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1. Introduction

Non-local theories are described by actions that contain an infinite number of tem-

poral derivatives. There exists an equivalent formulation of those theories in a space-

time of one dimension higher [1]. In this formulation there are two time coordinates,

and the dynamics in this space is described in such a way that the evolution is lo-

cal with respect to one of the times. Thanks to this, a hamiltonian formalism can

be constructed in the d + 1 dimensions as a local theory with respect to the evo-

lution time [1]–[4], in which the Euler-Lagrange equations appear as hamiltonian

constraints [2]. A characteristic feature is that there is no dynamics in the usual

sense; i.e. the physical trajectories are not obtained as evolution of some given initial

conditions.
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In this paper we construct the symmetry generators for non-local theories. Cor-

responding to symmetries of a non-local lagrangian the symmetry generators are con-

structed in a natural way in d+1 dimensions and are conserved quantities. When the

original symmetries of the non-local theory are gauge symmetries the corresponding

transformations are realized as rigid symmetries in the d+ 1 dimensions.

We analyze in detail the case of space-time non-commutative (NC ) U(1) gauge

theory.1 In particular, we obtain its hamiltonian and we show that it is the generator

of time translations. We also study the relation between the gauge generators of the

NC and commutative theories, by considering the Seiberg-Witten (SW) map [5] as

an ordinary canonical transformation.

We then move to study the BRST symmetry of this U(1) NC theory and we

construct the nilpotent hamiltonian BRST charges. We also analyze the BRST sym-

metry at lagrangian level using the field-antifield formalism. The Seiberg-Witten

(SW) map [5] is extended to a canonical transformation in superphase space and in

the field-antifield space. We show that the solutions of the classical master equation

for non-commutative and commutative theories are related by a canonical transfor-

mation in the antibracket sense.

The organization of the paper is as follows. In section 2 we study the general

properties of symmetry generators of non-local theories. In section 3 we construct

the gauge symmetry generator for U(1) NC gauge theory. Section 4 is devoted to

study the relation between the gauge generators of commutative and U(1) NC gauge

theories. In section 5 we construct the BRST generator. There is an appendix A

where the ordinary U(1) local Maxwell theory is analyzed in terms of the d + 1

dimensional formalism.

2. Hamiltonian formalism of non-local theories and symmetry

generators

2.1 Brief review

A non-local lagrangian at time t depends not only on variables at time t but also

on ones at different times. In other words it depends on an infinite number of time

derivatives of the positions qi(t).
2 The analogue of the tangent bundle for lagrangians

depending on positions and velocities is now infinite dimensional. It is the space of

all possible trajectories. The action is

S[q] =

∫
dt Lnon(t) . (2.1)

1Here we use the term “U(1)” for “rank one” gauge field. It is not abelian for the NC case.
2For simplicity, in this section we will explicitly consider the case of mechanics.
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The Euler-Lagrange (EL) equation is obtained by taking the functional variation of

(2.1),

δS[q]

δqi(t)
=

∫
dt′Ei(t′, t; [q]) = 0 , Ei(t′, t; [q]) ≡ δL

non(t′)
δqi(t)

. (2.2)

One of the most striking features of such theories is that of the new interpretation

that this EL equation has [1, 2]. Since the equations of motion are of infinite degree in

time derivatives, one should give as initial conditions the value of all these derivatives

at some initial time. In other words, we should give the whole trajectory (or part

of it) as the initial condition. If we denote the space of all possible trajectories as

J = {q(λ), λ ∈ R}, then (2.2) is a lagrangian constraint defining the subspace JR ⊂ J
of physical trajectories.

In [1, 2] this was implemented using a formalism in which one works with one

extra dimension. The final result was that one obtains a two dimensional field theory

whose lagrangian is

L̃(t, [Q]) :=
∫
dσδ(σ)L(t, σ) , (2.3)

where the lagrangian density L(t, σ) is constructed from the original non-local one
Lnon by performing the following replacements

qi(t)→ Qi(t, σ) , dn

dtn
qi(t)→ ∂n

∂σn
Qi(t, σ) , qi(t+ ρ)→ Qi(t, σ + ρ) . (2.4)

Note that this 1+1 field theory has two “time” coordinates t and σ but, using these

replacements, the dynamics is described in such a way that the evolution is local

with respect to one of them (t). This is the key achievement that will enable us to

analyze many aspects of the 1+1 theory using ordinary methods from local theories.

The theory was also shown to have the following hamiltonian

H(t) =

∫
dσ[P i(t, σ)Qi′(t, σ)− δ(σ)L(t, σ)] , (2.5)

where Q′i(t, σ) ≡ ∂σQi(t, σ) and P i(t, σ) are the canonical momenta. Note that the
hamiltonian depends on the fields Qi(t, σ) and an infinite number of sigma derivatives
of it, but not on any derivative with respect to the evolution time t. Thus the

hamiltonian (2.5) is indeed a well defined phase space quantity.

The Hamilton equations are, denoting time (t) derivatives by “dots”,

Q̇i(t, σ) = Q′i(t, σ) , (2.6)

Ṗ i(t, σ) = P i′(t, σ) + δL(t, 0)
δQi(t, σ) = P

i′(t, σ) + E i(t; 0, σ) , (2.7)
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where E(t; σ′, σ) is defined by

E i(t; σ′, σ) = δL(t, σ
′)

δQi(t, σ) . (2.8)

Equations (2.6) restrict the two dimensional fields Qi(t, σ) to depend only on a chiral
combination of the two times t + σ on shell. They are identified with the position

variables qi(t) of the original system by

Qi(t, σ) = qi(t+ σ) , i.e. qi(σ) = Qi(0, σ) . (2.9)

The solutions to these 1+1 dimensional field equations are related to those of the

EL equations (2.2) of the original non-local lagrangian Lnon if we impose a constraint

on the momentum [1]

ϕi(t, σ) = P i(t, σ)−
∫
dσ′χ(σ,−σ′)E i(t; σ′, σ) ≈ 0 , (2.10)

where χ(σ,−σ′) is defined by using the sign distribution ε(σ) as χ(σ,−σ′) = (ε(σ)−
ε(σ′))/2. We use weak equality symbol “≈” for equations those hold on the constraint
surface [6]. As usual, one has to impose stability to this constraint, leading us to the

following one

ϕ̇i(t, σ) ≈ δ(σ) [
∫
dσ′ E i(t; σ′, 0)] ≈ 0 . (2.11)

We should require further consistency conditions of this constraint. Repeating this

we get an infinite set of hamiltonian constraints which can be expressed collectively as

ϕ̃i(t, σ) =

∫
dσ′E i(t; σ′, σ) ≈ 0 , (−∞ < σ <∞) . (2.12)

If we use (2.6) and (2.9) it reduces to the EL equation (2.2) of qi(t) obtained from

Lnon(t). This is precisely what we were seeking at the beginning, since now we see

that the new 1+1 hamiltonian system incorporates the EL equation as a constraint

on the phase space.

Summarizing, we have been able to describe the original non-local lagrangian sys-

tem as a 1 + 1 dimensional local (in one of the times) hamiltonian system, governed

by the hamiltonian (2.5) and the constraints (2.10) and (2.12). The formalism intro-

duced here can be thought of as a generalization of the Ostrogradski formalism [7]

to the case of infinite derivative theories.

2.2 Hamiltonian symmetry generators

For local theories symmetry properties of the system are examined using the Nöether

theorem [8]. In hamiltonian formalism the relation between symmetries and conser-

vation laws has been discussed extensively for singular lagrangian systems, for ex-

ample [9]–[11]. In this section, we develop a formalism to treat the case of non-local

theories.
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Suppose we have a non-local lagrangian , (2.1), which is invariant under some

transformation δq(t) up to a total derivative,

δLnon(t) =

∫
dt′
δLnon(t)

δqi(t′)
δqi(t

′) =
d

dt
k(t) . (2.13)

Now we move to our 1 + 1 dimensional theory and take profit of the fact that it

was local in the evolution time t. Therefore, we can construct the corresponding

symmetry generator in the hamiltonian formalism in the usual way

G(t) =

∫
dσ [P i(t, σ)δQi(t, σ)− δ(σ)K(t, σ)] , (2.14)

where δQi(t, σ) and K(t, σ) are constructed from δq(t) and k(t) respectively by the
same replacement (2.4), as L(t, σ) was obtained from Lnon(t). The quasi-invariance
of the non-local lagrangian (2.13), translated to the 1 + 1 language, means∫

dσ′
δL(t, σ)
δQi(t, σ′)δQi(t, σ

′) = ∂σK(t, σ) . (2.15)

When the original non-local lagrangian has a gauge symmetry the δqi(t) and

k(t) contain an arbitrary function of time λ(t) and its t derivatives. In δQi(t, σ) and
K(t, σ) the λ(t) is replaced by Λ(t, σ) in the same manner as qi(t) is replaced by
Qi(t, σ) in (2.4). However in order for the transformation generated by (2.14) to be
a symmetry of the Hamilton equations, Λ(t, σ) can not be an arbitrary function of t

but should satisfy

Λ̇(t, σ) = Λ′(t, σ) (2.16)

as will be shown shortly. This restriction on the parameter function Λ means that the

transformations generated by G(t) in the d+1 dimensional hamiltonian formalism are

rigid transformations in contrast with the original ones for the non-local theory which

are gauge transformations. In the appendix we will see how this rigid transformations

in the d + 1 dimensional hamiltonian formalism are reduced to the usual gauge

transformations in d dimension for the U(1) Maxwell theory.

The generator G(t) generates the transformation of Qi(t, σ),

δQi(t, σ) = {Qi(t, σ), G(t)} , (2.17)

corresponding to the transformation δqi(t) in the non-local lagrangian. It also gen-

erates the transformation of the momentum P i(t, σ) and so, of any functional of the
phase space variables. In particular, we will see that, as consistency demands, the

hamiltonian (2.5) and the constraints (2.10) and (2.12) are invariant, in the sense

that their symmetry transformation vanishes on the hypersurface of phase space de-

termined by the constraints. Let us state a series of results and properties of our

gauge generator.
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(a) G(t) is a conserved quantity

d

dt
G(t) = {G(t), H(t)} + ∂

∂t
G(t) (2.18)

=

∫
dσdσ′

[
Pj(t, σ)

(
δ(δQj(t, σ))
δQi(t, σ′) Qi

′(t, σ′)− ∂σδ(σ − σ′)δQj(t, σ′) +

+
δ(δQj(t, σ))
δΛ(t, σ′)

Λ̇(t, σ′)
)
− δ(t, σ)

(
δK(t, σ)
δQi(t, σ′)Qi

′(t, σ′)−

− δ(L(t, σ))
δQi(t, σ′) δQi(t, σ

′) +
δK(t, σ)
δΛ(t, σ′)

Λ̇(t, σ′)
)]
= 0 . (2.19)

The last term of (2.18) is an explicit t derivative through Λ(t, σ). In order to

show (2.19) we need to use the symmetry condition (2.15) and the condition

on Λ(t, σ) in (2.16).

(b) All the constraints are invariant under the symmetry transformations

Let us show first the invariance of (2.12), which is nothing but the invariance

of the equations of motion, as was to expected for G(t) generating a symmetry,

{ϕ̃i(t, σ), G(t)} =
{∫
dσ′′E i(t, σ′′, σ),

∫
dσ′[Pj(t, σ′)δQj(t, σ′)− δ(σ′)K(t, σ′)]

}
=

∫
dσ′dσ′′

δ2L(t, σ′′)
δQj(t, σ′)δQi(t, σ)δQj(t, σ

′)

=

∫
dσ′
δϕ̃j(t, σ′)
δQi(t, σ) δQj(t, σ

′)

= −
∫
dσ′ϕ̃j(t, σ′)

δ(δQj(t, σ′))
δQi(t, σ) ≈ 0 , (2.20)

where we have used an identity obtained from (2.15),∫
dσdσ′E j(t, σ, σ′)δQj(t, σ′) =

∫
dσ′ϕ̃j(t, σ′)δQj(t, σ′) = 0 . (2.21)

Let us show now the invariance of the other constraint (2.10). Using (2.15)

and (2.21),

{ϕi(t, σ), G(t)} = −
∫
dσ′ϕj(t, σ′)

δ(δQj(t, σ′))
δQi(t, σ) −

∫
dσ′
[∫
dσ′′χ(σ′,−σ′′)×

×E j(t; σ′′, σ′)δ(δQj(t, σ
′))

δQi(t, σ) − δ(σ
′)
δ(K(t, σ′))
δQi(t, σ) +

+

∫
dσ′′χ(σ,−σ′′)δE

i(t; σ′′, σ)
δQj(t, σ′) δQj(t, σ

′)
]

= −
∫
dσ′ϕj(t, σ′)

δ(δQj(t, σ′))
δQi(t, σ) +

∫
dσ′χ(σ,−σ′)ϕ̃j(t, σ′)×

× δ(δQj(t, σ
′))

δQi(t, σ) ≈ 0 . (2.22)
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Thus we have shown that the constraint surface defined by ϕ ≈ ϕ̃ ≈ 0 is
invariant under the transformations generated by G(t).

(c) Our hamiltonian (2.5) is the generator of time translations

Consider a non-local lagrangian in (2.1) that does not depend on t explicitly,

so that time translation is a symmetry of the lagrangian. To show that the

generator of such a symmetry is our hamiltonian H in (2.5) and that it is

conserved, we should simply show that we recover its expression (2.5) from

the general form of the generator (2.14). Indeed, the lagrangian changes as

δLnon = εL̇non under a time translation δqi(t) = εq̇i(t). The corresponding

generator in the present formalism is, using (2.14)

GH(t) =

∫
dσ[ P i(t, σ)(εQi′(t, σ))− δ(σ)(εL(t, σ))] , (2.23)

which is ε times the hamiltonian (2.5). In this case the conservation of the

constraints (2.10) and (2.12) is understood also from (2.22) and (2.20). Our

hamiltonian in the 1+1 theory being the generator of time translations is telling

us that we should consider it as giving the energy of the system. Actually, as

we show in the appendix for the U(1) commutative case, if we were working

in this d+ 1 formalism but for a local theory, we can always use the system of

constraints to reduce the redundant extra coordinates and obtain the ordinary

hamiltonian of the local theory in d dimensions. Nevertheless, for a truly non

local theory, there is no such a simplification and the phase space is infinite

dimensional. Our discussion then shows that it is the hamiltonian (2.5) that

we should use for computing the energy of the system.

To summarize this chapter, we have constructed the hamiltonian symmetry gen-

erators of a general non-local theory working in a d + 1 dimensional space. In this

formulation original gauge symmetries in d dimensions are rigid symmetries in the

d + 1 dimensional space. This way of understanding of gauge symmetries is also

useful for ordinary higher derivative theories, see appendix and [12]. The rest of this

paper will be mainly devoted to illustrate how our formalism is applied to the case

of the non commutative U(1) theory.

3. U(1) non-commutative gauge theory

3.1 Brief review

The magnetic U(1) non-commutative (NC) gauge theory appears in the decoupling

limit of D-p branes in the presence of a constant NS-NS two form [5]. The theory

could formally be extended to the electric case. However in this case the field theory

is acausal [13, 14] and non-unitary [15, 16]. In terms of strings this is because
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there is an obstruction to the decoupling limit in the case of an electromagnetic

background [17]–[21]. Here we are interested in the most general case of space-time

non-commutativity with θ0i 6= 0.3
We consider the U(1) (rank one) NC Maxwell theory in d dimensions with the

action

S =

∫
ddx
(
−1
4
F̂µνF̂

µν
)
, (3.1)

where F̂µν is the field strength of the U(1) NC gauge potential Âµ defined by
4

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ] . (3.2)

The commutators in this paper are defined by the Moyal * product as

[f, g] ≡ f ∗ g− g ∗ f , f(x) ∗ g(x) = [ei(θµν/2)∂αµ∂βν f(x+α)g(x+ β)]α=β=0 . (3.3)
The EL equation of motion is

D̂µF̂
µν = 0 , (3.4)

where the covariant derivative is defined by D̂ = ∂ − i[Â, ].
The gauge transformation is

δÂµ = D̂µλ̂ (3.5)

and it satisfies a non-abelian gauge algebra,

(δλ̂δλ̂′ − δλ̂′δλ̂)Âµ = −iD̂µ[λ̂, λ̂′] . (3.6)

Since the field strength transforms covariantly as

δF̂µν = −i[F̂µν , λ̂] (3.7)

the lagrangian density of (3.1) transforms as

δ
(
−1
4
F̂µνF̂

µν
)
=
i

2
[F̂µν , λ̂] F̂

µν . (3.8)

Using
∫
dx(f ∗g) = ∫ dx(fg) and the associativity of the star product (3.8) becomes

a total divergence, as was to be expected for (3.5) being a symmetry. So the action

(3.1) is invariant under the U(1) NC transformations.

3.2 Going to the d+ 1 formalism

The lagrangian (3.1) contains time derivatives of infinite order and is non-local.

The NC gauge transformation (3.5) is also non-local since, for electric backgrounds

(θ0i 6= 0), it contains time derivatives of infinite order in λ. Let us now proceed
to construct the hamiltonian and the generator for the U(1) NC theory using the

formalism introduced in the last section. The canonical structure will be realized in

the d+1 dimensional formalism. Corresponding to the d dimensional gauge potential

Âµ(t,x), we denote the gauge potential in d+ 1 dimensional one as Âµ(t, σ,x).5 We
3A hamiltonian formalism for the magnetic theory (θ0i = 0) is analyzed in [22].
4We put “hats” on the quantities of the NC theory.
5From now on we will use calligraphic letters for fields in the d+ 1 formalism.
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regard t as the evolution “time”. Now x0 = σ is the coordinate denoted by σ of

qi(t, σ) in the last section. The other (d− 1) spatial coordinates x correspond to the
indices i of qi(t, σ). The signature of d+ 1 space is (−,−,+,+, . . . ,+).
The canonical system equivalent to the non-local action (3.1) is defined by the

hamiltonian (2.5) and two constraints, (2.10) and (2.12). For our present theory, the

hamiltonian is

H(t) =

∫
ddx[Π̂ ν(t, x)∂x0Âν(t, x)− δ(x0)L(t, x)] , (3.9)

where Π̂ ν is a momentum for Âν and

L(t, x) = −1
4
F̂µν(t, x)F̂µν(t, x) ,

F̂µν(t, x) = ∂µÂν(t, x)− ∂νÂµ(t, x)− i[Âµ(t, x), Âν(t, x)] . (3.10)

Note that using (2.6), now the star product is defined with respect to xµ = (σ,x)

instead of xµ = (t,x) in (3.3). Thus it contains spatial derivatives of infinite order but

no time derivative. The same applies for the hamiltonian, it contains no derivative

with respect to t, and so it is a good phase-space quantity, a function of the canonical

pairs (Âµ(t, x), Π̂ µ(t, x)) with Poisson bracket
{Âµ(t, x), Π̂ ν(t, x′)} = δµν δ(d)(x− x′) . (3.11)

The momentum constraint (2.10) is

ϕν(t, x) = Π̂ ν(t, x) +

∫
dy χ(x0,−y0)F̂µν(t, y)D̂yµδ(x− y)

= Π̂ ν(t, x) + δ(x0)F̂0ν(t, x)− i
2

(
ε(x0)[F̂µν , Âµ]− [ε(x0)F̂µν , Âµ]

)
≈ 0 (3.12)

while the constraint (2.11), obtained from the consistency of the above one, turns

out to be

ϕ̃ν(t, x) = D̂µF̂µν(t, x) ≈ 0 . (3.13)

Note that these constraints are reducible since D̂µϕ̃µ ≡ 0. They reproduce the EL
equation of motion (3.4) using the Hamilton equation (2.6),

∂tÂµ(t, x) = {Âµ(t, x), H(t)} = ∂x0Âµ(t, x) (3.14)

and the identification (2.9), Âµ(t, xν) = Âµ(t+ x0,x). Since the lagrangian of (3.1)
has translational invariance, the hamiltonian (3.9), as well as the constraints (3.12)

and (3.13), are conserved.

To compute the generator of the U(1) NC transformation, we apply (2.14) to

our case

G[Λ̂] =

∫
dx[Π̂ µδÂµ − δ(x0)K0] , (3.15)
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where the last term must be evaluated from surface term appearing in the variation

of the lagrangian∫
dx[−δ(x0)K0] =

∫
dx
[ε(x0)
2
∂µKµ

]
=

∫
dx
[ε(x0)
2
δL
]
. (3.16)

Using (3.8) the U(1) generator becomes

G[Λ̂] =

∫
dx

[
Π̂ µD̂µΛ̂ + i

4
ε(x0)F̂µν [F̂µν , Λ̂]

]
, (3.17)

where, as discussed in (2.16), Λ̂(t, xµ) must be an arbitrary function satisfying

˙̂
Λ(t, xµ) = ∂x0Λ̂(t, x

µ) . (3.18)

The generator can be expressed as a linear combination of the constraints,

G[Λ̂] =

∫
dxΛ̂

[
−(D̂µϕµ)− δ(x0)ϕ̃0 + i

2

(
ε(x0)[ϕ̃ν , Âν ]− [ε(x0)ϕ̃ν , Âν ]

)]
. (3.19)

The fact that the generator (3.19) is a sum of constraints shows explicitly the conser-

vation of the generator on the constraint surface. It also means the U(1) invariance

of the hamiltonian on the constraint surface. Furthermore G[Λ̂] is conserved, without

using constraints, for Λ̂(t, x) satisfying (3.18),

d

dt
G[Λ̂] = {G[Λ̂], H} + ∂

∂t
G[Λ̂] = 0 (3.20)

in agreement with (2.19).

Finally, the hamiltonian turns out to be

H = G[Â0] +
∫
dxϕiF̂0i + EL , (3.21)

where the first term is the U(1) generator (3.19) replacing the parameter Λ̂ by Â0.
The last term EL is the only relevant one on the constraint surface, and it is

EL =

∫
dxδ(x0){1

2
F̂20i +

1

4
F̂2ij}+

i

2

∫
dxÂ0

(
1

2
[F̂ ij, ε(x0)F̂ij]− [F̂0i, ε(x0)F̂0i]

)
+

+
i

2

∫
dxÂj

(
[F̂0i, ε(x0)F̂ ij]− [ε(x0)F̂0i, F̂ ij]

)
. (3.22)

This expression is useful, for example, to evaluate the energy of classical config-

urations of the theory. The first term has the same form as the “energy” of the

commutative U(1) theory. The last two terms are non-local contributions. How-

ever they vanish in two cases, (1) in θ0i = 0 (magnetic) background and (2) for t

independent solutions of Aµ.
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4. Seiberg-Witten map, gauge generators and hamiltonians

Seiberg and Witten [5] have introduced a map between the gauge potential Aµ in a

U(1) commutative and Âµ in an U(1) NC theories. Here we show that the Seiberg-

Witten (SW) map for the space-time U(1) NC theories can be viewed as a canonical

transformation in the hamiltonian formalism in d+1 dimensions. This makes explicit

the physical equivalence of both theories. By finding the corresponding generating

functional, we are able to map quantities between them. In particular, we show how

the gauge generator and the hamiltonian obtained in the previous section for the

NC case are mapped to those of the commutative theory.

4.1 The d formalism

We recall that the SW map from the U(1) commutative connection Aµ to the U(1)

NC one Âµ looks like

Âµ = Aµ +
1

2
θρσAσ(2∂ρAµ − ∂µAρ) + · · · . (4.1)

In the following discussions we keep terms only up to the first order in θ and higher

power terms of θ, indicated by . . . , are omitted.

Under a commutative U(1) transformation of δAµ = ∂µλ, the mapped Âµ trans-

forms as

δÂµ = ∂µ

{
λ+
1

2
θρσAσ∂ρλ

}
+ θρσ∂σλ∂ρAµ = D̂µλ̂ . (4.2)

Note that although the field Âµ defined above transforms as U(1)NC gauge potentials

the gauge transformation parameter function λ̂ is now gauge field dependent

λ̂(λ,A) = λ+
1

2
θρσAσ∂ρλ . (4.3)

The field strength F̂µν defined as in (3.2) is, in terms of the commutative fields Aµ
and Fµν ≡ ∂µAν − ∂νAµ, as

F̂µν = Fµν + θ
ρσFρµFσν − θρσAρ∂σFµν (4.4)

and transforms under δAµ = ∂µλ covariantly as

δF̂µν = −θρσ∂ρλ∂σFµν = −i[Fµν , λ] = −i[F̂µν , λ̂] . (4.5)

4.2 The d+ 1 formalism

In the d+ 1 dimensional hamiltonian formalism we can regard the mapping (4.1) as

a canonical transformation. Denoting the d+ 1 dimensional potentials Âµ(t, x) and
Aµ(t, x) corresponding to d dimensional ones Âµ(t,x) and Aµ(t,x) respectively,6 the
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generating function turns out to be

W (A, Π̂ ) =
∫
ddxΠ̂ µ

(
Aµ + 1

2
θρσAσ(2∂ρAµ − ∂µAρ)

)
+W 0(A) , (4.6)

where W 0(A) is any function of Aµ of order θ. It generates the transformation of
Aµ as in (4.1)

Âµ = Aµ + 1
2
θρσAσ(2∂ρAµ − ∂µAρ) (4.7)

and determines the relation between Π µ and Π̂ µ, conjugate momenta of Aµ and Âµ
respectively, to be

Π µ = Π̂ µ +
1

2
Π̂ σθρµ(2∂ρAσ − ∂σAρ)− ∂ρ(θρσAσΠ̂ µ) + 1

2
∂ρ(Π̂

ρθµσAσ) + δW
0(A)
δAµ .

(4.8)

It can be inverted, to first order in θ, as

Π̂ µ = Π µ+θµρΠ σFρσ+Π µ1
2
θρσFρσ+θρσAσ∂ρΠ µ−1

2
(∂ρΠ

ρ)θµσAσ− δW
0(A)
δAµ . (4.9)

Note that the canonical transformation, (4.7) and (4.9), is independent of the con-

crete theories we are considering.

In the last section the generator of U(1) NC theory was obtained in (3.17) as

G[Λ̂] =

∫
dx

[
Π̂ µD̂µΛ̂ + i

4
ε(x0)F̂µν [F̂µν , Λ̂]

]
. (4.10)

The last term appeared since the original lagrangian Lnon changes to a surface term

as in (3.8) under the gauge transformation. Now we want to see how this generator

transforms under the SW map. It is straightforward to show that, for W 0(A) = 0,∫
dx[Π̂ µD̂µΛ̂(Λ,A)] =

∫
dx[Π µ∂µΛ] , (4.11)

where

Λ̂(Λ,A) = Λ + 1
2
θρσAσ∂ρΛ , Λ̇ = ∂x0Λ . (4.12)

These results are independent of the specific form of lagrangian for U(1) NC and

commutative gauge theories. On the other hand the term δ(σ)K(t, σ) appearing in
(2.14) does depend on the specific theory we are considering. For the U(1)NC theory,

(3.1), it is nothing but the lagrangian dependent term in (4.10), which expanding to

first order in θ

i

4

∫
dxε(x0)F̂µν [F̂µν , Λ̂] = 1

4

∫
dxδ(x0)θ0iFµνFµν∂iΛ . (4.13)

6Remember, hats for fields in the non-commutative theory, and calligraphic letters for fields in

the d+ 1 formalism
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In this case the generator of U(1) NC transformations can be mapped to that of

commutative one

G[Λ̂(Λ,A)] =
∫
dx
{
Π 0∂0Λ+

(
Π i +

1

4
δ(x0)θ0iFµνFµν

)
∂iΛ
}
−
∫
dx
δW 0(A)
δAµ ∂µΛ

=

∫
dx[ Π µ∂µΛ ] (4.14)

if we choose the canonical transformation with

W 0(A) = 1
4

∫
dx δ(x0) θ0µAµFρσFρσ . (4.15)

The right hand side of (4.14) is the well-known generator of the U(1) commutative

theory (see the appendix A).

Now we would like to see what is the form of the U(1) hamiltonian obtained

from (3.9) under the SW map, (4.7) and (4.9). The U(1) commutative hamiltonian

results to be

H(c) =

∫
dx[Π ν(t, x)A′ν(t, x)− δ(x0)L(c)(t, x)] , (4.16)

where

L(c)(t, x) = −1
4
FνµFνµ − 1

2
FµνθρσFρµFσν + 1

8
θνµFνµFρσFρσ . (4.17)

But this is nothing but the d+1 dimensional hamiltonian that we would have obtained

from an abelian U(1) gauge theory with lagrangian

L(c)(t,x) = −1
4
F νµFνµ − 1

2
F µνθρσFρµFσν +

1

8
θνµFνµFρσF

ρσ (4.18)

in d dimensions. One can check that this lagrangian is, up to a total derivative, the

expansion of the Born-Infield action up to order F 3, when written in terms of the

open string parameters [5].7

L(c) ∼ 1−
√
− det(ηµν − θµν + Fµν) ∼ 1−

√
− det(ηµν + F̂µν) . (4.19)

5. BRST symmetry

In this section we will conclude our work with the U(1) NC gauge theory by studying

its BRST and field-antifield properties. First of all, we will study the BRST symme-

try [23, 24] at classical and quantum levels. We will construct the BRST charge and

the BRST invariant hamiltonian working with the d + 1 dimensional formulation,

and we will check the nilpotency of the BRST generator. Then, in order to map

7We acknowledge discussions with Joan Simón on this point.
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the BRST charges and hamiltonians of the U(1) NC and commutative U(1) gauge

theories, we will generalize the SW map to the superphase space.

Finally, in the last subsection, we will also study the BRST symmetry at la-

grangian level using the field-antifield formalism [25, 26], for a review see [27]–[29].

We will construct the solution of the classical master equation in the classical and

gauge fixed basis. We will also realize the SW map as an antibracket canonical

transformation.

5.1 Hamiltonian BRST charge

The BRST symmetry at classical level encodes the classical gauge structure through

the nilpotency of the BRST transformations of the classical fields and ghosts [30]–

[32]. The BRST symmetry of the classical fields is constructed from the gauge

transformation by changing the gauge parameters by ghost fields.

Let us consider again the U(1) NC theory still in d dimensions. Its BRST

transformations are

δBÂµ = D̂µĈ , δBĈ = −iĈ ∗ Ĉ ,
δBĈ = B̂ , δBB̂ = 0 ,

(5.1)

where Ĉ, Ĉ, B̂ are the ghost, antighost and auxiliary field respectively.

These are again a symmetry of the lagrangian associated with (3.1), since its

change under the BRST transformations is

δBL =
i

2
[F̂µν , Ĉ] F̂

µν . (5.2)

which, as in (3.8), can be shown a total divergence. We can construct the gauge

fixing lagrangian L̂gf+FP by adding the proper term of the form δBΨ̂. In this case,

the gauge fixing fermion is

Ψ̂ = Ĉ(∂µÂµ + αB̂) . (5.3)

Then the L̂gf+FP is, up to a total derivative,

L̂gf+FP = −∂µĈ D̂µĈ + B̂(∂µÂµ + αB̂) . (5.4)

By construction, this term does not spoil the symmetry. Indeed

δBL̂gf+FP = ∂
µ(B̂D̂µĈ). (5.5)

In order to construct the generator of the BRST transformations and the BRST

invariant hamiltonian we should use the d + 1 dimensional formulation. We denote

the d + 1 dimensional fields corresponding to the d dimensional ones Ĉ, Ĉ, B̂, using

14
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with the calligraphic letters, as Ĉ, Ĉ, B̂ respectively. The results are that the BRST
invariant hamiltonian is given by

H(t) = H (0) +H(1) , (5.6)

H(0) =

∫
dx[Π̂ ν(t, x)Â′ν(t, x) + P̂c(t, x)Ĉ′(t, x) − δ(x0)L̂0(t, x)] , (5.7)

H(1) =

∫
dx[P̂BB̂′(t, x) + P̂C(t, x)Ĉ

′
(t, x)− δ(x0)L̂gf+FP (t, x)] , (5.8)

while the BRST charge is

QB = Q
(0)
B + Q

(1)
B , (5.9)

Q
(0)
B =

∫
dx

[
Π̂ µD̂µĈ − iP̂C ∗ Ĉ ∗ Ĉ + 1

2
ε(x0)δBL̂0(t, x)

]
, (5.10)

Q
(1)
B =

∫
dx

[
P̂CB̂ +

1

2
ε(x0)δBL̂gf+FP (t, x)

]
. (5.11)

It is an analogue of the BFV charge [33, 34] for U(1) NC theory. H (0), Q
(0)
B are the

“gauge unfixed” and the H , QB are “gauge fixed” hamiltonians and BRST charges.

Using the graded symplectic structure of the superphase space [35]

{Âµ(t, x), Π̂ ν(t, x′)} = δµνδ(d)(x− x′) , {Ĉ(t, x), P̂Ĉ(t, x′)} = δ(d)(x− x′) ,
{Ĉ(t, x), P̂̂C(t, x′)} = δ(d)(x− x′) , {B̂(t, x), P̂B̂(t, x′)} = δ(d)(x− x′)

(5.12)

we have

{H(0), Q(0)B } = {Q(0)B , Q(0)B } = 0 , (5.13)

and

{H,QB} = {QB, QB} = 0 . (5.14)

Thus the BRST charges are nilpotent and the hamiltonians are BRST invariant both

in the gauge unfixed and the gauge fixed levels.

5.2 Seiberg-Witten map in superphase space

Now we would like to see how the BRST charges and the BRST invariant hamilto-

nians of the NC and commutative gauge theories are related. In order to do that

we will extend the SW map to a canonical transformation in the superphase space

(A, C, C,B,Π ,PC,PC,PB). We introduce the generating function

W (A, C, C,B, Π̂ , P̂C, P̂C, P̂B) =
∫
dx

[
Π̂ µ
(
Aµ + 1

2
θρσAσ(2∂ρAµ − ∂µAρ)

)
+

+P̂C
(
C + 1
2
θρσAσ∂ρC

)
+ P̂CC + P̂BB

]
+

+W 0(A, C) + W 1(A, C, C,B) , (5.15)
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where W 0(A, C) depends on the specific form of the U(1) NC lagrangian and
W 1(A, C, C, B) also on the form of the gauge fixing. For the U(1) NC theory and for
the gauge fixing (5.3), we have

W 0(A, C) = 1
4

∫
dx δ(x0) θ0µAµFρσFρσ (5.16)

as in (4.15) and

W 1 =

∫
dx
1

2
ε(x0)

[
∂µ
{1
2
θρσAσ(2∂ρAµ − ∂µAρ)

}
B+ (5.17)

+
{1
2
θρσAσ(2∂ρAµ − ∂µAρ)∂σC + 1

2
θρσAσ∂µ∂ρC

}
∂µC
]
.

The transformations are obtained from the generating function by

Φ̂A =
∂`W

∂P̂A
, PA =

∂rW

∂ΦA
, (5.18)

where ΦA represent any fields, PA their conjugate momenta, and ∂r and ∂` are right

and left derivatives respectively.

Explicitly we have

Âµ = Aµ + 1
2
θρσAσ(2∂ρAµ − ∂µAρ) , (5.19)

Ĉ = C + 1
2
θρσAσ∂ρC , (5.20)

Ĉ = C , (5.21)

B̂ = B , (5.22)

and

Π̂ µ = Π µ + θµρΠ σFρσ + Π µ1
2
θρσFρσ + θρσAσ∂ρΠ µ − 1

2
(∂ρΠ

ρ)θµσAσ +

+
1

2
PCθµσ∂σC − δ(W

0 +W 1)

δAµ ,

P̂C = PC + 1
2
θρσ∂ρ(PCAσ)− δr(W

0 +W 1)

δC ,

P̂C = PC −
δrW

1

δC ,

P̂B = PB − δrW
1

δB . (5.23)

Using this transformation we can rewrite the BRST charge (5.9) as

QB = Q
(0)
B +Q

(1)
B

=

∫
dx[Π µ∂µC + PCB − δ(x0)B∂0C ]

=

∫
dx
[
Π µ∂µC + PCB +

1

2
ε(x0)δBLgf+FP (t, x)

]
, (5.24)

16



J
H
E
P
0
3
(
2
0
0
1
)
0
1
0

where Lgf+FP (t, x) is the abelian gauge fixing lagrangian and is given by
Lgf+FP = −∂µC ∂µC + B (∂µAµ + αB) . (5.25)

The total U(1) hamiltonian (5.6) becomes

H =

∫
dx[Π νA′ν + PCC′ + PCC ′ + PBB′ − δ(x0)(L(c) + Lgf+FP )] . (5.26)

Remember L(c) is the U(1) commutative lagrangian given in (4.17). Summarizing, we
have been successful in mapping the NC and commutative charges in the d+ 1 for-

malism by generalizing the SW map to a canonical transformation in the superphase

space.

5.3 Field-antifield formalism for U(1) non-commutative theory

The field-antifield formalism allows us to study the BRST symmetry of a general

gauge theory by introducing a canonical structure at a lagrangian level [25]–[28].

The classical master equation in the classical basis encodes the gauge structure of

the generic gauge theory [31, 32]. The solution of the classical master equation in

the gauge fixed basis gives the “quantum action” to be used in the path integral

quantization. Any two solutions of the classical master equations are related by a

canonical transformation in the antibracket sense [36].

Here we will apply these ideas to the U(1) NC theory. Since we work at a

lagrangian level we will work in d dimensions. In the classical basis the set of fields

and antifields are

ΦA = {Âµ, Ĉ} , Φ∗A = {Â∗µ, Ĉ∗} . (5.27)

The solution of the classical master equation

(S, S) = 0 , (5.28)

is given by8

S[Φ,Φ∗] = I[Â] + Â∗µD̂
µĈ − iĈ∗(Ĉ ∗ Ĉ) , (5.29)

where I[Â] is the classical action and the antibracket ( , ) is defined by

(X, Y ) =
∂rX

∂ΦA
∂lY

∂Φ∗A
− ∂rX
∂Φ∗A

∂lY

∂ΦA
. (5.30)

The gauge fixed basis can be analyzed by introducing the antighost and auxiliary

fields and the corresponding antifields. It can be obtained from the classical basis by

considering a canonical transformation, in the antibracket sense,

ΦA −→ ΦA
Φ∗A −→ Φ∗A +

∂rΨ

∂ΦA
(5.31)

8As in usual convention in the antifield formalism, d dimensional integration is understood in

summations.
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generated by

Ψ̂ = Ĉ (∂µÂµ + αB̂) , (5.32)

where Ĉ is the antighost and B̂ is the auxiliary field. We have

S[Φ,Φ∗] = ÎΨ + Â∗µD̂µĈ − iĈ∗(Ĉ ∗ Ĉ) + Ĉ
∗
B̂ , (5.33)

where ÎΨ is the “quantum action” and is given by

ÎΨ = I[Â] + (−∂µĈ D̂µĈ + B̂ ∂µÂµ + αB̂2) . (5.34)

The action ÎΨ has well defined propagators and is the starting point of the Feynman

perturbative calculations.

Now we would like to study what is the SW map in the space of fields and

antifields. We first consider it in the classical basis. In order to do that we construct

a canonical transformation in the antibracket sense

Φ̂A =
∂lFcl[Φ, Φ̂

∗]

∂Φ̂∗A
, Φ∗A =

∂rFcl[Φ, Φ̂
∗]

∂ΦA
, (5.35)

where

Fcl = Â
∗µ
(
Aµ +

1

2
θρσAσ(2∂ρAµ − ∂µAρ)

)
+ Ĉ∗

(
C +

1

2
θρσAσ∂ρC

)
. (5.36)

The gauge structures of NC and commutative are mapped to each other

Â∗µD̂
µĈ − iĈ∗(Ĉ ∗ Ĉ) = A∗µ∂µC . (5.37)

We can generalize the previous results to the gauge fixed basis. In this case the

transformations of the antighost and the auxiliary field sectors should be taken into

account. The generator of the canonical transformation is modified from (5.36) to

Fgf = Fcl +

(
Ĉ
∗
+
1

2
θρσ∂µ (Aσ(2∂ρAµ − ∂µAρ))

)
C + B̂∗B . (5.38)

Note that the additional term gives rise to new terms in A∗µ and C
∗
while the others

remain the same as in the classical basis. In particular

Ĉ = C , B̂ = B . (5.39)

Using the transformation we can express (5.33) and (5.34) as

S[Φ,Φ∗] = IΨ + A∗µ∂µC + C
∗
B , (5.40)

where

IΨ = I[Â(A)] + (−∂µC ∂µC +B ∂µAµ + αB2) (5.41)

and I[Â(A)] is the classical action in terms of Aµ. This is indeed a quantum action

for the commutative U(1) BRST invariant action in the gauge fixed basis. In this

way the canonical transformation (5.38) maps the U(1) NC structure of the S[Φ,Φ∗]
into the commutative one in the gauge fixed basis.
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6. Discussions

In this paper the hamiltonian formalism of the non-local theories is discussed by

using d + 1 dimensional formulation [1, 2]. For a given non-local lagrangian in d

dimensions the hamiltonian is introduced by (2.5) on the phase space of the d + 1

dimensional fields. The equivalence with the original non-local theory is assured by

imposing two constraints (2.10) and (2.12) consistent with the time evolution. The

degrees of freedom of the extra dimension (denoted by coordinate σ) has its origin

in the infinite degrees of freedom associated with the non-locality. The fact that we

have been led to a theory with “two times” should be intimately related to their

acausality [13, 14] and non-unitarity [15, 16].

The d+1 formalism is also applicable to local and higher derivative theories. In

these cases the set of constraints are used to reduce the redundant degrees of freedom

of the infinite dimensional phase space, reproducing the standard d dimensional

formulations [12].

We have analyzed the symmetry generators of non-local theories in the hamilto-

nian formalism. As an example we have considered the space-time U(1) NC gauge

theory. The gauge transformations in d dimensions are described as a rigid symmetry

in d + 1 dimensions. The generators of rigid transformations in d + 1 dimensions

turn out to be the generators of gauge transformations when the reduction to d di-

mensions can be performed as is shown for the U(1) commutative gauge theory in

the appendix A.

We have extended the Seiberg-Witten map to a canonical transformation. This

allows us to map the hamiltonians and the gauge generators of non-commutative

and commutative theories. We have also seen explicitly the map of the U(1) NC

and the BI actions up to F 3. The reason why we were able to discuss the SW map

as a canonical transformation is that we have considered the phase space of the

commutative theory also in the d+ 1 dimensions.

The BRST symmetry has been analyzed at hamiltonian and lagrangian levels.

The relation between the U(1) commutative and NC parameter functions is under-

stood as a canonical transformation of the ghosts in the super phase space of the

SW map. Using the field-antifield formalism we have seen how the solution of the

classical master equation for non-commutative and commutative theories are related

by a canonical transformation in the antibracket sense. This results shows that the

antibracket cohomology classes of both theories coincide in the space of non-local

functionals. The explicit forms of the antibracket canonical transformations could

be useful to study the observables, anomalies, etc. in the U(1) NC theory.
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A. U(1) commutative Maxwell theory in d+ 1 dimensions

Our d + 1 formalism can also be used for describing ordinary local theories. As

an example of this, we will show how the U(1) commutative Maxwell theory is

formulated using the d+ 1 dimensional canonical formalism developed for non-local

theories in section 2 and see how it is reduced to the standard canonical formalism

in d dimensions.

The canonical d + 1 system is defined by the hamiltonian (2.5) and two con-

straints, (2.10) and (2.11). The hamiltonian is

H =

∫
ddx[Π ν(t, x)∂x0Aν(t, x)− δ(x0)L(t, x)] , (A.1)

where

L(t, x) = −1
4
Fµν(t, x)Fµν(t, x) ,

Fµν(t, x) = ∂µAν(t, x)− ∂νAµ(t, x) . (A.2)

The momentum constraint (2.10) is

ϕν(t, x) = Π ν(t, x) +

∫
dy χ(x0,−y0)Fµν(t, y)∂yµδ(x− y)

= Π ν(t, x) + δ(x0)F0ν(t, x) ≈ 0 (A.3)

and the constraint (2.11) is

ϕ̃ν(t, x) = ∂µFµν(t, x) ≈ 0 . (A.4)

The generator of the U(1) transformation is given, using (2.14), by

G[Λ] =

∫
dx[Π µ∂µΛ] . (A.5)

It is expressed as a linear combination of the constraints,

G[Λ] =

∫
dxΛ
[−(∂µϕµ)− δ(x0)ϕ̃0] . (A.6)

The hamiltonian is expressed using the constraints and the U(1) generator as

H = G[A0] +
∫
dxϕiF0i +

∫
dxδ(x0)

{1
2
F0i2 + 1

4
Fij2
}
. (A.7)
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The hamiltonian (A.7) as well as the constraints (A.3) and (A.4) contain no

time (t) derivative and are functions of the canonical pairs (Aµ(t, x),Π µ(t, x)). They
are conserved since the Maxwell lagrangian in d dimensions has time translation

invariance. The U(1) generator is also conserved, without using constraints, for

Λ(t, x) satisfying (2.16),

d

dt
G[Λ] = {G[Λ], H}+ ∂

∂t
G[Λ] = 0 , Λ̇ = ∂x0Λ . (A.8)

in agreement with (2.19). Since the parameter Λ is subject to the last relation in

(A.8) the U(1) transformations in the d + 1 dimensional canonical formulation are

not gauge but rigid ones. We will see how the gauge transformations appear when

it is written in a d dimensional form.

In cases where our lagrangians are local or higher derivative ones it is often

convenient to make expansion of the canonical variables using the Taylor basis[37]

in reducing them to d dimensional forms. We expand the canonical variables as

Aµ(t, x) ≡
∞∑
m=0

em(x
0) A(m)µ (t,x) , Π µ(t, x) ≡

∞∑
m=0

em(x0) Π µ(m)(t,x) , (A.9)

where e`(x0) and e`(x
0) are orthonormal basis

e`(x0) = (−∂x0)`δ(x0) , e`(x
0) =

(x0)
`

`!
,∫

dx0e`(x0) em(x
0) = δ`m ,

∑∞
`=0 e

`(x0) e`(x
0′) = δ(x0 − x0′) .

(A.10)

The (A
(m)
µ (t,x),Π

µ
(m)(t,x)) are d dimensional fields and are the new symplectic co-

ordinates

Ω(t) =

∫
dxδΠ µ(t, x) ∧ δAµ(t, x) =

∞∑
m=0

∫
dxδΠ µ(m)(t,x) ∧ δA(m)µ (t,x) . (A.11)

In terms of them the constraint (A.3) is expressed as

ϕµ(t, x) =
∞∑
m=0

em(x0)ϕµ(m)(t,x) , (A.12)

ϕ0(m)(t,x) = Π
0
(m)(t,x) = 0 , (m ≥ 0) , (A.13)

ϕi(0)(t,x) = Π
i
(0)(t,x)− (A(1)i (t,x)− ∂iA(0)0 (t,x)) = 0 , (A.14)

ϕi(m)(t,x) = Π
i
(m)(t,x) = 0 , (m ≥ 1) , (A.15)

while the constraint (A.4) is

ϕ̃µ(t, x) =

∞∑
m=0

em(x
0)ϕ̃µ(m)(t,x) , (A.16)
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ϕ̃i(m)(t,x) = ∂j(∂jA(m)i (t,x)− ∂iA(m)j (t,x))− (A(m+2)i (t,x)− ∂iA(m+1)0 (t,x)) = 0 ,

(m ≥ 0) , (A.17)

ϕ̃0(m)(t,x) = ∂i(A(m+1)i (t,x)− ∂iA(m)0 (t,x)) = 0 ,
(m ≥ 0) . (A.18)

It must be noted the identities

ϕ̃0(m+1)(t,x) = ∂iϕ̃
i(m)(t,x) , (m ≥ 0) . (A.19)

Thus the only independent constraint of (A.18) is m = 0 case. It can be expressed,

using (A.14), as the gauss law constraint,

ϕ̃0(0)(t,x) = ∂iΠ
i
(0)(t,x) = 0 . (A.20)

Following the Dirac’s standard procedure of constraints [6] we classify them and

eliminate the second class constraints. The constraints (A.15) (m ≥ 2) are paired
with the constraints (A.17) (m ≥ 0) to form second class sets. They are used to
eliminate canonical pairs (A(m)i (t,x),Π i(m)(t,x)), (m ≥ 2) as

A(m)i (t,x) = ∂j(∂jA(m−2)i (t,x)− ∂iA(m−2)j (t,x)) + ∂iA(m−1)0 (t,x) ,

Π i(m)(t,x)) = 0 , (m ≥ 2) . (A.21)

The constraints (A.15) (m = 1) and (A.14) are paired to a second class set and are

used to eliminate (A(1)i (t,x),Π i(1)(t,x)) as

A(1)i (t,x) = Π i(0)(t,x) + ∂iA(0)0 (t,x) ,
Π i(1)(t,x) = 0 . (A.22)

After eliminating the canonical pairs (A(m)i (t,x),Π i(m)(t,x)), (m ≥ 1) using the
second class constraints the system is described in terms of the canonical pairs

(A(0)i (t,x),Π i(0)(t,x)) and (A(m)0 (t,x),Π 0(m)(t,x)), (m ≥ 0). The Dirac brackets a-
mong them remain same as the Poisson brackets. Remember the d dimensional

fields are identified by (2.9) as

Aµ(t,x) = Aµ(t, 0,x) = A(0)µ (t,x) , Πµ(t,x) = Π µ(0)(t,x) . (A.23)

The remaining constraints are (A.20) and (A.13),

∂iΠ
i
(0)(t,x) = 0 , Π 0(m)(t,x) = 0 , (m ≥ 0) . (A.24)

They are first class constraints. The hamiltonian (A.7) in the reduced variables is

H(t) =

∫
dx

[ ∞∑
m=0

A(m+1)0 (t,x)Π 0(m)(t,x)−A(0)0 (t,x)(∂iΠ i(0)(t,x))+

+
1

2
(Π i(0)(t,x))

2 +
1

4
(∂jA(0)i (t,x)− ∂iA(0)j (t,x))2

]
. (A.25)
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The U(1) generator (A.6) is

G[Λ] =

∫
dx

[ ∞∑
m=0

Λ(m+1)(t,x)Π 0(m)(t,x)− Λ(0)(t,x)(∂iΠ i(0)(t,x))
]
, (A.26)

where

Λ(t, λ) =
∞∑
m=0

Λ(m)(t,x)em(x
0) , and Λ̇(m)(t,x) = Λ(m+1)(t,x) . (A.27)

The first class constraints Π 0(m)(t,x) = 0, (m ≥ 0) in (A.24) mean that A(m)0 (t,x),
(m ≥ 0) are the gauge degrees of freedom and we can assign to them any function of
x for all values of m at given time t = t0. It is equivalent to saying that we can assign

any function of time to A(0)0 (t,x) for all value of t, due to the equation of motion
Ȧ(m)0 (t,x) = A(m+1)0 (t,x). In this way we can understand that the hamiltonian (A.25)

is equivalent to the standard form of the canonical hamiltonian of the Maxwell theory,

H(t) =

∫
dx
[
Ȧ0(t,x)Π

0(t,x)− A0(t,x)(∂iΠi(t,x))+

+
1

2
(Πi(t,x))2 +

1

4
(∂jAi(t,x)− ∂iAj(t,x))2

]
(A.28)

in which A0(t,x) is arbitrary function of time. In the same manner the U(1) generator

(A.26) is

G[Λ] =

∫
dx
[
λ̇(t,x)Π0(t,x)− λ(t,x)(∂iΠi(t,x))

]
, (A.29)

in which the gauge parameter function λ(t,x) ≡ Λ(0)(t,x) is regarded as any function
of time.
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