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1. Introduction

In perturbative QCD (PQCD) calculations of S-matrix amplitudes quarks and gluons

are assumed to form free asymptotic states at the initial and final times, t → ±∞.
It is recognized that this is at variance with observations — partons actually bind

to form colour singlet hadrons which are the true asymptotic states. Consequently,

the applications of perturbation theory are restricted to so-called infrared safe ob-

servables in processes characterized by a large momentum scale Q. All predictions

are subject to power corrections (Λ/Q)n, where Λ ∼ 200MeV is the fundamental
QCD scale.

It has been noted [1] that PQCD predictions can nevertheless be successfully

extrapolated to low scales Q ∼ Λ, assuming that the Q-dependence of the running
coupling αs(Q

2) “freezes” at a hadronic scale of order Λ. Confinement appears to

change momentum distributions only in a mild way, with PQCD distributions of

partons being reflected in those observed for hadrons. This motivates us to study

whether PQCD can be modified so that its use can be extended to low Q2 without

having to introduce the freezing effects “by hand”.

Formally, there is considerable freedom in making a perturbative expansion. The

standard arguments justifying an expansion, namely

• The initial and final times are taken to infinity along a ray slightly tilted wrt.
the real axis, and
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• The asymptotic configurations have a non-vanishing overlap with the true
ground state of the theory

allow many choices of in- and out-states. The existence of an overlap with the true

ground state is in practice an assumption, even in the case of standard PQCD where

the asymptotic states are taken to be the empty “perturbative vacuum”. Considering

the central importance of perturbation theory in applications of field theory it seems

desirable to explore the properties of expansions with different asymptotic states.

Here we will study the effect of adding gluons to the perturbative vacuum. It

is natural to consider this since the true QCD ground state is believed to be a

condensate of gluons. Conceivably, the background gluons may mimic the properties

of the true gluon condensate sufficiently to make the perturbative expansion express

some of the confinement physics already at low orders. In any case, the above formal

arguments justifying such a modified perturbative expansion are as compelling as

those of standard PQCD.

The specific modification of the asymptotic state we consider has been called

the “Perturbative Gluon Condensate” [2]. Background gluons with energies smaller

than a given scale Λ are introduced by modifying the Feynman iε-prescription of the

gluon propagator in the following way:

1

k2 + iε
−→ 1

(k + iε)2
≡ 1

k2 + iε
+
iπ

2|k|
[
δ(k0 − |k|) + δ(k0 + |k|)

]
Θ(Λ− |k|)

=
Θ(|k| − Λ)
k2 + iε

+
1

2

[
1

(k0 − iε)2 − k2 +
1

(k0 + iε)2 − k2
]
×

×Θ(Λ− |k|) , (1.1)

where 1/(k2 + iε) denotes the ordinary Feynman iε-prescription and 1/(k + iε)2 de-

notes the modified one. As was shown [2] for scalar fields, a perturbative calculation

of any Green function G using the modified propagator (1.1) is equivalent to a su-

perposition of standard calculations using Feynman propagators with gluons added

to the asymptotic states, schematically

〈0|G |0〉 −→

∏
|k|<Λ

∞∑
nk=0

cnk


 〈∏

k

(gk)
nk

∣∣∣∣∣ G
∣∣∣∣∣
∏
k

(gk)
nk

〉
. (1.2)

Here the nk = 0 term corresponds to the unmodified expansion, the cnk are known

constants and the sum is over on-shell gluons gk of momentum k and energy |k| < Λ.
We will show here that gauge invariance is maintained when both gluon and ghost

propagators are modified according to eq. (1.1).

Physically, the modified asymptotic states imply scattering off the “background”

gluons which prevents the creation of gluons with |k| < Λ. Technically this can be
seen from the sign change (1.1) of iε in the free gluon propagator which removes
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pinches between positive and negative energy poles in loop integrals. For a fermion

propagator, such a change of iε would be equivalent to filling all fermion (or an-

tifermion) levels up to a Fermi momentum Λ, and consequently preventing fermion

pair production in accordance with the Pauli exclusion principle. We are motivated

to study the analogous modification of the gluon propagator as a way of avoiding

the production of soft gluons in perturbation theory. Since we effectively superpose

calculations with different numbers of background gluons as indicated in eq. (1.2),

we need not specify the wave function of such a “Dirac gluon sea” (cf. [3]). We shall

refer to the physics based on the modified gluon propagator (1.1), with the standard

Feynman iε-prescription for quark propagators, as “Perturbative Gluon Condensate

Dynamics”, or PGCD. Formally, the PGCD expansion appears as justified as ordi-

nary PQCD.

The introduction of a fixed momentum scale Λ in the PGCD propagator (1.1)

seems to break Lorentz invariance. The perturbative expansion of the amplitude

for a given process will depend on the reference frame, since the scale Λ is frame

independent. Formally the series sums to the same (Lorentz covariant) result in any

frame, but the rate of convergence is frame dependent. The situation is in this sense

analogous to the well-known freedom of choice in the renormalization scale. Physical

arguments must be used to choose an optimal frame for each process. This is in

fact commonly done in hadron phenomenology. The non-relativistic quark model

describes hadrons in their rest frames, whereas the parton model is formulated in

the infinite momentum frame.

We should emphasize that the boost properties of bounds states are in general

extremely complicated [4]. In QED, positronium wave functions and energy levels are

nearly always evaluated in the rest frame, and most efficiently using non-covariant

methods such as NRQED [5]. Not even general features such as the Lorentz con-

traction of QED bound states have (to our knowledge) been explicitly demonstrated

in perturbation theory. In QCD we face the extra challenge that the gluon con-

densate ground state is boost invariant: the gluons carry momenta of O(ΛQCD) in
any frame. This feature can clearly not be described using perturbation theory —

the best we can do is to approximate the true ground state with background gluons

whose momenta are the same in any frame, as in eq. (1.1).

In this paper we consider the effects of PGCD on the static quark potential.

This implies an automatic frame choice since the static potential is defined only in

the “rest frame” of the static sources. We shall not further discuss the important

and non-trivial question of Lorentz invariance. The question of frame choice for a

general process is beyond the scope of this paper.

According to the Kinoshita-Lee-Nauenberg (KLN) theorem [6] all infrared sin-

gularites cancel if one sums over incoming and outgoing states that are degenerate

in energy. Our procedure of adding soft gluons to the in- and out-states introduces

a similar smearing of the physical observables. It has in fact been shown [7, 8, 9]
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that the “KLN-cancellations” can be accounted for using a similar modification of

the iε-prescription as the one we study here. As discussed in [9] the effects of the

KLN-cancellation can be thought of as a “KLN vaccum” and the non-vanishing in-

teractions with the vacuum as “perturbative condensates”. Thus the physical picture

appears similar to the PGCD. The KLN-cancellations are valid in any field theory

irrespective of whether there is confinement or not, and the energy-resolution (corre-

sponding to Λ) can be arbitrarily small. In our interpretation the scale of soft gluons

is a physical feature related to the ground state of QCD.

The purpose of this paper is two-fold. On the one hand we want to investi-

gate whether the PGCD boundary conditions give a perturbative expansion which

captures some of the physics of QCD at long distances, while leaving unchanged

standard perturbative results at short distances. As a first test case we calculate

the QCD potential between two static colour sources in a colour singlet state [10].

We compare the ultraviolet and infrared properties of the static PGCD potential

with results obtained using ordinary PQCD. The second purpose of this paper is to

check explicitly that the perturbative gluon condensate framework is gauge invariant.

Hence we do the calculation both in a physical and in a covariant gauge, namely the

Coulomb and Feynman gauges.

2. Calculation of static potential

The QCD potential V (Q2) between two static colour sources can be defined in a

gauge invariant way from a Wilson loop [10]. At lowest order the potential is just

given by one-gluon exchange, V (Q2) = −CFg2/Q2, where g2 is the strong coupling
and q2 = −Q2 = −q2 is the squared momentum transfer which is purely space-like in
the static approximation, i.e. q0 = 0. The PGCD iε-prescription does not change this

lowest order result since the coupling of the background gluons to a source with large

mass M is suppressed by Λ/M . At higher orders the fixed coupling g2 is replaced by

the running coupling after renormalization. Including all higher-order corrections in

the running coupling gives an effective charge αV (Q
2) defined by

V (Q2) ≡ −4πCF αV (Q
2)

Q2
, (2.1)

where CF = (N
2
C−1)/2NC = 4/3 for QCD. In the following we will calculate αV (Q2)

to one-loop order using the PGCD iε-prescription (1.1). For convenience we define

the one-loop correction Π̂(Q,Q0,Λ) so that the leading order result is factored out,

αV (Q
2) = αV (Q

2
0)
[
1 + Π̂(Q,Q0,Λ) + · · ·

]
, (2.2)

where Q0 is the renormalization point, i.e. Π̂(Q0, Q0,Λ) = 0.
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Figure 1: One-loop diagrams contributing to the static potential in Coulomb gauge. The

thick lines represent the static quarks, and the dashed lines the instantaneous Coulomb

propagators. The curly and double lines represent the A and E-field propagators, respec-

tively. There is also a mixed A and E-field propagator which appears in (c).

2.1 Coulomb gauge

Coulomb gauge is the most natural gauge for calculating the static potential [11],

although the Feynman rules are not as simple as in a covariant gauge such as Feynman

gauge. Here we will use the Feynman rules of Coulomb gauge given by Feinberg [12].

The diagrams contributing to the static potential at one-loop order in Coulomb

gauge are shown in figure 1. For clarity we do not include the contribution from

light quarks, which is the same as in standard PQCD.

Using dimensional regularization the contribution to the unrenormalized one-

loop correction Π from the Coulomb self-energy diagram shown in figure 1a is

Πa = 3ig
2CAµ

4−n
∫
dnk

(2π)4
qiqj

(
δij − kikj

k2

)
1

q2(q− k)2
1

(k + iε)2
, (2.3)

where CA = NC = 3, n is the number of dimensions (n < 4), µ is the arbitrary

dimensional regularization scale, the subscripts i, j denote the space components

(i, j = 1, 2, 3), and the iε-prescription for the transverse gluon propagator is given

in eq. (1.1). We have written the integrand in 4 dimensions since we will not be

interested in constant contributions to Π. This corresponds to a specific choice of

renormalization scheme. The k0-integral is conveniently done in Minkowski space

using ordinary residue calculus, and vanishes for |k| < Λ since the poles at k0 = ±|k|
are then on the same side of the real axis. The result is symmetric under k↔ q− k
and can be expressed as

Πa = 3g
2CAµ

4−n
∫
dn−1k
(2π)3

(
1− (k · q)

2

k2q2

)
×

× 1

(q− k)2
1

2

[
Θ(|k| − Λ)
2|k| +

Θ(|q− k| − Λ)
2|q− k|

]
, (2.4)

where the Θ-functions reflect the modified iε-prescription.
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To simplify the remaining integrations it is convenient to choose

x =
|k|
Q
, y =

|q− k|
Q

(2.5)

as new integration variables, with measure

∫
dn−1k =

∫ ∞
0

dx

∫ x+1
|x−1|
dy

∫ 2π
0

dϕQn−1xn−3y , (2.6)

where we have again dropped terms proportional to (n− 4) in the angular integral.
The integration over the azimuthal angle ϕ gives 2π and the remaining integral

becomes

Πa = 3CA
g2

4π2

(
µ

Q

)4−n ∫ ∞
0

dx xn−4
∫ x+1
|x−1|
dy
−x4 − y4 + 2x2y2 + 2x2 + 2y2 − 1

16x2y2
×

× [yΘ(x− λ) + xΘ(y − λ)] , (2.7)

where λ = Λ/Q. Before evaluating the integral we shall add the contributions from

the remaining diagrams to the integrand.

According to the rules given by Feinberg [12], the contribution to Π from the

sum of the vacuum-polarization diagrams in figure 1b and c is

Πb+c = ig
2CAµ

4−n
∫
dnk

(2π)4

(
δij − (q− k)i(q− k)j

(q− k)2
)(
δij − kikj

k2

)
×

× k20 +
1
2
[k2 + (q− k)2]

q2(k + iε)2(q − k + iε)2 . (2.8)

After integrating over k0 and ϕ and using (2.5) and (2.6) this becomes

Πb+c = CA
g2

4π2

(
µ

Q

)4−n ∫ ∞
0

dx xn−4
∫ x+1
|x−1|
dy
x4 + y4 + 6x2y2 − 2x2 − 2y2 + 1

16x2y2
×

×
[
y
3x2 + y2

x2 − y2 Θ(x− λ) + x
3y2 + x2

y2 − x2 Θ(y − λ)
]
. (2.9)

Adding the Coulomb self-energy and vacuum-polarization contributions of eqs.

(2.7) and (2.9) gives

Π = CA
g2

4π2

(
µ

Q

)4−n ∫ ∞
0

dx xn−4 ×

×
∫ x+1
|x−1|
dy

[
7x4 + y4 − 2x2 − 2y2 + 1

4x2(x2 − y2) yΘ(x− λ) +

+
7y4 + x4 − 2y2 − 2x2 + 1

4y2(y2 − x2) xΘ(y − λ)
]
, (2.10)
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(a) (b) (c) (d) (e)

Figure 2: One-loop diagrams contributing to the static potential in Feynman gauge. The

thick lines represent static quark propagators, the curly lines gluon propagators and the

dotted lines ghost propagators. For clarity the vertices have been marked with dots.

Note that the apparent pole at x = y cancels between the two terms in the integrand.

Doing the integrals we find the result for the unrenormalized one-loop correction to

the static potential,

Π(Q, µ,Λ) = CA
g2

4π2

[
11

6
ln

2µ

Q(2λ+ 1)
+
11

6

1

4− n +
4

3
λ2 + C +

+
(2λ− 1)(4λ3 + 2λ2 − 5λ+ 3)

12λ
ln
2λ+ 1

|2λ− 1|
]
, (2.11)

where λ = Λ/Q and C is a renormalization-scheme-dependent constant. This is the

main result of our calculation. Before analysing it in more detail we check that we

get the same result if we do the calculation in Feynman gauge. This will at the

same time constitute a non-trivial verification of the gauge invariance of the PGCD

iε-prescription.

2.2 Feynman gauge

The diagrams which contribute to the static potential in Feynman gauge at one-

loop order are shown in figure 2. In addition to the gluon propagator corrections of

figure 2a–c there is also the vertex correction of figure 2d, which has a non-abelian

contribution that does not cancel against the quark wave-function renormalization,

as well as the crossed box diagram of figure 2e, which has a non-abelian part that

is not part of the iteration of the one-gluon exchange. In a general covariant gauge

a diagram with a three-gluon vertex also contributes, but it vanishes in Feynman

gauge. For more details on the diagrams that contribute in Feynman gauge and how

the iteration of the one-gluon exchange works we refer to Fischler [13].

Note that we have included the diagram with a four-gluon-vertex shown in fig-

ure 2c. In dimensional regularization this diagram does not contribute to the logarith-

mic UV-divergence, only to a quadratic divergence which normally cancels against

the other two gluon propagator corrections. However, since we are modifying the

iε-prescription these cancellations are no longer guaranteed and therefore we include

all diagrams.
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We again use dimensional regularization and calculate the integrands of all di-

agrams in 4 dimensions since we are not interested in constant contributions to the

final expression. The result after performing the numerator and colour algebra is

Π =
ig2

2q2
CAµ

4−n
∫
dnk

(2π)4

[
k2 + (k + q)2 + 4q2 + 10k20
(k + iε)2(k + q + iε)2

− 2k20
(k + iε)2(k + q + iε)2

−

− 6

(k + iε)2
− 2q2

(k0 + iε)2(k + iε)2
+

+
q4

(k0 + iε)2(k + iε)2(k + q + iε)2

]
, (2.12)

where each term corresponds to a specific diagram in figure 2. The 1/(k0+ iε) factor

in the vertex correction and box diagrams comes from the static quark propagator

and is not to be confused with the PGCD prescription (1.1). Doing the integrals

over k0 and ϕ and making the variable substitutions x = |k|/Q and y = |k + q|/Q
we are left with

Π = CA
g2

4π2

(
µ

Q

)4−n ∫ ∞
0

dx xn−4 ×

×
∫ x+1
|x−1|
dy

[
6x4 + 2x2y2 − 3x2 − y2 + 1

4x2(x2 − y2) yΘ(x− λ) +

+
6y4 + 2y2x2 − 3y2 − x2 + 1

4y2(y2 − x2) xΘ(y − λ)
]
. (2.13)

Even though the integrand is different from the one of eq. (2.10) obtained in Coulomb

gauge, the final result after the integrals are done only differs from eq. (2.11) by a

renormalization-scheme-dependent constant. There is thus full agreement between

the two calculations.

3. Discussion of result

Our renormalized result for the one-loop contribution to the static potential using

the PGCD iε-prescription is

Π̂(Q,Q0,Λ) = CA
αV (Q

2
0)

π

[
11

6
ln
2Λ +Q0
2Λ +Q

+
4

3

Λ2

Q2
+ C+ (3.1)

+
2Λ−Q
12Λ

(
4
Λ3

Q3
+ 2
Λ2

Q2
− 5Λ
Q
+ 3

)
ln
2Λ +Q

|2Λ−Q|
]
,

which is obtained from eq. (2.11) by making a subtraction at Q = Q0. The constant

C is thus determined by the condition Π̂(Q0, Q0,Λ) = 0.
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A basic control of the validity of eq. (3.1) is that it agrees with the standard

PQCD result in the Q→∞ limit. For Λ/Q→ 0 we get

Π̂(Q,Q0,Λ)
∣∣∣
Λ/Q→0

= CA
αV (Q

2
0)

π

[
11

6
ln
Q0
Q
− Λ

2

3Q2
+
Λ2

3Q20
+

+ O
(
Λ4

Q4
− Λ

4

Q40

)]
. (3.2)

Thus the ordinary asymptotic freedom [14, 15] result is retained with power-correc-

tions Λ2/Q2. Returning to the complete expression (3.1) we also note that Π̂ is well

defined for all finite Q/Λ, including Q = 2Λ. More precisely, Π̂ is continuous at

Q = 2Λ but the derivative dΠ̂/d lnQ has an (integrable) singularity at that point.

The leading power-correction in eq. (3.2) scales as Λ2/Q2. By contrast, in the

operator product expansion one expects a Λ4/Q4 scaling behaviour (see [16] for a

phenomenological calculation and [17] for a related discussion). In this sense our

result is more similar to the gluon propagator in the manifestly gauge dependent

〈A2µ 〉 gluon condensate [18], which has been argued recently to have a possible phys-
ical meaning [19, 20]. A Λ2/Q2 scaling of the power-corrections to the potential in

momentum space was also found in an infrared renormalon analysis by Beneke [21].

In this context we note that it is not possible to make direct comparisons of results

obtained for large Q with calculations made in coordinate space since the Fourier

transform from momentum space to coordinate space involves an integral over all

momenta Q.

The sign of the power-correction in eq. (3.2) decreases the running of the cou-

pling since the sign of (Λ2/Q20−Λ2/Q2) is opposite to that of ln(Q0/Q). An opposite
behaviour, namely infrared sensitive short-distance corrections which lead to a confin-

ing potential were found recently [22]. Since this calculation was made in coordinate

space the results cannot be directly compared as explained above. We also note that

the infrared renormalon analysis cannot predict the sign of the power-correction,

only its scaling [21]. To see whether the negative sign of the power-correction found

in eq. (3.2) gives a freezing coupling or a confining potential we have to study the

small Q behaviour of eq. (3.1) since a possible fixed point for the evolution equation

is at Q = 0.

Expanding our result (3.1) in the limit Q/Λ→ 0 we find

Π̂(Q,Q0,Λ)
∣∣∣
Q/Λ→0

= CA
αV (Q

2
0)

π

[
C(Q0,Λ) + 2

Λ2

Q2
+O
(
Q2

Λ2

)]
, (3.3)

where C(Q0,Λ) is a constant. We note several interesting aspects of this. First of all

we see that the only infrared-sensitive term is of the form Λ2/Q2; all other terms are

either constant or vanish in the limit Q/Λ → 0. Especially there is no logarithmic
Q-dependence in this limit, in other words there is no logarithmic running of the

coupling for smallQ/Λ. (This can also easily be seen directly from eq. (3.1).) Another

9



J
H
E
P
0
5
(
2
0
0
1
)
0
2
0

interesting property of (3.3) is that the sign of the quadratic infrared divergence

Λ2/Q2 is opposite to the one found in eq. (3.2) and thus corresponds to a linear

confining potential when Fourier-transformed to coordinate space.

On the other hand, the Λ2/Q2 term signals a possible breakdown of our ex-

pression for the static potential at small Q2. A closer analysis of its origin in the

Feynman gauge calculation shows that it arises in the diagrams with insertions in

the single gluon propagator shown in figure 2a–c. Power counting shows that this

is also true in a general covariant gauge. Since these insertions can be iterated the

corresponding corrections should be resummed as a geometric series,

V (Q2) = −4πCF αV (Q
2
0)

Q2

[
1 + Π̂(Q,Q0,Λ) + · · ·

]

= −4πCF αV (Q
2
0)

Q2

[
1 + Π̃(Q,Q0,Λ) + 2CA

αV (Q
2
0)

π

Λ2

Q2
+

+

(
2CA
αV (Q

2
0)

π

Λ2

Q2

)2
+ · · ·

]

= −4πCF αV (Q
2
0)

Q2 − ν2
[
1 + Π̃(Q,Q0,Λ) + · · ·

]
, (3.4)

where ν2 = 2CAαV (Q
2
0)Λ

2/π is a tachyonic effective gluon mass squared, m2g,eff = −ν2
and Π̃ is the remainder of Π̂ after subtracting the quadratically divergent contribu-

tion ν2/Q2. At higher orders in g2 there will be other contributions ∝ Λ2/Q2 which
will make the effective mass scale dependent. We note that according to Chetyrkin,

Narison and Zakharov [17] the phenomenology of a tachyonic gluon mass is quite

successful and suggests ν2 ∼ 0.5GeV2. More generally, the tachyonic pole indicates
a qualitative change with decreasing Q2 in the physics described by PGCD. The im-

plications of this are beyond the scope of the present paper and require further study.

The remaining one-loop correction Π̃ can be absorbed into a modified running

coupling α̃V (Q
2,Λ2), allowing our result to be expressed as

V (Q2) = −4πCF α̃V (Q
2,Λ2)

Q2 − ν2 . (3.5)

Since Π̃ goes to a constant as Q/Λ→ 0 the modified coupling α̃V (Q2,Λ2) freezes in
the infrared. On the other hand, at large Q/Λ, Π̃ agrees with the standard PQCD

result for Π̂ up to power corrections of O(Λ2/Q2). Thus α̃V (Q2,Λ2) equals the
ordinary αV (Q

2) for large Q/Λ.

To see in more detail how α̃V (Q
2,Λ2) freezes in the infrared it is useful to consider

the one-loop β-function for this coupling,

d α̃V (Q
2,Λ2)

d lnQ
= −β̃0

(
Λ

Q

)
α̃2V (Q

2,Λ2)

π
+ · · · . (3.6)
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Figure 3: The one-loop coefficient β̃0(Λ/Q) of the β-function for the modified running

coupling α̃V (Q
2,Λ2).

Taking the derivative of Π̃ with respect to lnQ we find

β̃0

(
Λ

Q

)
= CA

[
5

6
− 2Λ

2

Q2
+

(
2
Λ3

Q3
− Λ
Q
+
1

4

Q

Λ

)
ln
2Λ +Q

|2Λ−Q|
]

(3.7)

which is plotted in figure 3. The figure shows that the running of the coupling has

essentially ceased for Q . Λ. From this it follows that if ν2 is small compared to Λ2
then the coupling freezes in the infrared before the pole at Q2 = ν2 is reached. The

figure also illustrates the logarithmic singularity of β̃0 at Q = 2Λ.

4. Summary and conclusions

We have explored the freedom to modify the boundary conditions of the perturba-

tive expansion in QCD. More precisely we considered a specific modification, called

Perturbative Gluon Condensate Dynamics or PGCD, where a low-energy “sea” of

gluons is added to the asymptotic states by modifying the iε-prescription for gluon

(and ghost) propagators. As a consequence the gluon degrees of freedom freeze below

a scale Λ, analogously to the behaviour of fermions in a Landau liquid. The gluon

sea will scatter high-energy quarks and gluons, preventing them from forming free

asymptotic states.

In order to investigate the physical relevance of the PGCD expansion we cal-

culated the one-loop correction Π̂ to the QCD potential between a static quark-

antiquark pair. For large Q2 we found that Π̂ is unchanged up to power-corrections of

O(Λ2/Q2). Thus the short distance structure of PGCD agrees with standard PQCD.
At small Q2, on the other hand, we found infrared-sensitive contributions to Π̂ of

O(ν2/Q2) which after resummation give the gluon a tachyonic mass m2g,eff = −ν2.
The remaining part of Π̂ is constant in the limit Q/Λ → 0 and gives an effective
coupling α̃V (Q

2,Λ2) which freezes for Q . Λ.
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Our result may be summarized by the expression for the static potential

V (Q2) = −4πCF α̃V (Q
2,Λ2)

Q2 − ν2 = −4πCF α̃V
Q2

(
1 +
ν2

Q2
+ · · ·

)
. (4.1)

By comparison we recall that at a finite quark density, described by modifying the

iε-prescription of the quark propagator, Debye screening generates a positive gluon

mass squared. In coordinate space the ν2/Q2 correction term in (4.1) corresponds to

a linear confining potential. The physical interpretation of our results for Q2 . ν2
requires further study.

Our renormalized one-loop correction (3.1) to the static potential has a non-

trivial dependence on Λ/Q. The fact that we obtained the same result in two quite

different gauges strongly suggests that the PGCD prescription preserves QCD gauge

invariance order by order in αs. It would be desirable to prove this more generally.
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