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Abstract
This is the final report of the RD48 collaboration to be

given in this workshop series. The emphasis is on the
more practical aspects of the obtained results directly
relevant for LHC applications. The report is based on the
comprehensive survey given in the 1999 status report [1],
a recent conference report [2] and some latest experi-
mental results. Additional data have been reported in the
last ROSE workshop [3]. A compilation of all RD48 in-
ternal reports and a full publication list can be found on
the RD48 homepage [4].

The success of the Oxygen enrichment of FZ-silicon
as a highly powerful defect engineering technique and its
optimisation with various commercial manufacturers are
reported. The focus is on the changes of the effective
doping concentration (depletion voltage). The RD48
model for the dependence of radiation effects on fluence,
temperature and operational time is verified; projections
to operational scenarios for main LHC experiments dem-
onstrate vital benefits. Progress in the microscopic under-
standing of damage effects as well as the application of
defect kinetics models and device modelling for the pre-
diction of the macroscopic behaviour has also been
achieved but will not be covered in detail.

I. DEFECT ENGINEERED SILICON

The key idea of the RD48 strategy had been to im-
prove the radiation tolerance of silicon by defect engi-
neering, involving the deliberate addition of impurities to
the bulk material in order to affect the damage induced
formation of electrically active defects and thus control
macroscopic device parameters. As it is well known that
Oxygen and Carbon are capturing the primary radiation
induced vacancies and interstitials in the silicon lattice
these impurities were singled out as most promising for
an improved radiation tolerance.

Various types of silicon had been investigated in the
past, covering most of the accessible phase space as to
both impurities. In contrast to Carbon a considerably in-
creased Oxygen content proved to be highly beneficial.
Hence the efforts had concentrated on that and finally,
based on earlier experiments at BNL [5], a method had

been adopted consisting on a high temperature diffusion
of Oxygen through the silicon bulk, using the silicon-
oxide layer as supply source. In the following this method

will be referred to as DOFZ (Diffusion Oxygenated Float
Zone silicon).

Oxygen depth profiles obtained by different diffusion
scenarios are displayed in Fig.1, as measured by SIMS
[6]. The DOFZ technology proved to be feasible and cost
effective, as it can be readily incorporated in the normal
manufacturing process. The basic technical development
had been performed by ITE [7]. It was meanwhile suc-
cessfully transferred to possible Si-detector vendors for
LHC (SINTEF, CiS, STMicroelectronics and Micron [8-
11]). All these companies are members of the RD48 col-
laboration. More details of the DOFZ method may be
found in [1].

II. THE OXYGEN EFFECT

The following three main macroscopic effects are seen
in silicon detectors after energetic hadron irradiation:

� Change of the doping concentration with severe con-
sequences for the needed operating voltage.

� Fluence proportional increase in the leakage current,
caused by creation of recombination/generation cen-
tres.

� Deterioration of charge collection efficiency due to
charge carrier trapping with impact on the signal
height produced by mip’s.

The volume generated current has been shown to be of
universal nature, both as to the absolute value and an-
nealing properties as function of time after irradiation. If
normalised to the sensitive volume and to the 1 MeV-
neutron equivalent hadron fluence, the effect is independ-
ent of any material property and manufacturing process
used [12],[13]. However cooling to an operating tem-
perature of about –100C guarantees a sufficiently low
noise and dissipation power [14]. The trapping effect
looks also to be tolerable for ensuring the needed S/N ra-
tio for mip’s [15]. The first effect is the most severe, as

the operating voltage cannot be increased to very high
levels. The beneficial effect of oxygenation is clearly dis-
played in Fig.2. Here we have measured the combined
effect of successive irradiation and constant annealing
steps in between (4 min at 80 0C), which resemble the
yearly room temperature warm up periods during mainte-
nance in LHC experiments. Starting from the original n-
type material the effective donor concentration is reduced
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    Figure 1: Oxygen depth profile as measured by SIMS
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in the lower fluence range whereas the increasing genera-
tion of acceptor like defects leads eventually to type in-
version and an almost linear increase thereafter. The
measurements show clearly that the slope of that increase
depends largely on the Oxygen and Carbon concentration.
There is a factor of 3 gain in radiation hardness by high
[O] whereas high [C] leads to a worsening with respect to
standard silicon.

Unfortunately the gained improvement is only visible
after charged hadron irradiation (independent whether
produced by protons or pions) whereas for neutron in-
duced damage the DOFZ-effect leads only to benefits in
connection with low resistivity silicon [16].

It should be emphasised that the oxygenation tech-
nique does not have any adverse effect as to the normal
detector behaviour both regarding the bulk (diode char-
acteristic) and the surface related properties [17],[18].

III. MODELLING OF DAMAGE EFFECTS IN N
EFF

The measurements referred to in the previous section
have proved to be extremely useful in surveying different
material as to their respective radiation tolerance. How-
ever these tests reveal only one of the relevant parameters
in the change of Neff resp. the depletion voltage, namely
the behaviour at or around the minimum of the annealing
function. For a full modelling of what will be expected
during operational scenarios in the 10 years LHC period,
one has to measure the combined effect of damage and its
subsequent annealing in more detail. Such an approach
had been taken by several groups [19-21]. The experi-
ments are performed using a full set of test diodes irradi-
ated at room temperature with different fluences. An-
nealing experiments are carried out at constant elevated
temperature (e.g. +600C or 800C) in order to accelerate the
effect of long term annealing and thus compress the 10
years effect at LHC into a time span of only weeks.

The principal components seen by such measurements

are shown in Fig.3. With ∆Neff=Neff,0-Neff(Φ,t,T) being the
change between the initial doping concentration of the
base material and its value after irradiation with fluence
Φ and after annealing during t at temperature T, one can

readily decompose the complex function into a short term
annealing Na with time constant τa, a time independent
term NC (stable acceptor generation) and a long term or
“reverse” annealing NY with time constant τY. It should be
noted that only the time constants are depending on the
annealing temperature whereas the amplitudes are only
functions of the fluence. The analysis of all three compo-

nents as function of annealing temperature, annealing
time and fluence had then led to a description which is
referred to as the “Hamburg model” [19]. In Fig.4 exam-
ples are given for such annealing curves after proton irra-
diation up to 1×1015 p/cm2. The fits to the data are excel-
lent and thus the parameters extracted both for standard
(non oxygenated) and DOFZ (oxygenated) silicon diodes
are trusted to be reliable (see Fig.5). As was already obvi-
ous from Fig.2, the slope for the constant acceptor gen-
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eration gC is improved by more than a factor of 3 using O-
rich instead of standard silicon. Fig.6 shows an additional
and completely unexpected beneficial effect, as the am-
plitude for reverse annealing is not anymore increasing
proportionally to the fluence but strongly saturating. It is
important to notice that the temperature dependence is
governed by a single activation energy leading to an al-
most complete freezing of the reverse annealing during
the operational period [22]. The reverse annealing be-
comes however relevant during the annual maintenance
periods at room temperature. The saturating and delay
(Fig.6 left and right respectively) for O-rich silicon offers
therefore a substantial safety margin.

Using the parameters extracted from annealing ex-
periments with standard and O-rich silicon, the Hamburg

model had then been used for projections to full 10 years
LHC scenarios. Fig.7 gives an example for the ATLAS
pixel detector: B-layer, located at a radial distance of 4
cm and being subject to a total annual fluence of 3.5×1014

/cm² (1 MeV neutron equivalent, consisting of 85%
charged hadrons). For standard material the depletion
voltage is surpassing the tolerated operational voltage al-
ready after the 3rd LHC year whereas for the O-rich sili-
con the Pixel sensor may be really operable during the
whole LHC period. The difference between standard and
DOFZ silicon becomes even more pronounced if one
would have to increase the length of the maintenance pe-
riod from the foreseen scenario (3 days 200C and 2 weeks
170C) to larger times and higher temperatures.

Additional experiments had been performed, which
confirm the results given above (e.g. by the BNL group
[21], and include also irradiation under bias and at low
temperature (JSI-Ljubljana [20]).

IV. A CLOSER LOOK: CHARGE COLLECTION AND

DEPLETION VOLTAGE.
It has often been argued that the results described in

section III are primarily based on the measurements of the
depletion voltage using capacitance/voltage characteris-

tics, while what is really relevant for the LHC experi-
ments is the necessary operating voltage to ensure good
S/N ratio for mip’s. In a number of experiments we have
therefore compared the results obtained from C/V meas-
urements with those done by charge collection, illumi-
nating the diode either with ultrashort infrared laser
pulses or performing experiments with minimum ionising
electrons from a beta source [15],[23- 27].

As an example, Fig.8 shows the time-resolved current

pulses as function of bias voltage for an annealing step
equivalent to a 4 weeks maintenance period at RT [28].
The double-peaking seen most pronouncedly after such
short annealing time is well known and documents that
the detector can no longer be regarded as an asymmetric
junction but rather displays junctions at both the front and
the rear side. Correspondingly electric fields penetrate
into the bulk material upon reverse biasing from both
sides. For larger annealing times this behaviour disap-
pears. The accumulated charge within a certain time win-
dow can be plotted as function of the bias voltage ena-
bling an independent way of extracting the depletion volt-
age. The comparison of both CCE/V (charge collection
efficiency vs. voltage) and C/V (capacitance vs. voltage)
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results is given in Fig.9 revealing an excellent correspon-
dence of both methods. However due primarily to trap-
ping effects the operating voltage should always be larger



than the depletion voltage. The necessary overbias de-
pends on the fluence and state of annealing, but as rough
estimate a 100V safety margin should be added [29].

V. TRANSFER OF DOFZ TO MANUFACTURERS

As pointed out above, the DOFZ technology had
meanwhile been transferred to several manufacturing
companies. In this section examples are given for samples

from SINTEF, CiS and STMicroelectronics [8-10]. Fig.10
shows a survey of results for the reverse annealing effect
and its correlation to SIMS measurements on the same

wafers [30]. If measured in the full fluence range up to
1×1015p/cm² the decrease of NY/Φ for O-rich compared to
standard material becomes even more pronounced. A
saturation value for the most O-rich sample from STMi-
croelectronics of 9×1012/cm³, amounting to only 250 V
increase of depletion bias for a 200 µm thick pixel detec-
tor, is reached. This is even much better than assumed for
the simulation shown in Fig.7 and thus improve the life-
time of these components above present expectations.

Due to the differences in the individual processes for
the O-enrichment used by the involved companies there is
a certain variance in this saturation value, but compared
to the different average O-concentrations displayed in
Fig.11, the scatter is surprisingly small. An optimum
could very well be in the order of a 24h diffusion at

11500C, which can be readily performed by all compa-
nies. It is also evident from the comparison of Fig.10 and
11 that even the standard process leads to individual dif-
ferences in the Oxygen depth profile. While the lowest O-
concentration (ST-process) leads to an almost linear de-
pendence of NY on fluence, the substantially higher O-
values in the SINTEF standard process shows already
some saturation at higher fluences. It cannot be ruled out
that the inhomogeneous Oxygen concentration in the sili-
con bulk and its dependence on the individual process is
partly responsible for the variance seen in the radiation
hardness of diodes manufactured using a standard process
and it could also be partly responsible for the double
junction effect. It should be emphasised that the results
obtained here with DOFZ produced diodes have mean-
while been confirmed by test experiments with ATLAS
strip and pixel detectors [14],[31]. We have also verified,
that these results are fully reproduced in damage studies
with pion irradiation [30].

VI. A BRIEF LOOK ON THE N-P-PUZZLE

The collaboration had done extensive investigations
on the details of defect formation and kinetics during an-
nealing, see the last status report and publications cited
there [1]. One point illuminating the effect of O-
enrichment and the differences seen between neutron and
charged hadron irradiation is worth mentioning here. Note
that this difference is present after proper NIEL scaling
and hence in contradiction to the widely used assumption
that all bulk damage is strictly proportional to the non
ionising energy loss. Due to this contradiction we refer to
it often as the n-p-puzzle.

On a microscopic scale the damage produced by ener-
getic hadron irradiation is composed of the generation of

isolated point defects and a dense accumulation of dis-
placements generated at the end of primary recoil ranges,
usually referred to as defect clusters. The main difference
between MeV neutron damage and that produced by en-
ergetic protons or pions is then, that the total NIEL in n-
damage is governed predominantly by the production of
clusters, due to the average energetic recoil energies in
the primary hadronic interactions, whereas for charged
particles the additional Coulomb interaction leads to quite
low energy recoils. These are more likely to produce
point defects. In fact this notion had been verified by ex-
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periments (see [32]) and detailed simulations are under
way [33]. Present defect models attribute the O-effect es-
pecially to the point defects. Hence the observed radiation
hardening effect present in charged particle damage but
almost absent after neutron damage can be understood.

This is nicely confirmed by results from gamma irra-
diation, undertaken at BNL [34]. In this case the dis-
placement damage in the detector bulk is entirely due to
Coulomb interaction of electrons with silicon nuclei. The
average recoil energies are extremely low and thus the
damage is almost entirely due to point defects. Hence the
O-enrichment has an even larger effect than for hadron
irradiation (see Fig.12). For O-enriched diodes, irrespec-
tive of the initial doping concentration the depletion volt-
age stays practically constant over a wide dose range
whereas for standard devices one gets type inversion
similar as seen in hadron irradiation.

Although a lot is needed to understand the damage ef-
fects in the macroscopic detector behaviour on the basis
of the microscopic results in a fully quantitative way, it is
fair to say, that qualitatively this correlation has become
quite clear. The details of these investigations can be
found in [1,2].

VII. CONCLUSIONS

The main results obtained by the RD48 collaboration
are summarised as follows:

♦  For charged hadron irradiation the damage induced
changes of the effective doping concentration, directly
correlating with depletion voltage can be substantially
improved by the oxygenation. A hardening effect by a
factor of 3 was established for the annealing inde-
pendent term.

In addition the reverse annealing amplitude saturates
at high fluences, amounting to a reduction factor of up
to 3 for DOFZ diodes. The involved time constant is
at least larger by a factor of 2. Thus both effects pro-
vide a substantial safety margin for the effects to be
expected during the warm up maintenance periods.

♦  Though for MeV neutron irradiation a radiation hard-
ening effect equivalent to that established for charged
hadrons is absent, it had been verified that the use of
low resistivity silicon is beneficial.

♦  The Hamburg model for parameterisation of the dam-
age and annealing behaviour is verified also for O-
enriched silicon. Simulations for the full 10 years
LHC operational scenario have been done both for the
ATLAS pixel and microstrip layers. It has been shown
that even the pixel sensor for the B-layer, (at r = 4
cm), if produced with DOFZ silicon, will withstand
the full 10 year LHC operational period.

♦  The DOFZ technology has proven to be both techno-
logically feasible and cost effective. The transfer to
major European detector manufacturers had been suc-
cessful. Diodes produced this way show superior ra-
diation hardness, fully confirming results which had
been obtained by RD48 in earlier tests.

♦  Up to now the ATLAS pixel and part of the ATLAS
SCT group have decided to use the DOFZ technology.
Recently also BTeV (at FermiLab) has approved of
using the ATLAS pixel design including the DOFZ
technique for detector production.
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