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DISCUSSION 

SALECKER : To what length have you tested quantum electro
dynamics if you introduce in the hyperfme structure the con-
ventional form factors? 

HUGHES: TO our present accuracy the conventional form 
factors will appear in the same way as they do for the spin 
magnetic moment. Our present accuracy is only 5 parts in 
104 as compared to an accuracy of 5 parts in 106 in the (#-2) 

experiment. Hence we do not yet have anywhere nearly as 
precise a test of quantum electrodynamics as is provided by 
the (#-2) experiment. However, I feel quite convinced that we 
will eventually be able to do the hfs measurement with com
parable accuracy and hence will test form factor effects of the 
same size as does the (#-2) experiment. I also believe that in 
principle somewhat different form factor effects may be tested 
with hfs as compared with the spin magnetic moment. 
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I am reporting on an experiment performed by 
Charpak, Garwin, Farley, Muller, Sens and myself at 
CERN, to measure the anomalous magnetic moment 
of the muon to an accuracy of ± 0 . 4 % , i.e. ± 4 parts 
per million in the total g factor. As the relevance 
of this experiment with respect to the previous one x > 2 ) 

performed at a level of 2 % lies in the factor of 5 
improved accuracy, I will only discuss the main 
problems with which we have been faced, and whose 
solution has been vital to reach the desired accuracy. 
Unfortunately time obliges me to make a choice: 
either to try to be clear in the problems and only 
state their solution, or vice versa. I will adopt the 
first choice because once the problems are clear, if 
you want to understand their solution you can use 
the time devoted to the discussion to ask questions. 
All this, I hope, will convince you that the transition 
from 2 % to 0.4% has not been a simple matter of 
collecting statistics. Finally, I will discuss some con
sequences of our experimental result. 

I would like to remind you of the sketch of our 
apparatus (Fig. 1). We have a magnet able to store 
muons for as many as 1500 turns. In principle the 
experiment is very simple. We have to measure 
where the spin of the muon is pointing with respect 

Fig. 1 General sketch of the (g-2) experiment, showing the 
CERN Synchro-cyclotron (left). The emerging muon beam 
passes through a lead scattering foil and a solenoid, then through 
a vacuum pipe across the shielding wall and into the 6-metre 
storage magnet, to be finally stopped in the polarization analyser. 

to the momentum vector before and after storage, 
the change in this angle between spin and momentum 
being proportional to (g-2). 

Now comes the first difficulty. The beam stored 
and analysed represents only one per cent of the 
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injected beam. What tells us that the state of polariza
tion of this stored beam is well represented by the 
average polarization of the total beam coming out 
of the pipe ? In fact, we must think of a beam coming 
out from an accelerator as the superposition of a 
number of partial beams, each one having its own 
state of polarization which can, as we have experimen
tally measured, scatter from the value of the average 
polarization by as much as 15°, which corresponds to 
~ 4 % in (#-2). There is therefore a risk that the 
magnet selects a partial beam whose properties are 
quite different from the average we measure before 
injection. To avoid this we make the beam uniform 
in its polarization properties 

a) by using a solenoid to eliminate the momentum 
dependence, and 

b) by a lead scattering foil to eliminate the phase 
space correlation, (see Fig. 1). 

This reduces the non-uniformity to ~ + 2 ° , but we 
still measure the polarization structure in detail by 
dividing the beam into 16 independent cells in phase 
space. Finally, we measure the contribution of each 
cell to the over-all stored intensity in order to calculate 
the correct average initial polarization. 

Now for the second difficulty. We have to moderate 
the beam in order to capture it, and this inevitably 
involves scattering. If the beam is scattered through 
an angle the polarization angle changes by 
ij/fy (y = E/m). We keep this scattering small ( ~ ± 3 ° ) 
by injecting into a steep magnetic gradient and then 
making an adiabatic transition to the storage region. 
This allows us to fill all the available phase space of 
the storage region with the smallest perturbation in 
the polarization properties of the injected beam. But 
the residual ± 3 ° scattering ( ^ ± 1 % in g—2) must 
still be measured, and in fact we measure the scattering 
as a function of particle momentum and as a function 
of storage time. We can understand from Fig. 2 
that particles scattered to the left are in a steep gra
dient, walk fast, and arrive at early times, while 
particles scattered to the right sit in a weak gradient 
and arrive late. As you see, the scattering angle is 
strictly related to the storage time. Because scattering 
means change of polarization, we have a change of 
polarization which is time-dependent, and we have 
to measure it to ± 1 ° . How can we measure such 
a change of polarization ? Remember the muons are 

Fig. 2 Correlation between scattering angle and storage time. 
Muons scattered to the left will have orbits centered in the upper 
part of the figure and will consequently have a stronger gradient 
than muons scattered to the right. This is illustrated by the 
diagram on the right of the figure which shows the shape of the 
storage field (full line) and the gradients (dotted line) relative 
to the above-mentioned orbits. 

already in the magnet when they suffer this change 
of polarization. 

The solution consists in measuring the position of 
the stored beam and of the unscattered beam in the 
injection region after one quarter turn by scanning 
along the line F with an anticoincidence counter 
(see Fig. 3). 

The difference A between the position of the un
scattered beam and of the stored beam is clearly 
related to the scattering angle xj/ and therefore to the 

Fig. 3 Counter assembly used for measuring scattering at 
injection. The distribution of injected particles along the line 
FF is studied by varying the position of No. 3 and recording 
1234 coincidences. No. 4 defines the orbit radius. The 
distribution of stored particles along the line FF is obtained 
in a separate experiment by probing with an anticoincidence 
counter (not shown). 
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change of polarization. In Fig. 4 you can see the 
results of our measurements. All these were the 
main problems to be solved in order to know the 
initial polarization. 

We also need to measure the polarization after 
storage as function of storage time. 

Fig. 5 gives the final curve of (g—2) precession; 
the experimental points scatter according to statistics 
around the fitted curve with %2 = 60 (58 expected). 
The final result is 

Fig. 4 Injection scattering measurements. The position of 
the stored particles, y m a g , as a function of storage time for par
ticles of various radii, Q. Inset at right: typical distribution curve 
of injected particles used to find the value yinj corresponding 
to zero scattering. 

Fig. 5 Experimental data of the (g-2) experiment. Observed 
electron decay asymmetry A(t) as a function of storage time. 
The curve represents the best fit of the data. 

As you see, within a few parts in a million, experimental 
result and theoretical prediction agree very well. 

In Table I you will find the summary of the con
sequences of our experimental result. 

I would like to add a few comments to these results. 
We say that to one standard deviation our result 
checks the validity of QED down to distances of 
M ) . 2 x l 0 ~ 1 3 cm, or equivalently up to momentum 
transfers of ~ 1 GeV/c. This result is obtained by 
assuming that QED breakdown is really described 
with the replacement of the photon propagator 1/K2 

w i t h 

TABLE I 

As you know, to break QED is a delicate matter for 
the specialists, essentially because nobody knows how 
to break QED in a self-consistent way. The choice (1) 

to be compared with the theoretical value 
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is undoubtedly the most popular and widely accepted; 
however, the negative sign in (1) is not a result of a 
theory, but merely a good guess. The physical 
significance of this (—) sign is that we subtract all 
contributions coming from distances smaller than 
A~l from the effect we want to calculate. Nobody 
forbids us to imagine a breakdown such as to increase 
at distances below A'1 what would be the normal 
QED contributions coming from these distances. If 
this were the case the magnetic moment of the muon 
would increase. Experimentally we are sensitive to 
both signs of the effect. 

Let me now go to other experiments which verify 
QED to a comparable accuracy ( * } , i.e. to the (e—p) 
scattering experiments of Hofstadter and collaborators, 
and of Wilson and collaborators. Their limit on the 
validity of QED is 0 .35x10"" 1 3 cm or 560 MeV/c 
momentum transfer 4 ) . But the (ep) scattering experi
ments can be used to fix a limit on QED only on the 
hypothesis that the sign in (1) is negative. In fact 
in this experiment the increase in the cross-section, 
due to QED breakdown with ( + ) sign in (1), would 
be masked by the decrease due to the proton structure. 
So the (g—2) of the muon is an experiment sensitive 
to both ways in which QED could break. 

Finally, I would like to make a remark concerning 
vacuum polarization effects in muon physics. As you 
know, the contribution of the electron-vacuum polari
zation to the muon (g—2) is only ~ 5 x 10~ 6 , that is 
just our error. So we can say that we measure this 
effect with 100% error. But there is a way which 

allows us to use (g—2) in order to establish the presence 
of electron-vacuum polarization effect in muon 
physics to 4 % accuracy. This result is obtained by 
combining our (g—2) result with the total precession 
frequency 5 ) and the x-ray energy in the transition 
{3D—IP) of the ju-mesic phosphorous 6 ' 7 ) . As you 
know, the energy of the /i-mesic x-ray is proportional 
to m^e^C^ where myi is the mass of the muon, its 
electric charge, and Cfl a constant which contains 
first and second order vacuum polarization effects, 
reduced mass, and a 8 ) . If we combine (g—2) and 
the total precession frequency experiment we get 
the mass of the muon, indicated in Table I. The 
/j-mesic x-ray experiment can then be used to measure 
C ; / instead of the mass. The most relevant quantity 
in CM is the vacuum polarization effects which amount 
to 331.42 eV. The experimental uncertainty amounts 
to eV; we conclude that this experiment can be 
used to give the best check of vacuum polarization in 
/Mnesic atoms, the check being good to ~ ± 4 % . 

As you know, for electron-atoms the vacuum 
polarization effects are checked by the Lamb shift 
to an accuracy of ~dbl %• If we calculate the con
tribution to vacuum polarization coming from hypo
thetical leptons of mass " musing the ju-mesic 
atom data, we get ~ 1 0 me as the lower limit for this 
mass value. The corresponding limit dictated by the 
more precise determination of the vacuum polarization 
in the Lamb shift is also ~ 1 0 m e . I am indebted 
to Dr. J. S. Bell for the calculations on the hypothetical 
lepton mass limits. 
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DISCUSSION 

MICHEL: Can you give us the limit on the electric dipole 
moment of the muon that your experiment must have measured 
too? 

ZICHICHI: This limit has been measured independently in 
a separate experiment. The result is 

E D M of muon 
where " e " is the electron charge. 

SALECKER: If you take another form factor instead of this 
here, how much does it change the result? 

ZICHICHI: Which one do you want to change? This one: 

because even if one has a theory different from electrodynamics, 
it is likely that the general expression for the propagator which 
is summarized in the Lehmann-Kallen representation would 
still be right, since that depends on fairly general properties. So 
instead of summarizing a result in terms of a length which is 
as you say ambiguous, one might do better to express it in 
terms of a limit on the size of the integral, which also would 
restrict possible models of the deviation from electrodynamics. 

ZICHICHI: Well, I have nothing more to say there. The 
problem is, as I said before, always the same: one has too 
many ways of breaking Q E D in so far as nobody produces a 
self consistent theory of Q E D breakdown. If you want to use 
our result to get another limit, please do. 

KALLEN: I would like to comment on the point made by 
Feinberg. The magnetic moment is not a 2 point function, but 
really a 3 point function, so you have no reason to believe in 
the absolute correctness of this representation for the magnetic 
moment. It may be right but we do not know. However, if 
you accept it, I believe that the cut-off length generally comes 
out to be smaller than the limit you get with this Feynman 
model 

FEINBERG: I was not suggesting writing the vertex as a 
spectral function and saying something about that, but rather 
that if you just take a model for deviation from quantum electro
dynamics in which the photon propagator is different from 
I/K2, you can use the Lehmann-Kallen representation for that. 

BERMAN: I would like to remark in answer to Feinberg's 
question that the work has already been done by Berestetskii, 
and it appears I think in the translated JETP. The method is 
essentially what he has suggested, so one can say what is the 
change in (g—2) in terms of a cut-off integral on the spectral 
function. I do not know the number, but it is something like 

ZICHICHI: In this case we get a 3.3 GeY, three times better 
result. If I understand well the question, what Feinberg says 
is equivalent to our fundamental length. 

MICHEL: It is the same cut-off. You can also give a limit 
on the change of the photon propagator due to the existence of 
light charged particles or n—n resonances. 

SALECKER: Yes. 

ZICHICHI: Well, we do not know. All we can say is that if 
you assume that quantum electrodynamics breaks in such a way 
that the break is described by this change in the photon pro
pagator, then it is obviously this. But the point is that nobody 
knows how to break quantum electrodynamics, so there is 
no point to produce other changes; 1 mean you can conceive 
an enormous number of ways in which Q E D could break 
down. But I think that only when the theoreticians come with 
a consistent way of breaking quantum electrodynamics will 
the answer be unique. The experimental result, of course, is 
there and any theoretical model can just be taken and fitted in. 
If you give another theoretical model, we shall give you the 
answer but at the moment this is what we have. 

HUGHES: D O you expect to improve the accuracy of your 
experiment further or have you completed now ? 

ZICHICHI: N O , we do not expect to improve our accuracy 
further. If we did, it would have to be an improvement by a 
factor 1 0 or better. 

FEINBERG : On this question of introducing a different 
photon propagator I would think the best thing to do would 
be to use the Lehmann-Kallen expression for the photon pro
pagator in terms of a spectral function and then express the 
deviation from electrodynamics in terms of an integral of the 
spectral function 


