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Abstract

The KSK§ final state in two-photon collisions is studied with the L3 detector
at LEP. The mass spectrum is dominated by the formation of the f5(1525) tensor
meson in the helicity-two state with a two-photon width times the branching ratio
into KK of 76 & 6 & 11 eV. A clear signal for the formation of the f;(1710) is
observed and it is found to be dominated by the spin-two helicity-two state. No
resonance is observed in the mass region around 2.2 GeV and an upper limit of
1.4 ¢V at 95% C.L. is derived for the two-photon width times the branching ratio
into KSKS for the glueball candidate £(2230).
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1 Introduction

The formation of resonances in two-photon collisions is studied via the process eTe™ — ete y*+*
—ete R — e+e_KgKg, where 7* is a virtual photon. The outgoing electron and positron carry
nearly the full beam energy and their transverse momenta are usually so small that they are
not detected. In this case the two photons are quasi-real. The cross section for this process is
given by the convolution of the QED calculable luminosity function £.,, giving the flux of the
photons, with a Breit-Wigner function. This leads to the proportionality relation between the
measured cross section and the two-photon width I',,(R) of the resonance R

olete” - efe"R) =K -I,(R), (1)

where the proportionality factor K is evaluated by a Monte Carlo integration.

The quantum numbers of the resonance must be compatible with the initial state of the
two quasi-real photons. A neutral, unflavoured meson with even charge conjugation, J#1 and
helicity-zero (A=0) or two (A=2) can be formed. In order to decay into K{K§, a resonance must
have JF¢ = (even)™. For the 27, 13P, tensor meson nonet, the f5(1270), the a3(1320) and
the f5(1525) can be formed. However, since these three states are close in mass, interferences
must be taken into account. The f,(1270) interferes constructively with the aj(1320) in the
K*K™ final state but destructively in the KK® final state [I].

Gluonium states cannot be formed directly by the collision of two photons and the two-
photon width of a glueball is expected to be very small. A state that is observed in a gluon
rich environment but not in two photon fusion has the typical signature of a glueball.

The data used for this analysis correspond to an integrated luminosity of 588 pb~! collected
by the L3 detector [2] at LEP around the Z pole (143pb~!) and at high energies, /s =
183 — 202 GeV (445 pb~1). The KEKS final state in two-photon collisions was studied by L3 [3]
with a luminosity of 114pb~! and by TASSO, PLUTO and CELLO at lower energies and
luminosities at PETRA [].

The EGPC [B] Monte Carlo generator is used to describe two-photon resonance formation.
The generator is based on the formalism of Reference 6l All the generated events are passed
through the full detector simulation program based on GEANT [] and GHEISHA [§] and
are reconstructed following the same procedure used for the data. Time dependent detector
inefficiencies, as monitored during the data taking period, are also simulated.

2 Event selection

The selection of exclusive KSKS events is based on the decay K& — 77, exploiting the central
tracking system and the electromagnetic calorimeter. The events are collected predominantly
by the charged particle track triggers [9]. In order to select ete™ — eTe " n n 777~ events, we
require:

e The total energy seen in the calorimeters must be smaller than 30 GeV to exclude anni-
hilation events.

e There must be exactly four charged tracks in the tracking chamber with a net charge of
zero, a polar angle # in the range 24° < 6 < 156° and a transverse momentum greater
than 100 MeV.



The K§’s are identified by secondary vertex reconstruction. The 777~ mass distribution is
shown in Figure [l where a mass resolution o = 8.0 + 0.5 MeV is found, consistent with the
Monte Carlo simulation.

In order to select KK exclusive events, we require:

e The total transverse momentum imbalance squared |3 p7|* must be less than 0.1 GeV2.
In Figure b the |3 p7|* distribution is compared to the Monte Carlo prediction for
exclusive KZK? formation. The excess in the data at high values is due to non-exclusive
final states.

e No photons. A photon is defined as an isolated shower in the electromagnetic calorimeter
with a total energy larger than 100 MeV distributed in more than two crystals. The ratio
between the energies deposited in the hadronic and electromagnetic calorimeters must
be less than 0.2 and there must be no charged track within 200 mrad from the shower
direction.

e Two secondary vertices with transverse distances from the interaction point greater than
1 mm and 3 mm. In Figure [k the data are compared to the Monte Carlo prediction for
exclusive K§K§ formation. The excess in the data at low values is due to the dominant
vy — p°p° channel.

e The angle between the flight direction of each Kg candidate and the total transverse
momentum vector of the two outgoing tracks in the transverse plane must be less than
0.3 rad, as presented in Figure [Id.

e Since the two Kg’s are produced back-to-back in the transverse plane, the angle between
the flight directions of the two K& candidates in this plane is required to be 7w #+ 0.3 rad.

Figure Blshows the distribution of the mass of one K candidate versus the mass of the other
candidate. There is a strong enhancement corresponding to the KSK2 exclusive formation over
a small background. We require that the invariant masses of the two K2 candidates must be
inside a circle of 40 MeV radius centred on the peak of the KSK$ signal.

With these selection criteria, 802 events are found in the data sample. The background due
to misidentified Kg pairs and non-exclusive events is estimated to be less than 5% by a study
of the K$ mass sidebands and of the | ¥ p7|? distribution. The backgrounds due to KSK=n¥
and AA final states and to beam-gas and beam-wall interactions are found to be negligible.

3 The KK mass spectrum

The KgKg mass spectrum is presented in Figure Bl showing three distinct peaks over a low
background. Despite their large two-photon widths, the f5(1270) and the a3(1320) tensor mesons
produce a small signal in the KJK? final state due to their destructive interference. The
spectrum is dominated by the formation of the f5(1525) tensor meson in agreement with previous
observations [3L4]. A signal for the formation of the f;(1710) is present while no resonance is
observed in the mass region of the £(2230).

A maximum likelihood fit using three Breit-Wigner functions plus a second order polynomial
for the background is performed on the full K{K§ mass spectrum. The results of the fit are
shown in Figure Bl and reported in Table [l The confidence level is 31.7%. The parameters of
the f5(1525) are in good agreement with the PDG [I0], taking into account the experimental
resolution 0 = 29 =4 MeV.



4 The f5(1525) tensor meson

To study the f(1525) tensor meson Monte Carlo events are generated according to the mass,
total width and two-photon width [T0] of this state. The angular distribution of the two K&'s
in the two-photon centre of mass system is generated uniformly in cos #* and in ¢*, the polar
and azimuthal angles defined by the beam line. In order to take into account the helicity of
a spin-two resonance, a weight w is assigned to each generated event: w = (cos? 6* — %)2 for
spin-two helicity-zero (J=2, A=0) and w = sin* #* for spin-two helicity-two (J=2, A=2).

To determine the spin and the helicity composition in the f5(1525) mass region between
1400 and 1640 MeV, the experimental polar angle distribution is compared with the normalized
Monte Carlo expectations for the (J=0), (J=2, A=0) and (J=2, A=2) states, as presented in
Figure @l A x? is calculated for each hypothesis, after grouping bins in order to have at least
10 entries both in the data and in the Monte Carlo. The confidence levels for the (J=0) and
(J=2, A=0) hypotheses are less then 1075. For the (J=2, A=2) hypothesis, a confidence level
of 99.9% is obtained. The contributions of (J=0) and (J=2, A=0) are found to be compatible
with zero when fitting the three waves simultaneously. The contribution of (J=2, A=2) is found
to be compatible with unity within 7%, in agreement with theoretical predictions [IT].

The two-photon width times the branching ratio into KK is therefore determined from the
cross section under the hypothesis of a pure (J=2, A=2) state. Two separate measurements
are performed for data collected at the Z pole and at high energies. The K factor, the total
detection efficiency and the measured quantity ', (f5(1525)) x Br(f3(1525) — KK) are reported
in Tablel The total detection efficiency, ¢, is determined by Monte Carlo and includes detector
acceptance, trigger efficiency and selection criteria. Combining the two measurements, the value

I, (£(1525)) x Br(f)(1525) — KK) = 76 4 6 + 11 &V

is obtained, where the first uncertainty is statistical and the second is systematic. The main
source of systematic uncertainty comes from the fitting procedure. A contribution of 10% is
evaluated by varying the shape of the background and by allowing no background at all. Other
sources of systematic uncertainties are trigger efficiency (5%) and cut variations (7%). This
result agrees with and supersedes the value previously published by L3 [3].

5 The 1750 MeV mass region

According to lattice QCD predictions [T2], the ground state glueball has J¥¢= 0** and a mass
between 1400 and 1800 MeV. Several 0% states are observed in this mass region [10] and the
scalar ground state glueball can mix with nearby quarkonia [13].

To investigate the spin composition in the mass region of the f;(1710), the angular distri-
bution of the two K§’s is studied in the mass region between 1640 and 2000 MeV. A resonance
with a mass of 1750 MeV and a total width of 200 MeV is generated as for the £5(1525). The
detection efficiencies for the various spin and helicity hypotheses are reported in Table

A fit of the angular distribution is performed using a combination of the two waves (J=0)
and (J=2, A=2) for the signal plus the distribution of the tail of the f5(1525). Contributions
from the (J=2, A=0) wave are not considered, based on the theoretical predictions [I1] and our
experimental results for the f5(1525). The tail of the f5(1525) is modeled by assuming a pure
(J=2, \=2) state. The fraction of the events belonging to the f5(1525) in the 1750 MeV mass
region is found to be 14%. The fit results are shown in Figure @l The confidence level for the fit
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is 68.0% whereas the (J=0) fraction is 244+16%. Neglecting the (J=0) wave yields a confidence
level of 24.0%. The possible (J=2, A=0) contribution is found to be compatible with zero. The
(J=2, A=2) wave is found to be dominant and the two-photon width measured in the full data
sample is

T, (£2(1750)) x Br(f,(1750) — KK) = 49 4 11 4 13 &V.

The systematic uncertainty takes into account the selection criteria, the trigger efficiency, the
fitting procedure, the uncertainty on the total width and on the (J=2, A=2) fraction.

The (J=2, A=2) signal may be due to the formation of the first radial excitation of a tensor
meson state, predicted at a mass of 1740 MeV [T4L15)] with a two-photon width of 1.04 keV [T4].
The BES Collaboration reported the presence of both 2+ and 0% waves in the 1750 MeV mass
region in K™K~ in the reaction ete™ — J — K"K ™+ [I6]. Their (J=0) fraction is estimated to
be 30+10%, in good agreement with our measurement.

6 The 2230 MeV mass region

The £(2230) is considered a good candidate for the ground state tensor glueball because of its
narrow width and its production in a gluon rich environment. Its mass is in agreement with
the lattice QCD predictions [12]. It was first observed in the radiative decays of the J particle
by Mark III [I7] and confirmed by BES [I§].

Since gluons do not couple directly to photons, the two-photon width is expected to be
small for a glueball, as quantified by the stickiness [T9] defined as

| <Rlgg > > _ S — N, [T "I - 9R) 2)
| <Rlyy>|? kj—nr 'R — v7)

where mg is the mass of the state R, kj_,r is the energy of the photon from a radiative J
decay in the J rest frame and [ is the orbital angular momentum between the two gluons. For
spin-two states [ = 0. The normalization factor N; is calculated assuming the stickiness of the
f5(1270) tensor meson to be 1.

A Monte Carlo simulation is used to determine the detection efficiency for the £(2230)
using a mass of 2230 MeV and a total width of 20 MeV. A mass resolution of ¢ = 60 MeV
is estimated. The total detection efficiency is reported in Table H] for the two data samples,
under the hypothesis of a pure (J=2, A\=2) state. The signal region is chosen to be +2¢
around the £(2230) mass. In order to evaluate the background two sidebands of 20 each are
considered. The number of events in the signal region and the expected background evaluated
with a linear fit in the sideband region are reported in Table ll. Using a Poisson distribution
with background [20] and combining the results for the two data samples, we obtain the upper
limit

I, (£(2230)) x Br(£(2230) — KIKS) < 1.4 eV at 95% C.L.,

under the hypothesis of a pure helicity-two state.

This translates, following Equation [ and using world average values [I0)], into a lower limit
on the stickiness Sg(230) of 74 at 95% C.L., similar to the results obtained by CLEO [21]. This
value of the stickiness is much larger than the values measured for the well established qq states
and supports the interpretation of the £(2230) as the tensor glueball.
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Mass Region fo(1270)—ay(1320)  £5(1525) f;(1710)  Background
Mass (MeV) 1230 £ 6 1523 £ 6 1767 £ 14 =
Width (MeV') 78 £ 19 100 £ 15 187 £ 60 —
Integral (Events) 123 + 22 331 £ 37 221 £ 55 149 + 21

Table 1: The parameters of the three Breit-Wigner functions and the parabolic background
from the fit on the K§K§ mass spectrum.

L(pb ') K (pb7'/keV) & (%) N(f5) [, (f5) x Br(fs — KK) (V)
Z Pole 143 605 50+ 04 42078 83 £ 15 £ 12
High Energies 445 845 6.4 +£05 220+ 13 D+ 7TE11

Table 2: The measurement of the two-photon width of the f4(1525) for the two data samples.
N(f5) is the integral of the Breit-Wigner function in the 1400 — 1640 MeV mass region.

J=0 J=2, =2 J=2,A=0
Z Pole 6.0+ 0.5% 82+07% 4.1+ 0.3%
High Energies 6.3 £ 0.5% 8.7+ 0.7% 4.5+ 0.3%

Table 3: The total detection efficiency for the fj(1710) for the various spin and helicity hy-
potheses.

K(pb~!/ keV) e(%) New  Niprg
7 Pole 161 16.6 = 1.4 6 4.9
High Energies 230 142+12 36 454

Table 4: The I factor, the detection efficiency e, the number N,., of observed events and the
expected background Ny, for the £(2230).
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Figure 1: a) The 777~ mass spectrum for reconstructed secondary vertices with a transverse
separation of more than 3 mm from the interaction point. b) The total transverse momentum
imbalance squared, c¢) the distance between the primary and the secondary vertex in the trans-
verse plane and d) the angle between the flight direction and the total transverse momentum
for the K& candidates. The Monte Carlo predictions correspond only to the signal of KSK§
exclusive formation and are normalized to the same area as the data. The arrows indicate the
cuts applied.

12



o“\‘(f»‘

»/\..»

X

s

| T 7
o o o
o e} o
~ —

L8N GTXST / SIU9AT

Figure 2: The mass distribution of a K candidate versus the mass of the other candidate for
the full data sample. A strong enhancement corresponding to the KSK§ signal over a small
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background is observed.
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Figure 3: The KZK$ mass spectrum: the solid line corresponds to the maximum likelihood fit.
The background is fitted by a second order polynomial and the three peaks by Breit-Wigner
functions (dashed lines). The arrows correspond to the f5(1270)—a3(1320), the f5(1525), the
f5(1710) and the £(2230) mass regions.
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Figure 4: The K3K polar angle distribution compared with the Monte Carlo distributions for
the hypothesis of a pure spin zero, spin-two helicity-zero and spin-two helicity-two states for
the f5(1525). The Monte Carlo expectations are normalized to the same number of events as
the data.
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Figure 5: The fit of the KK polar angle distribution in the 1640 — 2000 MeV mass region.
The contributions of spin-zero and spin-two helicity-two waves are shown together with the
14% contribution of the tail of the f5(1525).
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