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Determination of the pion–nucleon coupling constant and scattering lengths
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We critically evaluate the isovector GMO sum rule for forward πN scattering using the recent pre-
cision measurements of π−p and π−d scattering lengths from pionic atoms. We deduce the charged-
pion–nucleon coupling constant, with careful attention to systematic and statistical uncertainties.
This determination gives, directly from data, g2

c (GMO)/4π = 14.11 ± 0.05 (statistical)±0.19 (sys-
tematic) or f2

c /4π = 0.0783(11). This value is intermediate between that of indirect methods and the
direct determination from backward np differential scattering cross sections. We also use the pionic
atom data to deduce the coherent symmetric and antisymmetric sums of the pion–proton and pion–
neutron scattering lengths with high precision, namely (a

π−p + a
π−n)/2 = (−12±2(statistical)±8

(systematic))×10−4 m−1
π and (a

π−p − a
π−n)/2 = (895±3(statistical)±13 (systematic))×10−4 m−1

π .
For the need of the present analysis, we improve the theoretical description of the pion-deuteron
scattering length.

I. INTRODUCTION

The pion–nucleon (πNN) coupling constant is of fundamental importance in both nuclear and particle physics. In
nuclei it sets the scale of the interaction, together with the pion mass. In particle physics it is of great importance
for the Goldberger–Treiman relation [1], one of the most important tests of chiral symmetry. Its experimental error
is the main obstacle in the accurate discussion of the corrections to this relation as predicted from chiral symmetry
breaking (see, for example, the discussion on page 1086 of Ref. [2]). An accurate test requires a knowledge of the
πNN coupling constant to a precision of about 1%, so as to match the experimental precision of the other quantities
in the Goldberger–Treiman relation.

The present situation is summarized in Table I with uncertainties as quoted by the authors. In the 1980’s, the πNN
coupling constant was believed to be well known. In particular, Koch and Pietarinen [3] determined a value of the
charged-pion coupling constant, g2

c/4π = 14.28(18), from π±p scattering data, while Kroll [4] found the neutral-pion
coupling constant g2

0/4π = 14.52(40) from a pp forward dispersion relation. This was put in question in the early
1990’s, when the Nijmegen group published a series of papers [5–8] where they reported smaller values on the basis
of energy-dependent partial-wave analyses (PWA) of NN scattering data. They obtained g2

0/4π = 13.47(11) and
g2

c/4π = 13.58(5). Similarly low values with g2/4π about 13.7 have also been found by the Virginia Tech group [9–12]
from an analysis of both π±N and NN data. Using a similar PWA method in the πp sector, Timmermans [13]
found a value of 13.45(14). These more recent analyses often suffer from the drawback that they rely on the joint
analysis of large data bases from many experiments with some of the data rejected according to various criteria. The
statistical accuracy is high, but the systematic uncertainty is not clear. Exceptions are the Goldberger–Miyazawa–
Oehme (GMO) sum rule [14] used by several groups [10,15,16] and the forward scattering sum rule for pp scattering
[4], which, in principle, depend directly on physical observables. However, the dominant systematic uncertainties are
not discussed and the uncertainties in the isovector scattering length used as input are large. In the case of Ref. [15]
we have corrected their result as given in Table I to account for an erroneous input value according to the Erratum of
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Ref. [11]. Another direct determination is based on the extrapolation of experimental precision data on single-energy
backward differential np cross sections to the pion pole [2,17]. This allows a systematic discussion of statistical and
systematic uncertainties, but the uncertainty is so far larger than what can be achieved at present with the use of the
GMO sum rule. The extrapolation method gives 14.52(26), a value significantly larger than those deduced by indirect
methods. A review of the situation of the πNN coupling constant up to 1997 is found in Ref. [6]. The problems
regarding its determination from np data have recently been discussed in a dedicated workshop [18–22] as well as in
a recent conference working group [23].

To resolve these discrepancies it is desirable to have an independent precision determination, directly linked to
measured quantities with quantifiable systematic and statistical errors. The purpose of the present article is to
demonstrate that recent experimental advances make the GMO relation suitable for this purpose. The GMO is a
forward dispersion relation that expresses the charged coupling constant g2

c/4π in terms of the isovector πN scattering
length (70% contribution) and a weighted integral, J−, of the difference between the charged-pion total cross sections
(30% contribution). This relation has been repeatedly evaluated in the past [10,11,15,16,24,25]. Since, until recently,
there was little information on the scattering lengths available from direct data, these evaluations necessarily relied
on scattering lengths extrapolated from semi-phenomenological πN phase-shift analyses, using data from a range of
energies above threshold. At the high precision needed, the systematic errors in the extrapolated scattering lengths are
unclear and have, to our knowledge, not been estimated. The experimental situation has changed recently. The π−p
and π−d scattering lengths can, to high precision, be deduced from recent experiments on pionic atoms. As a result, all
the major ingredients in the GMO relation can now be discussed as experimentally derived quantities with transparent
sources of uncertainty. Further, the approach can be improved by the observation that isospin conservation, which
was previously assumed, can be replaced by the weaker assumption of charge symmetry. This avoids the possibility
of perturbations from the rather important violation of isospin symmetry expected to be associated with the π0p and
π0n scattering lengths [26,27]. The GMO relation can now be completely evaluated on the basis of data closely linked
to direct experiments and it then determines the charged-pion coupling. We will develop this aspect below and also
give a discussion of uncertainties in the dispersion integral.

The paper is organized as follows. In Section II we give a brief review of the GMO sum rule, reorganize it in the
most efficient way for the present purpose, and discuss the magnitudes of the main contributions. Section III presents
the information on the π−p and π−d scattering lengths deduced from data on pionic atoms. We draw the reader’s
attention to the most critical theoretical point in the present procedure for their extraction. Details on expressions
used for the electromagnetic corrections to the experimental π−d scattering lengths are given in Appendix A. In
section IV we analyze and improve the theoretical approach to the πd scattering length with particular attention to
a number of smaller terms. We use this understanding to deduce the most accurate values yet for the πN scattering
lengths from the experimental data. Practical expressions for the theoretical π−d scattering length for separable
scattering amplitudes are given in Appendix B. In section V we analyze the uncertainties from different sources in
the cross section integral J−. In section VI we summarize the conclusions about the scattering lengths and give the
GMO sum rule result for the πNN coupling constant, g2

c/4π, with an explicit indication of systematic and statistical
uncertainties.

II. THE GMO SUM RULE

The GMO sum rule for charged-pion–nucleon scattering is a very general forward dispersion relation, which assumes
only analyticity and crossing symmetry. Contrary to the usual approach to its evaluation [10,11,15,16,24,25], it is
not necessary to assume isospin symmetry (for a discussion of the GMO relation assuming isospin symmetry see Eq.
(A.6.49) in Ref. [24]). It takes the following form:

f2
c /4π = (1 − (mπ/2M)2)

[

(1 + mπ/M)
mπ

4
(aπ−p − aπ+p) − m2

π

8π2

∫ ∞

0

σT
π−p

(k′) − σT
π+p

(k′)
√

k′2 + m2
π

dk′

]

. (1)

Here mπ is the charged-pion mass and M the proton mass with the neutron–proton mass difference neglected, aπ±p

the π±p scattering lengths, σT
π±p

the total π± proton cross section and k the pion laboratory momentum. The relation

gives the charged-pion coupling constant f2
c /4π = (mπ/2M)2g2

c/4π explicitly in terms of the charged-pion scattering
lengths and total cross sections, all directly measurable. In writing Eq. (1) it has been tacitly assumed that Coulomb
barrier corrections have been made to sufficient precision both in the extraction of the scattering lengths from pionic
atoms and, in particular, in the determination of the total cross sections. We will discuss these issues as well as the
effect of mass differences and isospin violation further below.

It is convenient to write the expression (1) in a simplified form with numerical coefficients:
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g2
c/4π = −4.50 × J− + 103.3 ×

(

aπ−p − aπ+p

2

)

. (2)

Throughout this paper the scattering lengths are in units of m−1
π , and J−, given in mb, corresponds to

J− =
1

4π2

∫ ∞

0

σT
π−p

(k′) − σT
π+p

(k′)
√

k′2 + m2
π

dk′. (3)

Everything is in principle measurable to good precision. The relevant scattering lengths in Eq. (1) can be obtained
to high precision using the π−d scattering length as a constraint as will be discussed below.

So as to obtain a robust evaluation of the coupling constant in the present context, we rearrange relation (2) in
such a way that the most important experimental contributions are explicitly and separately identifiable:

g2
c/4π = −4.50× J− + 103.3 × aπ−p − 103.3×

(

aπ−p + aπ+p

2

)

. (4)

For orientation, and as an initial basis for discussion, we use as a preliminary value J− = −1.077(47) mb from
Koch [28] and the experimental π−p scattering length 0.0883(8) m−1

π [15]. This gives the following relation, to be
improved later: g2

c/4π = 4.85(22)+9.12(8)−103.3×(aπ−p +aπ+p)/2 = 13.97(23)−103.3×(aπ−p +aπ+p)/2. We stress
that this is not our final result (our best estimate of these terms is given in Eqs. (20), (21) and (23) below). Here the last
term is a small quantity. If we use the old Koch–Pietarinen value [3] for (aπ−p +aπ+p)/2 = a+ = −83(38)×10−4 m−1

π

we will find g2
c/4π = 14.83(45), while the SM99 solution [29,30] with a+ = 20× 10−4 m−1

π will lead to g2
c/4π = 13.76.

A value for the coupling constant of the order of 13.6 would require either a relatively large positive magnitude for
the isoscalar scattering length and/or a substantially less negative value for the cross section integral J−. It is thus
extremely important to obtain an accurate number for the small isoscalar amplitude. This quantity can be evaluated
with small statistical and systematic uncertainties from the experimental π−d scattering length, assuming the validity
of charge symmetry, i.e. that the scattering lengths aπ+p and aπ−n are equal. This approximation is expected to
be excellent, since the recent estimate of the isospin violation effect in this amplitude, mainly due to virtual photon
effects [27], suggests that this leads to an increase of the coupling constant by only 0.2%. The cross section integral
J− is at present becoming the largest source of error. Uncertainties from the small π−d term will not have a major
impact on the result. We now turn to a critical discussion of the different contributions.

III. THE EXPERIMENTAL π−P AND π−D SCATTERING LENGTHS

The π−p scattering length contributes the bulk of the GMO relation and must be very accurately controlled. It is
deduced from the energy shift in pionic hydrogen, which (to about 2%) is proportional to the scattering length. The
highly accurate value from PSI [15,31] has an uncertainty dominated by systematics in the analysis. The accuracy in
the procedure for extracting the scattering length, with a number of small corrections of electromagnetic origin, has
been discussed in detail by Sigg et al. [32]. The corrections include those for the finite nucleon and pion size as well
as the feedback of the strong interaction shift on the long-ranged vacuum polarization. These can all be calculated to
a precision more than an order of magnitude better than the present experimental error. They also include the effect
of the proton e.m. polarizability. The crucial step in the analysis is the modeling of the hadronic interaction. Sigg et

al. have simulated this by using a short-ranged potential for each of the isospin states with the strength tuned to the
corresponding free scattering length in the absence of the open π0 channel. They then introduce the open channel
via coupled Klein–Gordon equations and explore the correction for different interaction ranges, with values near 0.7
m−1

π that are considered realistic. The correction and uncertainty are mainly associated with the conversion between
charged and neutral pions due to the available phase space. The final theoretical uncertainty is given as 0.5%, larger
than the statistical uncertainty of 0.2%.

We have examined the procedure and agree with the quoted electromagnetic corrections and their precision, provided
the hadronic interaction is tuned to correctly reproduce the experimental energy shift. The treatment of the corrections
in the hadronic part, however could be improved, although it is convincing to a level of a few %.

Lipartia et al. have demonstrated that Chiral Effective Field Theory (EFT) gives the same result as the potential
approach at least to next to leading order [33,34] if the physical amplitude is reproduced. This result is similar to the
invariance of the leading order e. m. correction due to gauge invariance in a energy-dependent potential description
[35]. It is thus reasonable to simulate the range dependence of the πN s-wave amplitude using potentials, provided the
low energy expansion of the s-wave scattering amplitude f0 is correctly reproduced to order q2. This latter approach
automatically includes the wave function modification by the extended charge distribution, an effect of higher order
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in the EFT approach, but which gives here the largest numerical correction. However, the procedure in Ref. [32] does
not respect the empirical values for the ‘range’ terms, which leads to a larger uncertainty than the one quoted for their
correction. The negative sign of the correction term and its approximate magnitude of −1% is basically correct. To
account for the present inconsistency with the range expansion and using the numerical range of variation of Sigg et
al., the theoretical uncertainty must be increased from ±0.5% to ±1.0%, i.e. the overall systematic uncertainty in the
scattering length taken in quadrature is increased from ±6 × 10−4m−1

π to ±10 × 10−4m−1
π . We have not attempted

to correct the deduced scattering length of Ref. [36], since this should be investigated specifically [37,38]. Range
corrections to the π−p width are not relevant at present accuracy.

The isospin breaking in the π−p amplitude has been dimensionally estimated in chiral EFT theory [34]. Such
effects are modeled in the potential approach as well. The estimate in EFT in next to leading order appears to be a
considerable overestimate owing partly to higher order compensations. The main uncertainty in the estimate of Ref.
[34] is absent in the difference between the π±p amplitudes, which is the quantity relevant to the GMO relation for
the πNN coupling constant.

The experimental π−d scattering length is derived from the energy shift in the π−d atom in close analogy to the case
of the π−p scattering length. The deuteron electromagnetic corrections can in practice be calculated using a deuteron
charge distribution, that correctly reproduces the experimental deuteron charge radius. Further, the deuteron is
simpler in so far as the the correction for the open π0 channel is negligible. The electromagnetic corrections produced
to the the strong πd amplitude should be included, however. The main one originates in the energy dependence, similar
to the case of the proton. This small, repulsive contribution to the energy shift can be estimated to leading order from
our approach in Ref. [35], Eqs. (3-5) and it is mainly produced by the leading order isoscalar range term (see Appendix
A). The estimated change in the deduced scattering length is −4mπb+e〈V d

C(r)〉, where the Coulomb potential from
the extended deuteron charge distribution is averaged over the deuteron matter distribution. Note that there are
no cancellations in the range terms, contrary to the massive cancellation of the πN scattering lengths in the single
scattering term. Numerically, the empirical value for the range terms are b+ = −0.044(7)m−3

π ; b− = 0.013(6)m−3
π )

[24]. Any modern deuteron density distribution gives e〈V d
C (r)〉 = 0.86 MeV and a correction of 12 × 10−4m−1

π . An
alternative estimate is obtained from the gauge correction to the π−n amplitude due to the Coulomb field of the
proton, treated as a static spectator. Using the empirical πN range parameters this gives a contribution −2mπ(b+ −
b−)e〈V p

C(r)〉 = 6 × 10−4m−1
π with e〈V p

C(r)〉 = 0.66 MeV. A related estimate in a leading order chiral approach gives
a correction 7.5 × 10−4m−1

π [39], but it is based only on the isovector term and does not include the constraints of
the phenomenological range expansion. In the absence of correlations between the nucleons, the isovector range term
does not contribute to leading order and it is further suppressed by its empirical weakness. We adopt the average of
the first two estimates of 9× 10−4m−1

π for this correction with an uncertainty of 5× 10−4m−1
π . This is well inside the

present uncertainty in the theoretical deuteron scattering length (see Table IV) and has little influence on the present
investigation.

In summary, we have adopted the following scattering lengths deduced from the data on the π−p atom [15,32] and
the π−d atom [40] with the modifications described above. The transition amplitude aπ−p→π0n is the one obtained
from the width of the 1s state of the π−p atom [15,32]:

aπ−p→π−p = (883 ± 2(statistical) ± 10(systematic)) × 10−4 m−1
π , (5)

aπ−p→π0n = 1280(60)× 10−4 m−1
π , (6)

aπ−d = (−252 ± 5(statistical) ± 5(systematic) + i63(7))× 10−4 m−1
π . (7)

We recall that the following relations hold, if isospin symmetry is assumed to be valid: aπ−p ≡ aπ−p→π−p = a+ + a− ;

aπ−p→π0n = −
√

2a−, where a± are the symmetric and antisymmetric scattering lengths a± = 1
2
(aπ−p ± aπ+p),

respectively.

IV. THE THEORETICAL π−D SCATTERING LENGTH

The part of the GMO relation, Eq. (4), that it has not been possible to determine accurately up to now is the term
proportional to the coherent, symmetric combination of the scattering lengths (aπ−p + aπ+p)/2. Assuming isospin
symmetry, this is the isoscalar scattering length a+. It follows from recent measurements of the hadronic energy shift
and width of the pionic hydrogen atom [15] that this gives a directly determined value a+ = −22(43) × 10−4 m−1

π .
However, the accuracy of this direct determination is not sufficient for our present purpose. It is very difficult to
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determine a+ with precision, directly from the coherent sum of the individual π−p and π+p scattering lengths, because
these cancel to a few per cent . On the other hand, assuming only charge symmetry, this quantity is identical to
the coherent scattering length for a negative pion on the neutron and proton, (aπ−p + aπ−n)/2, which is the leading
contribution to the accurately known aπ−d scattering length. The accuracy of this approximation is indicated by a
recent estimate of the isospin violation effect in the amplitude ratio R4 = −0.008(1) [27] such that

aπ+p − aπ−n = R4 aπ−n = 3 × 10−4 m−1
π . (8)

Provided the remaining contributions can be reliably calculated, it is then possible to deduce the relevant coherent
combination directly from the deuteron data with only minor assumptions concerning isospin symmetry. The situation
is exceptionally favorable for the application of multiple scattering methods. The deuteron is a very loosely bound
system and its wave function is accurately known. The nucleons have very little overlap and, consequently, the poorly
controlled short range contribution is small. The particular case of the πd scattering length is even a textbook example
of multiple scattering (see p. 111 in Ref. [41]), since the expansion parameters are small. The situation has been
explored in detail, both within multiple scattering theory and using a three-body Faddeev approach, since it provides
a clear-cut testing ground for methods [42–46].

In the static (fixed scattering centers) approximation the leading structure and scale of the pion–deuteron scattering
length is set by the coherent single scattering term S and the dominant s-wave double scattering term D which is
proportional to the inverse deuteron radius 〈1/r〉 (p. 111 in Ref. [41]):

astatic
π−d = S + D ...; (9)

S =
(1 + mπ/M)

(1 + mπ/Md)
(aπ−p + aπ−n); (10)

D = 2
(1 + mπ/M)2

(1 + mπ/Md)

[

(

aπ−p + aπ−n

2

)2

− 2

(

aπ−p − aπ−n

2

)2
]

〈1/r〉, (11)

where Md is the deuteron mass.
The static double scattering term represents about 90% of the experimental scattering length. It is in practice well

defined numerically with a small error from the uncertainty in < 1/r >. It has typically the value

D = −254(4)× 10−4 m−1
π , (12)

where we have used the central values of the scattering lengths from Eqs. (20–21). We will use this well defined static
limit with point interactions as the starting point with respect to which various corrections will be introduced.

A. Previous approaches to a+ from the deuteron data

Recently Baru and Kudryatsev (B–K) [46] have investigated the πd scattering length using state-of-the-art multiple
scattering methods. We will use the updated and unpublished version of their investigation [47] as the theoretical
yardstick for the following discussion. We have numerically reproduced their findings to the same numerical precision,
under the same assumptions. This approach is however still incomplete and contains, we believe, one erroneous term.
As a consequence, the close agreement of their quoted value a+ = −15(9) × 10−4 m−1

π with our final result for a+ is
only a fortuitous numerical coincidence without any special significance. It cannot be used as such. In the following
we discuss the input parameters, corrections and systematics, and introduce substantial theoretical improvements.
The classical 3-body approach to the problem is still that of Afnan and Thomas and of Mizutani and Koltun, using
separable interactions [42,43]. This approach gives the best picture of the dispersive effects due to absorption and
supports the conclusions of the heavy cancellation of unitarity corrections in the multiple scattering approach. The
approach, however, has not been updated in its overall accuracy to match the present high experimental precision
and cannot be used directly.

A rather different approach is that of Beane et al. [48], based on the nuclear chiral perturbation approach of
Weinberg [49] and using phenomenological deuteron wave functions. This approach makes a systematic expansion
in the pion 4-momentum, using effective parameters; at present the calculations have been made to O(q3). The
result has the same general structure as the static limit of multiple scattering. Several physical effects discussed in
the following are not yet included in this order, such as the Fermi motion term and the dispersive correction from
pion absorption. They conclude that a+ = −30(5) × 10−4 m−1

π to O(q3), where the uncertainty represents only the
experimental uncertainty in the deuteron scattering length. The systematic uncertainty from the omitted higher order
terms is most likely nearly one order of magnitude larger.
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B. The inverse deuteron radius

The inverse deuteron radius appearing in Eq. (11) must be evaluated from wave functions. It is essential that
the asymptotic normalization be accurately consistent with the experimental np effective range and that the wave
functions correspond to an energy-independent interaction. The Paris [50] and Bonn2 [51] wave functions satisfy these
criteria and give 〈1/r〉Paris = 0.449 fm−1 and 〈1/r〉Bonn2 = 0.463 fm−1 with asymptotic normalizations AS(Paris) =
0.8869 fm−1/2 and AS(Bonn2) = 0.8863 fm−1/2, respectively. We have conservatively used the average of these model
values 〈1/r〉 = 0.456(7) fm−1 = 0.645(10) mπ; the uncertainty given is set by their difference. We note that the
inverse radius, 0.520 fm−1, of the Hulthén wave function [45], which is often used for explorations of various effects, is
nearly 15% larger than these values and should not be used in quantitative studies. The uncertainty in the theoretical
πd scattering length from the inverse radius is less than its present experimental precision.

C. Effects of the non-locality of the πN s-wave interaction

The simplest approximation to the double scattering term of Eq. (11) assumes that the πN scattering is point-like.
Such an approximation is appropriate if the two scatterers are well separated, as is the case for the bulk of the
contributions in the case of the deuteron as a consequence of its loose binding. The rather small non-local correction
must, however, be controlled in sign and magnitude at the level of precision aimed for here. However, it is not necessary
to describe this effect very accurately. The non-local effects enter mainly in the description of the isovector πN s-
wave interaction, which is well known to be closely associated with ρ-meson exchange and which heavily dominates
the double scattering term. For calculational convenience it has been conventional to model the non-locality of the
scattering amplitude in terms of a separable form, v(k)v(k′), with a monopole form factor v(k) = c2/(c2 + k2). Since
the initial and final pion are at rest with momentum 0 and the intermediate pion has momentum q, this means that
in momentum space the static pion propagator changes from q−2 to v(q)2q−2. In coordinate space this corresponds
to a change of the expectation value 〈1/r〉 by

δ〈1/r〉 = −
〈∣

∣

∣

∣

1 + c r/2

r
exp(−cr)

∣

∣

∣

∣

〉

. (13)

We list in Table II the values of δ〈1/r〉 and the corresponding contribution to the deuteron scattering length for
different values of c as well as the contribution to the scattering length for standard values of the πN scattering
lengths.

We conservatively consider that plausible values for the parameter c lie in the interval 3.5 ≤ c ≤ 5 mπ. This is a
wide range, which should adequately cover any model dependence of the result. These values have been obtained using
two extremes of strong form factors for the double scattering term. One choice is to consider each of the scatterings to
be associated with a monopole form factor. Since the isovector scattering strongly dominates the double scattering,
the natural cut-off parameter is the ρ-meson mass. This would give the same correction as quoted in Table II for
c = 5 mπ. Another choice is include in addition a strong form factor of typical ρ-meson range for both the pion and
the nucleon. The effective overall form factor in each of the pion scatterings is then a dipole form factor with the
ρ-meson mass, corresponding to c = 3.5 mπ. It should be observed that the typical modification of 〈1/r〉 is a negative
contribution by 4 to 8% corresponding to a positive contribution to δaπ−d of 9 to 20 ×10−4 m−1

π . We choose the
mean of these two approaches as a typical value with the spread setting the scale of the uncertainty, but note that in
doing so we may somewhat underestimate the non-local effect, such that our final value of g2

c/4π may be somewhat
too low.

We found that the results reported by B–K in Ref. [46], Table 3, for the realistic Bonn1 and Bonn2 wave functions
did not include the form factor (contrary to the statement in the paper), which the authors confirm. We have
received their corrected and extended results [47] for the Bonn1 potential. Note that at the present level of precision
it is important to use potentials fully consistently. The Bonn1 potential is energy-dependent; as a consequence,
orthonormality can only be respected in matrix elements calculated using this potential if non-trivial weight factors
are introduced in the integrands. To eliminate this uncertainty we use here the similar, but energy-independent,
Bonn2 potential. B–K consider without arguments cut-off values c = 2.5, 3 and 3.5 mπ in the form factor; this gives
positive contributions to the scattering length as compared to the point-like static approximation of 36, 27 and 22
×10−4 m−1

π , respectively. There are good physical reasons to believe that ρ-meson exchange sets the scale for the
dominant isovector amplitude with a larger value for the effective c. To be conservative we take c = 3.5 and c = 5 mπ

for the cut off as limits for this systematic correction from the non-localities and use the central value of these two
extremes as the correction. This is smaller than the correction. Our correction is smaller than the one found by B–K.
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Non-locality is one of the largest theoretical sources of systematic uncertainty in corrections to the point-like static
approximation.

D. Corrections to the static approximation

The nature of the leading non-static corrections and the reasons why the static expression (fixed scattering centers)
still remains an excellent approximation are well understood. At first sight, even the single scattering amplitudes
have rather important non-static modifications, representing about 30% of the total πd scattering length. Such
corrections are systematically generated by the multiple scattering description in which physical amplitudes are used,
thus guaranteeing the correct behavior of the scattered wave at large distances. The emphasis is thus not on the
near-zone behavior of the scattering as in pseudo-potential or effective Lagrangian approaches. In a situation like
the present one, this leads to a systematic cancellation of unitary binding corrections between single scattering and
double scattering terms, when these are introduced consistently. This phenomenon was first demonstrated in the
present context for an analytically soluble model by Fäldt [45]. It has been numerically investigated by B–K [46]
using a Hulthén wave function and a separable amplitude with a dipole form factor and a cut-off parameter 3 mπ.
They conclude that the amplitude increases by only 10 × 10−4 m−1

π , when the non-static term is included. This is
only twice the experimental uncertainty and less than the uncertainty from the form factor. Fäldt evaluated the joint
contribution of the non-static and the form factor terms using a dipole form factor with c=3.6 mπ with a Hulthén
wave function [45]. The overall contribution corresponds to 34×10−4 m−1

π . The comparison with our independent
evaluation of pure form factor corrections indicates that the non-static term in this case is about 8×10−4 m−1

π . A
detailed calculation of this correction is complicated. Wycech informed us that he is in the process of reevaluating
the non-static contributions using a Faddeev approach and separable interactions. At the present moment he has
only results using an interaction that reproduces the Hulthén wave function; this gives +12×10−4 m−1

π , in excellent
agreement with the previous results [52]. Following B–K we have adopted a value 11(6)×10−4 m−1

π , where the liberal
uncertainty reflects the lack of verification of the value of non-static effects using high quality deuteron wave functions.

E. Fermi motion

Another well defined correction originates in the nucleon Fermi motion. In the case of s-wave scattering, such
contributions cancel systematically to high precision with other binding terms [45]. In addition, the single scattering
term from the πN p-wave scattering produces a small, attractive and physically well understood contribution, which
can be reliably evaluated as a leading order effect originating in the nucleon momentum distribution and the spin–
isospin averaged p-wave threshold scattering amplitude c0=0.208 m−3

π (3) [41].

a(Fermi) = 2 c0

m2
π(1 + mπ/M)

(M + mπ)2(1 + mπ/Md)

〈

p2 v2

(

mπ

M + mπ
p

)〉

. (14)

We have calculated this expectation value for two high quality deuteron wave functions. The results are given
in Table III. The form factors are manifestly of no importance. The relatively large difference between the Paris
potential and the Bonn2 potential arises because of the D-state component, which generates contributions 10 times
more effectively than the S-state one. The difference in the correction in the two cases is thus almost entirely a
consequence of the well known difference in the D-state probability (PD=5.7% vs. 4.3%) for the two wave functions.
The normalized momentum distributions for the S- and D-wave component, respectively, are very similar in the two
models. We therefore treat its effect as a true model dependence. We take the spread in the values of the Fermi
motion corrections as a measure of a systematic theoretical uncertainty, although physical arguments for the higher
value of PD exist [53]. Consequently, in the following evaluation, we use the value a(Fermi) = 61(7)×10−4 m−1

π . This
is larger than the value 50 to 53 × 10−4 m−1

π found by B–K based on the Bonn1 and 2 wave functions.

F. Dispersion contribution

A small repulsive contribution, not described by multiple scattering, is produced by the dispersive term from the
absorption reaction π−d → nn. This quantity has been repeatedly calculated using Faddeev approaches [42–44].
It typically has a theoretical uncertainty of 20% of its numerical value −56(14) × 10−4 m−1

π [44]. The dispersive
contribution is a theoretically calculated correction; a more detailed study of this term is highly desirable. The
uncertainties reflect the model dependence of the approach.
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G. sp interference

This is the name given by B–K to a term originating in pion p-wave scattering on one of the nucleons due to Galilean
invariance [46]. Such Galilean terms generate s-wave scattering contributions even for pion scattering on free nucleons.
In the present situation the relevant spin-averaged on-shell scattering volume for charge exchange of a p-wave pion is
well known and the corresponding scattering amplitude on-the-mass-shell depends on the pion momentum in a well
defined way. The Galilean correction for nucleon motion involves going off the mass shell and usually depends on the
description. B–K advocate that a contribution of about 42× 10−4 m−1

π originates from p-wave scattering due to the
momentum of the intermediate pion when expressed in the πN CM system. However, in the present situation the
contribution is almost entirely generated by the isovector πN Born term and it can be evaluated exactly. From the
expressions given in Höhler’s reference book, Eq. (A.8.2) [24], one finds that this term is proportional to

ν2 − (k2 + k′2 − t)

2
= ν2 − q · q′. (15)

Here, ν is (to order M−2) the Breit frame pion energy, which is proportional to the scalar product of the average
4-vectors of the nucleons (p and p′) and pions (q and q′), respectively.

ν =
1

M

(p + p′)

2
· (q + q′)

2
=

(q0 + q′0)

2
− 1

M

(p + p′)

2
· (q + q′)

2
. (16)

(Eq. (A.1.6) in Ref. [24]). Thus, neglecting terms of order M−2, the pion pole term is proportional to

(q0 − q′0)
2

4
− (q0 + q′0)

M

(p + p′)

2
· (q + q′)

2
+ q · q′. (17)

In the double scattering term, the contribution comes from nucleon 1 with initial (final) momentum p (p − q′)
and with the initial (intermediate) pion momentum 0 (q′), respectively, while for nucleon 2 the initial (final) nucleon
momentum is −p (−p + q′) with intermediate (final) pion momentum q′ (0), respectively; the pion energies, q0 and
q′0, are unchanged in this term. The sum of these two contributions are

q0

M

q′2

2
− q0

M

q′2

2
= 0. (18)

On the other hand, B–K make the choice of Galilean invariance for the incoming and outgoing πN systems calculated

separately in the primary amplitude and find in the same limit 0 + q0q
′2/M in Eq. (18). Instead the exact pole term

corresponds, to order M−2, to a Galilean invariant expression using the average velocity of the initial and final
nucleons, contrary to the B–K assumption. In other words, the pole term is proportional to the scalar product of
the pion momenta qB · q′

B in the nucleon Breit frame. We have therefore suppressed this term in the B–K multiple
scattering expansion.

We note in passing that, even if the Galilean contributions were of the type proposed by B–K, their importance
would most likely be strongly suppressed. The reason is that these terms generate a δ-function interaction in the
absence of form factors. We therefore suspect that NN correlations would largely suppress such contributions, in
analogy with the Ericson–Ericson–Lorenz–Lorentz effect for p-wave π propagation in the nuclear medium (p. 140ff in
Ref. [41]).

H. Isospin and mass difference corrections

In the above expressions, we assumed that isospin holds for the calculation of double scattering and that charge
symmetry holds for the single scattering. We now quantify the effect of these approximations. B–K have investigated
the consequence of the physical mass difference between π− and π0 and between the neutron and the proton in the
multiple scattering. They find an increase of the scattering length by about 3.5 × 10−4 mπ. The smallness of this
term is in part due to a systematic compensation of single and double scattering contributions in analogy to the
compensation of unitarity corrections to single and double scattering terms. As an alternative approach we use the
recent estimates of the violation of isospin symmetry from light quark mass differences and virtual photon effects in
the πN scattering lengths [27]. We maintain only the effects of violations in the amplitudes in the double scattering
term in view of the systematic cancellation between single scattering and propagator modifications in the double
scattering term. This leads to an increase of the scattering amplitude by 3.5 × 10−4 mπ, numerically identical to
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the previous estimate. It is not clear whether these approaches represent the same physics and this point should be
further investigated. However, both results indicate that the effects are small in the present context, although they will
become of importance in the future. In view of its smallness and since it is not at present established experimentally,
we have not included this correction, which is within experimental uncertainties. It has, however, been included as
an uncertainty in our estimate of systematic errors.

I. Higher order multiple scattering corrections

In the present case the multiple scattering expansion is rapidly convergent beyond the double scattering term. In
the fixed scattering approximation with separable interactions, these higher order terms can be summed exactly to all
orders. B–K calculated these terms approximately, assuming point-like scatterers. We have verified these calculations
and reproduce their results. They have since improved the evaluation of this small term, using form factors and find
a stable contribution to the scattering length of the order of +6× 10−4 m−1

π [46,47]. Our independent evaluation also
gives very stable values, but somewhat smaller, in the range of 3 to 4 × 10−4 m−1

π for the form factors considered.
We have used the value 4(1) × 10−4 m−1

π for this correction. The effect is much smaller than other uncertainties, for
example those due to form factors.

J. Inverse pion photo-production

Another small electromagnetic correction comes from the physical s-wave photo-production process π−p → γn
acting on one nucleon followed by the inverse reaction on the other one. This double scattering process has nearly the
same structure as the corresponding s-wave charge exchange process π−p → π0n in Eq. (11), but for the fact that
the intermediate photon now has momentum kγ = mπ in the static limit, such that

Re Dγ = −2/3
(1 + mπ/M)2

(1 + mπ/Md)

[

E0+(γn → π−p)
]2

〈

cos(kγr)

r

〉

. (19)

Here the photo-production amplitude E0+(γn → π−p) = −31.4× 10−3 mπ (Table 8.3 in Ref. [41]). This small charge
dependent term is of order −2×10−4 m−1

π , which is a magnitude less than the overall theoretical uncertainty; cf. also
Ref. [39].

K. Double p-wave scattering

A small correction results from the p-wave scattering due to nucleon motion at both vertices. This effect has been
estimated by B–K for an analytically soluble deuteron model with Gaussian wave functions. They find a contribution
of about −3 × 10−4 m−1

π . We have included this small effect.

L. Scattering on virtual pions

Finally, one may envisage a contribution from the scattering of the pion on a virtually exchanged pion in the
deuteron. However, we are dealing with an isoscalar system, and such a contribution is proportional to virtual
isoscalar ππ s-wave scattering and should be very small, from a chiral perspective. In particular, since the deuteron is
such a loosely bound system, one expects this term to be small. Robilotta and Wilkin showed that large cancellations
in a consistent treatment give only −5 × 10−4 m−1

π [54]. This is confirmed by a recent chiral estimate of −8 to
−6 × 10−4 m−1

π [48]. We adopt a contribution of (−6 ± 2) × 10−4 m−1
π from this effect.

M. Results for the πN scattering lengths

The different contributions from the previous subsections are summarized in Table IV, using the final parameters
from Eqs.(20) and (21) whenever appropriate. Consequently, the present energy shift in the π−d atom leads to the
following value for the coherent scattering length from a proton and a neutron:
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aπ−p + aπ−n

2
= (−12 ± 2(statistical) ± 8(systematic)) × 10−4 m−1

π . (20)

The high accuracy is a direct consequence of the the very strong constraint provided by the π−d atom level shift.
The usual determination via phase shift analysis is difficult, since it requires differences between large numbers. In
the limit of isospin symmetry, this quantity is the isoscalar scattering length a+. The main systematic error in Eq.
(20) comes from the uncertainty in the dispersive correction term and, to a lesser degree, from the form factor or
non-locality in the deuteron double scattering term. The small corrections for isospin violation in the double scattering
term and for charge symmetry breaking in the single scattering on the deuteron are well within the stated uncertainties
and have no substantial influence on the result.

Combining the information from the experimental π−p and π−d scattering lengths with the constraints of the
theoretical analysis (20), we obtain a substantially improved determination in the difference (aπ−p − aπ−n)/2 (this
quantity is, in the limit of isospin symmetry, identical to the isovector scattering length a−):

aπ−p − aπ−n

2
= (895 ± 3(statistical) ± 13(systematic)) × 10−4 m−1

π . (21)

A graphical determination of these πN scattering lengths is shown in Fig. 1, which also emphasizes that this is
a substantial improvement on determinations using only data from pionic hydrogen. The results are in excellent
agreement with the central values deduced from the pionic hydrogen shift and width by the experimental PSI group,
since it follows from Eqs. (7) and (8) of Ref. [15] that a+ = (−22 ± 43) × 10−4 m−1

π ; a− = (905 ± 42) × 10−4 m−1
π .

The PSI group 1 also used the constraint from the pionic deuterium shift, assuming the old calculation of Ref. [44] to
be accurate enough and found a+ = (+16 ± 13)× 10−4 m−1

π ; a− = (868 ± 14) × 10−4 m−1
π .

From our evaluation here, we have achieved quantitative control of the dominant contribution to the GMO relation
from the scattering lengths to about 1% or better in g2

c/4π.
It is interesting to compare our results with the extrapolations of scattering amplitudes to threshold as given in Refs.

[56,57]. They find the value aπ+p→π+p = (−770 ± 30) × 10−4 m−1
π . This corresponds to a+ = (57 ± 15) × 10−4 m−1

π

assuming isospin symmetry invariance and using the experimental value for aπ−p→π−p from pionic hydrogen. On the
other hand, the charge symmetric scattering length aπ−n→π−n = (−917± 18)× 10−4 m−1

π follows from Eqs. (20) and
(21) and within charge symmetry the two values should be identical. According to Eq. (8) the estimated effect of
charge symmetry breaking in effective chiral theory is aπ+p − aπ−n = 3 × 10−4 m−1

π . The above values give, instead,
(147±35)×10−4 m−1

π , 50 times larger than the expected value. Thus, unless charge symmetry is unexpectedly badly
broken, the scattering length of Refs. [56,57] based on scattering experiments is implausible and should be rejected.

While the extrapolation [56,57] leads to important differences, it cannot, of course, be completely ruled out that
other, more constrained, extrapolations from πN scattering data could lead to scattering lengths slightly different
from the ones found here. The origin would then most likely be due either to isospin violation in the scattering
data or, alternatively, to some unexpected modification of the least controlled part of our deuteron terms, such as
the absorption contribution. In the dispersion-relation-constrained extrapolation advocated by Pavan et al. [12] they
give a+ = +20 × 10−4 m−1

π to be compared with (−12 ± 8) × 10−4 m−1
π above. Interpreted as a modification of the

dispersive term due to deuteron absorption, it would require an increase by a factor of 2 in this term in order to make
the results compatible, which appears an implausibly large modification. We believe our result to be the preferable
one, since it is a more direct determination and fully consistent. The margin for modifications of our theoretical
analysis is small.

1After the submission of the present paper, the PSI group has published a revised analysis [55] based on the B-K treatment
[46] and assuming strict isospin symmetry. They quote

a+ ≡ b0 = −0.0001+0.0009
−0.0021m−1

π ; a− ≡ −b1 = 0.0885+0.0010
−0.0021m−1

π .

Their systematic errors are not well controlled. First, B-K explicitly omit the large dispersive correction, which contributes a
term of the order of 0.0030m−1

π to a+. Second, the sp interference contribution is negligible as we discuss in detail in subsection
IV.G, while it is derived in B-K from an erroneous assumption with a value similar to that of the dispersive correction. The
statement based on their Ref. [55] that the sp interference term partly could contain part of the absorption term is incorrect.
In addition, the dominant contribution to their theoretical error appears to be based on a confusion about the form factor
correction. They introduce twice the B-K form factor effect, counting it as well as an (inexistent) off-energy shell correction of the
deuteron wave function. This leads to an overestimate of the lower systematic uncertainty from this source (double-counting).
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V. EVALUATION OF THE CROSS SECTION INTEGRAL J− FROM DATA

The cross section integral represents only one third of the total contribution to the GMO relation. This means
that an uncertainty of (say) 3% in the integral would give only 1% uncertainty in the coupling constant. At the
present precision, and in spite of this insensitivity, this has now become one of the main sources of uncertainty in the
determination of the coupling constant. Since total cross sections tend to be inherently accurate, the evaluation can
be performed with precision, but for the high-energy region. There exists a vast amount of high quality data up to
very high energies (beyond 240 GeV/c) and, in the dominant region below 1 GeV/c, there are detailed results from
partial wave analyses. The only previous evaluation with a detailed discussion and clearly stated sources of errors
known to us is an unpublished study of 1985 by Koch, which gives J− = −1.077(47) mb [28]. Later evaluations find
values within this band of errors, but the uncertainties are not discussed. In 1992 Workman et al. [11] gave the values
−1.056 mb and −1.072 mb based on the Karlsruhe–Helsinki and VPI πN amplitudes of the time, respectively. In
1995 the VPI group gave the value −1.05 mb [25]. Gibbs et al. give a similar value, J− = −1.051 mb [16]. In this
case the dominant contribution below 2 GeV (−1.308 mb) was evaluated using the SM95 phase-shift analysis [58] for
the πN cross sections. These values are summarized in Table V.

In view of the importance of obtaining a clear picture of the origin of present uncertainties, we have re-examined
this problem in spite of the approximate consensus. The πN total cross sections below 2 GeV/c [59–65] are shown in
Fig. 2 and compared with the SM95 [58] and SM99 [29] PWA hadronic solutions. The typical shape of the integrand
J− is seen in Fig. 3. As might be expected, the main contributions come from the region of the ∆ resonance and
just above. It would be false, however, to believe that this is the region that produces the main uncertainty of the
integral. There are no strong cancellations in the difference between the total π±p cross sections in that region and
the cross sections have been very carefully analyzed. Systematic uncertainties contributing 2–3% or more to the total
J− are very unlikely indeed; if they occur, they will certainly have an important influence on other determinations of
the coupling constant as well.

In the following we examine in detail the uncertainties arising from various energy regions with different character-
istics (the numerical conclusions are summarized in Table VI and VII):
- in subsection A, the threshold region below 160 MeV/c is dominated by the s- and p-wave threshold parameters
(s-wave contribution of about +6%, p-wave one of about −6%);
- in subsection B, the ∆ resonance region from 160 MeV/c to 550 MeV/c, in which the major phase shifts are very
accurately known (main contribution of about 155%);
- in subsection C, the resonance region from 550 MeV/c to 2 GeV/c, which is partly dominated by higher resonances
with mostly high quality data (about −33% contribution);
- in subsection D, the high-energy region and the asymptotic region from 2 GeV/c to ∞ (totally about −22% contri-
bution); about half originates from the asymptotic region beyond 10 GeV/c, for which data are accurately described
by asymptotic expressions.

The total cross sections in the integral J− are the hadronic ones. The experimentally defined total cross sections
differ from these due to the electromagnetic corrections. These are nearly model independent in the present context.
They are proportionally more important in the difference between the cross sections, since the π+p total cross sections
are systematically reduced at all energies by the Coulomb repulsion between the particles and, conversely, the π−p
ones are systematically increased by the attraction [66,67]. This effect gives a positive contribution to J−; the coupling
constant would be underestimated by about 3% neglecting such corrections. The dominant correction comes from
the ∆ resonance region (see Table VI). For total cross sections there is little sensitivity to the detailed procedure: the
Nordita approach is frequently used [68] below 500 MeV/c. The Coulomb correction to the integrand at high energy,
where the π± total cross sections are nearly equal, is approximately (4π2)−12Acσ

T (k)/k2 with Ac ≃ 3.7 MeV/c. For
constant cross sections, the total correction above a momentum k1 is then typically 0.007k−1

1 mb, where k1 is in units
of GeV/c [66]. It therefore rapidly becomes negligible above a few GeV/c.

As an illustration of contributions, the resulting fits to data [59–62,69,70] for the solution SM99 of Arndt et al. are
shown in the range 0.5 ≤ klab ≤ 2 GeV/c in Figs. 4 and 5.

The recent VPI/GWU partial wave amplitude (PWA) solution up to 2 GeV/c [29] is in good agreement with
observations with a few exceptions. We will therefore use the hadronic cross sections deduced from this solution as
a guide for the numerical contribution. We estimate its uncertainties below. We also give numbers from the earlier
PWA solution SM95 [58] for comparison.
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A. The threshold region

There are no direct measurements of total cross sections below 160 MeV/c, but the hadronic cross-section difference
can be well reconstructed from other considerations. In this range the low-energy s- and p-wave parameters determine
the result. The cross-section difference at threshold is

σT
π−p(0) − σT

π+p(0) = 8π
(

(aπ−p)
2 − (a+)2

)

, (22)

assuming isospin invariance and neglecting the mass differences. Here the first term is accurately known from the
π−p atom, as previously discussed, and the second term is extremely small. With increasing energy the p-wave
contributions of opposite sign, governed by the tail of the ∆ resonance, take over and compensate the s-wave term
beyond 100 MeV/c. These two terms contribute together +0.011 mb [29], but taken individually the s- and p-wave
terms represent about 6% each of the total J−. The uncertainty is dominated by the error in the rather small
contribution from the s-wave range terms, while the accurate π−p scattering length is imposed in the SM99 analysis.
The corresponding error in J−, of about 0.5%, is not a major source of overall uncertainty and even if this uncertainty
is underestimated this has little importance.

The 3.3 MeV mass difference in the π−p and π0n thresholds breaks the isospin invariance leading to a potentially
significant correction, in particular, since the π−p total cross section diverges at threshold due to the open π0n channel.
The smallness of the contributions from the threshold region hints at a small correction. We have investigated this
effect using a simplified model based on the s- and p-wave low-energy parameters only. The dispersion relation must
now be evaluated using the imaginary part of the scattering amplitude ImF = 4πkσT , which is well behaved at
threshold, but which differs from zero below the physical π−p threshold. The correction occurs predominantly in
the 6% s-wave term. The approximate modification up to the momentum k1=160 MeV/c is of O(-κ2/2k2

1) ≃ −0.02,
where κ2 ≃ 0.045 m2

π is the π0 squared momentum at threshold. This represents a −0.1% contribution to the integral
J−, which is negligible compared with other uncertainties.

B. The ∆ resonance region

This is the main contribution to the integral and it must be accurately evaluated. The resonant 33 wave dominates
heavily and its behavior is strongly constrained by other experiments and theory. The main contribution comes from
the π+p cross section, which is approximately three times larger than the π−p one.

The systematic uncertainties are more important than the statistical ones. In order to judge their importance, we
first evaluated this contribution directly from the experimental π+ and π− data sets taken separately, with statistical
errors added in quadrature [71]. The result is −1.652(6) mb. It differs by only 0.020 mb from the corresponding quan-
tity evaluated from the phase shift solution SM99. Since the total cross sections have incoherent sums of the squared
partial wave amplitudes the large, accurately known, phase shifts dominate. The phase shift solution incorporates
strong additional constraints and eliminates minor inconsistencies in the data and is preferable to the raw data. The
e.m. corrections to J− come mainly from this region. They are only weakly model dependent and are included in
SM99 using the Nordita procedure [68]. This correction amounts to 0.060 mb as seen in Table VI for the difference in
J− evaluated hadronic vs. nuclear cross sections from the same phase shift solution. This well controlled correction
increases the coupling constant by only 1.8 % and it represents the main e.m. correction.

A modern analysis such as SM99 favors the use of the experimental cross sections dominated by the data of Pedroni
et al. [64]; the cross sections from Carter et al. [63], which dominated the analysis in the 1980’s, would lead to a more
negative value for J− and, correspondingly, to a πNN coupling constant larger by about 1%. The hadronic SM99
total cross sections do not contain the inverse photo-production cross section, which contributes 1 mb (1.5 %) of the
total nuclear π−p cross section at the resonance peak. This is a negligible source of uncertainty.

The ∆ mass splitting may also affect the coupling constant deduced from determinations based on πN data. The
empirical isovector mass splitting directly observed in the null experiment by Pedroni et al. [64] corresponds to
M∆0 −M∆+ = 1.38(6) MeV. To our knowledge, there exists no information on the isotensor splitting, and we neglect
it. With respect to strict isospin symmetry and with the effective position of the ∆ resonance that of the ∆+, the
correction to J− is approximately 4(M∆+ −M∆0)/3(M∆ −M) ≃ −0.6%, which would increase the coupling constant
g2

c/4π by 0.2%. The same conclusion follows from a study by Arndt [72] who used a mass splitting of 0.2 MeV and
the same effective ∆ position. The corresponding change in J− is only 0.05%, which scaled to the observed mass
splitting contributes 0.17 % to g2/4π. Consequently, the mass splitting does not substantially influence the value of
g2/4π.
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C. The resonance region

This region from 550 MeV/c to 2 GeV/c is, as a whole, well measured and is analyzed in SM99. The contributions
to the integral are positive and rather important up to 1.2 GeV/c, partly compensating the contribution from the ∆
resonance region. The remaining region contributes little, but is a minor source of uncertainties.

It is interesting to quantify the difference between a state of the art phase shift solution and data in more detail
(see Table VI). In the region of 550 MeV/c to 1.2 GeV/c the nuclear SM99 solution gives 0.012 mb less contribution
to J− (−1.1%) than the direct experimental cross sections, while from 1.2 to 2 GeV/c the corresponding contribution
is 0.008 mb less (−0.7%). The overall e.m. corrections to the integral in this region 0.041 mb or 1.3 % in g2/4π (see
Table VI). The SM99 solution assumes a point charge distribution. Improved Coulomb corrections using an extended
charge distribution [73] are being implemented in the phase shift solution SP02, but the results are little changed [74].
Assuming pessimistically that the correction is accurate only to 33%, the overall uncertainty from this source would
still be only ±0.014 mb in J− or ±0.4% in the coupling constant. The main uncertainty is therefore not due to the
e.m. correction, but to systematic differences between SM99 and data. It comes mainly from the region just above
550 MeV/c, as will now be discussed.

At the low energy end of the region between 550 and 1200 MeV/c, there are long-standing experimental problems of
systematic nature with the total cross section data. Those of Davidson et al. [60] have an incorrect energy calibration,
too low by about 10 MeV/c, and its 72 data points must either be re-calibrated or eliminated from the analysis
[12,24,75]. Similarly, the SM99 solution, driven by modern angular distributions, is systematically lower than the π−p
data of Carter et al. [61] below 700 MeV/c, a region where data for experimental reasons, are less reliable than at
higher energies. These points have been omitted from the PWA analysis [12,75] (see also Fig. 4). This discrepancy
is larger than the e.m. corrections in the same energy region. Under the circumstances we have preferred to use the
SM99 PWA solution as the best guide, but we use the difference with data as a liberal measure of the uncertainty.
We therefore use the overall SM99 contribution from this region of 0.378 ± 0.020 mb.

D. The high-energy and asymptotic regions

There exists abundant experimental information on π±p cross sections to high precision from 2 GeV/c up to
350 GeV/c. The main uncertainty in J− in this region is associated with the relatively slow convergence of the
integral. At energies beyond 4 GeV/c there has been an important effort to measure and analyze cross sections,
since the issue of the rate at which the π±p cross sections become asymptotically equal, is important theoretically for
asymptotic theorems. The discussion below is summarized in Table VII.

The region 2 ≤ k ≤ 4.03 GeV/c has been calculated using the Particle Data Group (PDG) 1998 tables [71] (see also
[61,76]) and gives a moderate contribution of 0.064 mb, with a modest ±0.007 mb systematic error. The statistical
uncertainty is small. Beyond this region, cross section data with considerable systematic and statistical accuracy exist
from 4.03 ≤ k ≤ 370 GeV/c and are listed in the PDG tables [71,77]. We first evaluated the contribution directly
from the precision data. This gives 0.133 mb in the range 4.03 ≤ k ≤ 240 GeV/c, with a small statistical error and
a systematic error of about ±0.022 mb or ±1.8% in J−. In addition, the 1994 version of the PDG tables [77] also
lists a fit to these data from 4.03 GeV/c to 240 GeV/c (Table 33.3). Using the fitted expression, we have evaluated
the contribution in the same interval as above using this expression and find 0.155 mb. This is 0.022 mb higher than
the value of 0.133 mb by direct evaluation, but in good general agreement. This larger value has been used in several
previous GMO evaluations [9,16]. We prefer the lower value as more transparently linked to the actual data.

Finally, there is a small, but not negligible, contribution from the very high-energy region from 240 GeV/c to ∞. We
determine this from the Donnachie–Landshoff Regge fit to the data [78], which describes the observed cross section
difference well at the highest energies. This fit is a sum of two Regge terms, one arising from Pomeron exchange
and the second from lower-lying resonance exchange. It gives a contribution of 0.030 mb. Alternatively, one might
consider using the three-term fit (one for the Pomeron and two for the Reggeons) in the 1998 PDG tables (Table 38.2),
which gives 0.018 mb. This low value is not surprising, since the 1998 PDG parameterization gives a difference 27%
lower than the PDG 1994 one in the region above 200 GeV/c, at variance with the data [79]. At lower energies,
this parameterization agrees better with the data in the region of 100 GeV/c [79,80]. We have also used a recent
high-energy fit based on a two-Pomeron pole expression fully compatible with universality, Regge factorization, weak
Regge exchange degeneracy, and generalized Vector Dominance Model [81]. This parameterization (see Eq. (13) and
Table 1 of Ref. [81]) gives a contribution of 0.025 mb. The corresponding uncertainties, given in Table VII, come
mainly from the 4% uncertainty in the Regge intercept. This spread of values according to the model considered
for the fit introduces an additional systematic uncertainty of 0.006 mb from this high-energy region. The integrated
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Coulomb correction above 2 GeV/c is negligible, since it is only 0.003 mb using the estimate of Ref. [66] as given in
the beginning of this section.

E. Summary of the results for J−

The purpose of this section has been to establish the importance of different energy regions for the integral J−

and their contribution to the uncertainty. Since there exists total cross sections from state of the art partial wave
analysis up to 2 GeV/c we first studied the accuracy to which such an approach describes contributions to J− based
on actual data in the region 0.16 to 2 GeV/c. To this end, we evaluated the contributions to J− from data in different
energy regions with no Coulomb corrections other than those introduced by the experimental authors (nuclear cross
sections). The results are summarized in Tables VI and VII. The statistical uncertainty in the evaluation is small. The
trapezoidal formula was used to integrate the data and the corresponding statistical errors were added quadratically.
Within the different integration ranges, as given in the Tables, the systematic error was calculated by varying the
experimental results inside the interval defined by the quoted systematic error. The full systematic uncertainty was
obtained by the quadratic sum of the error in each interval, since their origin is different. We then confronted these
results with the analogous quantities obtained from the partial wave analysis SM99. The main deviations occurs in the
experimentally difficult region 0.55-0.70 GeV/c. Since the partial wave solution incorporates additional experimental
constraints, we consider it superior to the direct data in the crucial region and we base the further analysis on the
PWA solution SM99.

We then examine the e.m. corrections. These are under theoretical control inside the PWA analysis. The uncer-
tainties in these corrections are less important than the systematic difference between data and the PWA solution.
The consequence of the ∆ mass splitting is negligible.

The low energy region below 0.16 GeV/c contributes little to J− and there are no experimental total cross sections
in this region. It is strongly constrained by the π−p scattering length and the tail of the ∆ resonance such that it
can be well controlled without the necessity of e.m. corrections.

The systematic uncertainty has its origin principally in the region above 4 GeV/c. There is also a sizeable systematic
uncertainty that is due to the inconsistencies of the π−p data in the region 550-700 MeV/c, although we have probably
overestimated this uncertainty. We find from Table VII, rows 15–17, that three different descriptions, based on the
SM99 PWA below 2 GeV/c, give values in a rather narrow range; −1.087 ± 0.009 ± 0.031 mb, −1.099 ± 0.008 ±
0.031 mb and −1.092±0.009±0.031 mb. The difference between these values is smaller than the estimated systematic
uncertainty. We also give in row 14 the less negative result obtained with the older SM95 PWA below 2 GeV/c and
the fit PDG94 in the momentum range from 4.03 to 240 GeV/c: J− = −1.053 ± 0.010 ± 0.031 mb. We have chosen
the average of these four values as characteristic of the integral. The systematic uncertainty provides an adequate
band of possible values, so that

J− = −1.083± 0.009± 0.031 mb. (23)

Our result for J− is close to the unpublished value of Koch [28], J − = −1.077±0.047 mb, which is the only previous
explicitly documented and detailed evaluation known to us. The main difference in the input data with Koch is an
updated evaluation of the contributions from the high-energy region and better control of e.m. corrections. We show
also that the ∆ mass splitting is unimportant and include an improved discussion of the threshold region using modern
data. It is important to realize that the main uncertainty to J− comes from the very high energy contribution. It
is difficult to ascribe a major uncertainty to the Coulomb corrections. We note that the previous evaluations of J−

quoted in Table V without uncertainties stay within our range of errors.

VI. RESULTS

In conclusion, we summarize our work as follows. We first derived new values for the πN scattering lengths, using
the π−d atomic data analyzed in an improved theoretical approach. The statistical and systematic uncertainties
contributions were thoroughly examined. The corresponding π−d scattering length gives a nearly direct determination
of the small ’isoscalar’ π−N scattering length to good precision. From this constraint together with the π−p scattering
length from pionic hydrogen we obtain a high precision value also for the isovector length. In fact when we examine
the basic experimental input of the highly accurately quoted scattering length aπ−p, deduced from the π−p atomic
energy shift and quoted to high accuracy [31], we found that there are small inconsistencies in their current procedure
at the level of ±1%. This should be improved, since the precision is otherwise unsatisfactory for the determination of
the πNN coupling constant. In addition, the experimental accuracy is now so high that systematics in the theoretical
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analysis of the π−d scattering length is the main source of uncertainty in the disentangling of the isospin components
of the πN scattering length. The dominant limitation to higher accuracy is the dispersive contribution from the
physical absorption process π−d → nn. A thorough modern re-examination of this contribution is highly desirable.
Our analysis does not assume strict isospin symmetry, although we do not see any signs of violation at the present
level of precision. We present the results, however, so that they can be directly used in discussions of the validity of
this symmetry. The values we find using the empirical π−p and π−d scattering lengths from subsection 4.1, Eqs. (20)
and (21), are

a+ ≃ aπ−p + aπ−n

2
= (−12 ± 2 ± 8) × 10−4 m−1

π . (24)

a− ≃ aπ−p − aπ−n

2
= (895 ± 3 ± 13) × 10−4 m−1

π . (25)

These values are based on theoretical improvements on previous work. (See also comments and footnote after Eq.
(21).)

Our second conclusion concerns the charged πNN coupling constant, which can be derived from the GMO forward
dispersion relation, using our new, accurate value for the symmetric πN scattering length (24). Use of Eq. (4)
assuming charge symmetry and with input values from Eqs. (5, 24) as well as with J− = (−1.083 ± 0.009 ± 0.031)
from Table V gives :

g2
c/4π = (4.87 ± 0.04 ± 0.14) + (9.12 ± 0.02 ± 0.10) + (0.12 ± 0.02 ± 0.08) = (14.11 ± 0.05 ± 0.19). (26)

The uncorrelated statistical and systematic uncertainties have been added separately in quadrature. The main
uncertainty is no longer dominated by the scattering lengths, but comes as much from the weighted integral J−

of the difference between the charged-pion total cross sections. Its dominant systematic uncertainty comes from the
region above 4 GeV/c. Previous determinations using the GMO relation [11,15,16,25] will all give similar results,
provided one uses the empirical scattering lengths, which are by now well established. 2

The value, g2
c/4π = 14.11, which we obtain for the coupling constant is intermediate between the low value of about

13.6 deduced from the large data banks of NN and πN scattering data using the PWA approach [6,13,9] and the high
value of 14.52(26) from np charge exchange cross sections [2]. The uncertainties in the determination of the coupling
constant using any method are dominated by systematics. Consequently, we have refrained from combining our result
with those from other approaches. However, if the systematic error were to have Gaussian distributions, our result
differs from that of Uppsala [2] by only 1.25 standard deviations (21% probability) and from that of Pavan et al. [12]
by 1.7 standard deviations (8% probability). The PWA results have probably systematic errors far larger than the
small statistical errors to judge from the corresponding situation using the data banks with dispersive constraints
[12], but this is not quantified yet. The modification of the value of J− required to accommodate a value of 13.6 is
about 10%. The major part of such a modification would most likely come from the region above 2 GeV/c, which
implies changes in the contributions from that region of the order of 50%. Such large changes appear unlikely to us.

We therefore conclude that the present evaluation of the GMO sum rule, with quantitatively controlled uncertainties
in the input values for the πN isoscalar scattering length, as well as for the cross section integral J−, does not readily
support the conclusion of the indirect PWA determinations that the πNN coupling is close to 13.6. It should be noted
that our value has consistently been evaluated in a conservative way, such that the parameters used in the evaluation
systematically lead to a value for the coupling constant, which is somewhat on the low side.

The strongest support for a relatively low value of the coupling constant comes from the careful dispersive analysis
by Pavan et al. [12], based on the VPI/GWU PWA description of πN scattering. It selectively concentrates on pion-
dominated amplitudes. They find a value of 13.73 ± 0.01 ± 0.08, where the first uncertainty is statistical and the

2After the submission of our paper, the PSI group evaluated the GMO relation from scattering lengths obtained using the
B-K corrections to the pion-deuteron scattering length [55]. We have discussed the problems of this determination in Section
IV.M, footnote 1. Their quoted value g2/4π = 13.89+0.23

−0.11 is consistent with our result, but the systematic uncertainties are
not well controlled. In particular, there is a substantial additional systematic error of about 0.25 or more from the isoscalar
scattering length. In addition, they use a value for J− derived from an average of those given in Refs. [11,16,25] with the spread
of values as the only uncertainty. Of these values, two (Refs. [11,25]) do not state any uncertainty at all, while Ref. [16] states
the (small) statistical uncertainty only. In particular, the rather large uncertainty from the high energy region 4-240 GeV/c is
neglected. Note that the Particle Data Group 1994 fit to the region 4-240 GeV/c gives a +0.02 mb higher contribution to J−

(Table VII, line 10) than the direct data of the 1998 version (Table VII, line 9). The latter corresponds to a 0.10 higher value
of the coupling constant.
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second systematic. The authors use a variety of dispersive methods and find a+ = +0.0020×10−4 m−1
π . This value is

small, but it has the opposite sign from ours. They evaluate the GMO relation as a consistency check and find a value
of g2

c/4π = 13.75, in agreement with their dispersion result. Since their evaluation is constrained by the experimental
π−p scattering length and their value for the dispersive integral J− is nearly the same as ours, which is based to a
large extent on their PWA analysis, the difference with our result must be almost entirely ascribed to the difference
in the value of a+, a small quantity, which is difficult to calculate from scattering data. The origin of this difference
is not known yet, but it might originate in the treatment of small electromagnetic corrections to the scattering data.
The minor inconsistency in their analysis is of little importance for most of their discussions, but it becomes highly
relevant in the present context.

It is interesting to examine the consequences of our analysis for the Goldberger–Treiman (GT) discrepancy [1].
Following the discussion in Ref. [2] the value for the coupling constant found here corresponds to a discrepancy of
∆GT = (3.6 ± 1.0)%, with ∆GT defined as

gc (1 − ∆GT) = M gA/fπ. (27)

This corresponds to a πNN monopole form factor with a cut-off Λ = 800 ± 80 MeV/c. There exists no direct
experimental information on this form factor, which is inherently an off-mass-shell quantity. On the other hand,
within the framework of PCAC, it is naturally expected to be similar to the axial form factor of the nucleon, a dipole
with a 1 GeV/c cut-off. This expectation has been confirmed in many models, using a variety of approaches [82–86],
beginning with Ref. [82]. Such values are fully consistent with our findings for the coupling constant. In contrast to
these rather soft form factors, the deuteron properties, and in particular its quadrupole moment, require an effective
cut-off of 1.3 GeV/c or more, since the tensor force otherwise becomes too weak [51,87]. It is, however, believed at
present that this hard effective form factor is generated by the correlated exchange of an interacting πρ-pair, which
generates additional tensor strength, when explicitly accounted for: the true one-pion-exchange form factor is softer
[88–91]. A low value for the coupling constant should therefore not be considered an advantage in resolving the
Goldberger–Treiman discrepancy.

Additional support for a coupling constant g2/4π somewhat larger than 14 comes from the recent measurements by
Raichle et al. of polarized np total cross sections [92]. From these, the pion-dominated ǫ1 parameter can be determined.
They find that it is systematically larger than the values in the phase-shift analysis PWA93 of the Nijmegen group [5].
If the discrepancy persists in other PWAs, this observation suggests, as a possible partial explanation, that the PWA
coupling constant is too small. In any case, it points to an unexplained discrepancy with those PWA analyses on
which the argument for a low coupling constant is based.

In order to facilitate future improvements on the present work, we have presented the various corrections in such a
way that modifications of any individual contributions can be readily incorporated without the necessity of a complete
re-analysis. We see three main areas in which the present work can be improved. First, theoretical investigations of
the relation between the hadronic energy shift of the pionic atom and the scattering length should diminish the present
uncertainty in the deduced π−p and π−d scattering lengths by a factor of at least 2. Second, the measurement to high
precision of the width in pionic hydrogen should give a separation of the isospin components in the π−p scattering
lengths to similar precision as that obtained from the deuteron data, but without invoking deuteron structure. Third,
studies of the dispersion shift for threshold pion absorption on the deuteron should eliminate a major uncertainty in
the theoretical treatment of the π−d scattering length. This would allow the πNN coupling constant to be determined
to 1% precision.
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APPENDIX A: EXPRESSIONS USED FOR THE ELECTROMAGNETIC CORRECTIONS TO THE

EXPERIMENTAL π−D SCATTERING LENGTH

We here give details on expressions we used in the evaluation of the electromagnetic corrections to the experimental
π−d scattering length. One can write, with q2 = ω2 − m2

π, the low-energy πN amplitudes as,
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aπ−p(ω) = a+ + a− + (b+ + b−) q2

aπ−n(ω) = a+ − a− + (b+ − b−) q2. (A1)

Höhler [24] gives b− = (133 ± 60)× 10−4 m−3
π and b+ = (−443± 67) × 10−4 m−3

π . The π−d single scattering term is

S = λ1 [aπ−p(ω) + aπ−n(ω)] = 2λ1 (a+ + b+q2) (A2)

where,

λ1 =
(1 + mπ/M)

(1 + mπ/Md)
= 1.0691. (A3)

Minimal coupling corresponds to ω → ω − eVC , i.e.,

q2 = ω2 − m2
π → (ω − eVC)2 − m2

π ≃ q2 − 2e ωVC ,

where the Coulomb field VC originates from the extended deuteron charge distribution averaged over the deuteron
matter distribution. One then has, for the single scattering term, the electromagnetic correction

∆S = −4λ1 mπ b+e 〈V d
C (r)〉, (A4)

where , for point particles and in terms of the relative deuteron coordinate r,

e〈V d
C (r)〉 = α × 〈

∫

dr′
ρ(r′)

(|r − r′|/2)
〉 ≡ 2α〈1/r〉ch = 2α ×

∫ ∫

drdr′ρ(r)ρ(r′) × (1/|r− r′|)

= 4α ×
∫ ∞

0

dr(u(r)2 + w(r)2) × (1/r)

∫ r

0

dr′(u(r′)2 + w(r′)2). (A5)

For both the Paris [50] and Bonn2 [51] deuteron wave functions 〈1/r〉ch = 0.300 fm−1 and e〈V d
C (r)〉 = 0.86 MeV,

then

∆S = (12 ± 2) × 10−4 m−1
π .

The alternative evaluation, which gauges the π−n interaction with the Coulomb field from the static spectator
proton, gives

∆S = −2λ1 mπ (b+ − b−) e〈V p
C(r)〉 (A6)

with

e〈V p
C(r)〉 = α〈1/r〉 = 0.66(1) MeV, (A7)

using the average inverse deuteron radius of Paris and Bonn2 models, viz. 〈1/r〉d = 0.456(7)fm−1. One obtains,

∆S = (6 ± 1) × 10−4 m−1
π .

APPENDIX B: PRACTICAL EXPRESSIONS FOR THE THEORETICAL π−D SCATTERING LENGTH

FOR SEPARABLE SCATTERING INTERACTIONS

We give here full practical expressions for the theoretical π−d scattering length for separable scattering amplitudes
with a dipole form factor v2(q) = (1 + q2/c2)−2:

aπ−d = λ1 (aπ−p + aπ−n) + λ2

[

(

aπ−p + aπ−n

2

)2

− 2

(

aπ−p − aπ−n

2

)2
]

〈f(r)/r〉

+ a(Fermi) + a(dispersion) + δa, (B1)

where
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λ2 = 2
(1 + mπ/M)2

(1 + mπ/Md)
= 2.4560; (B2)

f(r) = 1 − (1 + cr/2) exp(−cr) (B3)

and with the sum of small correction terms

δa = δa(multiple) + δa(isospin) + δa(non − static) + δa(π−p, γn) + δa(double p − wave) + δa(virtual pion). (B4)

Assuming isospin symmetry in all terms but the leading order one, and emphasizing the accurate experimental
knowledge of aπ−p, we have

aπ−d = λ1 (aπ−p + aπ−n) + λ2

[

a+2 − 2 (aπ−p − a+)2
]

〈f(r)/r〉
+ a(Fermi) + a(dispersion) + δa. (B5)

The correction for nucleon motion is, according to Eq. (14):

a(Fermi) = 2

(

mπ

M + mπ

)2

λ1 c0

〈

p2 v2

(

mπp

M + mπ

)〉

, (B6)

where the form factor correction is negligible and c0 = 0.208(3) m−3
π ( p.18 in Ref. [41]). The dispersion correction has

been taken to be a(dispersion) = −56(14)×10−4 m−1
π [43]. The remaining values of the small terms are taken to be (see

text) δa(non − static) = 11(6) × 10−4 m−1
π , δa(double p − wave) = −3 × 10−4 m−1

π and δa(virtual pion) = −7(2) ×
10−4 m−1

π . In addition it is desirable to control the convergence of the multiple scattering expansion explicitly. We have
evaluated the higher order multiple scattering corrections from the expression given by Kolybasov and Kudryatsev
for the sum of the multiple scattering series to all orders for point-like scatterers, in the static approximation and
neglecting binding and recoil corrections [93]. We have however generalized their expression to include the effect of
separable form factors for each scattering:

δa(multiple) =

〈[

2 λ1 a+ + λ2

[

a+2 − 2 (aπ−p − a+)2
] f(r)

r

]

[

(1 − C)−1 − 1
]

〉

, (B7)

where C = (1 + mπ/M)2 [a+2 − 2 (aπ−p − a+)2] f2(r)/r2. In order to extract the value of (aπ−p + aπ+p)/2 from the
experimental aπ−d and aπ−p, we now observe that Eq. (B5) is quadratic in a+ except for higher power terms from
the small δa(multiple) of Eq. (B7). To check the self-consistency with δa(multiple) it should be solved iteratively.
We have done this with the experimental values and the resulting a+ is small (about 10−3 m−1

π ). Equation (B5) can
then be safely linearized for a fixed value of δa(multiple) and the consistency checked by iteration. We have

aπ−p + aπ−n

2
=

(

2 λ1 + 4 λ2 aexp

π−p
〈f(r)/r〉

)−1 [

aexp
π−d

+ 2 λ2 aexp 2

π−p
〈f(r)/r〉

− a(Fermi) − a(dispersion) − δa] . (B8)

Two iterations are sufficient.
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[24] G. Höhler in Pion–Nucleon Scattering, Ed. H. Schopper, in Landolt-Börnstein, New Series, Vol. 9b (Springer, New York

1983).
[25] R. A. Arndt, I. I. Strakovsky, R. Workman and M. M. Pavan, Phys. Rev. C 52, 2120 (1995).
[26] S. Weinberg, Trans. N. Y. Acad. Sci. 38, 185 (1977).
[27] N. Fettes, U.-G. Meissner and S. Steininger, Phys. Lett. B 451, 233 (1999).
[28] R. Koch, Karlsruhe preprint TKP 85-5 (unpublished) (1985).
[29] R. A. Arndt, M. M. Pavan, R. L. Workman, and I. I. Strakovsky, Scattering Interactive Dial-Up (SAID), VPI, Blacksburg,

The VPI/GWU πN solution SM99 (1999); http://said.phys.vt.edu/analysis/pin analysis.html.
[30] M. M. Pavan, R. A. Arndt, I. I. Strakovsky and R. L. Workman, ΠN Newslett. 15, 118 (1999).
[31] D. Sigg, A. Badertscher, M. Bogdan, P. F. A. Goudsmit, H. J. L. Leisi, H. Ch. Schröder, Z. G. Zhao, D. Chatellard,
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TABLE I. Some deduced values for the πNN coupling constant. The quoted uncertainty are those quoted by the authors
and usually do not include systematic uncertainties.

Source Year System g2
πNN/4π

Karlsruhe-Helsinki [3] 1980 πp 14.28(18∗)
Kroll [4] 1981 pp 14.52(40∗)

Nijmegen [5] 1993 pp, np 13.58 (5∗)
VPI [9] 1994 pp, np 13.70

Nijmegen [6] 1997 pp, np 13.54 (5∗)
Timmermans [13] 1997 π+p 13.45(14∗)

VPI [10] 1994 GMO, πp 13.75(15∗)
Uppsala [2] 1998 np→pn 14.52(26)

Pavan et al. [12] 1999 πp 13.73 (9)
Schröder et al., corrected [15,11] 1999 GMO, π±p 13.77(18)

Present work 2001 GMO, π±p 14.11(20)

∗ Statistical uncertainty only.

TABLE II. Corrections to 〈1/r〉 and to the πd scattering length for different cut-off values and wave functions. The πN
scattering lengths are from Eqs.(20) and (21).

Model Paris [50] Bonn2 [51]
〈1/r〉 0.449 fm−1 0.463 fm−1

c δ〈1/r〉 δaπd δ〈1/r〉 δaπd

[mπ] [10−3 fm−1] [10−4 m−1
π ] [10−3 fm−1] [10−4 m−1

π ]

3.0 −50 28 −60 34
3.5 −37 21 −46 26
4.0 −28 16 −36 20
4.5 −21 12 −29 16
5.0 −16 9 −23 13

TABLE III. Estimates of the contribution a(Fermi) to a
π−d from single p-wave scattering as a result of Fermi motion ac-

cording to Eq. (14) for various deuteron wave functions, different cut-off values and separated into S- and D-state contributions.
The last row gives 〈p2〉 and the kinetic energy 〈p2〉/M.

Model Paris [50] Bonn2 [51]

c S-state D-state Total S-state D-state Total
[mπ] [in units of 10−4 m−1

π ] [in units of 10−4 m−1
π ]

3 39.6 27.9 67.6 36.7 16.7 53.4
4 39.8 28.1 67.8 36.8 16.9 53.6
5 39.8 28.1 68.0 36.8 16.9 53.7
∞ 39.9 28.3 68.2 36.8 17.0 53.9

〈p2〉 [m2
π ] 0.533 0.378 0.912 0.492 0.228 0.720

〈p2〉/M [MeV] 11.1 7.9 19.0 10.3 4.7 15.0
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TABLE IV. Typical contributions to aπd scattering length in units of 10−4 m−1
π

Contributions Present work B–K [46]

a
π−d(double scattering; static) −254 (4)∗ −252

Fermi motion 60 (7) 50
dispersion correction − 56(14) not included
isospin violation 3.5 3.5
(π−p, γn) double scattering − 2 not considered
form factor 17 (9) 29(7)
higher orders 4 (1) 6
sp interference small − 44
non-static effects 11 (6) 10
p-wave double scattering [46] − 3 − 3
virtual pion scattering [48,54] − 7 (2) not considered

total = a
π−d − 1.07 × (a

π−p + a
π−n) −227(20) −198

aπd(experimental) [40] −252 (7)

∗ The uncertainty from the πN scattering lengths would typically contribute ±6 units to this term.

TABLE V. Values of J− from the literature. Quoted errors include both statistical and systematic uncertainties.

Source J− mb

Koch 1985 [28] −1.077(47)
Workman et al. 1992; K–H [11] −1.056
Workman et al. 1992; VPI [11] −1.072
Arndt et al. 1995 [25] −1.050
Gibbs et al. 1998 [16] −1.051(5)∗

Present work −1.083(32)

∗ statistical error only.

TABLE VI. Evaluation of J− in the ∆ resonance region and up to 2 GeV/c. Here ‘Data’ refers to ’nuclear’ experimental
cross sections uncorrected for Coulomb penetration and ‘Nuclear SM99’ to the corresponding PWA cross sections; I− and I+

are the corresponding integrals for π−p and π+p, respectively, with J− = I− − I+.

Input k [GeV/c] I− [mb] I+ [mb] J− [mb]

Hadronic SM95 [58] 0.00 to 0.16 0.164 0.157 0.007
Hadronic SM99 [29] 0.00 to 0.16 0.162 0.152 0.011

Hadronic SM95 [58] 0.16 to 0.55 1.078 2.763 −1.685
Hadronic SM99 [29] 0.16 to 0.55 1.071 2.767 −1.696
Nuclear SM99 [29] 0.16 to 0.55 1.090 2.726 −1.636
Data [71] 0.16 to 0.55 1.101 2.753 −1.652

Hadronic SM95 [58] 0.55 to 1.20 0.800 0.414 0.386
Hadronic SM99 [29] 0.55 to 1.20 0.789 0.411 0.378
Nuclear SM99 [29] 0.55 to 1.20 0.804 0.400 0.404
Data [71] 0.55 to 1.20 0.816 0.400 0.416

Hadronic SM95 [58] 1.20 to 2.00 0.450 0.460 −0.010
Hadronic SM99 [29] 1.20 to 2.00 0.451 0.458 −0.007
Nuclear SM99 [29] 1.20 to 2.00 0.458 0.450 0.008
Data [71] 1.20 to 2.00 0.459 0.443 0.016
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TABLE VII. Different contributions to J− as function of the k range and of the input data. The first number in the
parenthesis is the statistical error, while the second numbers correspond to the systematic uncertainty. The selected data
correspond to the world data as given by PDG Tables, where we have suppressed all data with statistical and systematic errors
larger than 1%. Lines labeled ’Selected’ and ’Data’ refer to ’nuclear’ cross sections.

i Input k(GeV/c) I−(mb) I+(mb) J−(mb) = I− − I+

1 SM95 [58] 0.00 to 0.16 0.164 0.157 0.007
2 SM99 [29] ” 0.163 0.152 0.011

3 Selected [71] 0.16 to 2.00 2.360 (2) (3) 3.596 (6) (1) −1.237 (6) (4)
4 Data [64,63] ” 2.377 (3) (2) 3.596 (5) (2) −1.219 (6) (4)

5 SM95 [58] 0.00 to 2.00 2.492 3.794 −1.302 (6)(20)
6 SM99 [29] ” 2.474 3.788 −1.314 (6)(20)

7 Selected [71] 2.00 to 4.03 0.560 (2) (3) 0.496 (1) (5) 0.064 (2) (7)
8 Data [61,76] ” 0.580 (1) (5) 0.518 (1) (5) 0.063 (1)(10)

9 Selected [71] 4.03 to 240 2.672 (4)(10) 2.539 (3)(12) 0.133 (5)(22)
10 Fit PDG94 [77] ” 2.645 2.489 0.155

11 Regge 94 [77] 240 to ∞ − − 0.030 (5)
12 Regge 00 [81] ” − − 0.025 (4)
13 Regge 98 [71] ” − − 0.018 (3)

14 6+7+10+11 0 to ∞ − − −1.055(10)(31)
15 6+7+9+11 ” − − −1.087 (9)(31)
16 6+7+9+13 ” − − −1.099 (8)(31)
17 6+7+9+12 ” − − −1.092 (9)(31)

FIG. 1. Graphical determination of the πN scattering lengths (a
π−p

+ a
π−n

)/2 ≃ a+ and (a
π−p

− a
π−n

)/2 ≃ a− from the
constraints imposed by the pionic atom scattering lengths.
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FIG. 2. The experimental total π+p and π−p cross sections below 2 GeV/c [59–65] compared with the SM95 [58] and
SM99 [29] PWA hadronic solutions , where Coulomb barrier effects have not been taken into account.
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FIG. 3. The separate integrands for π±p, as well as for their difference as a function of laboratory momentum k, together
with the cumulative value of the integral J−(kmax) integrated from threshold to k = kmax. The curves are based on the SM99
solution [29]. The integrands are in units of mb GeV/c.
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FIG. 4. The π−p experimental total cross sections in the region 0.5 ≤ k ≤ 2 GeV/c [59–62,69] compared to SM99 [29] with
Coulomb barrier effects accounted for.
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FIG. 5. The π+p experimental total cross sections in the region 0.5 ≤ k ≤ 2 GeV/c [59–61,69,70] compared to SM99 [29]
with Coulomb barrier effects accounted for.
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