
Preprint typeset in JHEP style. - PAPER VERSION CERN-TH/2000-334

NORDITA-2000-96 HE

Revised 4 May, 2001

hep-ph/0011209

The static PQCD potential with modified

boundary conditions

Paul Hoyer∗

Nordita, Blegdamsvej 17, DK–2100 Copenhagen, Denmark
E-mail: hoyer@nordita.dk

Johan Rathsman

CERN, TH-Division, CH–1211 Geneva 23, Switzerland
E-mail: Johan.Rathsman@cern.ch

Abstract: We calculate the potential between two static quarks in QCD using mod-

ified boundary conditions for the perturbative expansion. Through a change of the

Feynman iε prescription we effectively add a “sea” of gluons to the asymptotic states

with energies below a given scale Λ. We find that the standard result for the static

potential gets corrections of order Λ2/Q2 both at small and large momentum transfers

Q2. After resummation of the infrared sensitive corrections we find that the running

coupling αs(Q
2) freezes in the infrared and that the exchanged gluon gets an effec-

tive tachyonic mass. We verify that identical results are obtained in the Coulomb and

Feynman gauges.

Keywords: QCD, Nonperturbative effects, Confinement, Asymptotic freedom.

∗On leave of absence from the Department of Physics, University of Helsinki.



Contents

1. Introduction

In perturbative QCD (PQCD) calculations of S-matrix amplitudes quarks and gluons

are assumed to form free asymptotic states at the initial and final times, t → ±∞.

It is recognized that this is at variance with observations – partons actually bind to

form colour singlet hadrons which are the true asymptotic states. Consequently, the

applications of perturbation theory are restricted to so-called infrared safe observables

in processes characterized by a large momentum scale Q. All predictions are subject

to power corrections (Λ/Q)n, where Λ ∼ 200 MeV is the fundamental QCD scale.

It has been noted [1] that PQCD predictions can nevertheless be successfully extrap-

olated to low scales Q ∼ Λ, assuming that the Q-dependence of the running coupling

αs(Q
2) “freezes” at a hadronic scale of order Λ. Confinement appears to change mo-

mentum distributions only in a mild way, with PQCD distributions of partons being

reflected in those observed for hadrons. This motivates us to study whether PQCD can

be modified so that its use can be extended to low Q2 without having to introduce the

freezing effects “by hand”.

Formally, there is considerable freedom in making a perturbative expansion. The

standard arguments justifying an expansion, namely

• The initial and final times are taken to infinity along a ray slightly tilted wrt. the

real axis, and

• The asymptotic configurations have a non-vanishing overlap with the true ground

state of the theory

allow many choices of in- and out-states. The existence of an overlap with the true

ground state is in practice an assumption, even in the case of standard PQCD where

the asymptotic states are taken to be the empty “perturbative vacuum”. Considering

the central importance of perturbation theory in applications of field theory it seems

desirable to explore the properties of expansions with different asymptotic states.

Here we will study the effect of adding gluons to the perturbative vacuum. It is

natural to consider this since the true QCD ground state is believed to be a condensate

of gluons. Conceivably, the background gluons may mimic the properties of the true

gluon condensate sufficiently to make the perturbative expansion express some of the
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confinement physics already at low orders. In any case, the above formal arguments

justifying such a modified perturbative expansion are as compelling as those of standard

PQCD.

The specific modification of the asymptotic state we consider has been called the

“Perturbative Gluon Condensate” [2]. Background gluons with energies smaller than

a given scale Λ are introduced by modifying the Feynman iε prescription of the gluon

propagator in the following way:

1

k2 + iε
→ 1

(k + iε)2
≡ 1

k2 + iε
+

iπ

2|k| [δ(k0 − |k|) + δ(k0 + |k|)] Θ(Λ− |k|) (1.1)

=
Θ(|k| − Λ)

k2 + iε
+

1

2

[
1

(k0 − iε)2 − k2 +
1

(k0 + iε)2 − k2

]
Θ(Λ− |k|) ,

where 1/(k2 + iε) denotes the ordinary Feynman iε prescription and 1/(k+iε)2 denotes

the modified one. As was shown [2] for scalar fields, a perturbative calculation of any

Green function G using the modified propagator (1.1) is equivalent to a superposition of

standard calculations using Feynman propagators with gluons added to the asymptotic

states, schematically

〈0|G|0〉 →

 ∏
|k|<Λ

∞∑
nk=0

cnk


 〈∏

k

(gk)
nk|G |∏

k

(gk)
nk〉 . (1.2)

Here the nk = 0 term corresponds to the unmodified expansion, the cnk
are known

constants and the sum is over on-shell gluons gk of momentum k and energy |k| < Λ.

We will show here that gauge invariance is maintained when both gluon and ghost

propagators are modified according to Eq. (1.1).

Physically, the modified asymptotic states imply scattering off the “background”

gluons which prevents the creation of gluons with |k| < Λ. Technically this can be seen

from the sign change (1.1) of iε in the free gluon propagator which removes pinches

between positive and negative energy poles in loop integrals. For a fermion propagator,

such a change of iε would be equivalent to filling all fermion (or antifermion) levels up

to a Fermi momentum Λ, and consequently preventing fermion pair production in ac-

cordance with the Pauli exclusion principle. We are motivated to study the analogous

modification of the gluon propagator as a way of avoiding the production of soft glu-

ons in perturbation theory. Since we effectively superpose calculations with different

numbers of background gluons as indicated in Eq. (1.2), we need not specify the wave

function of such a “Dirac gluon sea” (cf. [3]). We shall refer to the physics based on the

modified gluon propagator (1.1), with the standard Feynman iε prescription for quark

propagators, as “Perturbative Gluon Condensate Dynamics”, or PGCD. Formally, the

PGCD expansion appears as justified as ordinary PQCD.

The introduction of a fixed momentum scale Λ in the PGCD propagator (1.1) seems

to break Lorentz invariance. The perturbative expansion of the amplitude for a given

process will depend on the reference frame, since the scale Λ is frame independent.
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Formally the series sums to the same (Lorentz covariant) result in any frame, but the

rate of convergence is frame dependent. The situation is in this sense analogous to the

well-known freedom of choice in the renormalization scale. Physical arguments must

be used to choose an optimal frame for each process. This is in fact commonly done

in hadron phenomenology. The non-relativistic quark model describes hadrons in their

rest frames, whereas the parton model is formulated in the infinite momentum frame.

We should emphasize that the boost properties of bounds states are in general ex-

tremely complicated [4]. In QED, positronium wave functions and energy levels are

nearly always evaluated in the rest frame, and most efficiently using non-covariant

methods such as NRQED [5]. Not even general features such as the Lorentz contrac-

tion of QED bound states have (to our knowledge) been explicitly demonstrated in

perturbation theory. In QCD we face the extra challenge that the gluon condensate

ground state is boost invariant: the gluons carry momenta of O(ΛQCD) in any frame.

This feature can clearly not be described using perturbation theory – the best we can

do is to approximate the true ground state with background gluons whose momenta

are the same in any frame, as in Eq. (1.1).

In this paper we consider the effects of PGCD on the static quark potential. This

implies an automatic frame choice since the static potential is defined only in the “rest

frame” of the static sources. We shall not further discuss the important and non-trivial

question of Lorentz invariance. The question of frame choice for a general process is

beyond the scope of this paper.

According to the Kinoshita-Lee-Nauenberg (KLN) theorem [6] all infrared singu-

larites cancel if one sums over incoming and outgoing states that are degenerate in

energy. Our procedure of adding soft gluons to the in- and out-states introduces a

similar smearing of the physical observables. It has in fact been shown [7, 8, 9] that

the “KLN-cancellations” can be accounted for using a similar modification of the iε

prescription as the one we study here. As discussed in [9] the effects of the KLN-

cancellation can be thought of as a “KLN vaccum” and the non-vanishing interactions

with the vacuum as “perturbative condensates”. Thus the physical picture appears

similar to the PGCD. The KLN-cancellations are valid in any field theory irrespective

of whether there is confinement or not, and the energy-resolution (corresponding to

Λ) can be arbitrarily small. In our interpretation the scale of soft gluons is a physical

feature related to the ground state of QCD.

The purpose of this paper is two-fold. On the one hand we want to investigate

whether the PGCD boundary conditions give a perturbative expansion which captures

some of the physics of QCD at long distances, while leaving unchanged standard per-

turbative results at short distances. As a first test case we calculate the QCD potential

between two static colour sources in a colour singlet state [10]. We compare the ultra-

violet and infrared properties of the static PGCD potential with results obtained using

ordinary PQCD. The second purpose of this paper is to check explicitly that the per-

turbative gluon condensate framework is gauge invariant. Hence we do the calculation
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both in a physical and in a covariant gauge, namely the Coulomb and Feynman gauges.

2. Calculation of static potential

The QCD potential V (Q2) between two static colour sources can be defined in a gauge

invariant way from a Wilson loop [10]. At lowest order the potential is just given

by one-gluon exchange, V (Q2) = −CF g2/Q2, where g2 is the strong coupling and

q2 = −Q2 = −q2 is the squared momentum transfer which is purely space-like in the

static approximation, i.e. q0 = 0. The PGCD iε prescription does not change this

lowest order result since the coupling of the background gluons to a source with large

mass M is suppressed by Λ/M . At higher orders the fixed coupling g2 is replaced by

the running coupling after renormalization. Including all higher-order corrections in

the running coupling gives an effective charge αV (Q2) defined by

V (Q2) ≡ −4πCF
αV (Q2)

Q2
(2.1)

where CF = (N2
C − 1)/2NC = 4/3 for QCD. In the following we will calculate αV (Q2)

to one-loop order using the PGCD iε prescription (1.1). For convenience we define the

one-loop correction Π̂(Q, Q0, Λ) so that the leading order result is factored out,

αV (Q2) = αV (Q2
0)
[
1 + Π̂(Q, Q0, Λ) + · · ·

]
, (2.2)

where Q0 is the renormalization point, i.e., Π̂(Q0, Q0, Λ) = 0.

2.1. Coulomb gauge

Coulomb gauge is the most natural gauge for calculating the static potential [11],

although the Feynman rules are not as simple as in a covariant gauge such as Feynman

gauge. Here we will use the Feynman rules of Coulomb gauge given by Feinberg [12].

The diagrams contributing to the static potential at one-loop order in Coulomb gauge

are shown in Fig. 1. For clarity we do not include the contribution from light quarks,

which is the same as in standard PQCD.

Using dimensional regularization the contribution to the unrenormalized one-loop

correction Π from the Coulomb self-energy diagram shown in Fig. 1(a) is

Πa = 3ig2CAµ4−n
∫ dnk

(2π)4
qiqj

(
δij − kikj

k2

)
1

q2(q− k)2

1

(k + iε)2
(2.3)

where CA = NC = 3, n is the number of dimensions (n < 4), µ is the arbitrary

dimensional regularization scale, the subscripts i, j denote the space components (i, j =

1, 2, 3), and the iε prescription for the transverse gluon propagator is given in Eq. (1.1).

We have written the integrand in 4 dimensions since we will not be interested in constant

contributions to Π. This corresponds to a specific choice of renormalization scheme.
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Figure 1: One-loop diagrams contributing to the static potential in Coulomb gauge. The
thick lines represent the static quarks, and the dashed lines the instantaneous Coulomb prop-
agators. The curly and double lines represent the A and E-field propagators, respectively.
There is also a mixed A and E-field propagator which appears in (c).

The k0-integral is conveniently done in Minkowski space using ordinary residue calculus,

and vanishes for |k| < Λ since the poles at k0 = ±|k| are then on the same side of the

real axis. The result is symmetric under k ↔ q− k and can be expressed as

Πa = 3g2CAµ4−n
∫

dn−1k

(2π)3

(
1− (k · q)2

k2q2

)

× 1

(q− k)2

1

2

[
Θ(|k| − Λ)

2|k| +
Θ(|q− k| − Λ)

2|q− k|
]

(2.4)

where the Θ-functions reflect the modified iε prescription.

To simplify the remaining integrations it is convenient to choose

x =
|k|
Q

, y =
|q− k|

Q
(2.5)

as new integration variables, with measure∫
dn−1k =

∫ ∞

0
dx

∫ x+1

|x−1|
dy

∫ 2π

0
dϕ Qn−1xn−3y (2.6)

where we have again dropped terms proportional to (n−4) in the angular integral. The

integration over the azimuthal angle ϕ gives 2π and the remaining integral becomes

Πa = 3CA
g2

4π2

(
µ

Q

)4−n ∫ ∞

0
dx xn−4

∫ x+1

|x−1|
dy
−x4 − y4 + 2x2y2 + 2x2 + 2y2 − 1

16x2y2

× [yΘ(x− λ) + xΘ(y − λ)] , (2.7)

where λ = Λ/Q. Before evaluating the integral we shall add the contributions from the

remaining diagrams to the integrand.

According to the rules given by Feinberg [12], the contribution to Π from the sum

of the vacuum-polarization diagrams in Fig. 1(b) and (c) is

Πb+c = ig2CAµ4−n
∫ dnk

(2π)4

(
δij − (q− k)i(q− k)j

(q− k)2

)(
δij − kikj

k2

)
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× k2
0 + 1

2
[k2 + (q− k)2]

q2(k + iε)2(q − k + iε)2
. (2.8)

After integrating over k0 and ϕ and using (2.5) and (2.6) this becomes

Πb+c = CA
g2

4π2

(
µ

Q

)4−n ∫ ∞

0
dx xn−4

∫ x+1

|x−1|
dy

x4 + y4 + 6x2y2 − 2x2 − 2y2 + 1

16x2y2

×
[
y
3x2 + y2

x2 − y2
Θ(x− λ) + x

3y2 + x2

y2 − x2
Θ(y − λ)

]
. (2.9)

Adding the Coulomb self-energy and vacuum-polarization contributions of Eqs. (2.7)

and (2.9) gives

Π = CA
g2

4π2

(
µ

Q

)4−n ∫ ∞

0
dx xn−4

∫ x+1

|x−1|
dy

[
7x4 + y4 − 2x2 − 2y2 + 1

4x2(x2 − y2)
yΘ(x− λ)

+
7y4 + x4 − 2y2 − 2x2 + 1

4y2(y2 − x2)
xΘ(y − λ)

]
, (2.10)

Note that the apparent pole at x = y cancels between the two terms in the integrand.

Doing the integrals we find the result for the unrenormalized one-loop correction to the

static potential,

Π(Q, µ, Λ) = CA
g2

4π2

[
11

6
ln

2µ

Q(2λ + 1)
+

11

6

1

4− n
+

4

3
λ2 + C

+
(2λ− 1)(4λ3 + 2λ2 − 5λ + 3)

12λ
ln

2λ + 1

|2λ− 1|
]

, (2.11)

where λ = Λ/Q and C is a renormalization-scheme-dependent constant. This is the

main result of our calculation. Before analysing it in more detail we check that we get

the same result if we do the calculation in Feynman gauge. This will at the same time

constitute a non-trivial verification of the gauge invariance of the PGCD iε prescription.

2.2. Feynman gauge

The diagrams which contribute to the static potential in Feynman gauge at one-loop

order are shown in Fig. 2. In addition to the gluon propagator corrections of Fig. 2(a-c)

there is also the vertex correction of Fig. 2(d), which has a non-Abelian contribution

that does not cancel against the quark wave-function renormalization, as well as the

crossed box diagram of Fig. 2(e), which has a non-Abelian part that is not part of

the iteration of the one-gluon exchange. In a general covariant gauge a diagram with

a three-gluon vertex also contributes, but it vanishes in Feynman gauge. For more

details on the diagrams that contribute in Feynman gauge and how the iteration of the

one-gluon exchange works we refer to Fischler [13].

Note that we have included the diagram with a four-gluon-vertex shown in Fig. 2(c).

In dimensional regularization this diagram does not contribute to the logarithmic UV-

divergence, only to a quadratic divergence which normally cancels against the other
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(a) (b) (c) (d) (e)

Figure 2: One-loop diagrams contributing to the static potential in Feynman gauge. The
thick lines represent static quark propagators, the curly lines gluon propagators and the
dotted lines ghost propagators. For clarity the vertices have been marked with dots.

two gluon propagator corrections. However, since we are modifying the iε prescription

these cancellations are no longer guaranteed and therefore we include all diagrams.

We again use dimensional regularization and calculate the integrands of all dia-

grams in 4 dimensions since we are not interested in constant contributions to the final

expression. The result after performing the numerator and colour algebra is

Π =
ig2

2q2
CAµ4−n

∫
dnk

(2π)4

[
k2 + (k + q)2 + 4q2 + 10k2

0

(k + iε)2(k + q + iε)2
− 2k2

0

(k + iε)2(k + q + iε)2

− 6

(k + iε)2
− 2q2

(k0 + iε)2(k + iε)2
+

q4

(k0 + iε)2(k + iε)2(k + q + iε)2

]
, (2.12)

where each term corresponds to a specific diagram in Fig. 2. The 1/(k0 + iε) factor in

the vertex correction and box diagrams comes from the static quark propagator and is

not to be confused with the PGCD prescription (1.1). Doing the integrals over k0 and

ϕ and making the variable substitutions x = |k|/Q and y = |k + q|/Q we are left with

Π = CA
g2

4π2

(
µ

Q

)4−n ∫ ∞

0
dx xn−4

∫ x+1

|x−1|
dy

[
6x4 + 2x2y2 − 3x2 − y2 + 1

4x2(x2 − y2)
yΘ(x− λ)

+
6y4 + 2y2x2 − 3y2 − x2 + 1

4y2(y2 − x2)
xΘ(y − λ)

]
(2.13)

Even though the integrand is different from the one of Eq. (2.10) obtained in Coulomb

gauge, the final result after the integrals are done only differs from Eq. (2.11) by a

renormalization-scheme-dependent constant. There is thus full agreement between the

two calculations.

3. Discussion of result

Our renormalized result for the one-loop contribution to the static potential using the

PGCD iε prescription is

Π̂(Q, Q0, Λ) = CA
αV (Q2

0)

π

[
11

6
ln

2Λ + Q0

2Λ + Q
+

4

3

Λ2

Q2
+ C
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+
2Λ−Q

12Λ

(
4
Λ3

Q3
+ 2

Λ2

Q2
− 5

Λ

Q
+ 3

)
ln

2Λ + Q

|2Λ−Q|
]

, (3.1)

which is obtained from Eq. (2.11) by making a subtraction at Q = Q0. The constant

C is thus determined by the condition Π̂(Q0, Q0, Λ) = 0.

A basic control of the validity of Eq. (3.1) is that it agrees with the standard PQCD

result in the Q →∞ limit. For Λ/Q → 0 we get

Π̂(Q, Q0, Λ)
∣∣∣
Λ/Q→0

= CA
αV (Q2

0)

π

[
11

6
ln

Q0

Q
− Λ2

3Q2
+

Λ2

3Q2
0

+O
(

Λ4

Q4
− Λ4

Q4
0

)]
.(3.2)

Thus the ordinary asymptotic freedom [14, 15] result is retained with power-corrections

Λ2/Q2. Returning to the complete expression (3.1) we also note that Π̂ is well defined

for all finite Q/Λ, including Q = 2Λ. More precisely, Π̂ is continuous at Q = 2Λ but

the derivative dΠ̂/d lnQ has an (integrable) singularity at that point.

The leading power-correction in Eq. (3.2) scales as Λ2/Q2. By contrast, in the

operator product expansion one expects a Λ4/Q4 scaling behaviour (see [16] for a phe-

nomenological calculation and [17] for a related discussion). In this sense our result is

more similar to the gluon propagator in the manifestly gauge dependent < A2
µ > gluon

condensate [18], which has been argued recently to have a possible physical mean-

ing [19, 20]. A Λ2/Q2 scaling of the power-corrections to the potential in momentum

space was also found in an infrared renormalon analysis by Beneke [21]. In this con-

text we note that it is not possible to make direct comparisons of results obtained for

large Q with calculations made in coordinate space since the Fourier transform from

momentum space to coordinate space involves an integral over all momenta Q.

The sign of the power-correction in Eq. (3.2) decreases the running of the coupling

since the sign of (Λ2/Q2
0 − Λ2/Q2) is opposite to that of ln(Q0/Q). An opposite be-

haviour, namely infrared sensitive short-distance corrections which lead to a confining

potential were found recently [22]. Since this calculation was made in coordinate space

the results cannot be directly compared as explained above. We also note that the

infrared renormalon analysis cannot predict the sign of the power-correction, only its

scaling [21]. To see whether the negative sign of the power-correction found in Eq. (3.2)

gives a freezing coupling or a confining potential we have to study the small Q behaviour

of Eq. (3.1) since a possible fixed point for the evolution equation is at Q = 0.

Expanding our result (3.1) in the limit Q/Λ → 0 we find

Π̂(Q, Q0, Λ)
∣∣∣
Q/Λ→0

= CA
αV (Q2

0)

π

[
C(Q0, Λ) + 2

Λ2

Q2
+O

(
Q2

Λ2

)]
, (3.3)

where C(Q0, Λ) is a constant. We note several interesting aspects of this. First of all

we see that the only infrared-sensitive term is of the form Λ2/Q2; all other terms are

either constant or vanish in the limit Q/Λ → 0. Especially there is no logarithmic

Q-dependence in this limit, in other words there is no logarithmic running of the cou-

pling for small Q/Λ. (This can also easily be seen directly from Eq. (3.1).) Another
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interesting property of (3.3) is that the sign of the quadratic infrared divergence Λ2/Q2

is opposite to the one found in Eq. (3.2) and thus corresponds to a linear confining

potential when Fourier-transformed to coordinate space.

On the other hand, the Λ2/Q2 term signals a possible breakdown of our expression

for the static potential at small Q2. A closer analysis of its origin in the Feynman

gauge calculation shows that it arises in the diagrams with insertions in the single

gluon propagator shown in Fig. 2(a-c). Power counting shows that this is also true

in a general covariant gauge. Since these insertions can be iterated the corresponding

corrections should be resummed as a geometric series,

V (Q2) = −4πCF
αV (Q2

0)

Q2

[
1 + Π̂(Q, Q0, Λ) + · · ·

]

= −4πCF
αV (Q2

0)

Q2

[
1 + Π̃(Q, Q0, Λ) + 2CA

αV (Q2
0)

π

Λ2

Q2

+

(
2CA

αV (Q2
0)

π

Λ2

Q2

)2

+ · · ·



= −4πCF
αV (Q2

0)

Q2 − ν2

[
1 + Π̃(Q, Q0, Λ) + · · ·

]
(3.4)

where ν2 = 2CAαV (Q2
0)Λ

2/π is a tachyonic effective gluon mass squared, m2
g,eff = −ν2

and Π̃ is the remainder of Π̂ after subtracting the quadratically divergent contribution

ν2/Q2. At higher orders in g2 there will be other contributions ∝ Λ2/Q2 which will

make the effective mass scale dependent. We note that according to Chetyrkin, Narison

and Zakharov [17] the phenomenology of a tachyonic gluon mass is quite successful and

suggests ν2 ∼ 0.5 GeV2. More generally, the tachyonic pole indicates a qualitative

change with decreasing Q2 in the physics described by PGCD. The implications of this

are beyond the scope of the present paper and require further study.

The remaining one-loop correction Π̃ can be absorbed into a modified running cou-

pling α̃V (Q2, Λ2), allowing our result to be expressed as

V (Q2) = −4πCF
α̃V (Q2, Λ2)

Q2 − ν2
. (3.5)

Since Π̃ goes to a constant as Q/Λ → 0 the modified coupling α̃V (Q2, Λ2) freezes in the

infrared. On the other hand, at large Q/Λ, Π̃ agrees with the standard PQCD result for

Π̂ up to power corrections of O(Λ2/Q2). Thus α̃V (Q2, Λ2) equals the ordinary αV (Q2)

for large Q/Λ.

To see in more detail how α̃V (Q2, Λ2) freezes in the infrared it is useful to consider

the one-loop β-function for this coupling,

d α̃V (Q2, Λ2)

d lnQ
= −β̃0(Λ/Q)

α̃2
V (Q2, Λ2)

π
+ · · · . (3.6)
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Λ/Q

β
∼

0

Figure 3: The one-loop coefficient β̃0(Λ/Q) of the β-function for the modified running
coupling α̃V (Q2,Λ2).

Taking the derivative of Π̃ with respect to ln Q we find

β̃0(Λ/Q) = CA

[
5

6
− 2

Λ2

Q2
+

(
2
Λ3

Q3
− Λ

Q
+

1

4

Q

Λ

)
ln

2Λ + Q

|2Λ−Q|
]

(3.7)

which is plotted in Fig. 3. The figure shows that the running of the coupling has

essentially ceased for Q <∼ Λ. From this it follows that if ν2 is small compared to Λ2

then the coupling freezes in the infrared before the pole at Q2 = ν2 is reached. The

figure also illustrates the logarithmic singularity of β̃0 at Q = 2Λ.

4. Summary and conclusions

We have explored the freedom to modify the boundary conditions of the perturbative

expansion in QCD. More precisely we considered a specific modification, called Pertur-

bative Gluon Condensate Dynamics or PGCD, where a low-energy “sea” of gluons is

added to the asymptotic states by modifying the iε prescription for gluon (and ghost)

propagators. As a consequence the gluon degrees of freedom freeze below a scale Λ,

analogously to the behaviour of fermions in a Landau liquid. The gluon sea will scatter

high-energy quarks and gluons, preventing them from forming free asymptotic states.

In order to investigate the physical relevance of the PGCD expansion we calculated

the one-loop correction Π̂ to the QCD potential between a static quark - antiquark

pair. For large Q2 we found that Π̂ is unchanged up to power-corrections of O(Λ2/Q2).

Thus the short distance structure of PGCD agrees with standard PQCD. At small Q2,

on the other hand, we found infrared-sensitive contributions to Π̂ of O(ν2/Q2) which

after resummation give the gluon a tachyonic mass m2
g,eff = −ν2. The remaining part
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of Π̂ is constant in the limit Q/Λ → 0 and gives an effective coupling α̃V (Q2, Λ2) which

freezes for Q <∼ Λ.

Our result may be summarized by the expression for the static potential

V (Q2) = −4πCF
α̃V (Q2, Λ2)

Q2 − ν2
= −4πCF

α̃V

Q2

(
1 +

ν2

Q2
+ . . .

)
. (4.1)

By comparison we recall that at a finite quark density, described by modifying the iε

prescription of the quark propagator, Debye screening generates a positive gluon mass

squared. In coordinate space the ν2/Q2 correction term in (4.1) corresponds to a linear

confining potential. The physical interpretation of our results for Q2 <∼ ν2 requires

further study.

Our renormalized one-loop correction (3.1) to the static potential has a non-trivial

dependence on Λ/Q. The fact that we obtained the same result in two quite different

gauges strongly suggests that the PGCD prescription preserves QCD gauge invariance

order by order in αs. It would be desirable to prove this more generally.
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