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1. Introduction

Tn perturbative Q CD (PQ CD ) calculations of S-m atrix am plitudes quarks and gluons
are assum ed to form free asym ptotic states at the initialand naltines, t! 1.
It is recognized that this is at vardiance w ith observations { partons actually bind to
form colour singlet hadrons which are the true asym ptotic states. C onsequently, the
applications of perturbation theory are restricted to socalled Infrared safe ocbsarv—
ables In processes characterized by a lJarge m om entum scale Q . A 1l predictions are

sub ct to power corrections ( =Q f', where 200 M €V is the findam entalQ CD
scale.

Tt has been noted [1] that PQCD predictions can nevertheless be successfully
extrapolated to low scales Q , assum ing that the Q dependence of the running

coupling (Q?) \freezes" at a hadronic scale of order . Con nem ent appears to
change m om entum distrlbbutions only In a m id way, with PQCD distrdbutions of
partons being re ected in those observed for hadrons. This m otivates us to study
whether PQCD can bemodi ed so that its use can be extended to low Q? without
having to introduce the freezing e ects \by hand".

Fom ally, there is considerable freedom in m aking a perturbative expansion. T he
standard argum ents justifying an expansion, nam ely

The nitialand naltinmesare taken to in nity along a ray slightly tilted wrt.
the real axis, and

The asym ptotic con gurations have a non-vanishing overlap with the true
ground state of the theory



allow m any choices of in—and outstates. T he existence of an overlap w ith the true

ground state is in practice an assum ption, even in the case of standard PQCD where

the asym ptotic states are taken to be the em pty \perturbative vacuum " . C onsidering

the central In portance of perturbation theory in applications of eld theory it seem s
desirable to explore the properties of expansions w ith di erent asym ptotic states.

Here we will study the e ect of adding gluons to the perturbative vacuum . Tt
is natural to consider this since the true QCD ground state is believed to be a
condensate of gluons. C onceivably, the background gluonsm ay m In ic the properties
of the true gluon condensate su  ciently to m ake the perturbative expansion express
som e of the con  nem ent physics already at low orders. In any case, the above form al
argum ents justifying such a modi ed perturbative expansion are as com pelling as
those of standard PQCD .

The soeci cmodi cation of the asym ptotic state we consider has been called
the \Perturbative G luon C ondensate" [2]. Background gluons w ith energies an aller
than a given scale  are ntroduced by m odifying the Feynm an i" prescription of the
gluon propagator in the follow ing way :
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where 1=(k? + i") denotes the ordinary Feynm an i" prescription and 1=(k + i")? de-
notesthemodi ed one. Aswas shown [2]for scalar elds, a perturbative calculation
of any G reen function G using them odi ed propagator (1.1) is equivalent to a su—
perposition of standard calculations using Feynm an propagators w ith ghions added
to the asym ptotic states, schem atically
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Here the ny = 0 tem corresponds to the unm odi ed expansion, the G, are know n
constants and the sum is over onshellglions g, ofm om entum k and energy k j<

W e will show here that gauge invariance ism aintained when both glion and ghost
propagators arem odi ed according to Eq. (1.1).

Physically, them odi ed asym ptotic states in ply scattering o the \background"
gluons which prevents the creation of guonswith kj< . Technically this can be
seen from the sign change (1.1) of i" in the free gluon propagator which rem oves
pinches between positive and negative energy poles In loop integrals. For a ferm ion
propagator, such a change of i" would be equivalent to 1ling all farm ion (or an—
tiferm ion) levels up to a Fem im om entum  , and consequently preventing ferm ion
pair production In accordance w ith the Pauli exclusion principle. W e are m otivated



to study the analogous m odi cation of the gluon propagator as a way of avoiding
the production of soft gluons in perturbation theory. Sihce we e ectively superpose
calculations w ith di erent num bers of background glions as indicated In Eq. (1.2),
we need not gpecify the wave function of such a \D irac gluon sea" (cf. [3]). W e chall
refer to the physics based on them odi ed gluon propagator (1.1),w ith the standard
Feynm an i" prescription for quark propagators, as \Perturbative G luon Conden-—
sate D ynam ics", or PGCD . Fom ally, the PGCD expansion appears as jJusti ed as
ordinary PQCD .

The introduction ofa xed momentum scale 1 the PGCD propagator (1.1)
Seam s to break Lorentz invariance. The perturbative expansion of the am plitude
for a given process w ill depend on the reference fram e, since the scale is fram e
Independent. Form ally the series sum s to the sam e (Lorentz covariant) result in any
fram e, but the rate of convergence is fram e dependent. T he situation is in this sense
analogous to the wellknown freedom of choice in the renomm alization scale. Physical
argum ents m ust be used to choose an optim al fram e for each process. This is in
fact comm only done in hadron phenom enoclogy. The non—elativistic quark m odel
describes hadrons in their rest fram es, whereas the parton m odel is form ulated in
the n nitemom entum fram e.

W e should em phasize that the boost properties of bounds states are In general
extram ely com plicated [4]. Tn Q ED ,positronium w ave fiinctionsand energy levels are
nearly always evaluated in the rest fram e, and m ost e ciently using non-covariant
m ethods such asNRQED [5]. Not even general features such as the Lorentz contrac—
tion of Q ED bound states have (to our know ledge) been explicitly dem onstrated in
perturbation theory. In Q CD we face the extra challenge that the gluon condensate
ground state is boost Invariant: the gluons carry m om enta ofO ( gcp ) In any frame.
T his feature can clearly not be described using perturbation theory { thebestwe can
do is to approxin ate the true ground state w ith background gluons whose m om enta
are the same In any frame,as in Eg. (1.1).

Tn this paper we consider the e ects of PGCD on the static quark potential.
T his in plies an autom atic fram e choice since the static potential isde ned only in
the \rest fram e" of the static sources. W e shall not further discuss the in portant
and non-trivial question of Lorentz invariance. T he question of fram e choice for a
general process is beyond the scope of this paper.

A ccording to the K noshita-l.eeN auenberg (K LN ) theoram [6]all infrared sin—
gularites cancel if one sum s over Incom ing and outgoing states that are degenerate
n energy. O ur procedure of adding soft gluons to the in—and outstates introduces
a sin ilar sn earing of the physical ocbservables. It has in fact been shown [7, 8, 9]
that the \K LN <cancellations" can be accounted for using a sin ilar m odi cation of
the 1" prescription as the one we study here. A s discussed in [9] the e ects of the
K LN -cancellation can be thought ofasa \K LN vaccum " and the non-vanishing in-
teractionsw ith the vacuum as \perturbative condensates". T hus the physical picture



appears sin ilar to the PGCD . The KLN «cancellations are valid In any eld theory
Trrespective of whether there iscon nem ent or not, and the energy—+esolution (corre—
soonding to ) can be arbitrarily an all. Tn our interpretation the scale of soft gluons
is a physical feature related to the ground state of QCD .

T he purpose of this paper is wo-fold. On the one hand we want to investi-
gate whether the PGCD boundary conditions give a perturbative expansion which
captures som e of the physics of QCD at long distances, while leaving unchanged
standard perturbative results at short distances. As a rst test case we calculate
the QCD potential between two static colour sources in a colour singlet state [101].
W e com pare the ultraviolet and Infrared properties of the static PGCD potential
w ith results obtained using ordinary PQ CD . T he second purpose of this paper is to
check explicitly that the perturbative gluon condensate fram ew ork is gauge invariant.
Hence we do the calculation both in a physical and in a covariant gauge, nam ely the
Coulom b and Feynm an gauges.

2. Calculation of static potential

The QCD potential V (0?) between two static colour sources can be de ned 1 a
gauge Invariant way from a W ilson loop [10]. At lowest order the potential is just
given by one-gluon exchange, V (Q?) = Crg°=0?,where g° is the strong coupling
and? = Q?= g isthe squared m om entum transferw hich ispurely space-lke in
the static approxin ation, ie.qp = 0. ThePGCD i" prescription doesnot change this
Jow est order result since the coupling of the background gluons to a source w ith large
massM issuppressed by =M .Athigherordersthe xed coupling § is replaced by
the running coupling after renom alization. Tncluding all higher-order corrections in
the running coupling gives an e ective charge v (Q?) de ned by
2

vQ? 4 CF% (2.1)
whereCp = (N2 1)=2N. = 4=3orQCD .In the ollow ngwewillcalculate y (Q?)
to one-loop order using the PGCD 1" prescription (1.1). For convenience we de ne
the one-loop correction A (Q;Q0; ) =0 that the leading order result is factored out,

1

h
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where Q ( is the renom alization pojnt,i.e.,A(QO;Qo; )= 0.

2.1 Coulom b gauge

Coulom b gauge is the m ost natural gauge for calculating the static potential [11],
although the Feynm an rulesarenotas sim ple as in a covariant gauge such asFeynm an
gauge. Herewe w ill use the Feynm an rules of C oulom b gauge given by Feinberg [12].
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Figure 1: O ne-loop diagram s contrbuting to the static potential in C oulom b gauge. The

thick lines represent the static quarks, and the dashed lines the instantaneous Coulom b

propagators. T he curly and double lines represent the A and E - eld propagators, respec—
tively. There isalso am ixed A and E - eld propagator which appears in (c).

T he diagram s contributing to the static potential at one-loop order in C oulom b gauge
are shown in Fig.1. For clarity we do not include the contribbution from light quarks,
which is the sam e as In standard PQCD .

U sing din ensional regularization the contrdbution to the unrenom alized one-
loop correction  from the Coulom b selfenergy diagram shown In Fig.1(a) is
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where C, = N¢: = 3,n is the number of dinensions (n < 4), is the arbitrary
din ensional regularization scale, the subscripts i;j denote the space com ponents
(1,7 = 1;2;3), and the i" prescription for the transverse gluon propagator is given
In Eg. (1.1). W e have written the integrand in 4 dim ensions since we w ill not be
Interested in constant contributions to . This corresponds to a speci ¢ choice of
renom alization schem e. The kqo=integral is conveniently done in M inkow ski space
using ordinary residue calculus, and vanishes for k j< since thepolesatk = Kkj
are then on the sam e side of the realaxis. The result issymm etricunderk $ g k
and can be expressed as
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where the —functionsre ect themodi ed i" prescription.
To sin plify the ram aining integrations it is convenient to choose
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as new Integration variables, w ith m easure
Z Z 1 Z x+1
d" k= dx dy dr ot tx" 3y 26)

0 * 15 0
w here we have again dropped tem s proportionalto (n 4) in the angular integral.
The integration over the azinuthal angle ’ gives 2 and the ram aining integral

becom es
2 'an gz Z 2.2 2 2
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where = =0 . Before evaluating the Integral we shall add the contributions from

the rem aining diagram s to the integrand.
A ccording to the rules given by Feinberg [12], the contribbution to from the
sum of the vacuum polarization diagram s in Fig. 1(b) and (c) is
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A fter Integrating over kg and ’ and using (2.5) and (2.6) this becom es
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A dding the C oulom b selfenergy and vacuum “polarization contributionsofEgs. (2.7)
and (29) gives
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N ote that the apparent pole at x = y cancels between the two tem s in the integrand.
D oing the Integralswe nd the result for the unrenom alized one-loop correction to
the static potential,
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Figure 2: O ne-oop diagram s contributing to the static potential in Feynm an gauge. T he
thick lines represent static quark propagators, the curly lines gluon propagators and the
dotted lines ghost propagators. For clarity the vertices have been m arked w ith dots.

where = =0 and C is a renom alization-schem edependent constant. T his is the
m ain result of our calculation. Before analysing it In m ore detailwe check that we
get the sam e result if we do the calculation in Feynm an gauge. This will at the
sam e tin e constitute a non—rivial veri cation of the gauge invariance of the PGCD
1" prescription.

2.2 Feynm an gauge

T he diagram s which contrlbute to the static potential in Feynm an gauge at one-
loop order are shown In Fig. 2. In addition to the glion propagator corrections of
Fig. 2(a—<) there is also the vertex correction of Fig. 2(d), which has a non-A belian
contrlbution that does not cancel against the quark wave-function renom alization,
aswell as the crossed box diagram of Fig. 2(e), which has a non-A belian part that
is not part of the iteration of the onegluon exchange. In a general covariant gauge
a diagram w ith a threeglion vertex also contributes, but it vanishes in Feynm an
gauge. Form ore details on the diagram s that contrlbute in Feynm an gauge and how

the iteration of the oneglion exchange works we refer to Fischler [13].

Note that we have included the diagram with a fourglion-vertex shown in
Fig. 2(c). In din ensional regularization this diagram does not contribute to the
Jogarithm ic UV divergence, only to a quadratic divergence which nom ally cancels
against the other two gluon propagator corrections. H owever, since we are m odify—
ing the i" prescription these cancellations are no longer quaranteed and therefore we
Inchide all diagram s.

W e again use dim ensional regularization and calculate the integrands of all di-
agram s In 4 din ensions since we are not interested in constant contributions to the

nal expression. T he result after perform ing the num erator and colour algebra is
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where each term corresponds to a speci cdiagram in Fig.2. The 1=(k + i") factor
n the vertex correction and box diagram s com es from the static quark propagator
and is not to be confiised with the PGCD prescription (1.1). Doing the integrals
over kg and ’/ and m aking the variable substitutions x = k30 and y= kX + 30

we are left with
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Even though the Integrand isdi erent from theoneofEqg. (2.10) obtained In Coulom b
gauge, the nalresult after the iIntegrals are done only di ers from Eq. (2.11) by a
renom alization-schem edependent constant. There is thus full agreem ent between
the two calculations.

3. D iscussion of result

O ur renom alized result for the one-loop contribution to the static potential using
the PGCD 1i" prescription is

v(@Q2) 11. 2 +Q, 4 *?
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which isobtained from Eq. (2.11) by m aking a subtraction atQ = Q4. The constant
C is thus detem ined by the condition ~ (Q0;Q0; )= O.
A basic control of the valdity of Eg. (3.1) is that it agrees w ith the standard
PQCD resultintheQ ! 1 Imit. For =Q ! Oweget
" !#
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T hus the ordinary asym ptotic freedom [14,15 Jresult is retained w ith pow ercorrections

20?2, Retuming to the com plete expression (3.1) we also note that ~ iswellde ned
forall niteQ= ,IhcluidingQ =2 .M ore precjseh/,A iscontinuousatQ = 2 but
the derivative d” =dInQ hasan (integrable) singularity at that point.

T he Jeading power<correction in Eq. (3.2) scales as “=Q 2. By contrast, in the
operator product expansion one expects a ‘=0 * scaling behaviour (see [16] for a
phenom enological calculation and [17] for a related discussion). In this sense our
result is m ore sim ilar to the glion propagator in the m anifestly gauge dependent
< A? > glion condensate [18], which has been argued recently to have a possble



physicalm eaning [19,20]. A ?=0Q 2 scaling of the pow ercorrections to the potential
Inmomentum spacewasalso found in an infrared renorm alon analysisby B eneke [21].
In this context we note that it is not possible to m ake direct com parisons of results
obtained for large Q with calculations m ade In coordinate space since the Fourder
transform from m om entum space to coordinate space involves an integral over all
momenta Q .

T he sign of the pow ercorrection n Eq. (3.2) decreases the running of the cou-
pling since the sign of ( ?=Q%  ?=Q?) is opposite to that of N (Q (=Q ). An opposite
behaviour, nam ely infrared sensitive short-distance correctionswhich lead toacon n-
Ing potentialwere found recently [22]. Since this calculation wasm ade In coordinate
Space the results cannot be directly com pared as explained above. W e also note that
the Infrared renomm alon analysis cannot predict the sign of the pow er-correction,
only its scaling [21]. To see whether the negative sign of the pow er<correction found
In Eq. (32) gives a freezing coupling or a con ning potential we have to study the
an allQ behaviour of Eq. (3.1) since a possible xed point for the evolution equation
isatQ = 0.

Expanding our result (3.1) n thelmit Q= ! Owe nd
" D #
A V(Qé) z Q?
QiQos )Q:!O=CA7 C@Qo; )+ 2§+O — ; (3.3)

where C (Qy; ) is a constant. W e note several Interesting aspects of this. First of
allwe see that the only infrared-sensitive term is of the orm  ?=Q ?; all other term s
are either constant or vanish in the Iimit Q= ! 0. Esgpecially there is no logarith—
m ic Q dependence in this lin it, in other words there is no logarithm ic running of
the coupling for snallQ= . (This can also easily be seen directly from Eq. (3.1).)
A nother interesting property of (33) is that the sign of the quadratic infrared di-
vergence 2=Q? is opposite to the one found in Eq. (3.2) and thus corresponds to a
Iinear con ning potentialwhen Fourdertransform ed to coordinate space.

On the other hand, the 2=Q? tem signals a possible breakdown of our expres—
sion for the static potentialat sm allQ 2. A closer analysis of its origin in the Feynm an
gauge calculation show s that it arises in the diagram s w ith insertions in the single
gluon propagator shown in F ig. 2(a—<). Power counting show s that this isalso true in
a general covariant gauge. Since these Insertions can be iterated the corresponding
corrections should be resumm ed as a geom etric series,

2 v(QS)h A i
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= 4cC
where *= 2C, v (Qf) °= Isatachyonice ectiveglionmasssjuared,m?, =  °
and ~ istherem ainderof” after subtracting the quadratically divergent contribution
2=0?. At higher orders in g° there will be other contrbutions / =02 which will
m ake the e ective m ass scale dependent. W e note that according to Chetyrkin,
Narison and Zakharov [17] the phenom enology of a tachyonic gluon m ass is quite
2 05 GevV?. M ore generally, the tachyonic pole indicates
a qualitative change with decreasing Q2 in the physics described by PGCD . The
In plications of this are beyond the scope of the present paper and require further
study.

T he rem aining one-loop correction

successfiil and suggests

can be absorbed Into a modi ed running
coupling ~y (Q%; ?),allow ing our result to be expressed as

~y Q%7 %)
V@Y= 4 chzi’Z: (3.5)
Since ~ goesto a constantasQ= ! 0 themodi ed coupling ¢ (Q?; ?) freezes in

the infrared. On the other hand, at arge Q= , "~ agrees w ith the standard PQCD
result or © up to power corrections of O ( ?=Q?). Thus ~y (Q?%; ?) equals the
ordinary v (Q?) for large Q =

To see Inm oredetailhow ~; (Q?; ?) freezes in the nfrared it isusefill to consider
the onedoop —function for this coupling,

d~y (Q%; ?) ~2 Q% ?)
_— = ~ : 36
ano o( =Q )—m—-+ (3.6)

Taking the derivative of ~ with respect to nQ we nd
" ! #
W)= C 22— 2 10 2 *+9 37)
= - — + —  — 4+ == _— .
’ e g2 Q° o 4 R
which is plotted in Fig. 3. The gure shows that the running of the coupling has
essentially ceased forQ < . From this it follow s that if ? is an allcom pared to 2
then the coupling freezes in the infrared before the polke at Q% = ? isreached. The

gure also illustrates the logarithm ic singularity of™ atQ = 2

4. Summ ary and conclusions

W e have explored the freedom to m odify the boundary conditions of the perturba-
tive expansion In Q CD .M ore precisely we considered a speci cmodi cation, called
Perturbative G luon Condensate D ynam ics or PGCD , where a low-energy \sea" of
gluons is added to the asym ptotic states by m odifying the i" prescription for gluon

10



By
5 -
4 -
3
2
1;
O7\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
AQ

Figure 3: The onedoop coe cient T5( =Q ) of the -function for the m odi ed running

coupling ~y (Q%; ?).

(and ghost) propagators. A sa consequence the gluon degrees of freedom  freeze below
a scale , analogously to the behaviour of ferm ions in a Landau liguid. T he gluon
sea w ill scatter high-energy quarks and glions, preventing them from form ing free
asym ptotic states.

Tn order to Investigate the physical relevance of the PGCD expansion we calcu—
lated the one-loop correction " to theQCD potential between a static quark —anti-
quark pair. For large Q 2 we found that " s unchanged up to pow er-corrections of
O ( ?=Q?). Thus the short distance structure of PG CD agreesw ith standard PQCD .
At anallQ?, on the other hand, we found infrared-sensitive contributions to " of
O ( *=Q?) which after resumm ation give the gluon a tachyonicmassm?, = 2,
T he ram aining part of " is constant in the limit Q= ! 0 and gives an e ective
coupling ~y (Q?; ?)which freezes orQ <

Our result m ay be summ arized by the expression for the static potential

2. 2 - 2
V(Q?)= 4CF%= A}(:FQ—V2 L gg+m (4.1)
By com parison we recall that at a nite quark density, described by m odifying the
i" prescription of the quark propagator, D ebye screening generates a positive gluon
m ass squared. In coordinate space the 2=Q 2 correction term in (4.1) corresponds to
a lnear con ning potential. T he physical interpretation of our results for ¢ < 2
requires further study.

O ur renom alized one-loop correction (3.1) to the static potential has a non-

trivial dependence on  =Q . T he fact that we obtained the sam e result In two quite

11



di erent gauges strongly suggests that the PG CD prescription pressrves Q CD gauge
nvariance order by order in . Tt would be desirable to prove thism ore generally.

A cknow ledgm ents

W e are grateful for helpfill discussions with S. J. Brodsky, F. Sannino and K . Za-
lew ski. JR woul like to thank Nordita for its hogpitality during a visit when partsof
thiswork were done. Thiswork was supported in part by the EU N etworks \H adron
Physics with H igh Energy E lectrom agnetic Probes", contract EBR FM RX-CT 96—
0008 (PH), \E lectron Scattering O Con ned Partons", contract HPRN-C T 2000-
00130 (PH ) and \Q uantum Chrom odynam ics and the D eep Structure of E Jem entary
Particles", contract FM RX T 980194 (DG 12-M THT) (JR).

R eferences

[L] Yu.L.Dokshitzer, Plenary tak at ICHEP 98, Proc. Vanoouver 1998, H igh energy
physics, Vol. 1, 305324, hep-ph/9812252].

[2] P. Hoyer, hep-ph/9610270]; P. Hoyer, Proc. APCTP-ICTP Conf. (Seoul, K orea,
May 1997), Y.M .Cho and M . Virasoro, Eds., W orld Scienti c (1998), p. 148,
lhep-ph/9709444]; P. Hoyer, Talk at W orkshop on Exclusive and Sem iexclisive
Processes at H igh M om entum Transfer’ (Je erson Lab,USA ,M ay 1999),W orld Sci-
enti c (ISBN 981-02-4355-3), p. 3, lhep-ph/9908501].

[3] H.B.Nilsen and M .N nom iya, hep—-th/9808108].
4] P.A.M .Dirac,Rev.M od.Phys. 21 (1949) 392.

BIW .E.Caswelland G .P.Lepage,Phys.Lett. B 167 (1986) 437.Secalso G .P.Lepage,
in Proceadings of the TA ST89 Summ er School, Boulder, C olorado; T .K inoshita and
G .P. Lepage, n Quantum E lectrodynam ics, ed. by T . K inoshita, W orld Scienti c,
Sinagapore, 1990; P. Labelle, hep—ph/9209266 1.

[6] T .K inoshita,J.M ath. Phys. 3 (1962) 650; T .D .Lee and M .N auenberg, Phys. Rev.
133 (1964) B1549.

[7] R .Akhoury and V . I. Zakharov, Phys. Rev. Lett. 76 (1996) 2238 [hep—-ph/95124331].

[B] R.Akhoury,M .G . Sotiropoulos and V . I. Zakharov, Phys. Rev. D 56 (1997) 377
lhep—-ph/9702270].

O] R. Akhoury, L. Stodolsky and V. I. Zakharov, Nucl Phys. B 516 (1998) 317
lhep-ph/9609368].

[10] L. Susskind, In Les Houches 1976, Procesdings, W eak and E lectrom agnetic Interac—
tons At H igh Energies, Am sterdam 1977, 207-308.

12



11] I.B .Khriplovich, Sov. J. NuclL Phys. 10 (1970) 235.

[12] F.L.Feinberg, Phys.Rev.D 17 (1978) 2659.

[13] W .Fischler,Nucl Phys.B 129 (1977) 157.

[14] D.J.Grossand F.W ilczek, Phys. Rev. Lett. 30 (1973) 1343.
[15] H.D . Politzer, Phys. Rev. Lett. 30 (1973) 1346.

[16] I.I.Balitsky,Nucl Phys.B 254 (1985) 166.

[l71 K .G .Chetyrkin, S. Narison and V. I. Zakharov, Nucl Phys. B 550 (1999) 353,
lhep-ph/9811275].

[18] M .J.Lavelle and M . Schaden,Phys. Lett. B 208 (1988) 297.

[19] F.V.Gubarev, L. Stodolsky and V. I. Zakharov, Phys. Rev. Lett. 86 (2001) 2220
lhep-ph/0010057].

[20] F.V .Gubarev and V . I. Zakharov, Phys. Lett. B 501 (2001) 28 hep-ph/0010096].
[21]1 M .Beneke, Phys. Lett. B 434 (1998) 115 hep-ph/98042411].

[22] R .Akhoury and V . I. Zakharov, Phys. Lett. B 438 (1998) 165 [hep-ph/9710487].

13



