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Abstract

The asymptotic behaviour at large N of the MS quark anomalous dimensions is derived

to all orders assuming only MS factorization and standard results for the exponentiation

of soft logarithms in the quark initiated bare cross sections for deep inelastic scattering

and Drell-Yan. The result is then used to write the MS quark coefficient functions in a

form in which all terms of O(lnm N) are resummed.
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Quark initiated bare cross sections, whether for deep inelastic or Drell-Yan processes,

generally contain logarithmic singularities as z → 1, where z is the longitudinal momen-

tum fraction of the participating partons. These logarithms result from soft and collinear

gluon emission, and in Mellin space result in logarithms of the form lnm N , which can be

shown to exponentiate to all orders in perturbation theory [1,2]. Much progress has been

made [1]-[5] in resumming these logarithms. Once the general form of the exponent is

determined, individual coefficients are fixed through matching to fixed order perturbation

theory.

Before comparing to large z data it is first necessary to resum the logarithms in the

factorized quark initiated cross sections, the quark coefficient functions. The resummation

is then expected to improve the convergence of the perturbation series at large N . In order

to factorize the cross section it is generally assumed (see for example ref. [7]) that in MS

factorization no resummation is necessary for the quark anomalous dimensions, i.e. that

higher order contributions to the anomalous dimensions grow no faster than the leading

order contribution at large N . Considerable support for this assumption was given in ref.

[6], where the large N behaviour of the MS anomalous dimensions was determined to all

orders using eikonal techniques.

In this letter we will show that the all order exponentiation [1,2] and MS factorization

are by themselves sufficient to determine the all order large N behaviour of the quark

anomalous dimensions. More specifically, we take the large N resummed form of the quark

initiated bare cross sections obtained in ref. [2], then apply dimensional regularization in

order to factorize the infrared singularities in MS scheme (ref. [2] uses an explicit infrared

cutoff). Matching the bare and factorized cross sections then allows us to simply read

off the asymptotic behaviour of the quark anomalous dimensions: we find that the MS

nonsinglet qq anomalous dimension γNS
qq behaves like O(lnN) at large N , whereas γNS

qq̄

behaves like O (1/N). Finally, we obtain a general form for the MS quark coefficient

functions at large N to all orders. The results are then illustrated by explicit computation

at LL and NLL.

1. We consider DIS and Drell-Yan bare quark initiated cross sections, which after factor-

ing off all electroweak factors and decomposing into Lorentz invariants, may be written

as functions of two kinematic variables, Q2 and z. For DIS Q2 is the virtuality of the

incoming vector boson, while in DY it is the mass of the outgoing dileptons. Similarly, the

longitudinal momentum fraction z = x = Q2/2p.q for DIS, while in DY z = x1x2 = Q2/s.

In both cases we will assume all quarks are massless, and use as = αs/2π as a perturbative

expansion parameter, ignoring all contributions which are suppressed by powers of Q2.

Now soft and collinear gluons radiated from the incoming quark lines can generate terms

of the form an
s

[
lnm−1(1−z)

1−z

]
+
, 1 ≤ m ≤ 2n, which diverge as z → 1, and which thus need

to be resummed if the perturbative cross section is to be improved at large z. In Mellin
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space, these terms become

1∫
0

dzzN−1

[
lnm−1(1− z)

1− z

]
+

=

1∫
0

dz
zN−1 − 1

1− z
lnm−1(1− z) =

m∑
i=0

bm
i lni N + O

(
1

N

)
,(1)

so the singularities as z → 1 become logarithmic singularities as N →∞. Note that in the

remainder term we do not distinguish terms of O
(

lnm N
N

)
from terms of O

(
1
N

)
. In z space

there are also terms in the bare cross section from virtual graphs of the form δ(1 − z),

which in N space are constant at large N . However all the diagrams in which the initial

quark (or at least one of the two initial quarks in the case of Drell-Yan) is not connected

to the electroweak boson via a single quark line, i.e. the diagrams contributing to a bare

pure singlet cross section, are either non singular or of the form lnm(1− z) as z → 1, and

are thus of O(1/N) after Mellin transformation. Here we will thus be concerned only with

the nonsinglet diagrams, since it is only these which can have large N singularities of the

form in eqn. (1). Furthermore, we will only be concerned with the singular parts of these

diagrams (or more precisely those parts which at large N are of O(lnm N), m = 0, ...,∞),

which are independent of the type or polarization of the electroweak boson (and thus for

example in DIS will be identical for all three nonsinglet structure functions F1,2,3, and in

DY for dimuon or W production, after removing electroweak factors).

Consequently, here we need consider only two partonic cross sections σ[a]
q (z, Q2/κ2, as(Q

2)),

where the only index a denotes the number of initial state quark lines: a = 1 for DIS, and

a = 2 for DY. Both partonic cross sections are normalized such that σ[a]
q = 1 for as = 0.

Collinear singularities are regulated by a generic infrared cutoff κ. In general [1,8], the

perturbation series for σ[a]
q in N space is then (given eqn. (1)) of the form

σ[a]
q

(
N,

Q2

κ2
, as(Q

2)

)
= 1 +

∞∑
n=1

an
s (Q2)

2n∑
m=0

c[a]
nm

(
Q2/κ2

)
lnm N + O

(
1

N

)
, (2)

for some coefficients c[a]
nm (Q2/κ2). Furthermore, the O(lnm N) terms, for m = 0, ...,∞, not

only factorize: in Mellin space they also exponentiate, that is the bare cross section may

be written in the form

ln σ[a]
q (N, Q2/κ2, as(Q

2)) = φ
[a]
−1(as(Q

2) lnN, Q2/κ2) ln N

+
∞∑

n=0

(as(Q
2))nφ[a]

n (as(Q
2) lnN, Q2/κ2) + O

(
1

N

)
. (3)

This exponentiation provides a convenient framework for organising the expansion: the

functions φ
[a]
−1 contains all the leading logarithms (LL), φ

[a]
0 the next-to-leading logarithms

(NLL), since there is an extra power of as, and so on. It is easy to see that in eqn. (2)

the LL are then those terms with n + 1 ≤ m ≤ 2n, NLL, those with m = n, etc. Terms of

O
(

1
N

)
in σ[a]

q will be systematically discarded in what follows, since they are not included

in its definition.
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To complete the resummation, we must determine the functions φ
[a]
i . This may be achieved

either by eikonal arguments [1,2,8], or by applying the renormalization group directly to

the factorization of the large N singularities [9]. The result is rather simple: the resum-

mation may be performed in closed form essentially through a change in the argument of

the running coupling from as(Q
2) to as((1− z)aQ2). Specifically it is found that (see for

example ref. [8])

ln σ[a]
q =

1∫
0

dz
zN−1 − 1

1− z

(
a

(1−z)Q2∫
κ2

dq2

q2
A(as(q

2)) +B[a](as((1− z)Q2))
)

+K [a](as(Q
2)), (4)

where the MS renormalization scheme has been used, and soft singularities are regulated

by the infrared cutoff κ. The functions A(as), B[a](as), R[a](as) each have perturbative

expansions beginning at O(as). For DY processes the second term is absent, so B[2](as) =

0: in ref. [8] B[1](as) is simply denoted by B(as). The remainder terms K [a](as) contain

contributions not necessarily related to soft or collinear gluons. To resum LL and NLL

logarithms only the first two coefficients in the expansion of A, and the first coefficient

in the expansion of B[1] are necessary, and these may be read off by making a direct

comparison to the usual fixed order LO and NLO cross sections expanded at large N .

In order to express the resummation eqn. (4) in a form more amenable to subsequent

discussion, we first rewrite them in d = 4− 2ε dimensions. We may remove the collinear

regulator by taking κ → 0, since bare cross sections are non singular in a non integer

number of dimensions. This gives

ln σ[a]
q =

1∫
0

dz
zN−1 − 1

1− z

(
a

(1−z)Q2∫
0

dq2

q2
A(as(q

2, ε), ε) +B[a](as((1− z)Q2, ε), ε)
)

+K [a](as(Q
2), ε) + O(ε), (5)

for the DIS and DY cross sections respectively. Here as(µ
2, ε) is the MS renormalised

coupling in 4− 2ε dimensions: it satisfies the renormalization group equation

∂as(µ
2, ε)

∂ ln µ2
= −εas(µ

2, ε)−
∞∑

n=0

βnan+2
s (µ2, ε), (6)

where the β-function coefficients βn are independent of ε. Clearly as(µ
2, 0) = as(µ

2), while

as(0, ε) = 0 (by analytic continuation from ε < 0). The functions A(as, ε), B[a](as, ε) and

K [a](as, ε) all have perturbative expansions in powers of as, but now the coefficients in

these expansions will depend on ε. The terms of O(ε) in eqn. (5) are inconsequential and

can be dropped.
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Now using eqn. (6) for the running of as(q
2, ε), we can do the q2 integrals term in an

expansion in powers of as:

Q2∫
0

d ln q2(as(q
2, ε))n =

as(Q2,ε)∫
0

das
an

s

−εas −∑∞
j=0 βja

j+2
s

. (7)

Then from eqn. (5), we find that the quark initiated bare cross sections at large N are of

the form

ln σ[a]
q (N, as(Q

2, ε), ε) =

1∫
0

dz
zN−1 − 1

1− z

[ ∞∑
i=1

f
[a]
i (ε)(as((1− z)aQ2, ε))i

]

+
∞∑
i=1

g
[a]
i (ε)(as(Q

2, ε))i + O(ε). (8)

As advertised above, we can now see explicitly the essential feature of the large N resum-

mation: the change in the argument of the running coupling from Q2 to (1− z)aQ2.

2. In this section we will factorize eqn. (8) in the MS scheme. The factorization procedure

involves separating out the collinear singularities from the bare cross sections σ[a]
q into a

universal singular factor Γq:

ln σ[a]
q = ln C [a]

q + a ln Γq. (9)

The C [a]
q are process dependent coefficient functions, non singular as ε → 0. Just as the

complete bare partonic cross sections for nonsinglet, singlet and valence processes are all

proportional to σ[a]
q up to terms of O(1/N), so the complete nonsinglet, singlet and valence

coefficient functions will all be proportional to C [a]
q up to terms of O(1/N). Of course the

same holds true for the singular factor Γq, and in particular for the anomalous dimensions

from which it is constructed: in MS Γq satisfies the renormalization group equation

∂ ln Γq(N, as(µ
2, ε), ε)

∂ ln µ2
= γq(N, as(µ

2, ε)), (10)

where γq(N, as) =
∑∞

n=0 γn
q (N)an

s is the anomalous dimension, and in the MS scheme the

coefficients γn
q (N) are independent of ε. This defines the MS factorization scheme. This

equation has the usual solution

Γq(N, as(µ
2, ε), ε) = exp




µ2∫
0

d ln q2γq(N, as(q
2, ε))


 , (11)

which, when combined with eqn. (6) and expanded in powers of as generates all the

collinear singularities of the bare cross section, in the form of inverse powers of ε.
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We first use eqn. (9) to determine the degree of divergence of the coefficients f
[a]
i (ε) and

g
[a]
i (ε) as ε → 0. Differentiating eqn. (9) with respect to ln Q2, and using eqn. (10), we

find

∂ lnσ[a]
q

∂ ln Q2
=

∂ ln C [a]
q

∂ lnQ2
+ aγq(N, as(Q

2, ε)). (12)

Since both terms on the right hand side are nonsingular as ε → 0, it follows that

∂ lnσ[a]
q /∂ lnQ2 is non singular. Differentiation of eqn. (8) then leads to the conclusion

that

f
[a]
i (ε) =

i∑
t=0

f
[a]
i,t ε−t + O(ε), g

[a]
i (ε) =

i∑
t=0

g
[a]
i,t ε

−t + O(ε), (13)

as well as various relations among the f
[a]
i,t , and g

[a]
i,t .

Using eqn. (11), we can rewrite ln Γq in the form

ln Γq(N, as(Q
2, ε), ε) =

1∫
0

dzzN−1

Q2∫
0

dq2

q2
Pq(z, as(q

2, ε)). (14)

where Pq(z, as) =
∑∞

n=1 P n
q (z)ai

s is the quark splitting function (so the P n
q (z) Mellin

transform to the anomalous dimensions γn
q ). Since the γn

q (N) are independent of ε, so too

are the P i
q(z). Substituting eqns. (14,8) into eqn. (9) we then find that

ln C [a]
q =

1∫
0

dz(zN−1 − 1)

[
1

1− z

∞∑
i=1

i∑
t=1

f
[a]
i,t ε

−t(as((1− z)aQ2, ε))i

−a

(1−z)aQ2∫
0

dq2

q2
Pq(z, as(q

2, ε))

]

+


 ∞∑

i=1

i∑
t=1

g
[a]
i,t ε

−t(as(Q
2, ε))i − a

1∫
0

dz

Q2∫
0

dq2

q2
Pq(z, as(q

2, ε))




+

[ 1∫
0

dz(zN−1 − 1)
1

1− z

∞∑
i=1

f
[a]
i,0 (as((1− z)aQ2, ε))i +

∞∑
i=1

g
[a]
i,0(as(Q

2, ε))i

−a

1∫
0

dz(zN−1 − 1)

Q2∫
(1−z)aQ2

dq2

q2
Pq(z, as(q

2, ε))

]
+ O

(
1

N

)
+ O(ε). (15)

The motivation for organisation of the terms in this equation is that, as we will now show,

each of the three pairs of square brackets is finite as ε → 0.
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We first work with the first pair of square brackets. Using eqn. (6), we can perform the

integration of the an
s (q2) in the second term as

(1−z)aQ2∫
0

dq2

q2
(as(q

2, ε))n =

as((1−z)aQ2,ε)∫
0

das
an

s

−εas −∑∞
j=0 βja

j+2
s

=
∞∑

i=n

pi,n(ε)(as((1− z)aQ2, ε))i. (16)

It follows that

(1−z)aQ2∫
0

dq2

q2
Pq(z, as(q

2, ε))=
∞∑

n=1

(1−z)aQ2∫
0

dq2

q2
(as(q

2, ε))nP n
q (z)

=
∞∑

n=1

∞∑
i=n

P n
q (z)pi,n(ε)(as((1− z)aQ2, ε))i

=
∞∑
i=1

i∑
n=1

P n
q (z)pi,n(ε)(as((1− z)aQ2, ε))i. (17)

We now expand eqn. (17) in ε. In eqn. (16), the pi,n(ε) may be expanded as

pi,n(ε) =
i−n+1∑
s=1

ps
i,nε

−s. (18)

Note that ps
i,n = 0 if s = 1 and i 6= n, but we do not explicitly show this in order to

simplify the notation. Substitution in eqn. (17) then gives finally

(1−z)aQ2∫
0

dq2

q2
Pq(z, as(q

2, ε))=
∞∑
i=1

i∑
n=1

i−n+1∑
s=1

P n
q (z)ps

i,nε
−s(as((1− z)aQ2, ε))i

=
∞∑
i=1

i∑
t=1

i−t+1∑
n=1

P n
q (z)pt

i,nε
−t(as((1− z)aQ2, ε))i. (19)

The second term in the second pair of square brackets in eqn. (15) may be expanded

similarly, using eqn. (19) with a = 0:

Q2∫
0

dq2

q2
Pq(z, as(q

2, ε)) =
∞∑
i=1

i∑
t=1

i−t+1∑
n=1

P n
q (z)pt

i,nε
−t(as(Q

2, ε))i. (20)

Finally, the last term in the third pair of brackets in eqn. (15) is given by the difference
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of eqns. (19) and (20), and is thus finite as ε → 0. Indeed, we can write it as

Q2∫
(1−z)aQ2

dq2

q2
Pq(z, as(q

2, ε)) =

Q2∫
(1−z)aQ2

dq2

q2

∞∑
n=1

(as(q
2))nP n

q (z) + O(ε). (21)

Putting all this together, substituting eqns. (19, 20,21) into eqn. (15) we find

ln C [a]
q =

1∫
0

dz(zN−1 − 1)

[
1

1− z

∞∑
i=1

i∑
t=1

f
[a]
i,t ε

−t(as((1− z)aQ2, ε))i

−a
∞∑
i=1

i∑
t=1

i−t+1∑
n=1

P n
q (z)pt

i,nε
−t(as((1− z)aQ2, ε))i

]

+


 ∞∑

i=1

i∑
t=1

g
[a]
i,t ε

−t(as(Q
2, ε))i − a

1∫
0

dz
∞∑
i=1

i∑
t=1

i−t+1∑
n=1

P n
q (z)pt

i,nε−t(as(Q
2, ε))i




+

[ 1∫
0

dz(zN−1 − 1)
1

1− z

∞∑
i=1

f
[a]
i,0 (as((1− z)aQ2, ε))i +

∞∑
i=1

g
[a]
i,0(as(Q

2, ε))i

−a

1∫
0

dz(zN−1 − 1)

Q2∫
(1−z)aQ2

dq2

q2

∞∑
n=1

(as(q
2))nP n

q (z)

]
+ O(ε). (22)

Now, consider only the coefficients of ε−t for t = 1, ...,∞ in eqn. (22), which must vanish

so that C [a]
q is finite in the limit ε → 0. In the first pair of square brackets, these coefficients

are all functions of N , in the second pair of square brackets they are all independent of N ,

while all terms in the third pair of square brackets are nonsingular. Thus each of the three

pairs of square brackets is separately nonsingular as ε → 0. Moreover the cancellation of

singularities in the first pair of square brackets implies that, for i ≥ t ≥ 1 and z 6= 1,

1

1− z
f

[a]
i,t = a

i−t+1∑
n=1

P n
q (z)pt

i,n, (23)

We can treat pt
i,n in eqn. (23) as a set of matrices with indices i and n, but vanishing for

n > i − t + 1; each matrix is then triangular and thus invertible. Then multiplication of

both sides of eqn. (23) by the inverse of this matrix gives an expression with just P n
q on

the right hand side, with the left hand side proportional to (1/(1− z)). Thus we find that

for z 6= 1

Pq(z, as) = Q(as)
1

1− z
. (24)

where Q(as) =
∑∞

i=1 ai
sQi, and the Qi may be determined by substitution into eqn. (23).

Note that for consistency we also require that f
[a]
i,t is proportional to a for t > 0: this is the
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essence of universal factorization. Similarly the cancellation of singularities in the second

bracket implies that

g
[a]
i,t = a

i−t+1∑
n=1

1∫
0

dzP n
q (z)pt

i,n, (25)

and thus that
∫ 1
0 dzP n

q (z) is finite. It follows that for all z, we may write

Pq(z, as) = Q(as)
[

1

1− z

]
+

+ R(as)δ(1− z), (26)

where again R(as) =
∑∞

i=1 ai
sRi, and the Ri may be determined by substituting eqn. (26)

into eqn. (25) and inverting.

Thus we find that, in Mellin space, as N →∞, the anomalous dimension

γq(N, as) = −Q(as)(ln N + γE) + R(as) + O(1/N), (27)

where γE is Euler’s constant. Remembering that all the nonsinglet, singlet and valence

anomalous dimensions are equal to γq up to terms which vanish as 1/N in the large N

limit, then since in the usual decomposition

γqiqj
= δijγ

NS
qq + γPS

qq , γqiq̄j
= δijγ

NS
qq̄ + γPS

qq̄ , γNS
± = γNS

qq ± γNS
qq̄ , (28)

we must have

γNS
qq (N) = γq(N) + O(1/N), γNS

qq̄ (N) = O(1/N),

γPS
qq (N) = O(1/N), γPS

qq̄ (N) = O(1/N), (29)

consistent with our remarks earlier that diagrams in which the quark evolves into a gluon

are suppressed by 1/N .

It remains to take the limit ε → 0 in eqn. (22) to give an explicit expression for the

resummed large N MS coefficient function: we find

ln C [a]
q =

1∫
0

dz
zN−1 − 1

1− z

[
a

(1−z)aQ2∫
Q2

dq2

q2

∞∑
n=1

Qn(as(q
2))n +

∞∑
i=1

f
[a]
i,0 (as((1− z)aQ2))i

]

+
∞∑
i=1

g
[a]
i,0(as(Q

2))i + O
(

1

N

)
. (30)
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We immediately recognise this as eqn. (4), with

A(as) =
∞∑

n=1

Qia
i
s, B[a](as) =

∞∑
i=1

f
[a]
i,0a

i
s, K [a](as) =

∞∑
i=1

g
[a]
i,0a

i
s, (31)

and with the infrared regulator set equal to the factorization scale, i.e. κ2 = Q2.

To calculate the coefficients f
[a]
i,0 and the g

[a]
i,0, we simply expand eqn. (30) in as(Q

2), i.e.

undo the resummation, and compare coefficients of ai
s(Q

2) with those in the fixed order

coefficient functions. The universal coefficients Qi of the O(lnN) terms in the anomalous

dimension serve as a consistency check. This procedure will be illustrated explicitly for

all LL and NLL terms in the next section.

3. We now show explicitly that the factorized coefficient functions eqn. (30) correctly

resum all LL and NLL terms, by comparing then to the fixed order NLO and NNLO

coefficient functions and thereby deduce the leading behaviour at large N of the LO and

NLO quark anomalous dimensions.

To NLO, eqn. (30) reads

ln C [a]
q (N, as(Q

2)) =

1∫
0

dz
zN−1 − 1

1− z

[
− aQ1

β0
ln

(
as((1− z)aQ2)

as(Q2)

)

+a

(
Q1β1

β2
0

− Q2

β0

)
(as((1− z)aQ2)− as(Q

2)) + f
[a]
1,0as((1− z)aQ2)

]
+O(as(as ln N)m). (32)

Performing the z integral, we find

ln C [a]
q (N, as)=

Q1

β0

1

asβ0
[(1− aλs) ln(1− aλs) + aλs]

+


f

[a]
1,0

aβ0

− aQ1γE

β0

+
Q1β1

β3
0

− Q2

β2
0


 ln(1− aλs)

+
Q1β1

2β3
0

ln2(1− aλs)−
(

Q2

β2
0

− Q1β1

β3
0

)
aλs + O(as(as ln N)m),(33)

where λs ≡ asβ0 ln N . This result should be compared to the general expression eqn. (3):

the first line gives the LL terms φ−1, while the rest gives the NLL φ0.

To determine the large N behaviour of the LO and NLO anomalous dimensions, i.e. the

coefficients Q1 and Q2, and also the nonuniversal coefficients f
[a]
1,0, it is sufficient to expand

eqn. (33) in as(Q
2) to NNLO and compare to NL0 and NNLO coefficient functions at

large N . The result, after exponentiating, is
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C [a]
q ( N, as) = 1 + as

(
1

2
a2Q1 ln2 N +

(
a2Q1γE − f

[a]
1,0

)
ln N

)

+a2
s

(1

8
a4Q2

1 ln4 N +
[
1

6
a3Q1β0 + +a2Q1

(
a2Q1γE − f

[a]
1,0

)]
ln3 N

+
[
1

2
a3β0Q1γE − 1

2
aβ0f

[a]
1,0 +

1

2
a2Q2 +

1

2

(
a2Q1γE − f

[a]
1,0

)2
]
ln2 N

)
+ O(a3

s). (34)

Now, for large N , to NLO [10] and NNLO [11] the DIS quark coefficient function

C [1]
q ( N, as) = 1 + as

[
CF ln2 N + CF

(
2γE +

3

2

)
lnN + γ2

E +
3

2
γE − ζ(2) + O

(
1

N

) ]

+a2
s

[ (
2C2

FγE − 2

9
CF TRnf +

3

2
C2

F +
11

18
CFCA

)
ln3 N

+
(11

6
CFCAγE +

9

2
C2

FγE − CF CAζ(2)− 27

8
C2

F − C2
F ζ(2) +

367

72
CF CA

+3C2
Fγ2

E −
2

3
CFTRnfγE − 29

18
CFTRnf

)
ln2 N + O(lnN)

]
. (35)

Comparing this with eqn. (34) with a = 1, we find

Q1 = 2CF , Q2 = CF CA

(
67

9
− 2ζ(2)

)
− 20

9
CFTRnf , (36)

consistent with the large N behaviour of the LO [12] and NLO [13] anomalous dimensions.

Furthermore the coefficient

f
[1]
1,0 = −3

2
CF , (37)

as in [2,3]. For Drell-Yan at large N , to NLO [14] and NNLO [15]

C [2]
q ( N, as) = 1 + as

[
4CF ln2 N + 8CFγE ln N + 4CFγ2

E + 8CF ζ(2)− 8CF + O(1)
]

+a2
s

[
8C2

F ln4 N +
(

44

9
CFCA − 16

9
CF TRnf + 32C2

FγE

)
ln3 N

+
(
− 40

9
CFTRnf − 16

3
CFTRnfγE +

44

3
CF CAγE +

134

9
CF CA − 4CFCAζ(2)

+32C2
F ζ(2) + 48C2

Fγ2
E − 32C2

F

)
ln2 N + O(lnN)

]
, (38)

which is again consistent with eqn. (34), this time with a = 2, provided eqns. (36) for the

large N anomalous dimensions are satisfied, and f
[2]
1,0 = 0. With this result and eqn. (37),

eqn. (33) agrees with the results of [7] at NLL. Moreover, our general proof of eqn.(26)

now places the NNLL results of [7] on a firmer footing.

4. We have used the dimensionally regularized form of the large N resummed bare quark

initiated cross sections for DIS and Drell-Yan, eqn. (8), together with the fact that the

bare quark initiated cross sections are independent of the species of the electroweak boson,
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and the definition of MS factorization, to obtain to all orders the O(lnN) behaviour of

the nonsinglet MS anomalous dimensions P NS
qq and the O

(
1
N

)
behaviour of P NS

qq̄ and the

pure singlet. This has interesting implications for the large x evolution of MS quark parton

distribution functions: at large N the evolution factor

Γ(Q2/µ2) = N
−
∫ Q2

µ2
dq2

q2
Q(as(q2))

(1 + O(1/N)). (39)

so that if q(x, µ2) ∼ (1− x)b(µ2) as x → 1, this behaviour persists at higher scales with

b(Q2) = b(µ2) +

Q2∫
µ2

dq2

q2
Q(as(q

2)) (40)

order by order in perturbation theory.

We then used the result (26) to construct a general large N resummed expression for the

MS quark coefficient functions for DIS and DY, eqn. (30), and in particular showed that

all the large N singularities in the DY case can be deduced from the O(lnN) terms in

the quark anomalous dimension. We verified these results explicitly at LL and NLL. For

the future, the large N behaviour of NNLO anomalous dimensions and NNNLO DIS and

DY coefficient functions will provide a useful consistency check on new calculations.
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