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Abstract

A profile monitor is described that makes use of a low-intensity and low-energy
ion beam to measure the transverse profile of a dense proton beam of small di-
mensions. Three techniques are considered based on the use of ion beams having
a pencil, curtain, or cylindrical shape. The detector is almost non-interceptive for
the proton beam and does not introduce disturbances in the machine environment.
The theoretical aspects of the techniques used, together with experimental results
obtained at the CERN SPS and Linac, are presented.
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1 INTRODUCTION
The aim of this detector is to measure the transverse distribution of small-dimension,

high-density particle beams. The principle on which the detector is based has been re-
ported in Refs. [1]. It relies on the deflection of a low-energy, pencil-beam of ions passing
perpendicularly through a dense particle beam. In the present paper, the analysed (or
probed) beam consists of protons. The proof of principle was reported in Ref. [2a], after
experiments made on the CERN SPS beam, and in Ref. [2b].

In addition to the pencil-beam technique, two further methods are also considered.
They are based on the use of an ‘ion curtain’ [2a], [3] and on the ‘shadowing’ effect induced
by the analysed beam [2a], [4] on a cylindrical probe beam.

All three methods are practically non-interceptive and do not perturb the machine
environment, in particular the vacuum.

After a brief description of the principles, a summary of the set-up and of the mea-
surements made at the CERN SPS will be given. Though it was initially intended to
measure LHC-type beams, we shall also mention the possible use of such an ion ‘pro-
filometer’ on other machines.

2 DATA AND SYMBOLS
2.1 Data

q = 1.6 · 10−19 C, elementary charge;
ε0 = 8.854 · 10−12 F m−1, vacuum permittivity, (1/4πε0) = 8.987 ·109 F−1 m;
c = 2.997 · 108 m·s−1, velocity of light;
mp = 1.672 · 10−27 kg, proton mass.

2.2 Symbols used for the ion probe beam
Pencil-beam diameter: φi, intensity: Ii.
A, Z atomic mass and charge, mi = A ·mp, Q = Z · q, (Z =1 in the present case).
We mainly used argon (A = 40) or xenon (A = 129).
Nominal velocity v0 [m·s−1].
The ion gun is at potential Us such that the nominal kinetic energyEk = (1/2)mi v

2
0 =

QUs; for argon v0(Ek = 2 keV) = 9.8 ·104 m·s−1, v0(Ek = 5 keV) = 1.55 ·105 m·s−1.

2.3 Symbols used for the proton beam (A = 1, Z = 1)
β0 = vproton/c,
r.m.s. bunch length: ∆s [m], Lb ≡ ∆s ·

√
2π, σt ≡ Lb/β0c [s],

r.m.s. transverse dimensions: σx and σy [m], ∆r = [σ2
x + σ2

y ]
1/2.

For round beams σx = σy = σ ⇒ ∆r =
√

2 · σ,
nb: number of protons per bunch,
V0 ≡ (q/4πε0)(2nb/Lb) [V],
T [s] time interval between bunches.

2.4 SPS machine parameters
The SPS operated in fixed-target mode with the following parameters:

– total number of circulating protons: 1.8 ·1013–2.4 · 1013,
– number of bunches: 4200,
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– nb = 4.3 · 109–5.7 · 109; σt = 0.5 ns; T ∼= 5 ns,
– revolution frequency 44 kHz,
– momentum versus time p(t) = 14 + 0.1253(t – 1250) [GeV/c] where t [ms] refers to

the first injection,
– the monitor is installed at a location close to a wire-scanner where βh = 94.61 m,
βv = 22 m are the betatron functions, and Dh = 2.83 m the dispersion.

2.5 Important remarks
In the present paper the analysed beam will consist of protons. This is not essential

but will simplify the reading of the paper since any mention of ions will refer to the probe
beam while any mention of protons will refer to the probed beam.

All the simulations, are made for a proton beam whose horizontal r.m.s. dimension
and vertical r.m.s. dimension are equal to ∆r = 1 mm, and for a distance between the
proton beam and the collector of L = 0.4 m.

3 PRINCIPLE
The system of coordinates is defined in Fig. 1(a) whilst the detector principle is

described in Fig. 1(b).
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Fig. 1: (a) System of coordinates. (b) Symbols used and principle of the ion pencil-beam ‘pro-
filometer’.
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A low-energy (Us = 2–5 kV) ion beam is generated at: (x = −xi, y = y0 ¿ |xi|, z =
0) and moves with initial velocity ~vi = v0~ex perpendicular to the direction of the proton
beam. The proton beam itself, centred at (0,0,0) moves with velocity ~vproton = β0c~ez.

The proton beam is supposed to be very dense and has a transverse distribution
function with r.m.s. values σx and σy and a uniform longitudinal distribution over Lb.
For simplicity we suppose a round Gaussian beam so that the normalized transverse
distribution is given by:

n⊥(r) =
2

2π∆2
r

exp
(
− r2

∆2
r

)
, r = (x2 + y2)1/2 . (1)

The restriction to a Gaussian distribution and to a round beam is not essential;
in Ref. [2] it is clearly demonstrated that the statements hereafter still remain valid for
other realistic proton distributions. This has also been shown in later papers (Refs. [1b]
and [1c]).

The protons are supposed to be relativistic (β0
∼= 1) so that the electric space-

charge field of the proton bunch is mainly radial ~Er = Er~er. The relativistic condition is
not absolutely necessary [2] but will be considered as being fulfilled in this paper except
where mentioned.

On its way from −xi to xf , where the collector is placed, an ion will be deflected
by an angle θ as a result of the transverse proton space-charge electric field ~Er. For each
‘impact parameter’ y0 the ion collector in the observer plane (x = xf = L, defined by ~ey
and ~ez) will record a spot at Y = Y0 = y0 +Lθ(y0), when the proton beam is ON, and at
Y = y0 when the proton beam is OFF. Then the deflection angle θ(y0) can be obtained
by:

tg θ(y0) ∼= θ(y0) =
Y0 − y0

L
.

3.1 Case 1
We suppose here that the ion velocity v0 and the bunch length Lb are such that

the ion interacts only once with the bunch on its way from the gun to the detector.
Considering that the proton beam electric field effective range is ±5 ·∆r around the Oz
axis, this condition can be expressed as follows:

10 ·∆r

v0

≤ σt , (condition 1) .

Condition 1 is of course fulfilled for unbunched proton beams.
It has been shown ([1], [2] and Appendix A) that, in the case of a Gaussian beam,

with minor simplifications the deviation angle θ can be expressed by:

θ(y0) =
QV0

2E
π · erf

(
y0

∆r

)
= θmaxerf

(
y0

∆r

)
, (2a)

with

θmax ≡
QV0

2Ek

π [rad] , (2b)
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and

the error function erf(u) ≡ 2√
π

∫ u

0
e−ξ

2

dξ ,

some properties of the error function are:

erf(∞) = 1, erf(0) = 0, erf(x) = −erf(−x) . (2c)

In the case of an unbunched beam the parameter V0 ≡ (q/4πε0) (2nb/Lb)[V], used
for θmax, has to be revised, namely, nb has to be replaced by the number of circulating
protons and Lb by the machine circumference.

By differentiation of Eq. (2a)

dθ(y0)

dy0

=
2θmax√
π∆r

exp

(
− y

2
0

∆2
r

)
, (2d)

and so the proton beam transverse r.m.s. dimension

∆r =
2θmax√
π

1
dθ
dy0
|y0
∼=0

(2e)

is evaluated.

3.2 Case 2
In the case where condition 1 is not fulfilled, i.e. (10 · ∆r/v0) À σt, the ion will

receive small kicks at each passage of a bunch, of duration σt, and will not be subject to
an electric force (straight line trajectory) during the time interval between two bunches
which is about T − σt. The trajectory is more complicated. A rough approximation can,
however, be obtained by simply replacing in Eqs. (2a) and (2b)

V0 ≡
q

4πε0

2nb

Lb

by

V ′0 ≡
q

4πε0

2nb

Lb

· σt

T
.

Numerical values: With the data taken from the SPS (Section 2.4), and Ek = 2 keV, we
obtain V0 = 173 V, θmax = 75 mrad [from Eq. (2b)] and θmax

σt
T

= 7.5 mrad.
Figure 2(a) represents a simulation of θ(y), Eq. (2a), and of its derivative equivalent

to Eq. (2d). On Fig. 2(b) we represent the influence of ∆r and that of the proton beam
position on the deflection angle measurement. Once Eq. (2d) is evaluated, a normalization
is applied, namely (

1

2θmax

)
·dθ(y0)

dy0

=
1√
π∆r

exp

(
− y

2
0

∆2
r

)
which is equivalent to Eq. (1) and therefore represents the distribution that we intend to
retrieve from our measurements. It is then straightforward to retrieve ∆r from Eq. (2e).
From the curves one can observe that θ(y) is about linear around y = 0 and that θ(|y| ≥
∆r) ∼= θmax. This asymptotic behaviour is an important characteristic of the detector since
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it implies that the deflecting angle reaches its maximum when the impact parameter is
about equal to the proton-beam transverse r.m.s. dimension.
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Fig. 2: Simulations of the deflection angle. (a) Plot of the deflection angle θ(y) = θmax erf(y/∆r)
[Eq. (2a)] for ∆r = 10−3 m and θmax = 5 · 10−3 rad. The dotted curve named ‘line (y,∆r)’ is a
linearization of θ(y) by straight lines; it appears that the maximum deflection angle occurs for
y ∼= ∆r. A plot of dθ(y)/dy, multiplied by an arbitrary factor is also given so as to show that
the initial Gaussian distribution [equivalent to Eq. (1)] is retrieved in such a way. (b) Plot of
θ(y,∆r), θ(y,∆r/2), θ(y − 5 · 10−4 m,∆r) to illustrate the influence of the proton-beam r.m.s.
dimension and position on the deflection angle measurement.

Remarks
– In practice, instead of a single ion, one uses an ion pencil-beam of small diameter φi

and small intensity Ii. The collector is aimed then to measure the centre of gravity
of the impinging pencil beam.

– For a given ion kinetic energy Ek and ion charge, the maximum deviation angle
given by Eq. (2b) is independent of the ion mass. The angle θmax is proportional to
the number of protons per bunch nb.
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– As complementary information, this monitor will also provide the proton-beam
position ycg where the ion is not deflected [θ(ycg) = 0 rad].

– In the case where condition 1 is not fulfilled, a modulation of the deflection angle
with time occurs [2] since the ion will sense no electric field during the time interval
between two consecutive bunches. This effect is quite small and even negligible in the
present case where we use a heavy probe ion (Ag+ or Xe+) moving at relatively small
velocity. A detailed simulation program has been developed [2]. It includes all the
beam parameters, namely the proton-beam longitudinal and transverse distribution
and the deviation angle modulation effect due to the proton-beam bunching factor.
This simulation code, which also includes the detector environment (such as the
vacuum pipe dimensions, etc.), is a good tool for interpreting and analysing our
experimental results.

3.3 More on data treatment
Having measured θ(y0), where y0 takes its values over a significant interval around

the proton beam (at least −∆r ≤ y0 ≤ ∆r), one can deduce θmax and dθ(y0)/dy0 [Eq. (2d)].
The latter equation [equivalent to Eq. (1)] represents the density distribution in the proton
bunch in the y direction. The radial r.m.s. value ∆r can then be obtained from Eq. (2e).
However, in some cases this method of data treatment might not be very precise, because
some errors are induced by the numerical derivation of θ(y0). It is then employed only for
rough estimates, and more elaborate numerical smoothing techniques are needed.

In some cases, considering a Gaussian beam distribution, after having measured the
deviation angle θ as a function of y0 (or y), we proceed with the ‘error-function fit’ (erf
fit) on the measured data. In other words, we make use of an expression like Eq. (2a)
which almost fits the measured data. An error function is available on most processors.
The fit gives the most probable value of ∆r. One then computes ∂θfit/∂y0 so as to trace
the bunch distribution in the y direction.

4 THE DIFFERENT COLLECTOR TYPES
The aim of the collector is to measure the impinging ion-beam position (or more

precisely its centre of gravity), equal to y0 when the proton beam is OFF, and to Y0 when
the beam is ON.

The ion current intensity is rather small (a fraction of nA) such that in some cases
the use of Micro-Channel Plates (MCPs), which convert the incoming ions into electrons,
might become necessary. The MCP gain can be of the order of 104.

We have used three different position detectors with and without MCPs:
a) Equally spaced metallic microstrips. Up to 32 strips, spaced at 1.5 mm, were used.

The current collected by each strip is integrated before being processed. The scan-
ning time through the proton beam can be as low as 1 ms.

b) A resistive plate with adequate time constant. An integrator is placed at each end,
A and B, of the plate. The ratio D/S = (A − B)/(A + B) is proportional to the
centre of charges (or centre of gravity) of the impinging beam. The overall scanning
time can be of the order of 0.1 ms.

c) A luminescent screen viewed by a CCD camera. The image is processed every 20
(or 40) ms so as to determine the ion-beam position (or more precisely its centre of
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gravity) or, as we shall see in Section 9, the ion density distribution. There is also
the possibility of sampling the probe beam within a very short time (about 1 µs);
in this case the measurement duration is 1 µs, though the image processing time
can be much longer.
In the case of a stored or stable proton beam it is easy to proceed with averaging

and/or filtering. Therefore, in the case of a stored beam, at fixed energy and intensity,
one can also foresee the monitor being as a ‘watch-dog’ continuously measuring the max-
imum deviation angle; in other words, the variation of the transverse r.m.s. proton beam
dimension with time.

5 ION SOURCE MAIN PARAMETERS
The ion source (gun + associated optics) plays an important role; and is an indus-

trial product with significant modifications implemented by us.
The source can provide not only a pencil beam but can also be arranged so as to

deliver an ion curtain or a wide cylindrical beam. In this Section we shall nevertheless
limit our analysis to the pencil-beam source.

It is evident that the source must be a) as intense as possible in order to obtain
good accuracy from the collector; b) have small diameter φi, a fraction of ∆r; and c) have
a small divergence, a fraction of θmax.

Measurements showed [2] that, 15 mm after the gun output, the emittance of a Ek

= 2 keV ion beam is 5.5 mm·mrad for an ion current Ii = 50 nA (and 4 mm·mrad when
Ek = 5 keV).

After the ion gun (at potential Us such that Ek = Q·Us) the ion beam passes through
a drift tube. At the drift tube output the ion beam is focused by an ‘Einzel lens’ and
then collimated. The collimator system consists of slits restricting the beam dimension
and angle in the plane of interest. At the collimator output the beam is deflected by
electrically charged plates so that it crosses the proton beam at an angle. A future version
of the ion source foresees a parallel displacement to vary the impact parameter y0.

We require a beam with diameter φi = 0.2 mm and divergence 1.0 mrad in the
plane of interest. In such a case the current is reduced down to about 1 nA by the slits
acting as collimators. Such a current, collected on one strip of the detector, will result in a
voltage of 20 mV when integrated during 1 ms by a 50 pF capacitance. Such a signal can
be accurately processed. More collimated beams and therefore more reduced intensities
require the use of an MCP acting as amplifier.

On its way from the source to the collector, at distance Lx, the ion pencil-beam
of radius ri = φi/2 will naturally expand as a consequence of its own transverse electric
field. For a uniformly distributed round ion beam the increase in radius is about

∆ri
=

Q

mi

1

4πε0

Ii

v3
0

L2
x

ri

(3)

which for argon, Ii = 1 nA, ri = 0.1 mm, Ek = 2 keV, Lx =1 m, gives ∆ri
= 0.23 mm,

which is just acceptable. In practice ∆ri
is smaller since the ion beam is collimated in one

direction only, namely along ~ey and is rather wide along the ~ez direction. In the case of such
a rectangular-shaped beam of height φi and width di

∼= 1 cm, ri must be replaced by di in
Eq. (3). The space-charge potential ∆Us between the centre and the edge of the ion beam
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will induce a corresponding difference in kinetic energy and therefore different deflection
angles. Since for a round beam ∆Us = 30 · Ii · c/v0, the change of deflection angle can be
expressed as follows: ∣∣∣∣∣∆θmax

θmax

∣∣∣∣∣= ∆Ek

Ek

=
∆Us

Us

=
30 · Ii · c
v0.Us

.

For Us = 2 kV and Ii = 1 nA this ratio is very small.
It is evident that higher intensity and lower emittance sources are welcome and

under investigation.

6 CHOICE OF THE PROBE PARTICLE TYPE
Up to now we have considered heavy ions to be used as probe particles. One might of

course consider instead the use of an electron pencil-beam (velocity: ve, mass: me) whose
production is easier. In such a case the effect of the proton-beam azimuthal magnetic field
~Bϕ (with | ~Bϕ| = β0

c
|Er|) has to be taken into account.

For an ion with velocity v0 the ratio of the electric force Fe(r) to the magnetic force
Fb(r), at a given radius r, is: ∣∣∣∣∣Fe(r)

Fb(r)

∣∣∣∣∣= 1

β

c

v0

. (4)

Considering the same maximum deviation angle θmax, for both ion and electron
beams, the electron velocity will be ve = v0 · (A ·mp/me)

1/2 À v0 and so:∣∣∣∣∣Fe(r)

Fb(r)

∣∣∣∣∣
electrons

≤ 1

44 ·
√
A

∣∣∣∣∣Fe(r)

Fb(r)

∣∣∣∣∣
ion

.

Compared with those of ions, the electron trajectories are significantly influenced
by the proton beam self-magnetic field. In other words, the electron global trajectory is
not straightforward and the measurement of θ(y0) is rather difficult. Examples are given
in Ref. [2].

Furthermore, the deflection angle modulation, resulting from the ratio
σt/T < 1 will be enhanced due to the higher velocity of the electron. Indeed the electron
will move over a longer distance between two bunches where it is subject to no transverse
electric field.

This is why a heavy-ion source (up to xenon) has been used instead of an electron
gun.

7 PROFILE MEASUREMENT USING AN ION PENCIL-BEAM
7.1 Principle

The detector is essentially based on the principle explained in Section 3. A detailed
description of the detector and of the measurements on the CERN SPS machine are given
in Ref. [2] from which we extract the essential parts.

The principle is shown in Fig. 3(a) and is self-explanatory. It must be noticed,
however, that in order to simplify the hardware, the ion beam does not cross the pro-
ton beam perpendicularly [~vi = vix~ex + viy~ey, with viy 6= 0, see Fig. 1(a)] but at an angle
ϕ determined by the deflecting plates. This is illustrated by Fig. 3(b). In the future we shall
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Fig. 3: Ion pencil-beam technique. (a) Experimental set-up as implemented on the SPS ma-
chine. The ion beam coming out of the gun is post-accelerated and focused by an ‘Einzel lens’.
The ion, electrically deviated by plates, passes through the probed proton beam, where it is
deflected and finally reaches the collector. All dimensions are in millimetres. (b) Details of 3(a)
where it is shown that in the present set-up the ion beam is not perpendicular to the proton
beam but has a small incident angle.

improve our optical system in order to render the ion beam completely parallel to (xi, xf)
and therefore reduce the velocity component viy as much as possible. Nevertheless, since
in our experiment L1 and L are much larger than the analysed beam size, this effect is
negligible.

The collector consists of 32 strips of 1 mm width, spaced at 1.5 mm. The detector
can be isolated completely from the machine by two vacuum valves. Vacuum pumps ensure
that practically no pressure increment is recorded on the machine.
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7.2 Determination of the deflection angle
The computation will depend on whether the ion pencil-beam has a velocity com-

ponent viy equal to zero or not.

7.2.1 The ion beam has no component viy prior to its interaction with the proton beam
In such a case ~vi = vix~ex. The ordinate Y is determined by:

Y = y + L · θ(y) ≡ g(y) or y = g−1(Y ) , (5)

and
dY (y)

dy
= 1 + L · dθ(y)

dy
=

dg(y)

dy
, or

dy(Y )

dY
=

d(g−1(Y ))

dY
=

1

g′(Y )
. (6)

7.2.2 The ion beam has a component viy prior to its interaction with the proton beam
In the case of a beam having a velocity component along ~ey i.e ~vi = vix~ex +

viy~ey, (with viy ¿ vix), we set ϕ(y) ∼= tg (ϕ(y)) = viy(y)/vix(y). Then

Y = y + L · (θ(y) + ϕ(y)) ≡ g1(y) or y = g−1
1 (Y ) , (7)

and

dY (y)

dy
= 1 + L ·

(
dθ(y)

dy
+

dφ(y)

dy

)
=

dg1(y)

dy
, or

dy(Y )

dY
=

d(g−1
1 (Y )

dY
=

1

g1
′(Y )

. (8)

The ordinate Y is determined, in practice, by measuring the deflected ion beam’s
centre of charge or centre of gravity. From this measurement we determine the deflection
angle using Eq. (5) or Eq. (7):

θ(y) =
Y − y
L

or θ(y) =

(
Y − y
L

)
−ϕ(y) , (9)

where y and ϕ(y) are measured when the proton beam is OFF and L is well determined
[Fig. (3b)].

7.3 Measurements made on the SPS machine
The ion beam had a diameter of φi = 0.2 mm and an intensity of a few nA. The

beam was displaced by changing the voltage on the plates. Measurements were made in
the horizontal plane.

A first measurement aimed to prove the validity of the principle. The impact param-
eter y0 is scanned every SPS cycle and the pencil-beam signal is integrated over 1 second.
The measurement of the deflection angle θ as a function of y0 is given by Fig. 4(a). The
maximum deflection angle θmax

∼= 12.5 mrad is about that expected from numerical sim-
ulations since in the present case: nb = 9 · 109 (see subsection 3.2). Considering some
fluctuation in the r.m.s. transverse dimension and in the position from cycle to cycle, the
results are plausible. The integration time of 1 s averages out the proton r.m.s. dimension
∆r which varies during the SPS acceleration ramp.
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Fig. 4: Measurements made on the SPS in the horizontal plane, using the ion pencil-beam
method. (a) Rough measurement of the deflection angle θ(y0). The collector consists of metallic
strips spaced at 1.5 mm. (b) r.m.s. size (upper 4 curves) and position (lower 4 curves) measured
along the SPS acceleration ramp with the ion profilometer (ID), the wire scanner (WS), and the
beam-position pick-up (PU).

A second, more global measurement was intended to measure the r.m.s. size at
different instants during the SPS acceleration cycle. The integration time was 200 ms.
The r.m.s. ∆r(t) was obtained by differentiating the angle of deviation θ(y0) as given by
Eq. (2e) (and therefore not applying an erf fit as explained in subsection 3.1). At the same
instants we measured the proton-beam profile with a wire scanner, and its position with
a standard pick-up. Three sets of measurements were made. The comparative results are
shown in Fig. 4(b). The measurements are very similar. The r.m.s. beam size measured
with the ion pencil-beam appears to be larger than that obtained with the wire scanner.
As far as the proton-beam position is concerned, there is a good agreement between the
measurements obtained with the ion pencil-beam and those made with the SPS pick-up.
Studies are under way to explain the difference in the r.m.s. measurements. Anyway, we
consider these preliminary experimental results to be promising.
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8 PROFILE MEASUREMENT USING AN ION CURTAIN
Instead of scanning the ion beam in the y direction, we use a flat ion curtain

beam, inclined by an angle ϕ. For this purpose the ion source has been modified. The
principle becomes as described by Fig. 5(a). The thin ion beam is distributed along the line
y = z · tg (ϕ). When the proton beam is OFF, the corresponding line is directly recorded
on the observer (or collector) plane orthogonal to the ion direction at x = xf = L. The
geometry used between the ion source and the observer plane is explained in detail in
Appendix B. A complete description of this type of monitor and of the measurements is
given in Ref. [3].

When the proton beam in ON, the ion ordinate y is deflected by an angle θ(y) and
reaches the observer plane at Y = y + L · tg θ(y) ∼= y + Lθ(y).

After some linear transformations we retrieve the distribution θ(y) in a similar way
to that explained in Section 3.

In the present case we used an MCP followed by a luminescent screen [see Section
4(c)]. An example of the observed ‘curved’ curtain beam is shown in Fig. 5(b). We applied
an ‘erf fit’ to the measured deflection angle (see subsection 3.1). Measurements during the
SPS cycle have been made and compared to those, made at the same instants, with the
wire-scanner. Results are shown in Fig. 5(c) and demonstrate a good agreement between
the measurements. The proton beam distributions obtained from the derivation of the fits
are given in Fig. 5(d). The accuracy is limited by the image treatment [4], more precisely
by the camera-limited number of pixels. The actual image processing also limits to 20 ms
the time interval between two profile measurements.

Fig. 5: Ion curtain technique.

Proton bunch

Ion curtain before
interaction with
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Ion curtain on the
collector plane after
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proton beam
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5(a) Principle of the ion curtain profilometer. Without proton beam the curtain lies on the line
0ξ of equation y = Y = Z tg (ϕ) and moves perpendicular to the sheet. With proton beam,
each individual ion at ordinate y is deviated by angle θ(y) and reaches the collector at ordinate
Y = y + L θ(y).
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5(b) Image observed on a TV screen, showing the ion curtain twisted by the proton beam. The
SPS momentum was 314 GeV/c and the total number of circulating protons was
1.8 · 1013. We used Xe+ ions at 2.72 keV.
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5(c) Evolution of proton-beam horizontal r.m.s. dimension (sigma) as a function of the SPS
proton beam momentum; the SPS beam intensity = 1.8 · 1013 protons. Measurements are made
with the wire scanner and with the ion curtain profilometer (after an ‘erf fit’) using Xe+ ions at
two different energies.
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5(d) Normalized horizontal profiles of the SPS proton beam (intensity = 1.8 · 1013 protons) at
some discrete momenta, as measured by the profilometer using Xe+ ions with kinetic energy
2.72 keV. The corresponding horizontal r.m.s. dimension (sigma) is also given.

9 THE SHADOWING TECHNIQUE
In the shadowing technique [4] (but also mentioned in Refs. [1c] and [2a]), we

transform the ion source into an almost cylindrical beam. For simplicity let us consider
a cylindrical ion beam moving parallel to the (xi, xf) axis. Therefore the velocity of the
ions is ~vi = ~vi~ex. The beam has a radius of a few ∆r and the collector used consists of an
MCP and a luminescent screen.

In its principle the detector is based on the changes in ion density ni [m−1] along
the ~ey axis.

When the proton beam is OFF the probe ions lie on the OY line of the observer
plane [(Fig. 1(b)] with density dni/dY = dni/dy; dni/dy being determined by the ion
source properties.

When the proton beam is ON, since Y = y+L · θ(y) ≡ g(y), a measurement of the
ion density gives

dni

dY
=

dni

dy

dy

dY
=

(
dni

dy

)
d(g−1(Y ))

dY
.

A depletion of the ion density as a function of the proton bunch distribution will
be observed. Figure 6(a) is a simulation of the ‘observed’ ion density. More details on
the interpretation of the measurements are given in Appendix C. Instead of a cylindrical
beam, one could of course consider the ion curtain with ϕ = π/2 [see Fig. 5(a); ϕ = π/2 is,
however, not mandatory]. Then, the two-dimensional image detector is no longer needed
since the image can be processed by a one-dimensional CCD array. This simplifies the
image processing.

9.1 Experimental results on the SPS machine
In order to prove the principle, we used the industrial source which provides, without

lenses and collimators, a conical beam (instead of an ideal uniform cylindrical beam
obtained by well-matched optics). The collector consists of an MCP converting the ions
into electrons. The electrons hit a luminescent screen which is observed by a camera.
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Figure 6(b) is a sample of what is observed on a TV display without [6(b.1)] and with
[6(b.2)] a proton beam. During the SPS acceleration ramp one can qualitatively observe
the changes of the ion beam density, which is a consequence of the variation of the proton
beam transverse dimension, and also the changes of the proton beam position.

The image obtained every 40 ms from the camera is processed so as to obtain the
ion-beam density with and without the presence of protons. Figure 6(c) shows single-
shot measurements at different moments of the SPS cycle, while Fig. 6(d) displays the
‘depletion valley range’ along the acceleration ramp.

These preliminary measurements are encouraging but still need accurate calibration.
This method, though involving a few difficulties in the exact determination of the proton-
beam profile, acts as a quasi non-interceptive TV screen.

Fig. 6 Shadowing technique.
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6(a) Simulation of the ‘shadowing technique’. Horizontal axis: Y [m], ion ordinate on the col-
lector. Vertical axis: dnsdy(Y ): ion density dni(y)/dy = dni(Y )/dY on the collector when the
proton beam is OFF. dNsdY (Y ): ion density dni(Y )/dY when the proton beam is ON. The
vertical lines ±Ym correspond to Ym = ∆r + Lθ(∆r).
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6(b.1) All the experimental measurements are made on the SPS operating in fixed-target mode
with 2.8 · 1013 protons while the ion probe beam consists of Xe+ at 3.75 keV. Image observed
on a TV screen, at a given instant of the SPS cycle when the proton beam is OFF.

0 50 100 150 200

Hor

0

60

120

180

240

V
er

t. 
 p

ix
el

 n
um

be
r

. pixel number

6(b.2) Image observed on a TV screen, at a given instant of the SPS cycle when the proton
beam is ON.
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6(c) Depletion on horizontal ion densities observed on the luminescent screen at different instants
of the cycle. Horizontal scale: Y0 on the collector (arbitrary units, i.e number of pixels). Vertical
axis: density in arbitrary units.
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6(d) Valley range distribution versus time. Vertical axis: density in arbitrary units. Horizontal
axis: position Y0 on the collector (arbitrary units, i.e number of pixels). Longitudinal axis: time
in ms.
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10 USE ON OTHER CERN MACHINES
This type of detector can be used on other accelerators such as the Linac, Booster,

or PS where dense bunches are of interest. The Linac beam parameters and the expected
deflection angle are as follows:

beam energy: 0.05 GeV,
r.m.s. beam size: ∆r = 2.0 mm,
r.m.s. bunch duration: σt = 0.25 ns,
time interval between bunches: T = 5.0 ns,
beam intensity: 150 mA; nb = 4.64 · 109 p/bunch,
batch duration: 50–100 ms,
maximum expected deflection angle: θmax

∼= 20.0 mrad.

10.1 Use on the Linac
A non-relativistic bunch does not exhibit a purely transverse electric field. There-

fore, the longitudinal electric field component has to be taken into account as well. In
fact, the longitudinal field at the head of the bunch and that at the end of the bunch
are opposite. Simulations [2] show that their effects almost cancel out so that a purely
transverse electric field can in practice be considered. An exact analytical demonstration
is out of the scope of this paper.

For our test we used the ion pencil-beam technique. As collector we used a resistive
rectangular plate whose ends are connected to two low-pass amplifiers, A and B. The
ion-beam centre of gravity is therefore given by:

〈Y (y0)〉 =
A−B
A+B

· constant .

The present detector is not able to process a single bunch. We thus limit our goal to
the measurement of a full batch transverse profile. The pencil beam is therefore scanned
through the beam in 50 to 100 µs. A simulation of the evolution of 〈Y (y0)〉 versus time,
depending on whether the proton beam is ON or not, is shown in Fig. 7(a). Experimental
measurements are shown on Fig. 7(b) which can be compared with Fig. 7(a). Keeping the
pencil beam at a fixed position outside the batch, we measured its maximum deflection
angle versus time; thus the intensity variation during the pulse was determined and is
shown in Fig. 7(b). The measured batch transverse profile is shown in Fig. 7(c). Since
x(t) [m · s−1] is known, one can calibrate the transverse dimension versus time.

It must be emphasized that, for the case of a pencil beam and when using a re-
sistive plate, the measurements can be electronically processed in such a way that the
beam profile can be displayed in real time at intervals which are (in the present state of
development of our detector) of the order of 50 µs.
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Fig. 7: Pencil-beam technique using a resistive plate as collector. The position on the collector
is determined by the signals A and B measured at both ends of the rectangular resistive plate:
〈Y (y0)〉 = (A−B)/(A+B).
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〈Y (y0)〉 when the proton beam is OFF, x(t) = 〈Y (y0)〉 when the proton beam is ON, (x(t) −
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7(c) Batch transverse profile from the measurements shown in (b). From the calibration by
means of the well-known x(t) [m · s−1], the transverse r.m.s. dimension is easily determined.

11 COMMENTS ON ACCURACY AND PROCESSING TIMES
11.1 Accuracy

Let us define by σer the error introduced by the monitor on the actual beam r.m.s.

dimension. The measured r.m.s. dimension is given by: σm =
√
σ2 + σ2

er, and the relative

error by: (∆σ/σ) = (σm − σ)/σ ∼= 1/2(σer/σ)2. If for example we expect ∆σ/σ = 1/18
this would imply that σer = σ/3.

At the SPS where σ is of the order of 1 mm or more, a careful analysis of our
measurements showed that:

– when using the pencil-beam technique with 1 mm width strip foils (spaced by
1.5 mm) (Section 7), we estimate σer = 0.3 mm and with a resistive plate
(Section 10.1) σer = 0.1 mm;

– when using the curtain beam with a CCD camera (Section 8) we estimate σer =
0.1 mm (the accuracy being 1 pixel and the resolution 0.1 mm/pixel);

– in the future the use of strips spaced at 0.2 mm would reduce the error made on the
r.m.s. dimension measurement to 0.1 mm. Concerning the use of image detectors,
a conservative approach is to keep 0.1 mm/pixel. It must be kept in mind that
the collector has to cope not only with the proton beam size but also with its
displacement in time. The relative displacement reduces the r.m.s. measurement
accuracy.

11.2 Processing time
With strips or resistive plates, the time interval between measured profiles is presently

limited to 50 µs. Attempts are under way to reduce this time to 5 µs (it will also depend
on the available source intensity). For light monitors, the standard processing time is
presently 40 ms. Further reduction of this large time interval will depend on technological
progress.

12 CONCLUSION
The proofs of principle of the three methods, namely the first using an ion pencil-

beam, the second using a curtain beam, and the third making use of the shadowing
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technique, have been experimentally demonstrated. The ion source quality has to be
improved as well as the electronic and processing techniques. With an improved detector,
we can expect to measure profiles every 5 µs with an error on the r.m.s. dimension of the
order of 50 µm for LHC-type beams.
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APPENDIX A

We aim to demonstrate that the deviation angle θ(y0) can, under some assumptions,
be approximated by an error function. We use the symbols of Section 2.3 and those of
Fig. 1(b).

Hypothesis

We consider a proton bunch having
– a transverse normalized distribution

n⊥(r) =
2

2π∆2
r

exp

(
− r2

∆2
r

)
, r =

√
x2 + y2

with r.m.s. value: (
∫∞

0 r2n⊥(r)2πrdr)1/2 = ∆r

– a uniform longitudinal distribution over the length Lb =
√

2π ∆s so that the nor-
malized longitudinal distribution nσ(z) = 1/Lb.

So the overall distribution is

n(r) = nb ·
1

Lb

· 2

2π∆2
r

exp

(
− r2

∆2
r

)
, (A.1)

where nb ≡ number of protons/bunch.

Deflection angle as a function of the impact parameter y0

It has been shown [1] that

θ(y0) =
QV0

2Ek

∫ uf

−ui

1− exp [− y2
0

∆2
r
(1 + u2)]

1 + u2
du (A.2)

u ≡ x/y0, uf ≡ xf/∆r À 1, ui ≡ xi/∆r À 1 where the symbols are those defined in
Sections 2 and 3. Differentiating:

dθ(y0)

dy0

=
QV0

2Ek

2y0

∆2
r

exp

(
− y

2
0

∆2
r

)∫ uf

−ui

exp

[
−
(
uy0

∆r

)2
]
du

and for uf , ui →∞ a good approximation will be(
dθ(y0)

dy0

)
approx

=
QV0

2Ek

· 2
√
π

∆r

exp

(
− y

2
0

∆2
r

)
. (A.3)

Error function

It is well known that

erf (u) ≡ 2√
π

∫ u

0
exp (−ξ2) dξ,

d(erf(u))

du
=

2√
π

exp(−u2) ,

erf(0) = 0, erf(∞) = 1, erf(x) = −erf(−x).
When applied to Eq. (A.3) this gives an approximate expression (A.4)
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θapprox(y0) =
QV0

2Ek

π erf

(
y0

∆r

)
+ C (A.4)

with the constant C = 0 since θ (0) = 0.
We set the maximum deviation angle

θmax =
QV0

2Ek

· π , (A.5)

and are thus in position to summarize:

θapprox(y0) = θmax erf

(
y0

∆r

)
(A.6)

(
dθ(y0)

dy0

)
approx

=
2θmax√
π ·∆r

exp

(
− y

2
0

∆2
r

)
(A.7)

∆r =
2θmax√
π

1
dθ
dy0
|y0
∼=0

. (A.8)

Another expression of the transverse r.m.s. value

Keeping the hypothesis of a Gaussian proton bunch:
– n⊥(r) is a two-dimensional Gaussian distribution (r2 = x2 + y2) with r.m.s. value

∆r

–

(
dθ(y0)

dy0

)
approx

is a one-dimensional Gaussian distribution function of y0 whose r.m.s.

value is computed as follows:

[∫∞−∞
(

dθ(y0)
dy0

)
approx

y2
0 dy0

∫∞
−∞

(
dθ(y0)

dy0

)
approx

dy0

]1/2

=
∆r√

2
.

It is convenient to set σ ≡ ∆r/
√

2 and to write instead

θapprox(y0) = θmax erf

(
y0√
2 · σ

)
, (A.9)

(
dθ(y0)

dy0

)
approx

= 2θmax
1√

2π · σ
exp

(
− y2

0

2σ2

)
, (A.10)

σ =
1√
2π

2θmax
1

dθ
dy0
|y0
∼=0

. (A.11)
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APPENDIX B

For practical reasons, the Xe+ beam coming out of the source might have a conical
distribution. This ion beam is collimated, steered, and focused in order to obtain the ion
curtain. Therefore, not only do the probe ions move in the x direction but they also have
a velocity component lying in the yz plane.

Figure B.1 shows the projection of the probe ion trajectory in the xy plane and
Fig. B.2 shows the projection of the probe ion trajectory in the xz plane. The parameters
D = 916 mm and L = 400 mm.
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With the proton bunch OFF, the probe ion reaches the observer plane (Fig. B.1)
at Y = (L + D) · tg α ∼= (L + D) · y0

D
= (1 + L

D
) · y0, whereas with the proton bunch ON

the probe ion is also deflected by an angle θ(y0) and hence reaches the observer plane at
Y = (1 + L

D
) · y0 + L · tg θ(y0) ∼= (1 + L

D
) · y0 + L · θ(y0).

In both cases the probe ion drifts in the z direction (Fig. B.2) and reaches the
observer plane at Z = (1 + L

D
) · z.

This geometrical set-up was taken into account in the treatment of experimental
data. However, in order to simplify the notations, throughout the paper we considered the
ion source to be very far away from the probed beam (D →∞) so that the y, z velocity
components of the ions are practically negligible and 1 + L

D
∼= 1.
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APPENDIX C

We aim to analyse in more detail the theoretical aspects of the shadowing technique.
As already said, the ion distribution on the observer plane is expressed by

dni

dY
=

dni

dy

dy

dY
(C.1)

where dni/dy is the ion distribution measured when the proton beam is OFF.
We have

Y = y + Lθ(y) ≡ g(y) or y = g−1 (Y ) .

From Eqs. (2a) and (2d):

θ(y) = θmax erf

(
y

∆r

)

dθ(y)

dy
=

2θmax√
π ·∆r

exp

(
− y

2

∆2
r

)

The function g(y) itself is not simple and therefore g−1 is not straightforward.
Since

d(g−1(Y ))

dY
=

1
dg
dy
|y=g−1(Y )

and
dg(y)

dy
= 1 + L · 2θmax(nb)√

π ·∆r

exp

(
− y

2

∆2
r

)
we obtain

d(g−1(Y ))

dY
=

dy

dY
(Y ) =

1

1 + L · 2θmax(nb)√
π·∆r

exp

(
−
(
g−1(Y )

∆r

)2
) (C.2)

remembering that θmax depends on nb and therefore on the proton beam intensity.
To illustrate this effect let us consider a simplified expression instead of an error

function:

θ(y) =

{
θmax(nb) · y

∆r
for |y| ≤ 2∆r

θmax(nb) for |y| > 2∆r

g(y) = Y (y) =

{
y + L · θmax(nb) · y

∆r
for |y| ≤ 2∆r

y + L · θmax(nb) for |y| > 2∆r

g−1(Y ) = y(Y ) =


Y

1+L· θmax(nb)

∆r

for |Y | ≤ 2∆r + L · θmax(nb)

Y − L · θmax (nb) for |Y | > 2∆r + L · θmax(nb) .
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Then we have:

dni

dY
=

dni

dy


1

1+L· θmax(nb)

∆r

for |Y | ≤ 2∆r + L · θmax(nb)

1 for |Y | > 2∆r + L · θmax(nb) .

Figure C.1 shows the curves dni/dY as a function of Y for ∆r = 10−3 m, L = 0.5 m
and for two different values of θmax, namely for θmax = 5 × 10−3 rad (curve dni1/dY on
the plot) and for θmax = 10× 10−3 rad (curve dni2/dY on the plot). We considered only
the simple case in which the initial ion curtain distribution is uniform, that is (dni/dy) =
const = 1.
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We see that the depletion width on the luminescent screen is 2 (2 ∆r +L θmax(nb)).
The discontinuity of the curve occurs at Y = (2∆r +Lθmax (nb)) and will remain at

this point if ∆r and θmax both vary in such a way that d(Y ) = d (2 ∆r +Lθmax(nb)) = 0, or
2 d(∆r) = Ld(θmax(nb)), i.e. the r.m.s. proton beam size variation d(∆r) is compensated
by a variation of θmax due to an increase of bunch intensity (nb) and vice versa.
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