour Ward identities.

As a given theory is identified by its symmetries this implies the equivalence of

theories defined at different values of α, provided the remaining symmetries are

either α-independent or transform covariantly. This is certainly true on the level of

the renormalized composite fields: for any transformation of the composite fields at

α = 0 one may identify the corresponding transformation in the renormalized twisted

theory.

3.5 Concluding remarks

In practical applications one would like to work with tmQCD at a given fixed value

of α, and just invoke eq. (3.5) in order to interpret the results in terms of standard

QCD. According to the above discussion one may start by imposing the tmQCD

Ward identities in the renormalized theory. Besides defining the value of α this

procedure restores the chiral multiplet structure of the bare theory. One then still

needs to impose a renormalization condition per chiral multiplet. If this is done
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either in the chiral limit or independently of α, eq. (3.5) provides the relation to

the theory defined at any other angle α, including α = 0. The simplification in

the Ginsparg-Wilson regularization consists in the validity of bare continuum-like

tmQCD Ward identities, and in the related fact that the bare Ward identity masses

coincide with the bare mass parameters of the action. Finally we stress that the

classical continuum theory allows to infer the relation (3.5) between renormalized

theories and may hence be used as a guide.

4. Twisted mass QCD with Wilson quarks

In this section we discuss in some detail the regularization with Wilson fermions,

including some practical aspects of applications.

4.1 Symmetries of the bare theory

With Wilson quarks the tmQCD Dirac operator is as given in eq. (1.1) with the

usual massless Wilson-Dirac operator4

DW =
1

2

3∑
µ=0

{
γµ(∇µ +∇∗µ)− a∇∗µ∇µ

}
. (4.1)

For simplicity we defer the discussion of O(a) improved tmQCD to a separate pub-

lication [32]. Here we note that the Wilson term is not left invariant by the axial

rotation (2.2), and the lattice regulated theories at µq = 0 and µq 6= 0 are thus differ-
ent. This is of course welcome as otherwise the zero mode problem would be present

in both cases (cf. section 1). One may think of more general lattice Dirac operators,

also including a chirally twisted Wilson term. However, a moment of thought reveals

that this is not really more general, as an axial rotation (2.2) may then be used in the

lattice theory to eliminate the extra Wilson term. Modulo a more general coefficient

of the standard Wilson term and with re-defined bare mass parameters, one then

obtains again the action corresponding to eq. (1.1).

As compared to the theory with Nf = 2 standard Wilson quarks (µq = 0)

we find that the exact U(2) symmetry is reduced to a U(1) symmetry leading to

fermion number conservation, and a vectorial U(1) symmetry with generator τ 3/2.

Concerning the space-time symmetries, the lattice action is invariant under axis

permutations, whereas reflections such as parity are a symmetry only if combined

with either a flavour exchange

F : ψ → τ 1ψ , ψ̄ → ψ̄τ1 , (4.2)

or a sign change of the twisted mass term µq → −µq. We will refer to the thus
modified parity symmetries as PF and P̃ respectively. The list of exact symmetries

4For unexplained notation and conventions we refer to ref. [27]
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is completed by charge conjugation, and we note that twisted mass lattice QCD with

Wilson quarks has a positive self-adjoint transfer matrix [32].

4.2 Renormalized parameters

As in section 3 we assume that infrared divergences are regulated e.g. by working in a

finite space-time volume with suitable boundary conditions. This implies analyticity

of the theory in the mass parameters and it is then rather obvious that twisted mass

lattice QCD is renormalizable by power counting [28]. The counterterm structure

follows from the symmetries of the regularization. Based on these symmetries one

concludes that tmQCD is finite after the usual renormalization of the coupling and

the standard mass parameter,

g2R = Zgg
2
0, mR = Zmmq , mq = m0 −mc , (4.3)

and, in addition a multiplicative renormalization of the twisted mass parameter,

µR = Zµµq . (4.4)

In particular we note that the modified parity symmetry, PF , is sufficient to exclude

a counterterm ∝ tr{FµνF̃µν}.

4.3 Ward identities and renormalization of composite fields

Following section 3 we require that the renormalized theory satisfies the axial and

vector Ward identities, i.e. the renormalized analogues of eqs. (2.48), (2.49). Con-

cerning the vector Ward identity the situation is the same as with Ginsparg-Wilson

fermions, due to the exact flavour symmetry of massless Wilson quarks. Therefore

eq. (2.49) holds exactly, with the point-split vector current

Ṽ aµ (x) =
1

2

{
ψ̄(x)(γµ − 1)τ

a

2
U(x, µ)ψ(x+ aµ̂) +

+ ψ̄(x+ aµ̂)(γµ + 1)
τa

2
U(x, µ)−1ψ(x)

}
, (4.5)

and the local pseudo-scalar density. It then follows that the vector current is pro-

tected against renormalization, i.e. ZṼ = 1. More generally, the multiplicative renor-

malization constants of composite fields which belong to the same isospin multiplet

must be identical in order to respect the vector Ward identities. An example is the

renormalized pseudo-scalar density which has the structure

i(PR)
a = ZP

{
iP a + δa3a−3cP

}
, (4.6)

and cP vanishes exactly at µq = 0. The vector Ward identity here implies that ZP is

the same for all flavour components, and, moreover,

ZP = Z
−1
µ . (4.7)
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In contrast, the axial Ward identity does not hold in the bare theory. Axial Ward

identities therefore provide normalization conditions which determine finite renor-

malization constants such as ZA, or finite ratios of scale dependent renormalization

constants, such as ZS/ZP [2]. Moreover, these finite renormalization constants only

depend on the bare coupling g0 and may therefore be determined in the chiral limit

using standard procedures [3]. Note that the finite renormalization constants restore

chiral symmetry of the bare theory up to cutoff effects. Once this is achieved the

renormalization of multiplicatively renormalizable fields is similar to the Ginsparg-

Wilson case, i.e. the renormalization constant for a given multiplet is determined by

imposing a renormalization condition on one of its members. Of particular practical

interest are mass-independent renormalization schemes, which are obtained by im-

posing a renormalization condition at µq = mq = 0 [26]. Based on universality we

then expect that the relations (3.5) between renormalized correlation functions hold

up to cutoff effects. According to section 3 the same can be achieved by imposing

α-independent renormalization conditions, where, in the case of Wilson fermions the

angle α must be defined through the Ward identity masses (cf. subsection 4.4).

In principle the Ward identities also determine additive renormalization con-

stants which arise due to the explicit breaking of chiral symmetry. An example is

the renormalization of the iso-singlet scalar density, which has the same structure as

in eq. (3.7), however, with a coefficient cS which does not vanish in the chiral limit.

Therefore, the renormalization of the third axial Ward identity (2.48) requires the

explicit subtraction of power divergences. While power divergent renormalization

problems do not present any particular difficulty to any finite order of perturbation

theory, it is less clear how to proceed in a non-perturbative approach. A general

discussion of this topic is beyond the scope of this work. Here we just note that

the renormalization of the third axial Ward identity may in fact be avoided if one

assumes that the physical isospin symmetry is restored in the renormalized theory.

In the following we will make this (plausible) assumption and not discuss the third

axial Ward identity any further.

4.4 Definition of the angle α

According to section 3.4 the angle α is uniquely defined through the renormalized

Ward identity masses. Assuming that ZP has been fixed, the renormalized twisted

mass parameter is determined due to eq. (4.7). The renormalized axial current and

the first two components of the pseudo-scalar density may then be used to define mR
through the renormalized PCAC relation

∂µ(AR)
a
µ = 2mR(PR)

a , a = 1, 2 . (4.8)

In practice one first defines a bare PCAC mass m from the ratio of correlation func-

tions involving the bare axial current and pseudo-scalar density. The renormalized
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PCAC mass is then given by

mR = ZAZ
−1
P m = Zmmq . (4.9)

Using eq. (4.7), the angle α is then determined as

tanα =
µR

mR
=

µq

ZAm
=

µq

ZmZPmq
. (4.10)

In general one thus needs the bare PCAC mass m and the axial current normalization

constant ZA to obtain α. Note that the latter is not needed in the special case m = 0,

i.e. if α = π/2.

4.5 Avoiding lattice renormalization problems

Once tmQCD has been renormalized in the way described above, eq. (3.5) can be

applied to establish a “dictionary” between the renormalized correlation functions

in QCD and tmQCD. For example, the 2-point function of the axial current and the

pseudo-scalar density in standard QCD translates as follows

〈
(AR)

1
0(x)(PR)

1(y)
〉
(MR,0)

= cos(α)
〈
(AR)

1
0(x)(PR)

1(y)
〉
(MR,α)

+

+ sin(α)
〈
Ṽ 20 (x)(PR)

1(y)
〉
(MR,α)

. (4.11)

More generally, relations between the renormalized composite fields can be inferred

from the corresponding relations in the classical theory (cf. section 2). In particular,

the above example follows from eqs. (2.10)–(2.12).

As tmQCD and standard QCD with Wilson quarks are not related by a lattice

symmetry, the counterterm structure for composite fields with the same physical in-

terpretation depends upon α. Given a physical amplitude it may hence be possible

that a particular choice of α leads to simplifications. An obvious case is the compu-

tation of Fπ from the 2-point function (4.11). While the standard approach (i.e. the

direct computation of the l.h.s.) requires to first determine the renormalized axial

current, the r.h.s. of this equation at α = π/2 only contains the vector current (4.5)

which is protected against renormalization.

Even more interesting is the application of tmQCD to matrix elements of the

iso-singlet scalar density. At α = π/2, the physical scalar density is represented by

the third component of the pseudo-scalar density, see eq. (2.13). While the scalar

density is cubically divergent even in the chiral limit, the pseudo-scalar density has

a quadratic divergence which vanishes exactly at µq = 0. The situation is therefore

comparable to the case of the renormalized scalar density in standard QCD with

Ginsparg-Wilson fermions.
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4.6 Inclusion of heavier quarks

It is straightforward to generalise tmQCD to include any number of heavier quark

flavours. For the latter one may use the standard regularization with (improved) Wil-

son quarks, as the zero mode problem is practically absent at mass parameters which

correspond to the physical strange quark mass. The renormalization procedure can

again be carried out such that the chiral flavour Ward identities are respected, which

now also involve mixed operators of light and heavy quarks. Hence we expect that

the “dictionary” between tmQCD and standard QCD can again be established by

naive continuum considerations. As an example we consider the tmQCD continuum

action (2.1) and add the action of the strange quark,

SF[ψ, ψ̄, s, s̄] =

∫
d4x

{
ψ̄
(
D/+m+ iµqγ5τ

3
)
ψ + s̄ (D/+ms) s

}
. (4.12)

Using a physical notation,

ψ =

(
u

d

)
, ψ̄ =

(
ū d̄
)
, (4.13)

the standard PCAC relation,

∂µ(d̄
′γµγ5s) = (m′ +ms) d̄′γ5s , (4.14)

is obtained with the rotated axial current and pseudo-scalar density,

d̄′γµγ5s = cos
(
1

2
α

)
d̄γµγ5s+ i sin

(
1

2
α

)
d̄γµs, (4.15)

d̄′γ5s = cos
(
1

2
α

)
d̄γ5s− i sin

(
1

2
α

)
d̄s , (4.16)

and with the angle α and the light quark mass m′ as given in section 2.1

4.7 Application to the ∆S = 2 effective weak hamiltonian

Also in the case of operators involving light and strange quarks certain renormal-

ization problems of standard Wilson quarks can be circumvented. An interesting

example is the ∆S = 2 part of the effective weak hamiltonian,

O∆S=2 = {s̄γµ(1− γ5)d}2 . (4.17)

In phenomenology one is mainly interested in the hadronic matrix element of this

operator between K0 andK0 states [29]. As parity does not change in this transition,

only the parity conserving part of the operator contributes. Hence one decomposes

the operator into parity even and odd parts,

O∆S=2 = OVV+AA − 2OVA . (4.18)

In the regularization with Ginsparg-Wilson fermions the operator O∆S=2 and thus
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bothOVV+AA andOVA are renormalized multiplicatively. With Wilson quarks, the re-

maining symmetries imply that OVV+AA mixes with four other parity even operators

of the same mass dimension, whereas OVA is still renormalized multiplicatively [30].

In tmQCD we now observe that the parity even operator in the standard basis is

represented by the combination

O′VV+AA = cos(α)OVV+AA − 2i sin(α)OVA . (4.19)

In particular, at α = π/2, only OVA appears on the r.h.s., and one concludes that ma-

trix elements of the physical operator O′VV+AA can be computed in tmQCD without
solving the complicated renormalization problem for the parity even operator.5 In

particular, the K0−K0 mixing amplitude could be extracted from the 3-point func-
tion involving OVA and appropriately rotated interpolating fields for the kaons [cf.

eqs. (4.15), (4.16)].

One might be worried that additional counterterms to OVA may be necessary

in tmQCD. As there is no such term at µq = 0, possible counterterms must be

accompanied by at least one power of the twisted mass parameter, and the flavour

structure requires them to be again four-quark operators. For dimensional reasons

such counterterms can only contribute cutoff effects of the order aµq, and a closer

look shows that the parity even operators multiplied by aµq are indeed allowed by

the tmQCD symmetries.

4.8 Technical complications

The equivalence between tmQCD and standard QCD is a statement about the renor-

malized theories in the continuum limit. When tmQCD is used to define the standard

QCD correlation functions, some of the physical symmetries are only restored in the

continuum limit. In particular, this is the case of the flavour symmetry and par-

ity, which are exact lattice symmetries in standard QCD with Wilson fermions, but

which are only recovered in the continuum limit if α 6= 0. In practice the problem
shows up e.g. as an ambiguity in the definition of α, which is induced by the usual

ambiguity in the definition of the critical mass mc by terms of O(a) (or O(a
2) if the

theory is improved) [27]. To illustrate the consequences consider the computation of

the pion mass at fixed cutoff a, using the 2-point function

G(x0 − y0) = a3
∑
x

〈P ′3(x)P ′3(y)〉 . (4.20)

In tmQCD this correlation function is computed by replacing P ′3 as in eq. (2.12),
where the relative multiplicative renormalization of S0 and P 3 is assumed to have

been fixed by the axial Ward identity. Note also that the exponential decay of this

correlation can be determined without knowledge of the additive renormalization

constants.
5For an alternative proposal see ref. [31].
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It is now obvious that both the ambiguity in α and the O(a) ambiguity in the

relative renormalization of the densities imply that the correlation function (4.20)

contains cutoff effects which are proportional to the propagator of the (physical)

scalar density S ′0. An analysis of the 2-point function (4.20) at fixed a must therefore
take into account the states with the quantum numbers of an isosinglet scalar state.

We note in passing that O(a) improvement does not alter this situation, as it merely

reduces the ambiguities to O(a2). In particular, at fixed cutoff, the relevant sym-

metries remain inexact and the qualitative behaviour of the 2-point function (4.20)

remains unchanged.

In general the analysis of the hadron spectrum in tmQCD at fixed a must include

states which are allowed by the lattice symmetries but have the “wrong” continuum

quantum numbers. Although this is not a fundamental problem, the analysis is

somewhat more complicated than in lattice QCD with standard Wilson quarks. We

also note a side effect for the determination of hadronic matrix elements. When these

are extracted from tmQCD correlation functions it may not be necessary to increase

the distances until the desired physical state is completely isolated. It is sufficient

to establish that contributions from the excited states with the correct continuum

quantum numbers are negligible, as all other contaminations merely modify the cutoff

effects of the matrix element.

5. Conclusions

In this paper we have advocated the use of twisted mass QCD with Wilson quarks

as an alternative regularization of QCD with two degenerate light quarks. Using

Ginsparg-Wilson fermions as a tool, we have demonstrated in what sense tmQCD is

equivalent to standard QCD. In particular, we have clarified under which conditions

the relations between renormalized correlation functions take the simple form (3.5),

which is the quantum analogue of the naive relations derived in the classical contin-

uum theory.

Twisted mass lattice QCD provides a clean field theoretical solution to the prob-

lem of unphysical zero modes. While our work on tmQCD is motivated by this

problem, we also observe a few additional benefits. In particular we have given ex-

amples where renormalization problems of lattice operators can be circumvented by

working in the fully twisted theory with α = π/2. For the sake of simplicity we

did not discuss O(a) improvement of tmQCD. This topic is deferred to a separate

publication [32].

First numerical simulations using (quenched) tmQCD have already been carried

out, and a scaling test in a small volume has been presented in [33]. It is hoped that

the chiral limit can be approached much more closely in tmQCD than previously

possible with Wilson quarks. In particular the ALPHA collaboration plans to extend

the work of [34] to much smaller quark masses where (quenched) chiral perturbation
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theory should be safely applicable [35]. Furthermore, a project to determine the

K0−K0 mixing amplitude using tmQCD is underway [36]. In the future, it will also
be interesting to see whether numerical simulations of full QCD can benefit from

using a twisted mass term.
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