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Abstract

Observation ofJ/ψ production by neutrinos in the calorimeter of the CHORUS detector
exposed to the CERN SPS wide-bandνµ beam is reported. A spectrum-averaged cross-
sectionσJ/ψ = (6.3± 3.0)×10−41 cm2 is obtained for 20 GeV≤ Eν ≤ 200 GeV. The data
are compared with the theoretical model based on the QCD Z-gluon fusion mechanism.
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1 Introduction

Open charm production in neutrino charged-current interactions has been studied in
detail during the past three decades by several groups (see, for example, Ref. [1]). In
particular, the CDHS [2], CHARM-II [3], CCFR [4], and NuTeV [5] experiments
each have collected thousands of events initiated by this process, with a cross-
section amounting to a few per cent of the totalν CC cross-section. In neutral-
current interactions, c-quarks appear only in pairs and, therefore, a much smaller
production rate is expected. In these reactions the production ofJ/ψ decaying into
a muon pair has the cleanest experimental signature. Evidence for this rare process
was reported by CDHS about 20 years ago [6].

The J/ψ state can be produced either directly or via cascade decays of heavier
charmonia:χc1, χc2 → γJ/ψ andψ′ → ππJ/ψ (Fig. 1). Theoretical calculations of
the cross-section of the directJ/ψ production by neutrinos [7,8] were made in the
framework of QCD-based Z-gluon fusion and vector dominance (VDM) models. In
VDM, only the vector coupling,gV, of the Z boson to the c-quark contributes, while
in the Z-gluon fusion approach both the vector and the axial vector couplings,gA,
are at work. One would expect the Z-gluon fusion mechanism to dominate because
of the numerical smallness ofgV in the standard electroweak theory atsin2 θW =

1 Now at CPPM CNRS-IN2P3, Marseille, France.
2 Supported by the German Bundesministerium f¨ur Bildung und Forschung under contract
numbers 05 6BU11P and 05 7MS12P.
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20 Supported by a grant from Deutsche Forschungsemeinschaft.
21 Now at Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo,
Gifu, Japan.
22 Partially supported by the “Fondo Sociale Europeo”.
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Fig. 1. Feynman diagrams for production of charmonium states in weak neutral-current
interactions: (a) Z-gluon fusion model, (b) VDM model (diffraction).

0.23:g2
V ≈ 0.13(g2

V + g2
A). There are no predictions for the indirectJ/ψ production

rate in this model. Recent estimates based on the non-relativistic QCD approach [9]
as well as generalized VDM calculations [8] show that the contributions of direct
and indirectJ/ψ production can be comparable. The overallJ/ψ production rate is
expected at the level of 3×10−3 of the open charm production.
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The CHORUS experiment [10] searching forνµ → ντ oscillations in the CERN
SPS wide-bandνµ beam recorded about five million dimuon triggers in its mas-
sive calorimeter. A muon spectrometer, located downstream from the calorimeter,
is well suited to identify muons and to measure their momenta, thus allowing a
search of theJ/ψ → µ+µ− signal in these data to be undertaken. The experimen-
tal signature forJ/ψ is an excess of events at theJ/ψ mass in the invariant-mass
distribution for the muon pairs.

The paper is organized as follows: in Section 2 the experimental set-up is described;
Section 3 is devoted to the data analysis andJ/ψ selection; and in Section 4 the
J/ψ production cross-section is evaluated.

2 The experimental set-up

We have searched forJ/ψ production in the CHORUS detector [10] exposed to the
wide-band neutrino beam produced by 450 GeV protons from the CERN SPS. The
averageνµ energy is 27 GeV. The background ofν̄µ is about 6% [10]. The 112-ton
lead-scintillator calorimeter [11] was used as an active target for theJ/ψ search
instead of the 770-kg emulsion used as a target for neutrino oscillation searches.
It provides the reconstruction of the event vertex, as well as the measurement of
hadronic shower energy. The calorimeter consists of three sections with planes per-
pendicular to the beam direction and with decreasing granularity along the beam
direction: EM (4 planes), HAD1 (5 planes) and HAD2 (5 planes). The depths of
these sections are 16 cm, 40 cm and 50 cm respectively giving in total 5.2 interac-
tion lengths. The tracking is provided by planes of limited streamer tubes between
the calorimeter planes.

The rôle of the muon spectrometer [10,12] located downstream from the calorime-
ter is to identify muons and to determine their trajectory, momentum and charge. It
consists of six magnetized iron toroids, instrumented with scintillators, and tracking
detectors composed of drift chambers and limited streamer tubes. Muon momenta
are determined from their curvature in the toroidal magnetic field. The momentum
resolution is limited mainly by multiple Coulomb scattering in the iron. It is about
15% [12] in the region of 12 GeV to 28 GeV and≈ 19% at 71 GeV [10] as mea-
sured with test-beam muons. For tracks withpµ ≤ 4.5 GeV, stopping inside the
spectrometer, the momentum can be reconstructed also by range with≈ 6% preci-
sion [10]. The muon spectrometer also provides rough measurement of the shower
energy leakage from the calorimeter.

The trigger system [13] of the CHORUS experiment has different types of trigger
for events originating from the emulsion, the calorimeter and the muon spectrome-
ter. For our purpose we use the dimuon trigger, which requires a double-hit pattern
in the calorimeter or in the muon spectrometer and an activity in the first two mag-
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nets of the muon spectrometer.

3 The analysis

For the analysis we used the standard CHORUS reconstruction program CHORAL
[14]. In total, 4.7 million events recorded with the dimuon trigger were processed.
This sample corresponds to≈ 4.2×1019 protons on the neutrino target. Most of
these events contain one track and an energetic hadronic shower. Only 2.3×105

events have two reconstructed tracks with at least 2 GeV momenta at the spectrom-
eter entry and crossing at least two spectrometer magnets (≥ 1 m of iron) [15].

At the next step dimuons of opposite charge were selected. Muons were required to
traverse at least four spectrometer magnets and be successfully reconstructed. The
transverse distance between the tracks ofµ+ andµ− at the vertex plane was limited
to< 15 cm. The fiducial volume was chosen with a lateral size of 240× 240cm2

and length of about 130 cm (the vertex should lie within the calorimeter planes from
3 to 11) to fulfil the requirement of the dimuon trigger. The fiducial target mass is
38 tons. To suppress the background fromν CC events withπ+(K+) → µ+X
decays, both muons were required to have momenta above 5 GeV at the vertex.
They are calculated by adding the energy-dependent average muon energy losses in
the calorimeter to the momenta reconstructed in the spectrometer [16]. The visible
energy for the event,Evis

ν , was required to be larger than 20 GeV. It is defined as the
sum of muon momenta and shower energy deposited in the calorimeter and in the
spectrometer:Evis

sh = Ecalo
sh + Espec

sh . The muons were subtracted from the shower.
In addition, we requiredEspec

sh /Evis
sh ≤ 0.3 to reduce the effects due to the poor

spectrometer energy resolution. 14 995µ+µ− events survived all these cuts.

The distributions of the muon momenta and of the angle between muons in this
sample are shown in Fig. 2. All these spectra are well described by GEANT 3.21
based Monte Carlo (MC) simulations24 of single charm production in the com-
plete set-up, including modelling of the neutrino beam and the standard event re-
construction [19]. It should be noted that the MC does not include the background
from ν CC events with subsequent muonic decays of pions and kaons. Its contri-
bution (≈ 15%) was estimated from aµ−µ− subsample. The observed invariant-
mass distribution ofµ+µ− pairs is presented in Fig. 3a. An approximation of the
shape consists of 85% of theµ+µ− MC and of 15% of theµ−µ− data. The fit
givesχ2/NDF = 1.31. Taking into account that some instrumental effects were
not included in the MC such an agreement is reasonable.25 Unfortunately, the MC

24 For the simulation we used EHLQ structure functions [17] and Peterson longitudinal
fragmentation function [18] for charmed quarkD(z) ∝ z−1(1− 1

z − εP
1−z )

−2. The value of
the parameterεP was chosen to be 0.072 as obtained from the CHARM-II data [3].
25 The fit quality is slightly better (χ2/NDF = 1.24) if we exclude theµ−µ− data.
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Fig. 2. Kinematical distributions ofµ+µ− events (solid histograms are the data and dashed
histograms are the Monte Carlo predictions): (a)µ− momentum; (b)µ+ momentum; (c)
the angle betweenµ− andµ+.

sample (≈ 10 000 events) is comparable to the data sample and not larger as the
simulation procedure is very CPU time consuming. However, it is suitable for our
goals which do not include a detailed study of single charm production. The ob-
served average visible energy in the dimuon events,〈Evis

ν 〉 ≈ 85 GeV, corresponds
to a total energy of about 100 GeV, i.e. twice the average energy of CC events.
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To reduce the background an upper cut on the shower energy was applied.µ+µ−

invariant-mass distributions were analysed at different limits onEvis
sh . A structure

appears in theJ/ψ mass region atEvis
sh ≤ 15 GeV. The excess of events in this

region is clearly seen with the cut on the shower energy varying between 14 and
10 GeV. It is gradually reduced by further tightening the cut and vanishes atEvis

sh ≤
5 GeV. This is qualitatively in accordance with theoretical expectations [8] of a
small diffractive26 part of the directJ/ψ production cross-section [8]. It should be
noted that the cutEvis

sh ≤ 5 GeV could reject a significant fraction of events with
J/ψ produced via cascade decays of excited charmonium states,χc1, χc2 → γJ/ψ
andψ′ → π+π−J/ψ, as photons and pions are expected to be in the energy range
of several GeV.

Figure 3b shows the excess observed forEvis
sh ≤ 10 GeV.27 The invariant-mass

distribution of muon pairs in allµ+µ− events (Fig. 3a, solid histogram) was used
as a background shape to the spectrum. In total, 1265 events survived the cut. To
improve the signal-to-background ratio we applied the selectionpµ+ ≥ pµ− . This
muon momentum ‘asymmetry’ cut suppresses the background by a factor of about
five as, on average,µ+ is much softer thanµ− (Fig. 2), whereas inJ/ψ decays
pµ+ ≈ pµ−. The resulting invariant-mass distribution is shown in Fig. 3c. In total,
226 events survived the cut. In the signal region between 2.75 and 3.75 GeV there
are 62 events. Again, the spectrum of allµ+µ− events was used as a background
shape, with a small correction to account for the observed excess in theJ/ψ region.
It was normalized in the interval between 0 and 6 GeV, excluding the signal region.
The fit givesχ2/NDF = 19.6/19. The backgroundB is 42.5± 7.3 events. The er-
ror ∆Bstat includes both statistical fluctuation (

√
B) and normalization uncertainty

(8%) added in quadrature. The excessS above the background is 19.5± 8.6(stat)
events. To evaluate the systematical error due to the background shape variation
caused byEvis

sh ≤ 10 GeV andpµ+ ≥ pµ− cuts, we performed a particle-level MC
study using about 500 000 simulated dimuon events and a simplified description
of the muon spectrometer. Our kinematical cuts and the procedure of background
normalization and subtraction were applied to these simulated events. The average
systematical uncertainty of the number of background events in the signal region
was found to be 4.5%. This corresponds to 1.9 events for our data sample.

Table 1 shows how the excessS, the backgroundB and its statistical error∆Bstat

depend on the upper cut on the shower energyEvis
sh . It was checked with the binned

likelihood method [21] that the normalization procedure produced unbiased esti-
mates ofS andB with all upper cuts onEvis

sh listed in Table 1.

26 We follow the conventional terminology, applying the term ‘diffractive’ only to the VDM
process (Fig. 1b). In our case this corresponds toa fewGeV ofEvis

sh (z ≈ EJ/ψ/(EJ/ψ +
Evis

sh ) ≥ 0.9), while in Ref. [6] the same term is applied for events surviving the cutEvis
sh ≤

10 GeV.
27 CDHS reported evidence forJ/ψ production by neutrinos via neutral currents at the
same upper cut on the shower energy [6].
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Fig. 3. The invariant-mass distributions forµ+µ− events: (a) all selected events (solid his-
togram is the data and dashed histogram is the sum of the Monte Carlo prediction and the
µ−µ− data). Theµ−µ− data alone is also shown (dotted histogram); (b) events with cut
Evis

sh ≤ 10 GeV (solid histogram is the data and dashed histogram is the prediction for a
background shape based on overall dimuon events); (c) events with cutsEvis

sh ≤ 10 GeV
andpµ+ ≥ pµ− (solid histogram is the data and dashed histogram is the prediction for a
background shape based on overall dimuon events).
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Table 1
Excess and background in the signal region at different upper cuts onEvis

sh (GeV).

Evis
sh ≤ 5 6 7 8 9 10 11 12 13 14 15

S 1.0 8.6 7.2 8.7 9.7 19.5 24.8 24.0 21.8 23.6 23.4

B 8.0 12.4 18.8 25.3 34.3 42.5 52.2 63.0 77.2 88.4 99.6

∆Bstat 3.2 4.0 4.9 5.7 6.6 7.3 8.1 8.9 9.9 10.6 11.2

The observed excess has to be corrected for finite invariant-mass resolution. The
MC predicts the resolution of 0.41± 0.02 GeV atJ/ψ mass. Our choice of the
signal region was based on the MC optimization of the signal-to-background ratio
for the given background shape. The correction factor of 1.44 has been applied to
account for the signal tails outside of the signal region. The resulting total signal,
thus, amounts toNJ/ψ

obs = 28.1± 12.3(stat)± 2.7(syst) events, with the cutsEvis
sh ≤

10 GeV andpµ+ ≥ pµ− .

4 J/ψ production cross-section

About one million CC events recorded in the calorimeter were used to normalize
the neutrino flux by counting the number of events in bins of different energy and
correcting for experimental effects. The total flux corresponds to more than 15 mil-
lion physical CC events withEν ≥ 20 GeV in the fiducial volume.

To calculate the cross-section ofJ/ψ production in weak NC interactions, we use
the following expression for the number of observed events:

N
J/ψ
obs =

∫
Nf.v.Bσ

J/ψ(Eν)ε(Eν)φν(Eν)dEν

=
B

σCC
0

〈σJ/ψ〉
∫
ε(Eν)

NCC(Eν)

Eν
dEν , (1)

whereNf.v. is the total number of nucleons in the fiducial volume,B = Br(J/ψ →
µ+µ−) = 0.06 [20], σCC

0 = 0.677 × 10−38 cm2 GeV−1 [1] is defined from the
world-average totalν CC cross-section on an isoscalar target (σCC

total = σCC
0 Eν),

〈σJ/ψ〉 is theJ/ψ cross-section per nucleon averaged over the effective beam spec-
trum in the range of 20≤ Eν ≤ 200 GeV,ε(Eν) is the globalJ/ψ detection
efficiency,φν(Eν) is the time-integrated total neutrino flux, andNCC(Eν) is the
time-integrated spectral density of physical CC events on an average nucleon [22].

The global efficiency consists of four factors:ε = εdetεrecεtrigεcut. The detector ef-
ficiency,εdet, is defined asεdet = εCHORUS(1− εdead) ≈ 0.87, whereεCHORUS ≈
0.92 is the average CHORUS data collection efficiency [13], andεdead ≈ 0.054
is the average dead time during data-taking [23]. The reconstruction efficiency for
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µ+µ− events in the spectrometer,εrec ≈ 0.95± 0.03 [24], was evaluated by means
of scanning by eye the subsample of theµ+µ− MC events [19]. The efficiency of
the dimuon trigger,εtrig ≈ 0.80± 0.11 [24], was estimated with the MC. The en-
ergy dependence of the efficiency of the kinematical cuts,εcut(Eν), was calculated
using the kinematics of directJ/ψ production and decay in the framework of the Z-
gluon fusion model. The differential cross-section for the process,d2σJ/ψ/dQ2dν,
was taken from [8a].28 The parametrization of the spectrometer muon momentum
resolution from Ref. [10] was used. The smearing of the angle between muons due
to multiple scattering in the calorimeter was also taken into account. The calcu-
latedεcut(Eν) is shown in Fig. 4a. The global efficiency was further folded with the
neutrino beam spectrum (Fig. 4b). The average value ofε is about 0.18.

From formula (1) the theoretical expectation [8] of directJ/ψ production in the
framework of the Z-gluon fusion model is 8.0± 1.5 events. The main uncertainty
comes from the efficiency calculation (∼ 15%). Other sources give∼ 10% contri-
bution. The theoretical uncertainties are very difficult to calculate reliably and are
not taken into account. A higher experimental rate (28.1± 12.3± 2.7 events) sug-
gests a sizeable contribution of excited charmonium states. We recall that it may be
about as large as the directJ/ψ production cross-section (see Refs. [8,9]).

The experimental spectrum-averaged cross-section calculated with formula (1) is
〈σJ/ψ〉 = (6.3± 3.0)×10−41 cm2/nucleon. The error includes both statistical and
systematical uncertainties added in quadrature. The CDHS result [6] is (5.4± 1.9)
×10−41 cm2/nucleon 29 . It should be mentioned that CHORUS and CDHS were
using different wide-band beams, with slightly different energy spectra and com-
positions. Although we do not expect large nuclear effects, we note that the CDHS
experiment used an iron target, while CHORUS used a lead target.

In conclusion, the rare process ofJ/ψ production via neutrino neutral-current inter-
action has been observed. The measured cross-section is in agreement with the pre-
vious CDHS result [6]. The diffraction mechanism is unlikely to play an important
rôle in the directJ/ψ production process. A contribution of excited charmonium
states decaying toJ/ψ could be as large as the directJ/ψ production process, in
qualitative agreement with theoretical expectations. Therefore neutral-current cou-
pling to charmed quarks cannot be extracted with sufficient precision.

28 The main term in this expression is the virtual photoproduction cross-section which was
chosen in the formσ(ν,Q2) = (1 + Q2/M2

J/ψ)−2A exp(−B/(ν − C)) [25], with pa-
rametersA = 20 nb,B = 45 GeV andC = 6 GeV [26] tuned toJ/ψ muoproduction
data.
29 CDHS cross-section was rescaled from the published value of (4.2 ± 1.5) ×
10−41 cm2/nucleon as the measuredJ/ψ branching ratio to muon pairs has changed from
0.07 to 0.06 andσCC

0 has increased from 0.62 [27] to0.677× 10−38 cm2 GeV−1 [1] since
1982.
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Fig. 4. (a) The efficiency of the kinematical cuts for directJ/ψ production as a func-
tion of Eν (histogram). The neutrino spectrum is also shown (dotted curve). (b) The ef-
ficiency-weighted (‘effective’) neutrino spectrum.
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