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Abstract

We study brane-world solutions of five-dimensional supergravity in singular spaces. We exhibit a
self-tuned four-dimensional cosmological constant when five-dimensional supergravity is broken
by an arbitrary tension on the brane-world. The brane-world metric is of the FRW type
corresponding to a cosmological constant ΩΛ = 5

7
and an equation of state ω = −5

7
which are

consistent with experiment.
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1 Introduction

An outstanding problem in cosmology is understanding the origin of the cosmological constant[1,
2]. This has been compounded by the recent evidence of a small, non-zero value in type IA

supernova data[3], suggesting that the dark energy density is of the same order of magnitude
as the matter density. There has been some progress towards understanding this fundamental

problem. On the one hand, there have been various proposals that it may arise as ‘dark energy’
due to the evolution of a scalar field[4]. These quintessence models have met with some success.

However, the origin of the scalar field has yet to be addressed in such models. There has been

an alternative proposal, that the cosmological constant may arise from a rather deeper under-
standing of space-time in higher dimensionsal theories [5]. In particular, [6] have suggested

that the cosmological constant in our Universe could be induced by the properties of the ‘bulk’
in a five dimensional model. Ref [6] showed that it was possible to tune the bulk gravitational

dynamics so that the contribution of the standard model vacuum energy density was carried off
the brane-world into the bulk. Further progress was made in this direction by considering the

approach of a ‘self-tuning’ domain wall[7] and developed in [8], which also pointed out short
comings in the approach. Both[7] and[8] used five dimensional Einstein equations coupled to a

scalar field to cancel the vacuum energy of the brane tension, and in both cases the scalar field
became singular in the bulk at a finite distance from the brane world.

Considerable progress has been made in understanding the origin of brane-worlds by[9], who
considered five-dimensional supergravity in singular spaces. Their formalism properly accounts

for the boundary conditions on our brane-world. Indeed, the conditions arising for a BPS
solution are just those arising from the junction conditions in[8]. As a consequence, the natural

framework in which to realise the possibility of understanding the cosmological constant as

arising from gravitational solutions in extra dimensions seem to be that of five dimensional
supergravity in singular spaces.

Here we develop the idea of the cosmological constant in our brane world being induced
by the behaviour of the bulk solution. We consider five dimensional supergravity in singular

spaces, taking careful account of the boundary conditions on the brane. When supersymmetry
is broken, a time dependent scale factor is induced on the brane world. This gives rise to

an induced cosmological constant and equation of state on the brane world. The induced
cosmological constant is independent of the supersymmetry breaking parameter. Using an

exponential superpotential in the bulk and the simplest one-dimensional example of vector
multiplet theory [10] there are no free parameters. For a flat universe we obtain a cosmological

constant of ΩΛ = 5
7

and corresponding matter density Ωm = 2
7
, consistent with experiment. In

our equation of state we obtain ω = −5
7
. Moreover, we show that the form of our potential is the

only one which gives consistent cosmology on the brane world. Our solution has an evolving
singularity in the bulk. If the singularity hits the brane world, then the five dimensional

supergravity approximation used here breaks down and the full string theory must be used.

In the next section we introduce supergravity in singular spaces, considering the structure
of the bulk theory and deriving the special solutions which we use in the following section. In

section 3 we consider cosmological solutions. Starting with static solutions, we show that time
dependent solutions arise when supersymmetry is broken on the brane. The induced metric on

the brane is of FRW type. We then study the luminosity distance and deduce the acceleration
parameter. This allows us to infer the value of the effective cosmological constant on the

brane. The FRW dynamics appears to be due to a perfect fluid whose equation of state always
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respects the dominant energy condition. In the conclusions we comment on the possibility of
connecting our analysis with the usual matter dominated cosmological eras and the possibility

of brane-world quintessence.

2 Supergravity in Singular Spaces

In this section we shall recall the main ingredients of supergravity in singular spaces[9]. The
newly constructed supergravity theory differs from the usual five-dimensional supergravity the-

ories since space-time boundaries are taken into account. These boundaries provide new terms
in the Lagrangian and require new fields in order to close the supersymmetry algebra and ensure

the invariance of the Lagrangian.
More precisely space-time is supposed to be non-compact four dimensional Minkowski space

enlarged to five dimensions by the adjunction of a Z2 orbifold of a circle. The two boundaries
of the interval are identified as branes, in particular the brane at the origin is identified with

our brane-world. The bulk physics far from the boundaries is identical to five dimensional
supergravity coupled to n− 1 vector multiplets. Let us recall briefly the structure of the bulk

theory.
The vector multiplets comprise scalar fields φi parameterizing the manifold

CIJKhI(φ)hJ(φ)hK(φ) = 1 (1)

with the functions hI(φ), I = 1 . . . n playing the role of auxiliary variables. In string theory the
symmetric tensor CIJK has the meaning of an intersection tensor. Defining the metric

GIJ = −2CIJKhK + 3hIhJ (2)

where hI = CIJKhJhK , the bosonic part of the Lagrangian reads

Sbulk =
1

2κ2
5

∫ √−g5(R− 3

4
(gij∂µφi∂µφj + V )) (3)

where the induced metric is

gij = 2GIJ
∂hI

∂φi

∂hJ

∂φj
(4)

and the potential is given by

V = WiW
i −W 2. (5)

The superpotential W defines the dynamics of the theory. It is given by

W = 4

√
2

3
ghIVI (6)

where g is a gauge coupling constant and the VI ’s are real number such that the U(1) gauge
field is AI

µVI . The vectors AI
µ belong to the vector multiplets.

The Z2 orbifold implies that a boundary action has to be incorporated. The boundary
action depends on two new fields. There is a supersymmetry singlet G and a four form Aµνρσ.

One also introduces a modification of the bulk action by replacing g → G and adding a direct
coupling

SA =
2

4!κ2
5

∫
d5xεµνρστAµνρσ∂τG. (7)
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The boundary action is taken as

Sbound = − 1

κ2
5

∫
d5x(δx5 − δx5−R)(

√−g4
3

2
W +

2g

4!
εµνρσAµνρσ). (8)

The supersymmetry algebra closes on shell where

G(x) = gε(x5), (9)

and ε(x5) jumps from -1 to 1 at the origin of the fifth dimension. On shell the bosonic Lagrangian

reduces to (3) coupled to the boundaries as,

Sbound = − 3

4κ2
5

∫
d5x(δx5 − δx5−R)(

√−g4f), (10)

where we have defined
f = 2W. (11)

The equations of motion of such a Lagrangian show a BPS property and can be rewritten in a

first order form.
Let us give the simplest example of models based on supergravity in singular spaces, i.e. one

vector multiplet scalar such that the only component of the symmetric tensor CIJK is C122 = 1.
The moduli space of vector multiplets is then defined by the algebraic relation

h1(h2)2 = 1. (12)

This allows to parameterize this manifold using the coordinate φ such that h1 is proportional

to e
√

1
3
φ and h2 to e−φ/2

√
3. The induced metric gφφ can be seen to be one. The most general

superpotential is a linear combination of the two exponentials W = ae
√

1
3
φ + be−φ/2

√
3. We will

analyse this example in the next section.

3 Cosmological Solutions

In the following we shall restrict ourselves to a single scalar φ and normalize gφφ = 1. Let us

look for static solutions with the metric

ds2 = e−A/2dx2
i + dx2

5. (13)

The equations of motions read

A′′ = φ′2 + f(φ)δx5

A′2 = φ′2 − V (φ)

φ′′ − A′φ′ =
1

2

∂V

∂φ
+

∂f

∂φ
δx5

(14)

leading to the junction conditions

∆(
∂W

∂φ
) =

∂f

∂φ
|x5=0

∆W = f |x5=0

(15)
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where the left-hand sides represent the discontinuity across the origin. Notice that these con-
ditions are automatically satisfied due to the assignment (11). The equations of motion can be

written in BPS form

φ′ =
∂W

∂φ

A′ = W.

(16)

These equations depend explicitly on the choice of the superpotential W .
Here we will use the following model. We assume that there exists a field φ with gφφ = 1

such that one can choose the Fayet-Iliopoulos scalars VI in such a way that

W (φ) = ξeαφ (17)

where ξ is a characteristic scale. Here the parameter α will play a crucial role. In the previous

section we have shown that α =
√

1
3
, −

√
1
12

correspond to a one dimensional moduli space.
It is easy to show that the solutions to the BPS conditions are

φ = − 1

α
ln(1− α2ξ|x5|)

A = − 1

α2
ln(1− α2ξ|x5|).

(18)

Notice that we have chosen the scale factor

a2 = e−A/2 (19)

to be normalized to one on the brane-world at y = 0. Another feature of this solution is the

existence of a singularity at

x5∗ =
1

α2ξ
. (20)

This implies that the supergravity description breaks down in the vicinity of x5∗, and one has

to use the full string theory underlying this approach.
Since nature is not supersymmetric, we deform our model to introduce supersymmetry

breaking on the brane world in a phenomenological way. A viable theory should incorporate

the standard model of particle physics at low energy and describe the coupling between the
standard model fields and the bulk fields living in five dimensions. We can modify the previous

study in a minimal way in order to take into account the matter fields living on the brane. Let
us assume that these matter fields couple universally to the superpotential W (φ)

− 3

2κ2
5

∫
d4x
√−g4W (φ)V (Φ) (21)

and that to a good approximation the matter fields are fixed to their vev’s -in particular we
exclude time-dependent phenomena such as inflation- in such a way that the effective coupling

becomes

f(φ) = 2TW (φ) (22)
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where
T ≡ V (< Φ >) (23)

encapsulates supersymmetry breaking for T 6= 1 which occurs only on the brane world. We
assume that the bulk is still supersymmetric. In particular the tension T is subject to radiative

corrections and phase transitions. We will now discuss the deformations of the previous static
solutions when the supersymmetry breaking parameter T is turned on.

We can generate time-dependent conformally flat solutions from the static solutions. This
is most easily achieved by using a boost along the x5 direction. To do so we shall first introduce

conformal coordinates so that the metric becomes

ds2
5 = a2(u)(dx2 + du2). (24)

Under a boost the new solutions of the bulk equations of motions are

a(u, η) =
√

1− h2a(u + hη, ξ)

φ(u, η) = φ(u + hη, ξ)

(25)

where x1 ≡ η is the conformal time. The junction conditions for conformally flat metrics read4

∆(∂nA) = f |∂M

∆(∂nφ) =
∂f

∂φ
|∂M

(26)

where the normal vector is ∂n ≡ a−1∂u and ∂M is the brane world. In order to verify these
conditions we will use a transformation which rescales the conformal factor and the potential,

i.e. the scale ξ

a→ λa, V → V

λ2
. (27)

The new solution of the bulk equations of motion is given by

ã(u, η) =

√
1− h2

λ
a(u + hη,

ξ

λ
)

φ̃(u, η) = φ(u + hη,
ξ

λ
).

(28)

One can now use the BPS equations satisfied by (a, φ) to deduce that

∂ñφ̃ =
1√

1− h2

∂W

∂φ̃
(φ̃)

∂ñÃ =
1√

1− h2
W (φ̃)

(29)

4The first of these conditions stems from the Israel conditions relating the extrinsic curvature tensor Kij =
∂nhij/2, where hij is the metric on the hypersurface orthogonal to the normal vector ∂n, and the energy
momentum tensor on the brane world. In our case this reads ∆(Kij −Khij) = 3fhij/4|∂M which leads to the
first condition.
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where ã = e−Ã/4 and the normal vector is

∂ñ = ã−1∂u. (30)

Under this rescaling the junction conditions become

∆(
∂W

∂φ̃
) = T

√
1− h2

∂f

∂φ̃
|∂M

∆(W ) = T
√

1− h2f |∂M

(31)

which are automatically satisfied thanks to the identity f = 2W provided that

h = ±
√

T 2 − 1

T
. (32)

Notice that this requires T > 1. For smaller values of the breaking parameter the solutions are

not defined and we thus need to go beyond the approximations used here.
In the following we choose λ =

√
1− h2 for clarity. The cosmological solutions are then

a(u, η) = (
u + hη

u0(h)
)1/(4α2−1). (33)

The singularity is now located at

u∗ = −hη (34)

and the brane world at

u0(h) ≡ √1− h2u0 =

√
1− h2

(1
4
− α2)ξ

. (35)

Depending on the sign of h the singularity either converges towards the brane-world or recedes
towards the other end of the fifth dimension. In either cases the supergravity approximation

breaks down in finite time. In particular the collision between the singularity and the brane-
world occurs at

η0 = −u0(h)

h
. (36)

Let us now focus on the brane-world. The induced metric is of the FRW type

ds2
BW = a2(η)(−dη2 + dxidxi) (37)

where the scale factor is

a(η) = (1− η

η0
)1/(4α2−1). (38)

The type of geometry on the brane-world depends on α and h. Notice that there is always a
singularity, either in the past or in the future.

The four dimensional Planck constant appears to be time-dependent

M2
p = 2M3

5

∫ u0(h)

−hη

a3(u, η)

a2(η)
du. (39)

This leads to

M2
p =

4T

2α2 + 1

M3
5

ξ
a(η)4α2

(40)

6



Now one can perform a Weyl rescaling ds2
4 → Ta(η)4α2

ds2
4 of the induced metric on the brane-

world. This makes the Planck mass constant

M2
p =

4

2α2 + 1

M3
5

ξ
. (41)

The new scale factor becomes

a(η) = T (1− η

η0
)(2α2+1)/(4α2−1). (42)

Notice that the exponent is now (2α2 +1)/(4α2−1) instead of 1/(4α2−1). In particular if one
uses cosmic time defined by dt = a(η)dη there is a singularity at t0 = (1/3 + 1/6α2)Tη0. More

precisely the scale factor becomes

a(t) = T (1− t

t0
)1/3+1/6α2

(43)

leading to the Hubble parameter

H =
2α2 + 1

6α2(t− t0)
. (44)

The universe is decelerating when t0 > 0, i.e. when the singularity converges to the brane-

world. It is accelerating when t0 < 0 and the singularity recedes away from the brane-world.
Notice that the supersymmetry breaking parameter appears in the overall normalization of the

scale factor and in the time scale t0. A variation of the parameter T implies an adaptation of
the scale factor. However the characteristic exponent is independent of T .

Let us now analyse the cosmological implications of these FRW models. In particular it is
phenomenologically highly relevant to study the luminosity distance defined by

dL = (1 + z)
∫ z

0

dz′

H(z′)
(45)

where z is the red-shift factor
a(t)

a(0)
=

1

1 + z
. (46)

The small z expansion reads in general

dL ∼ 1

H0
(z +

1− q0

2
z2 + o(z3)) (47)

and the acceleration parameter is directly related to the matter energy density Ωm and the

effective cosmological constant density ΩΛ

ΩΛ =
Ωm

2
− q0. (48)

Notice that from the observer’s point of view a finite and small cosmological constant, i.e.

of the order of the critical density, appears as a consequence of the interpretation of the four
dimensional FRW geometry as resulting from the dynamics in five dimensions. In our models

the effective cosmological constant becomes

ΩΛ =
Ωm

2
+ 1− 6α2

1 + 2α2
. (49)

7



This can accommodate a small and positive cosmological constant, which is independent of the
supersymmetry breaking parameter.

Another relevant observable from the four dimensional point of view is the equation of state
of the brane-world p = ωρ relating the pressure to the energy density. It is given by

ω = −1 +
4α2

1 + 2α2
. (50)

It can take any value between -1 and 1, i.e. it never violates the dominant energy condition.

The observer will therefore be driven to conclude that the four dimensional dynamics of the
universe is due to some matter with the previous equation of state.

The previous model has been obtained for a particular choice of superpotential. However
it is easy to calculate the acceleration parameter before the Weyl rescaling. It happens to

be −1 + 4(d lnW
dφ

)2|φ0 where φ0 is the value of φ on the brane. Hence only an exponential
superpotential yields a boundary value independent result for the acceleration parameter.

In the case of the one-dimensional moduli space discussed earlier with α =
√

1
3
, the induced

cosmological constant is negative. In the other case of α = −
√

1
12

, the cosmological constant
and the equation of state are given by

ΩΛ =
Ωm

2
+

4

7
, ω = −5

7
. (51)

Imposing a flat universe, Ω0 ≡ Ωm + ΩΛ = 1, yields

ΩΛ =
5

7
, Ωm =

2

7
, ω = −5

7
. (52)

These numbers are compatible with the current experimental results from type Ia supernovae
and CMB anisotropies.

In brief we have exhibited a mechanism where the effective cosmological constant is naturally
of the right order of magnitude. This springs from the five dimensional origin of the FRW

dynamics of the universe. Moreover we have shown that including the non-supersymmetric
effects of the matter fields on the brane world does not affect the FRW features of the universe,

in particular the cosmological constant is not modified by variations of the potential energy of
the matter fields.

4 Conclusions

In this letter we have realised the original suggestion of [5] and [6] that the observed cosmological

constant is induced on our brane world by the dynamics of fields in extra dimensions. In our case
we exhibited a self-tuned cosmological constant induced by five dimensional supergravity once

supersymmetry was broken on the brane world. Further, our mechanism gave a relationship
between the matter density and the dark energy density. Imposing a flat universe resulted in

values consistent with observation. Our induced cosmological constant is independent of the
value of the supersymmetry breaking parameter.

Our mechanism relies on supersymmetry breaking on the brane world inducing time depen-
dent solutions, which are of the FRW type. The FRW dynamics are of the perfect fluid type,

with an equation of state that respects the dominant energy condition and is consistent with

experiment.
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At present we have considered static solutions in the bulk with cosmological solutions being
induced on the brane world once supersymmetry is broken. This has given us an accelerat-

ing universe. In order to explore the transition between an accelerating universe and matter
domination we need to consider the bulk solution in a perfect fluid. For example, [11] has con-

sidered a self-tuned domain wall in five dimensional gravity coupled to a scalar field with bulk
fluid, obtaining matter dominated FRW dynamics induced on the brane. Coupling this to our

mechanism for an accelerating universe should result in a rich cosmology, such as a modified
Friedmann equation on the brane-world. This is in progress.
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