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We study the response of meson masses to the chemical potential (∂m/∂µ) at high temperature and at zero
chemical potential on Nf = 2 lattice with staggered fermions. Preliminary results for the meson composed of
different quarks show that ∂m/∂µ|µ=0 is negative in the confinement phase and positive in the deconfinement
phase.

1. INTRODUCTION

The temperature and density effects to the
properties of hadrons are interesting and impor-
tant for the early universe and for high energy
physics. So far the temperature effect has been
extensively studied [1]. But there are not so many
results concerning the density effect. As is well
known, there are difficulties with the simulation
of a finite density system by the lattice QCD ap-
proach. The reason is that the fermionic deter-
minant becomes complex and cannot be consid-
ered as a part of the probability. If we factor out
the phase of the determinant and put it into ob-
servables, it leads to oscillating contributions in
quantum averages. This makes it hard to obtain
reliable results. It has been also known that the
naive quenched approximation leads to an essen-
tially different world [2].

In spite of this difficult situation, density ef-

fects to hadrons such as a mass-shift are very in-
teresting and important subjects both theoreti-
cally and experimentally [3,4]. There are several
approaches to circumvent this difficulty and they
seem successful to a limited extent [5]. Another
way is to study two-color QCD [6–11]. Also, a
non-trivial quenched approximation can be de-
fined [12] by taking the simultaneous limit where
the quark mass and the logarithm of the chem-
ical potential both become infinite [13]. As for
the response to the chemical potential, only the
baryon number susceptibility at zero baryon den-
sity has been studied, and an abrupt jump at the
transition point has been reported [14].

In this paper, we examine the response to the
chemical potential of the mass of hadrons at finite
temperature and at zero baryon density in full
SU(3) QCD simulations[15].
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2. CHEMICAL POTENTIAL RE-
SPONSE OF HADRONIC MASSES
AT HIGH TEMPERATURE

As stated in the introduction, the lattice study
at finite density is still difficult. In this situa-
tion, an interesting possibility is to examine the
response of physical quantities to the chemical po-
tential at zero chemical potential.

Here we consider a hadronic correlator G(x),

G(x) =
∑
y,z,t

< H(x, y, z, t)H(0, 0, 0, 0)† >, (1)

where H(x, y, z, t) denotes the hadron operator.
Suppose that this hadronic correlator is domi-

nated by a single pole, then

G(x) ≈ Ae−mx. (2)

We take derivative with respect to chemical po-
tential µ,

B(x) ≡ G(x)−1 ∂G(x)
∂µ

(3)

= A−1 ∂A

∂µ
− ∂m

∂µ
x . (4)

In eq.(4), if the left hand side is measured as a
function of x, the linear term gives the chemical
potential response of the hadron mass, while the
constant term gives the response of the coupling.

The next problem is to get the derivative of the
correlator. For this purpose, we go back to the
definition of the hadronic correlator.

< H(n)H(0)† >=

Z−1

∫
[dU ]Tr (M(n; 0)ΓM(0;n)Γ†)

det(D) exp(−SG) (5)

where Z =
∫

[dU ]det(D) exp(−SG) and M =
D−1.

Then, using the formulae

∂det(D)
∂µ

= Tr (M
∂D

∂µ
)det(D) (6)

and
∂M

∂µ
= −M ∂D

∂µ
M, (7)

we get

∂ < H(n)H(0)† >
∂µ

=

− < Tr (MḊMΓMΓ†) >
− < Tr (MΓMḊMΓ†) >
+ < Tr (MΓMΓ†)Tr (ḊM) >
− < Tr (MΓMΓ†) >< Tr (ḊM) > (8)

where the short hand notations

Ẋ =
∂X

∂µ
(9)

and

< Y >= Z−1

∫
[dU ]det(D) exp(−SG)Y (10)

are used. Here we calculate the first and sec-
ond terms of the right hand side of eq.(8) and
ignore the other terms. Tr (ḊM) is pure imag-
inary and its average value, i.e. < Tr (ḊM) >
will be zero[14]. If Tr (MΓMΓ†) is real, the third
term does not contribute as real and we may ne-
glect it. For degenerate quarks, Tr (MΓMΓ†) is
real. Although we consider here non-degenerate
systems for which Tr (MΓMΓ†) is not real, we
assume that the contribution from the third term
is small and drop it in this study.

We introduce two independent chemical po-
tentials, µq and µQ for two different quarks (
mq ≤ mQ ). We introduce convenient definitions
of the chemical potential, µs ≡ (µq + µQ)/2 and
µv ≡ (µq−µQ)/2 and define the following deriva-
tives with respect to µs and µv.
∂

∂µs
=

∂

∂µq
+

∂

∂µQ
(11)

∂

∂µv
=

∂

∂µq
− ∂

∂µQ
(12)

µs is usual chemical potential corresponding to
baryon number. In this study we consider the
response with respect to µs.

In the case of the staggered fermion formalism,
the derivative of the fermion operator is

∂DKS

∂µ
=

a

2
[Ut(n)eaµδn+t,m

+ U †
t (n− t)e−aµδn−t,m]. (13)
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At µ = 0, we can evaluate eqs. (5) and (8) by
usual techniques of lattice QCD simulation.

3. PRELIMINARY RESULTS

Here we present our preliminary result for
∂m/∂µ|µ=0.

3.1. Lattice parameters
Lattice parameters are as follows:

• Lattice Size:
16× 8× 8× 4, with 16 for x direction, 4 for
the temperature direction.

• Quarks:
mQ=0.25 and mq=0.025 for β=5.26, and
mQ=0.25 and mq=0.0125 for β=5.33. Dy-
namical K-S fermions with Nf = 2 are the
light quarks (mq). The meson operator, H ,
is made of the two different quarks.

• Temperature:
β = 5.26 for T ≈ 0.97Tc (confinement), and
β = 5.33 for T ≈ 1.07Tc (deconfinement).

• Statistics:
40-90 configurations for each parameter.

3.2. ∂m/∂µs|µ=0

The results for the B(x) in eq.(3) are shown in
Fig.1 and Fig.2. Fig.1 is for β = 5.26 which corre-
sponds to the confinement phase and Fig.2 is for
β = 5.33 which corresponds to the deconfinement
phase.

As is stated above, the coefficient of the linear
term in B(x) corresponds to −∂m/∂µ|µ=0. Al-
though this is preliminary and the statistics are
small, we can see that ∂m/∂µ|µ=0 is negative in
the confinement phase and ∂m/∂µ|µ=0 is positive
in the deconfinement phase.

4. J/ψ SUPPRESSION WITHOUT QGP

One of our masses, mQ, is in the region of the
strange quark. If the behaviors observed in Figs.
1 and 2 are also seen in the charm quark mass re-
gion, then the mass of the heavy-light meson, D,
might decrease at very small chemical potential
just below the deconfinement temperature. Then
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Figure 1. G(x)−1 ∂G(x)
∂µs µ=0

in the confinement
phase (β = 5.26, T ≈ 0.97Tc), where G(x)
is the hadron propagator along the x direction.
mQ = 0.25 and mq = 0.025

the mass of DD̄ system might be lower than the
mass of the ψ′ meson, and a new decay mode

ψ′ → D + D̄ (14)

will open.
If this happens in, for example, ultra-

relativistic heavy ion collisions, ψ′ mesons pro-
duced by this collision will decay as ψ′ → D +
D̄ and eventually the amount of J/ψ produced
through ψ′ → χ → J/ψ channel will decrease.
This means that J/ψ suppression might occur
even in the confinement phase as suggested by
Hayashigaki[16].

5. SUMMARY

The results of this paper are very preliminary
and qualitative and should be checked in the near
future. However a model calculation based on
NJL model[17] suggests the same tendency.
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Figure 2. G(x)−1 ∂G(x)
∂µs µ=0

in the deconfinement
phase (β = 5.33, T ≈ 1.07Tc), where G(x) is the
hadron propagator along the x direction. mQ =
0.25 and mq = 0.0125
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