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Dynamics of Symmetry Breaking and Tachyonic Preheating
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We reconsider the old problem of the dynamics of spontaneous symmetry breaking (SSB) using 3D
lattice simulations. We develop a theory of tachyonic preheating, which occurs due to the spinodal
instability of the scalar field. Tachyonic preheating is so efficient that SSB typically completes within a
single oscillation as the field rolls towards the minimum of its effective potential. We show that, contrary
to previous expectations, preheating in hybrid inflation is typically tachyonic. Our results may also be
relevant for the theory of the formation of topological defects and of disoriented chiral condensates in
heavy ion collisions.
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Spontaneous symmetry breaking (SSB) is a basic
feature of all realistic theories of elementary particles.
In the simplest models, SSB appears because of the
presence of tachyonic mass terms such as 2m2f2�2 in
the effective potential. This results in tachyonic insta-
bility: long wavelength quantum fluctuations fk of the
field f with momenta k , m grow exponentially, fk �
exp�t

p
m2 2 k2 �, which leads to SSB.

This process may occur gradually, as in the theory of
second order phase transitions, when the parameter m2

slowly changes from positive to negative and the degree of
symmetry breaking gradually increases in time [1]. Some-
times the symmetry breaking occurs discontinuously, due
to a first order phase transition [1]. But there is also an-
other possibility, which we will study in this paper: The
tachyonic mass term may appear suddenly, on a time scale
that is much shorter than the time required for symmetry
breaking to occur. This may happen, for example, when
the hot plasma created by heavy ion collisions in a “little
big bang” suddenly cools down [2]. A more important ap-
plication from the point of view of cosmology is the pro-
cess of preheating in the hybrid inflation scenario [3,4],
where inflation ends in a “waterfall” regime triggered by
tachyonic instability.

During the last few years we have learned that particle
production by an oscillating scalar field may occur within
a dozen oscillations due to the nonperturbative process
called preheating [5]. Usually preheating is associated with
broad parametric resonance in the presence of a coherently
oscillating inflaton field [5], but other mechanisms are also
possible; see, e.g., [6].

In this paper we will concentrate on what we call
tachyonic preheating, which occurs due to tachyonic
(spinodal) instabilities in the field responsible for the
symmetry breaking. The process of symmetry breaking
has been studied before by advanced methods of perturba-
tion theory; see, e.g., [7] and references therein. However,
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SSB is a strongly nonlinear and nonperturbative effect.
It usually leads to the production of particles with large
occupation numbers inversely proportional to the coupling
constants. As a result the perturbative description, in-
cluding the Hartree and 1�N approximations, has limited
applicability. It does not properly describe rescattering
of created particles and other important features such as
production of topological defects.

For further theoretical understanding of the issue one
should go beyond perturbation theory. Fortunately, during
the last few years new methods of lattice simulations have
been developed. They are based on the observation that
quantum states of Bose fields with large occupation num-
bers can be interpreted as classical waves and their dynam-
ics can be analyzed by solving relativistic wave equations
on a lattice in �1 1 1� dimensions [8] and in �3 1 1� di-
mensions [9]. In our paper we will for the first time apply
the methods of Ref. [9] to the investigation of SSB and
tachyonic preheating in �3 1 1� dimensions.

We will show that tachyonic preheating can be ex-
tremely efficient. In many models it leads to the transfer
of the initial potential energy density V �0� into the energy
of scalar particles within a single oscillation. Contrary
to standard expectations, the first stage of preheating in
hybrid inflation is typically tachyonic. Thus the stage of
oscillations of a homogeneous component of the scalar
fields driving hybrid inflation either does not exist at all
or ends after a single oscillation. A detailed description
of our results will be given elsewhere [10].

The simplest model of SSB is based on the theory with
the effective potential

V �f� �
l

4
�f2 2 y2�2 �

m4

4l
2

m2

2
f2 1

l

4
f4,

(1)

where l ø 1. V �f� has a minimum at f � 6y and a
maximum at f � 0 with curvature V 00 � 2m2.
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The development of tachyonic instability depends on the
initial conditions. We will assume that initially the sym-
metry is restored so that the field f does not have any
homogeneous component, i.e., �f� � 0. But then �f� re-
mains zero at all later stages, and for the investigation of
SSB one needs to find the spatial distribution of the field
f�x, t�. To avoid this complication, many authors assume
that there is a small but finite initial homogeneous back-
ground field f�t�, and even smaller quantum fluctuations
df�x, t� that grow on top of it. This approximation does
not describe the creation of topological defects, which, as
we will see, is not a small nonperturbative effect but an
important ingredient of the process.

For definiteness, we suppose that in the symmetric phase
f � 0 there are the usual quantum fluctuations of a mass-
less field with the mode functions �1�

p
2k �e2ikt1i �k�x . Then

at t � 0 we “turn on” the term 2m2f2�2 correspond-
ing to the negative mass squared 2m2. The modes with
k � j�kj , m grow exponentially. Their dispersion can be
estimated as

�df2� �
Z m

0

dk2

8p2
e2t

p
m22k2

�
e2mt�2mt 2 1� 1 1

16p2t2
.

(2)

To get a qualitative understanding of the process of SSB,
instead of many growing waves with momenta k , m con-
sider first a single sinusoidal wave df � D�t� coskx with
k � m and with initial amplitude � m

2p in one-dimensional
space. The amplitude of this wave grows exponentially
until it becomes O �y� � m�

p
l. This leads to the divi-

sion of the universe into domains of size O �m21� in which
the field changes from O �y� to O �2y�. The gradient en-
ergy density of domain walls separating areas with posi-
tive and negative f will be �k2df2 � O�m4�l�. This
energy is of the same order as the total initial potential
energy V �0� � m4�4l. This is one of the reasons why
any approximation based on perturbation theory and ig-
noring topological defect production cannot give a correct
description of the process of symmetry breaking.

Thus a substantial part of the false vacuum energy V �0�
is transferred to the gradient energy of the field f when
it rolls down to the minimum of V�f�. Because the ini-
tial state contains many quantum fluctuations with differ-
ent phases growing at a different rate, the resulting field
distribution is very complicated, so it cannot give all of its
gradient energy back and return to its initial state f � 0.
That is why SSB and the main stage of preheating in this
model may occur within a single oscillation of the field f.

The tachyonic growth of all fluctuations with k , m
continues until

p
�df2� reaches the value �y�2, since at

f � y�
p

3 the curvature of the effective potential van-
ishes and instead of tachyonic growth one has the usual
oscillations of all the modes. Equation (2) shows that this
happens within the time t� � 1

2m ln C
l , where C � 102.

The exponential growth of fluctuations up to that moment
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can be interpreted as the growth of the occupation number
of particles with k ø m. These occupation numbers at the
time t� grow up to nk � exp�2mt�� � O �102�l21 ¿ 1.
For small l the fluctuations with k ø m have very large
occupation numbers, and therefore they can be interpreted
as classical waves of the field f.

When the field rolls down to the minimum of its effec-
tive potential at f � y, its fluctuations scatter off each
other as classical waves. It is difficult to study this process
analytically, but one can do it using lattice simulations [9].
We performed our simulations on lattices with either 1283

and 2563 grid points. A detailed description of our calcu-
lations will be given in [10]; here we will present only our
main results.

Figure 1 illustrates the dynamics of symmetry break-
ing in the model (1) with a two-component scalar field
f � �f1 1 if2��

p
2. It shows the probability distribu-

tion P�fi, t�, which is the fraction of the volume contain-
ing the field f at a time t if at t � 0 one begins with a
probability distribution concentrated near f � 0, with the
quantum mechanical dispersion (2). After a single oscil-
lation this probability distribution stabilizes at jfj � y,
which corresponds to SSB. The standard approximation
representing the scalar field as a homogeneous background
field with small fluctuations does not work at any stage of
the process.

A detailed investigation of the spatial distribution of the
field f shows [10] that after the first oscillation the scalar
field can be represented as a collection of classical waves
oscillating near jfj � y with an amplitude smaller than
y�2. Thus SSB indeed occurs within a single oscillation
of the field distribution. A small but nonvanishing height
of the histogram in Fig. 1 at f � 0 is due to the presence

FIG. 1. The process of symmetry breaking in the model (1)
for a complex field f � �f1 1 if2��

p
2. The field distribution

falls down to the minimum of the effective potential at jfj � y
and experiences only small oscillations with rapidly decreasing
amplitude jDfj ø y. Time is given in units m21.
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of strings that have f � 0 in their cores. The process of
thermalization takes much longer than spontaneous sym-
metry breaking [11].

Similar results can be obtained not only in this basic
model of spontaneous symmetry breaking, but in other
models as well. In particular, computer simulations show
that SSB in the model

V � 2
l

3
yf3 1

l

4
f4 1

l

12
y4 (3)

also completes within one oscillation.
The tachyonic mass m2�f� � 22lyf 1 3lf2 in this

model vanishes at f � 0. However, Eq. (2) implies that
scalar field fluctuations with momentum �k have initial
amplitude �df2� � k2

8p2 . They enter a self-sustained
tachyonic regime if k2 , jm2

effj � 2ly
p

�df2� � lyk
2p ,

i.e., if k ,
ly

2p . The average initial amplitude of the
growing tachyonic fluctuations with momenta smaller
than ly

2p is dfrms � ly

4p2 . These fluctuations grow until the
amplitude of df becomes comparable to 2y�3, and the ef-
fective tachyonic mass vanishes. At that moment the field
can be represented as a collection of waves with dispersionp

�df2� � y, corresponding to coherent states of scalar
particles with occupation numbers nk � �4p2

l �2 ¿ 1.
Because of the nonlinear dependence of the tachyonic

mass on f, a description of this process is more involved
than in the theory (1). Even though the typical amplitude
of the fluctuations is given by dfrms, the speed of the
growth of the fluctuations increases considerably if the
initial amplitude is somewhat bigger than dfrms. Thus
even though the fluctuations with amplitude greater than
dfrms are exponentially suppressed, they grow faster and
may therefore have greater impact on the process than
the fluctuations with amplitude dfrms. Low probability
fluctuations with df ¿ dfrms correspond to peaks of the
initial Gaussian distribution of fluctuations of the field f.
Such peaks tend to be spherically symmetric [12]. As a
result, the whole process looks not like a uniform growth
of all modes, but more like bubble production (even though
there are no instantons in this model). The results of our
lattice simulations for this model are shown in Fig. 2. The
bubbles (high peaks of the field distribution) grow, change
shape, and interact with each other, rapidly dissipating the
vacuum energy V�0�.

These results have important implications for the theory
of reheating in the hybrid inflation scenario. The basic
form of the effective potential in this scenario is [3]

V �f,s� �
l

4
�s2 2 y2�2 1

g2

2
f2s2 1

1
2

m2f2.

(4)

The point where f � fc � M�g and s � 0 is a bifur-
cation point. Here M �

p
l y. The global minimum is

located at f � 0 and jsj � y. However, for f . fc

the squares of the effective masses of both fields m2
s �

g2f2 2 ly2 1 3ls2 and m2
f � m2 1 g2s2 are posi-
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FIG. 2. Growth of fluctuations of the field f in the cubic
model (3) on a two-dimensional slice of our 3D lattice.

tive and the potential has a valley at s � 0. Inflation in
this model occurs while the f field rolls slowly in this
valley towards the bifurcation point. When f reaches
fc, inflation ends and the fields rapidly roll towards the
global minimum at f � 0, jsj � y. If s is a real one-
component scalar, this may lead to the formation of do-
main walls. To avoid this problem, we assume that s is a
complex field. In this case symmetry breaking after infla-
tion produces cosmic strings instead of domain walls [3].

In realistic versions of this model the mass m and the
velocity �f of the field f after inflation are extremely small.
The fields fall down along a certain trajectory f�t�, s�t�
in such a way that initially this trajectory is absolutely
flat, then it rapidly falls down, and then it becomes flat
again near the minimum of V �f, s�. This implies that
the curvature of the effective potential along this curve is
initially negative. Therefore the fields should experience
tachyonic instability along the way.

The decay of the homogeneous inflaton field and pre-
heating in hybrid inflation were considered in [4,13]. Both
papers were focused on the possibility of parametric reso-
nance. However, in [4] it was also pointed out that for
g2 ¿ l the field s falls down only when the field f

reaches some point f ø fc. As a result, the motion of
the field s occurs just like the motion of the field f in
the theory (1). In this case one has a tachyonic instability
and the fields relax near the minimum of V �f, s� within
a single oscillation [4]. For all other relations between g2

and l the fields follow more complicated trajectories. One
could expect that the fields would in general experience
many oscillations [4,13].

We performed an investigation of preheating in hybrid
inflation in the model (4) with two scalar fields (one real
and one complex) and in SUSY-motivated F-term and
011601-3
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FIG. 3. The process of symmetry breaking in the hybrid in-
flation model (4) for g2 ø l. The field distribution moves
along the ellipse g2f2 1 ls2 � g2f2

c from the bifurcation
point f � fc �

p
l y�g, s � 0 towards the point f � 2fc ,

s � 0, bounces back, and finally relaxes at f � 0, s � y.

D-term inflation models with three complex fields. We
used methods similar to those that we applied in the previ-
ous section to the investigation of SSB, including 3D lattice
simulations. We found that efficient tachyonic preheating
is a generic feature of the hybrid inflation scenario, not
only for g2 ¿ l, but for g2 � l and g2 ø l as well. For
example, Fig. 3 shows the process of spontaneous symme-
try breaking in the theory (4) for g2 � 1024, l � 1022,
M � 1015 GeV. The fields relax near the minimum of the
effective potential within a single oscillation.

The theory of preheating in D-term inflation [14] is very
similar to the theory discussed above. In the case g2 � 2l

the effective potential (4) has the same features as the ef-
fective potential of SUSY-inspired F-term inflation [15].
In this scenario the fields f and s fall down along a simple
linear trajectory [13], so that instead of following each of
these fields one may consider a linear combination of them
and find the effective potential in this direction. This ef-
fective potential has exactly the same shape as our cubic
potential (3). Thus all our results for tachyonic preheating
in the theory (3) should be valid, with minor modifications,
for D-term and F-term inflation. We confirmed these con-
clusions with lattice simulations of the F-term and D-term
models.

Preheating in the noninflaton sector and the subsequent
development of equilibrium in hybrid models were consid-
ered in [11]. Light bosonic fields interacting with scalars
from the inflaton sector are dragged into the process of pre-
heating. Excitations of these fields rapidly acquire large
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occupation numbers and further evolve into equilibrium
together with the inflaton scalars.

From a more general point of view, the most impor-
tant application of our results is to the general theory of
spontaneous symmetry breaking. This theory constitutes
the basis of all models of weak, strong, and electromag-
netic interactions. The new methods developed during the
last few years in application to the theory of reheating af-
ter inflation have been applied in this paper to the theory
of spontaneous symmetry breaking. These methods have
for the first time allowed us not only to calculate corre-
lation functions and spectra of produced particles, but to
actually see the process of spontaneous symmetry breaking
and to reveal some of its rather unexpected features. We
will return to the discussion of this issue in an upcoming
publication [10].
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