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Instituto de F́ısica e Matemática, Univ. Federal de Pelotas

Caixa Postal 354, 96010-090 Pelotas, RS, BRAZIL

Abstract: In this paper we propose an improvement of the EKS nu-
clear parton distributions for the small x region of high energy processes,
where the perturbative high parton density effects cannot be disregarded.
We analyze the behavior of the ratios xGA/xGN and F A

2 /F D
2 and verify that

at small x they are strongly modified when compared to the EKS predictions.
The implications of our results for the heavy ion collisions in RHIC and LHC
are discussed.

PACS numbers: 11.80.La; 24.95.+p;
Key-words: Small x QCD; High Density Effects; Nuclear Collisions.

0∗E-mail:ayala@ufpel.tche.br
0∗∗E-mail:barros@ufpel.tche.br



1 Introduction

The physics of high-density QCD has become an increasingly active subject
of research, both from experimental and theoretical points of view. In par-
ticular, the collider facilities such as the BNL Relativistic Heavy Ion Collider
(RHIC), and CERN Large Hadron Collider (LHC) will be able to probe new
regimes of dense quark matter at very small Bjorken x or/and at large A,
with rather different dynamical properties. Basically, new phenomena asso-
ciated with an ultradense environment that may be created in the central
collision region of these reactions are expected [1].

From the analysis of nucleus-nucleus collisions for RHIC energies and be-
yond, we have that the perturbative QCD processes should determine the
initial conditions, with most of the entropy and transverse energy presum-
ably produced already during very early times (within the first 2 fm after
the nuclear contact) by frequent, mostly inelastic, semihard gluonic collisions
involving typical momentum transfers of only a few GeV [2]. In particular,
at early times, τ ≈ 1/pT ≤ 1/p0 ≈ 0.1 fm for p0 ≈ 2 GeV , semihard produc-
tion of minijets will set the stage for further evolution of the system. The
calculation of this process is based on the jet cross section for pT > p0, with
the parton densities evaluated at scale pT , with x values at central rapidities
as low as x ≈ O(10−4) in Pb + Pb collisions at LHC (5.5 TeV/nucleon). At
the lower RHIC energies, x ≈ O(10−2) at central rapidities, and at higher
rapidities the x values probed can be even smaller. Thus the small x behavior
of the parton densities strongly influences the initial conditions of the minijet
system.

While the deep inelastic scattering data from HERA continues to refine
the parton densities at small x, uncertainties in the distributions still exist,
mainly associated to the high parton density effects present in this kinemat-
ical region. Such effects would be present in nucleus-nucleus (AA) collisions
at collider energies, modifying the perturbative QCD predictions for global
observables, such as particle multiplicities and transverse energy production,
as well as minijet production, heavy quarks, their bound states, and dilepton
production [3]. Consequently, the high density effects are one of the major
theoretical issues in modeling the QCD processes in nuclear collisions.

In this paper we analyze the high density effects in the behavior of the
nuclear gluon distribution xGA and nuclear structure function F A

2 at small x
and a large perturbative scale Q2. Our study is motivated by the perspective
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that in a near future an experimental investigation of these effects at small
x and Q2 > 1 GeV 2 using eA scattering could occur in RHIC, as well as at
DESY Hadron Electron Ring Accelerator (HERA). Furthermore, our goal is
to improve the description proposed by Eskola, Kolhinen and Salgado (EKS)
taking into account the high parton densities effects in the parton evolution
at small x.

In recent years several experiments have been dedicated to high precision
measurements of deep inelastic lepton scattering (DIS) off nuclei. Experi-
ments at CERN and Fermilab focus especially on the region of small values
of the Bjorken variable x = Q2/2Mν, where Q2 = −q2 is the squared four-
momentum transfer, ν the energy transfer and M the nucleon mass. The
data [4, 5], taken over a wide kinematic range, have shown that the pro-
ton and neutron structure functions are modified by a nuclear environment.
The modifications depends on the parton momentum fraction: for momen-
tum fractions x < 0.1 and 0.3 < x < 0.7, a depletion is observed in the
nuclear structure functions. The low x (shadowing region) and the larger x
(EMC region) are bridged by an enhancement known as antishadowing for
0.1 < x < 0.3. We refer to the entire phenomena as the nuclear shadowing

effect.
The theoretical understanding of F A

2 in the full kinematic region has pro-
gressed in recent years, with several models which describe the experimental
data with quite success [6]. Here we will restrict ourselves to the descriptions
which use the DGLAP evolution equations [7] to describe the behavior of
the nuclear parton distributions. Recently, Eskola, Kolhinen and Salgado
[8], following Ref. [9], have shown that the experimental results [4] present-
ing nuclear shadowing effects can be described using the DGLAP evolution
equations [7] with adjusted initial parton distributions. The basic idea of this
framework is the same as in the global analyzes of parton distributions in the
free proton: they determine the nuclear parton densities at a wide range of
x and Q2 ≥ Q2

0 = 2.25 GeV2 through their perturbative DGLAP evolution
by using the available experimental data from lA DIS and Drell-Yan (DY)
measurements in pA collisions as constraint. EKS have expressed the results
in terms of the nuclear ratios RA

f (x, Q2) for each parton flavor f in a nucleus
with A nucleons (A > 2), at 10−6 ≤ x ≤ 1 and 2.25 GeV 2 ≤ Q2 ≤ 104 GeV 2.
The results of EKS seems to show that, in the kinematic region of the present
data, the high density dynamical effects are small enough to be described by
the DGLAP evolution equation with a suitable set of nonperturbative initial
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conditions. The main shortcoming of use the EKS parameterizations in the
calculations of eA, pA or AA processes is associated to the small x predic-
tions, where the solution of the DGLAP equations reduces to the well known
limit of the double logarithm approximation (DLA). This limit is character-
ized by a strong growth of the gluon distribution, with a similar behavior
for the F2 structure function, which implies a high parton density in this
kinematic region. However, when the density of gluons and quarks becomes
very high the physical processes of interaction and recombination of partons,
not considered in the DGLAP equations, become important in the parton
cascade and these effects should be expressed in a new evolution equation.
Therefore, the EKS description should be improved to include the high par-
ton density effects when smaller values of x are considered. This is the case,
for instance, in the calculation of the minijet cross section at LHC.

At this moment, there are many approaches in the literature that propose
distinct evolution equations for the description of the gluon distribution in
high density limit [10, 11] [12, 13]. In general these evolution equations

resum powers of the function κ(x, Q2) ≡ 3π2αsA
2Q2

xg(x,Q2)
πR2

A

, which represents the

probability of gluon-gluon interaction inside the parton cascade. Moreover,
these equations match (a) the DLA limit of the DGLAP evolution equation
in the limit of low parton densities (κ → 0); (b) the GLR equation and the
Glauber-Mueller formula as first terms of the high density effects. The main
differences between these approaches are present in the limit of very large
densities, where all powers of κ should be resumed. Although the complete
demonstration of the equivalence between these formulations in the region
of large κ is still an open question, some steps in this direction were given
recently [14, 15]. Here we will consider the Glauber-Mueller approach for
the high density effects, which is a common limit of the current high density
approaches in the kinematic region which we are interested. Thus we intend
to obtain no model dependent predictions.

The outline of this paper is the following. In next section we present
a brief review of the Glauber-Mueller approach for the nuclear structure
function (For details see [11]). In Sec. 3 we analyze the EKS parameterization
and present a procedure to improve this paramerization for the small x region,
where the high density effects cannot be disregarded. Moreover, we present
our results for the ratios xGA/xGN and F A

2 /F D
2 and verify that at small x

they are strongly modified in comparison with the EKS predictions. Finally,

3



in Sec. 4 we discuss the implications of our results for the heavy ion collisions
in RHIC and LHC and present our conclusions.

2 The High Density Effects in DIS

The deep inelastic scattering off a nucleus is usually interpreted in a frame
where the nucleus is going very fast. In this case the nuclear shadowing
is a result of an overlap in the longitudinal direction of the parton clouds
originated from different bound nucleons [10]. Thus low x partons from
different nucleons overlap spatially creating much larger parton densities than
in the free nucleon case. This leads to a large amplification of the nonlinear
effects expected in QCD at small x. In the target rest frame, the electron-
nucleus scattering can be visualized in terms of the propagation of a small
qq pair in high density gluon fields through much larger distances than it
is possible with free nucleons. In terms of Fock states we then view the eA
scattering as follows [16]: the electron emits a photon (|e >→ |eγ >) with
Eγ = ν and p2

t γ ≈ Q2, after the photon splits into a qq (|eγ >→ |eqq >) and
typically travels a distance lc ≈ 1/mNx, referred as the ’coherence length’,
before interacting in the nucleus. For small x (large s, where

√
s is the γ∗A

center-of-mass energy), the photon converts to a quark pair at a large distance
before it interacts to the target. Consequently, the space-time picture of the
DIS in the target rest frame can be viewed as the decay of the virtual photon
at high energy (small x) into a quark-antiquark pair, which subsequently
interacts with the target. In the small x region, where x � 1

2mR
, the qq

pair crosses the target with fixed transverse distance rt between the quarks.
Following Gribov [16], we may write a double dispersion relation for the
forward γ∗A elastic amplitude A, related to the total cross section by the
optical theorem [ImA = sσ(s, Q2)], and obtain for fixed s

σ(s, Q2) =
∑

q

∫ dM2

M2 + Q2

dM ′2

M ′2 + Q2
ρ(s, M2, M ′2)

1

s
ImAqq+A(s, M2, M ′2) , (1)

where M and M ′ are the invariant masses of the incoming and outgoing
qq pair. If we assume that forward qq + A scattering does not change the
momentum of the quarks then Aqq+A is proportional to δ(M 2 − M ′2), and
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(1) becomes

σ(s, Q2) =
∑

q

∫

dM2

(M2 + Q2)2
ρ(s, M2)σqq+A(s, M2) , (2)

where the spectral function ρ(s, M 2) is the density of qq states, which may be
expressed in terms of the γ∗ → qq matrix element [17]. Using that M 2 = (k2

t +
m2

q)/[z(1−z)], where kt and z are the transverse and longitudinal momentum
components of the quark with mass mq, we can express the integral over the
mass M of the qq in terms of a two-dimensional integral over z and kt. Instead
of kt is useful to work with the transverse coordinate rt (impact parameter
representation), which is the variable Fourier conjugate to kt, resulting [18]

F A
2 (x, Q2) =

Q2

4παem

σ(s, Q2)

=
Q2

4παem

∫

dz
∫

d2rt

π
|Ψ(z, rt)|2 σqq+A(z, rt) , (3)

where

|Ψ(z, rt)|2 =
6αem

(2π)2

nf
∑

f

e2
f{[z2 + (1 − z)2]ε2 K1(εrt)

2 + m2
i K0(εrt)

2} . (4)

The photon wave function Ψ(z, rt) is simply the Fourier transform of the ma-
trix element for the transition γ∗ → qq. Moreover, αem is the electromagnetic
coupling constant, ε2 = z(1 − z)Q2 + m2

i , mi is the quark mass, nf is the
number of active flavors, e2

f is the square of the parton charge (in units of e),
K0,1 are the modified Bessel functions and z is the fraction of the photon’s
light-cone momentum carried by one of the quarks of the pair. In the leading
log(1/x) approximation we can neglect the change of z during the interaction
and describe the cross section σqq(z, 4/r2

t ) as a function of the variable x. To
estimate the high density effects we consider the Glauber multiple scattering
theory [19], which was derived in QCD [20]. In this framework the nuclear
collision is analyzed as a succession of independent collisions of the probe
with individual nucleons within the nucleus, which implies that

F A
2 (x, Q2) =

Q2

4παem

∫

dz
∫

d2~rt

π
|Ψ(z, ~rt)|2

∫

d2~bt

π
2 [1 − e−σqq+N (z,~rt)S(~bt)] , (5)
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where ~bt is the impact parameter, S(~bt) is the profile function and σqq+N is
the dipole cross section off the nucleons inside the nucleus, which is propor-
tional to the pair separation squared r2

t and the nucleon gluon distribution
xg(x, 1/r2

t ). The expression (5) represents the Glauber-Mueller formula for
the nuclear structure function (see [11] for details). The use of a Gaussian

parameterization for the nucleon profile function S(bt) = 1
πR2

A

e
−

b2

R2
A , where

RA is the mean nuclear radius, simplifies the calculations. We obtain that
the F A

2 structure function can be written as [11]

F A
2 (x, Q2) =

R2
A

2π2

∑

u,d,s

ε2
i

∫ 1

Q2
0

1

Q2

d2rt

πr4
t

{C + ln(κq(x, r2
t )) + E1(κq(x, r2

t ))} , (6)

where κq = (2αsA/3R2) π r2
t xGN (x, 1

r2
t
), C is the Euler constant, E1 is the

exponential integral function and A the number of nucleons in a nucleus.
This equation allows to estimate the high density corrections to the structure
function in the DLA limit. Expanding the equation (6) for small κq, the first
term (Born term) will correspond to the usual DGLAP equation in the small
x region.

The Glauber - Mueller formula has been used in a comprehensive phe-
nomenological analyzes of the behavior of distinct observables in ep and eA
processes. The results of these studies agree with the current ep HERA data
[22, 23] and allow us to make some predictions which will be investigated
in the near future in eA colliders [24, 25, 26]. The main shortcoming in the
studies of eA processes is that the large x effects (the antishadowing and
the EMC effect) were disregarded, which implies predictions only for the
asymptotic behavior (large s/small x) of the observables. In next section we
propose a procedure to obtain more realistic predictions in the full kinematic
region.

3 The improved EKS parton distributions

As discussed in Sec. 1 the EKS parameterization, although describes the
current experimental fixed target data quite well, is not a good approxima-
tion for the small x region in the perturbative regime, where the DGLAP
equations predicts a strong growth of the parton distributions (the DLA
limit). In this limit the nuclear gluon distribution is given by xGA ∝
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exp
√

ln(1/x) ln(Q2/Q2
0), which is almost independent of the initial nonper-

turbative input, i.e. of the adjusted parameters obtained in the EKS param-
eterization. To improve the EKS description we propose the substitution of
DLA limit of the DGLAP evolution, present in the EKS framework, by the
Glauber-Mueller evolution. This procedure implies to calculate the nuclear
structure function using the following expression

F A
2 (x, Q2) = F A

2 (x, Q2)[EKS] − (1/A) F A
2 (x, Q2)[DLA]

+ (1/A) F A
2 (x, Q2)[eq. (6)], (7)

with F A
2 (x, Q2)[EKS] = RA

F2
× F N

2 (x, Q2), where RA
F2

is obtained in terms of
a combination of nuclear parton ratios RA

f (x, Q2) [9]. The nucleon structure
function is given by F N

2 (x, Q2) =
∑

u,d,s ε2
q [xq(x, Q2)+xq(x, Q2)]+F c

2 (x, Q2),
where the charm component of the nucleon structure function is calculated
considering the charm production via boson-gluon fusion mechanism [21] and
the nucleon parton distributions are given by the GRV parameterization [21].
In this work we assume mc = 1.5 GeV . Moreover, F A

2 (x, Q2)[DLA] is cal-
culated using the parton distribution from DLA limit of DGLAP evolution.
For practical purpose, this term is given by the Born term of Eq. (6).

The above procedure implies the inclusion of: (a) the full DGLAP evo-
lution equation in all kinematic region; (b) the nonperturbative nuclear cor-
rections in the nuclear parton distributions, that describes the experimental
fixed target data, and (c) the high density effects present in the parton evo-
lution at small x in the perturbative regime. Therefore, with the Eq. (7) we
are able to describe the parton evolution in all kinematic region.

A similar description can be used to estimate the nuclear gluon distribu-
tion xGA. In this case we take

xGA(x, Q2) = xGA(x, Q2)[EKS] − (1/A) xGA(x, Q2)[DLA] +

+ (1/A) xGA(x, Q2)[GM] (8)

where xGA(x, Q2) [EKS] = RA
G × xGN(x, Q2) is the EKS prediction,

xGA(x, Q2) [DLA] is the DGLAP (DLA) prediction for the nuclear gluon dis-
tribution and GM represents the Glauber-Mueller nuclear gluon distribution
given by [11]

xGA(x, Q2)[GM] =
2R2

A

π2

∫ 1

x

dx′

x′

∫ 1

Q2
0

1

Q2

d2rt

πr4
t

{C + ln(κG(x′, r2
t )) + E1(κG(x′, r2

t ))} , (9)
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where κG = (9/4)κq. The main difference between the high density effects
in the quark and gluon densities stems from the much larger cross section
σgg

N = (9/4)σqq
N , i. e. κG = (9/4)κq, which in turn leads to a much larger

gluon shadowing. As before, the DLA limit is obtained from the Born term
of the Glauber-Mueller evolution [Eq. (9)].

Using the above procedure we can calculate the ratios RF2 = F A
2 /F D

2 and
RG = xGA/xGN , where F D

2 is the deuterium structure function. In order to
include only perturbative contributions to the estimative of the high density
effects, we take the initial scale at Q2

0 = 1 GeV 2 in the Glauber-Mueller
expressions [Eqs. (6) and (9)] and calculate the ratios for A = 208.

In Fig. 1 we present our predictions for the behavior of the ratio RF2 =
F A

2 /F D
2 (denoted as EKS MOD) for two values of virtualities (Q2 = 2.25 and

15 GeV 2). For comparison the EKS predictions are also shown. We verify
that while for the region of large values of x (≥ 10−2) our predictions are
almost identical to the EKS results, at small x the differences are large. A
comment related to experimental data is in order. As x ≈ Q2/s, where s is
the squared CM energy, the data in the region of small x values are for small
values of Q2 (≤ 1 GeV 2), where the use of the perturbative QCD cannot be
justified and the shadowing corrections are dominated by soft contributions.
Therefore, our perturbative predictions cannot be compared with the current
experimental fixed target data. In the perturbative regime Q2 ≥ 1.0 GeV 2,
where the data are associated with x values greater than 10−2, our results
are almost identical to the EKS predictions. Thus, the fixed target data does
not allow us to discriminate between the predictions.

The results shown in Fig. 1 predicts a sizeable modification in the quark
distribution at low x (x ≤ 10−3). Thus, we expect that the lA cross section
will present a strong reduction when compared to the lp in this kinematic re-
gion. Also the Drell-Yan production in heavy ion collisions should be strongly
modified when compared to the pp one at LHC energy (x ≈ 10−4). At RHIC
kinematic region, the high density effects does not seem to be strong enough
to modify the Drell-Yan cross section in respect to the EKS prediction. Nev-
ertheless, this subject deserves a further more detailed study.

The high density effects are important already for the initial scale of the
EKS parameterizations (Q2 = 2.25 GeV 2) and increases with the virtuality.
The remarkable feature in the improved parton distributions is the nonsat-
uration of the ratio at small values x. In the EKS parameterization the
saturation is included in the initial condition and this general behavior is not
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modified by the evolution. This is a consequence of the DGLAP evolution
equations, which reduces to the DLA limit at small x in the nuclear and nu-
cleon case, keeping the ratio approximately constant. When the high density
effects are considered the ratio is not constant since these effects increases
at small values of x and are larger in the nuclear case. Therefore, the non-
saturation of the ratio in the perturbative regime is a signature of the high
density effects in the nuclear processes.

In Fig. 2 we present our predictions for the behavior of the ratio RG(x, Q2) =
xGA/xGN (denoted as EKS MOD) for two values of virtualities (Q2 = 2.25
and 15 GeV 2). For comparison the EKS predictions are also shown. We
verify that while for the region of large values of x (≥ 10−2) our predictions
are almost identical to the EKS results, at small x the differences are large.
We can see from the both figures that the EKS assumption that RG = RF2

at small values of x is strongly modified by the high density effects and its
Q2 evolution, since RG � RF2 for Q2 = 15 GeV 2. Therefore, we predict a
large modification in the quarkonium production at LHC, as well as in its
bound states (e.g. J/Ψ, Ψ′, Υ, ...). Furthermore, as the high density effects
are important already to Q2 ≈ 2.25 GeV 2, also the minijet production will be
modified at LHC. At RHIC kinematical region the high density effects does
not significantly modify the gluon distribution and we expect a similar pre-
diction of the quarkonium production from both models. Anyway, the high
density effects should be considered in detail before to use the quarkonium
production, as well as its bound states, as probes of the deconfined state of
matter. Also this subject deserves a further detailed study.

It is important to note that the EKS description use as a constraint the
momentum sum rule. We verify that the improved distributions violates this
sum rule at must in 5 % for the gluon distribution, which is small when com-
pared with the experimental uncertainty on this distribution in the antishad-
owing region. Moreover, the violation is small since the main contribution
to the sum rule comes from the large x region, where the high density effects
are negligible.

4 Conclusions

In this paper we have proposed an improvement of the EKS nuclear parton
distributions in the small x region by the inclusion of the perturbative high
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density effects. We predict the nonsaturation of the ratios RF2 and RG when
these effects are considered and that RF2 � RG in the small x limit. Such
results could be tested in the future eA colliders. Furthermore, our results
demonstrate that the high density effects are very important mainly at the
LHC kinematic region, where strong modifications in the Drell- Yan and
quarkonium production are expected. As the small x behavior of the parton
densities strongly determines the initial conditions of the minijet system in
nucleus-nucleus collisions, our results show that the high density effects can-
not be disregarded in the calculations of the observables and signatures of a
Quark-Gluon Plasma.

Acknowledgments

This work was partially financed by FAPERGS and CNPq, BRAZIL.

References

[1] See, e.g., J. Harris and B. Muller. Annu. Rev. Nucl. Part. Sci. 46 (1996)
71.

[2] K. J. Eskola. Comments Nucl. Part. Phys. 22 (1998) 185.

[3] See, e.g., K. Geiger. Phys. Rep. 258 (1995) 237; X.-N Wang. Phys.

Rep. 280 (1997) 287.

[4] M. Arneodo et al.. Nucl. Phys. B483 (1997) 3; Nucl. Phys. B441 (1995)
12.

[5] M. R. Adams et al.. Z. Phys. C67 (1995) 403.

[6] See, e.g., M. Arneodo. Phys. Rep. 240 (1994) 301; G. Piller, W. Weise.
Phys. Rep. 330 (2000) 1.

[7] Yu. L. Dokshitzer. Sov. Phys. JETP 46 (1977) 641; G. Altarelli and G.
Parisi. Nucl. Phys. B126 (1977) 298; V. N. Gribov and L.N. Lipatov.
Sov. J. Nucl. Phys 15 (1972) 438.

10



[8] K. J. Eskola, V. J. Kolhinen, C. A. Salgado. Eur. Phys. J. C9 (1999)
61.

[9] K.J. Eskola, V. J. Kolhinen, P. V. Ruuskanen. Nucl. Phys. B535 (1998)
351.

[10] L. V. Gribov, E. M. Levin, M. G. Ryskin. Phys. Rep.100 (1983) 1; A.
H. Mueller, J. Qiu. Nucl. Phys. B268 (1986) 427.

[11] A. L. Ayala, M. B. Gay Ducati and E. M. Levin. Nucl. Phys. B493

(1997) 305.

[12] J. Jalilian-Marian et al. Phys. Rev. D55 (1997) 5414; Phys. Rev. D59

(1999) 014014; Phys. Rev. D59 (1999) 014015.

[13] Y. U. Kovchegov. Phys Rev. D60 (1999) 034008.
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Figure Captions

Fig. 1: Comparison between the predictions of the original EKS and EKS
modified (denoted EKS MOD. in plot) for the ratio RF2(x, Q2) = F A

2 /F D
2 as

function of the variable x at different values of Q2. See text.

Fig. 2: Comparison between the predictions of the original EKS and EKS
modified (denoted EKS MOD. in plot) for the ratio RG(x, Q2) = xGA/xGN

as function of the variable x at different values of Q2. See text.
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