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1. Introduction

N on—local theories are described by actions that contain an in nite num ber of
tem poral derivatives. T here exists an equivalent form ulation of those theories in
a spacetin e of one dim ension higher [1]. In this form ulation there are two tin e
coordinates, and the dynam ics in this space is described in such a way that the
evolution is localw ith respect to one of the tim es. Thanks to this, a Ham iltonian
form alism can be constructed in the d+1 dim ensions as a local theory w ith respect
to the evolution tine [1]2][3]4], In which the Euleri agrange equations appear as
Ham iltonian constraints [2]. A characteristic feature is that there is no dynam ics in



the usual sense; ie. the physical tra fEctories are not obtained as evolution of som e
given nitial conditions.

In this paper we construct the sym m etry generators for non-local theordes. C or-
responding to symm etries of a non-local Lagrangian the symm etry generators are
constructed in a naturalway in d+ 1 din ensions and are conserved quantities. W hen
the original sym m etries of the non-local theory are gauge sym m etries the correspond—
Ing transform ations are realized as rigid symm etries In the d+1 dim ensions.

W e analyze In detail the case of space-tin e non-comm utative (NC ) U (1) gauge
theory' . In particular, we cbtain itsH am iltonian and we show that it is the generator
of tim e translations. W e also study the relation between the gauge generators of the
NC and comm utative theories, by considering the SelbergW itten (SW )map [5]as
an ordinary canonical transform ation.

W e then m ove to study the BRST symmetry of this U (1) N C theory and we
construct the nilpotent H am iltonian BR ST charges . W ealso analyze theBR ST sym —
m etry at Lagrangian level using the eld-anti eld form alian . T he SebergW itten
(SW ) map [5]is extended to a canonical transform ation in superphase space and in
the eld-anti eld space. W e show that the solutions of the classical m aster equation
for non-com m utative and com m utative theories are related by a canonical transfor-
m ation in the antlbracket sense.

T he organization of the paper is as follows. Tn section 2 we study the general
properties of sym m etry generators of non—local theories. Tn section 3 we construct
the gauge symm etry generator for U (1) NC gauge theory. Section 4 is devoted to
study the relation between the gauge generators of com m utative and U (1) NC gauge
theordes. In section 5 we construct the BR ST generator. T here is an appendix w here
the ordinary U (1) localM axwell theory is analyzed in term s of the d+ 1 dim ensional
form aliam .

2. H am iltonian form alism ofnon-localtheories and sym m etry

generators

2.1 BriefR eview

A non-local Lagrangian at tim e t dgpends not only on variables at tim e t but also
on ones at di erent timnes. In other words it depends on an in nite num ber of
tin e derivatives of the positions g (t) 2. The analogue of the tangent bundle for
Lagrangians depending on positions and velocities is now In nite din ensional. It is
the gpace of all possible tra fctordes. Téle action is

Slal= dt L™ (1) (2.1)

'Here we use the term "U (1)" for "rank one" gauge eld. It is not abelian for the NC case.
2For sin plicity, in this section we w ill explicitly consider the case of m echanics.



T he Eulerd.agrange (EL ) equation is obtained by taking the functional variation of
(21),

. . I ()
—— = dENitk) = 0; ENita) ———— (2.2)
q(t) q(t)

O ne of them ost striking features of such theordies is that of the new interpretation
that thisEL equation has [1 ][2]. Since the equations ofm otion are of in nite degree in
tin e derivatives, one should give as initial conditions the value of all these derivatives
at som e initial tin e. In other words, we should give the whole tra fctory (or part
of it) as the initial condition. If we denote the space of all possible tra fEctordes
asd = fq( ); 2 Rg,then (22) is a Lagrangian constraint de ning the subspace
Jr J of physical tra fctories.

In [1]2] this was In plem ented using a form alisn In which one works w ith one
extra dim ension. The nalresult wasthat one obtainsa two dim ensional eld theory
whose Lagrangian is

rgenh)= 4 ()L ) (2.3)

where the Lagrangian density L (t; ) is constructed from the original non-local one
L™ by perform ing the follow Ing replacem ents

a(® ! Qi ); d—nqi(t) ! ¢

ag @n

Note that this1+ 1 eld theory hastwo \tim &" coordinatestand but, using these
replacam ents, the dynam ics is described in such a way that the evolution is local
w ith respect to one of them (t). This is the key achievem ent that w ill enable us to
analyzem any aspects of the 1+ 1 theory using ordinary m ethods from local theories.

T he theory was also shown to have the follow ing H am ittonian
Z

H@m= d [Pt 0% ) (L )] (2.5)

Qi(t; )i at+ ) ! Qi + ):(24)

where Q 0(t; ) @ Oi(t; ) and Pi(t; ) are the canonical mom enta. Note that
the Ham iltonian depends on the elds Q ;(t; ) and an In nite number of sigm a
derivatives of it, but not on any derivative w ith respect to the evolution time t.
T hus the Ham iltonian (2.5) is indeed a wellde ned phase space quantity.

T he Ham ilton equations are, denoting tim e (t) derivatives by "dots",

oty )= 0%t ); 26)

. . L . .
BAE )= PR )+ —— o = PR )+ B0, ), 2.7)



Equations (2 .6) restrict the two dim ensional edsQ ;(t; ) todepend only on a chiral
com bination of the two times t+  on shell. They are denti ed w ith the position
variables g; (t) of the original system by

Qilty )= aqlt+ ); ie: al( )= Qi0; ): (29)

The solutions to these 1 + 1 dimensional eld egquations are related to those
of the EL equations (2.2) of the original non-local Lagrangian L"*" if we in pose a
constraint on them om entum [1]

"M )= PR ) a®% (; 9t %) 0; (2.10)

where ( ; Y isde nedbyusingthesigndistrdoution ( )as ( ; ) = %(O)
W e use waak equality symbol" " for equations those hold on the constraint surface
[6]. A susual, onehasto in pose stability to this constraint, leading us to the follow ing

one
Z

) ()0 d’E'w %01 0: (211)
W e should require further consistency conditions of this constraint. R epeating this
we get an in nite set of Ham iltonian constraints which can be expressaed collectively
as

M )= d BN % ) 0; (1 < < 1) (212)

Ifweuse (26) and (29) it reduces to the EL egquation (2.2) of g;(t) obtained from
L™ (t). This is precisely what we were seeking at the beginning, since now we see
that the new 1+ 1 Ham iltonian system incorporates the EL equation as a constraint
on the phase space.

Sum m arizing, we have been able to describe the original non-local Lagrangian
systam asa 1+ 1 din ensionallocal (in one of the tim es) H am iltonian system ,govemed
by the Ham iltonian (2.5) and the constraints (2.10) and (2.12). The fom alisn
Introduced here can be thought of as a generalization of the O strogradski form alism
[7]to the case of In nite derivative theories.

2.2 H am iltonian sym m etry generators

For local theories symm etry properties of the system are exam ined using the
N cether theorem [8]. In H am iltonian form alian the relation between sym m etrdes and
conservation law shasbeen discussed extensively for sihgular Lagrangian systam s, for
exam ple [O][10][11]. In this section, we develop a form alisn to treat the case of non—
Jocal theordes.



Suppose we have a non-local Lagrangian , (2.1), which is invariant under som e
transform ation g(t) up to a totalderivative,
d

1ROM (t) 0
———— a(t) = —k(): (2.13)

") = df
© q () dt

Now wemove to our 1 + 1 dim ensional theory and take pro t of the fact that it
was local in the evolution tim e t. Therefore, we can construct the corresponding
symm etry generator in the Ham iltonian form alisn in the usualway

G = d [Pt ) Qit; ) ( K& )] (214)

where Q;(t; )and K (t; ) are constructed from  g(t) and k (t) respectively by the
sam e replacam ent (24),as L (t; ) was obtained from L"" (t). T he quasi-nvariance

of the non—-local Lagrangian (2.13), translated to the 1 + 1 Janguage, m eans
Z

q 0 L(t )

o) Qi(t; = QK (t; ): (2.15)

W hen the original non-local Lagrangian has a gauge symm etry the q(t) and
k (t) contain an arbitrary function of tine (t) and its tderivatives. Tn  Q;(t; ) and
K(t; ) the (t) isreplaced by (; ) In the sam e m anner as g;(t) is replaced by
Qi(t; )In (24). However in order for the transform ation generated by (2.14) to be
a symm etry of the Ham ilton equations, (t; ) can notbe an arbitrary function of t
but should satisfy

~t; )= ) (2.16)

as will be shown shortly. This restriction on the param eter function m eans that
the transfom ations generated by G (t) In the d+1 din ensional H am iltonian form al-
isn are rigid transform ations in contrast with the original ones for the non—local
theory which are gauge transform ations. In the appendix we w ill see how this rigid
transform ations in the d+1 dim ensional H am iltonian form alisn are reduced to the
usual gauge transform ations in d din ension for the U (1) M axwell theory.

T he generator G (t) generates the transfom ation of Q ;(t; ),
Qi(t; )= fQi(t; ); G (tlg; (2.17)

corresponding to the transform ation g(t) in the non-local Lagrangian. Tt also gen—
erates the transform ation of them om entum P *(t; ) and so, of any functional of the
phase space variables. In particular, we will see that, as consistency dem ands, the
Ham iltonian (2.5) and the constraints (2.10) and (2.12) are Invariant, in the sense
that their sym m etry transform ation vanishes on the hypersurface of phase space de—
termm ined by the constraints. Let us state a serdes of results and properties of our
gauge generator.



a) G (t) is a conserved quantity

dEtG (t) = ;G (t);H (g + @%G (t) (2.18)
= dd’ Pl ) %Qf(u e 9 o5 9
L& ) %jt(;t’o)))4t; D) (t ) 7; ((tt;’ O;Qio<t; D)

%) Q:(t; 9+ %Qt; % = o: (2.19)

The last term of (2.18) is an explicit t derivative through (t; ). In order to show
(219) we need to use the symm etry condition (2.15) and the condition on (t; ) in
(2.16).

b) A 1lthe constraints are invariant under the sym m etry transform ations.

Let us show rst the invariance of (2.12),which is nothing but the invariance of
the equations of m otion, as was to expected for G (t) generating a sym m etry,

Z Z
25 )6 g=f d B Y% o) 4Pl Y o5 9 (K (5 9 1
Z 2 ® Z j 0
L 9 Wt 0
- 4a%9° ’ 0:(t; %) = d%—"—" o,(t; °
. Q5 9 Qsi(t ) (& Qi(t; ) (&)
. . 0
= d Ox] (t; O)M 0; (2.20)
Q:(t; )
where we have used an dentity obtained from (2.15),
Z Z
dd% ;% 0 9= d%w 9% o5 Y = o: (2.21)

Let us show now the invariance of the other constraint (2.10). Using (2.15) and
(221),

f (tZ; )iG (g =

(. O Z (+. O
_ d Olj(t; O)M d 0[ d ® ( O,. (D)Ej(t,’ (D; O)Lt’))
Q;(t; ) , 0t )
o B (5 9) © o, B %) 0
— "+ d ; (L5
. ) Q;i(t; ) ( ) Q;(t; 9 Qs
(s O (+. O
= d I O)M+ da®¢; 99 9 (SE ) 042.22)

0:(t; ) ' ' 0:(t; )

T hus we have shown that the constraint surface de ned by ’ ~ 0 is invariant
under the transform ations generated by G (t).



c) Our Ham iltonian (2.5) is the generator of tim e transkhtions.

Consider a non-local Lagrangian in (2.1) that does not depend on t explicithy, so
that tim e translation is a symm etry of the Lagrangian. To show that the generator
of such a symmetry is our Ham iltonian H in (2.5) and that it is conserved, we
should sim ply show that we recover its expression (2.5) from the general form of the
generator (2.14). Indeed, the Lagrangian changes as L' = "L®° under a tine
transhtion q(t) = "g.(t). T he corresponding generator in the present form aliam is,
using (2.14)

Ge ()= d [Pt )"0t ) ("L )% (2.23)

which is" tin estheH am iltonian (2.5). In this case the conservation of the constraints
(210) and (2.12) isunderstood also from (2.22) and (220). Our Ham iltonian in the
1+ 1 theory being the generator of tim e transhtions is telling us that we should
consider it as giving the energy of the systam . A ctually, aswe show in the appendix
for the U (1) comm utative case, if we were working in thisd + 1 form alism but for
a local theory, we can always use the systam of constraints to reduce the redundant
extra coordinates and obtain the ordinary Ham iltonian of the local theory in d di-
m ensions. N evertheless, for a truly non local theory, there is no such a sin pli cation
and the phase space is In nite din ensional. O ur discussion then show s that it is the
Ham iltonian (2.5) that we should use for com puting the energy of the system .

To summ arize this chapter, we have constructed the Ham iltonian symm etry
generators of a general non-local theory working in a d+1 dim ensional space. In
this form ulation original gauge symm etries in d dim ensions are rigid sym m etries in
the d+1 dim ensional space. This way of understanding of gauge sym m etries is also
usefiil for ordinary higher derivative theories, see appendix and [12]. T he rest of this
paper w ill be m ainly devoted to illustrate how our form alism is applied to the case
of the non comm utative U (1) theory.

3. U (1) non-com m utative gauge theory

3.1 Brief review

The m agnetic U (1) non-com m utative (NC ) gauge theory appears in the decoupling
Iim it of D p branes in the presence of a constant NSNS two form [5]. T he theory
could form ally be extended to the electric case. However In this case the el theory
isacausal [13][14]and non-unitary [15][16]. In tem s of strings this isbecause there is
an obstruction to the decoupling Iim it in the case of an electrom agnetic background
[L17]18]19]20]21]. Here we are interested in the m ost general case of spacetim e
non-comm utativity with %6 0.3

3A Ham iltonian formm alism for them agnetic theory ( i-0)is analyzed in [22].




W e consider the U (1) (rank one) NC M axwell theory in d din ensions w ith the
action
Z
s= d% ( %lﬂ@ ®o); (3.1)

where ®  isthe el strength of the U (1) NC gauge potential 2 de ned by*
P o= R iR R (32)
T he comm utators In this paper are de ned by the M oyal * product as
;9] £ g g £; f&) gx)=©"° ° fx+ )gx+ ). _0433)
The EL eguation ofm otion is
» P = 0; (34)

w here the covariant derivative is de ned by »=@ i®; 1.

T he gauge transform ation is
P =pb (35)
and it satis es a non-A belian gauge algebra,
(bbo oo = P PP (3:6)
Since the el strength transform s covariantly as
Po= i ;b (3.7)

the Lagrangian density of (3.1) transform s as
(P P )= 2P ;PP (3.8)
4 2
R R
Using dx(f g)= dx(fg)and the associativity of the star product (3.8) becom es

a totaldivergence, as was to be expected for (3.5) being a symm etry. So the action
(3.1) is nvariant under the U (1) NC transform ations.

‘W e put "hats" on the quantities of the NC theory.



3.2 G oing to the d+ 1 form alism

The Lagrangian (3.1) contains tim e derivatives of in nite order and is non-local.
The NC gauge transfom ation (3.5) is also non-local since, for electric backgrounds
(% 6 0), it contains tin e derivatives of in nite order in . Let us now procesd
to construct the Ham iltonian and the generator for the U (1) NC theory using the
form alisn introduced in the last section. T he canonical structure w ill be realized in
the d+ 1 dim ensional form alism . C orresponding to the d dim ensional gauge potential
i (t;x), we denote the gauge potential in d+1 din ensional one as o (t; ;x).° We
regard t as the evolution \tine". Now x° = is the coordinate denoted by  of
a; (t; ) In the lJast section. The other (d 1) spatial coordinates x correspond to the
Indices iof g (t; ). The signature of d+1 space is ( ; ;4 ;+ ;u5+ ).

The canonical system equivalent to the non-local action (3.1) is de ned by the
Ham iltonian (2.5) and two constraints, (2.10) and (2.12). For our present theory, the
Ham iltonian is

Z
H= dx [P Gx)e® (Gx) (L (5x)); (3.9)

where © isamomentum for® and

1
Ltix)= P (5x)P (tx); (310)

B (gx)= @  (x) @ (hx) il (5x); (t;x)]: (311)

Note that using (2.6), now the star product is de ned with respect to x = ( ;x)

Instead ofx = (t;x) in (3.3). Thus itcontains spatialderivatives of in nite orderbut
no tin e derivative. T he sam e applies for the H am iltonian, it contains no derivative
w ith respect to t, and so it isa good phase-space quantity, a fiinction of the canonical
pairs (Pp (t;x);b (t;x)) with Poisson bracket

0 (4x); P (5x%g = Dz x0: (312)

Them om entum constraint (2.10) is
Z

rogx)= P (x)+ dy x°; yO)Eb (t;y)]:l§>y x vy)
- b gx)+ (@)R° () 51 P P [ R o
(3.13)

while the constraint (2.11), obtained from the consistency of the above one, tums
out to be

Lgx)= B B (gx) O (314)

SFrom now on we willuse calligraphic letters or eds in thed + 1 form alisn .




N ote that these constraints are reducbl since I ~ 0. They reproduce the EL
equation ofm otion (3.4) using the Ham ilton equation (2.6),

QL (x) = £ (x);H (g = @ (4x) (315)

and the denti cation (2.9),sz3 (tx )= ;e (t+ x%;x). Since the Lagrangian of (3.1)
has translational invariance, the H am iltonian (3.9), aswell as the constraints (3.13)
and (3.14), are consarved.

To com pute the generator of the U (1) NC transform ation, we apply (2.14) to

our case
Z

GPl= dx[P ® @)K (3.16)

where the last term m ust be evaluated from surface term appearing in the variation
of the Lagrangian

g ) )
dx[  (2)K° 1= dx[—— @K ]= dx[—— L} (317)
Using (3.8) the U (1) generator becom es
Z )
GPl= dx P B Db+ Zl G P by (3.18)

where, as discussed In (2.16), b(t;x ) must be an arbitrary function satisfying

Bigx )= @uoPtix ) (319)

T he generator can be expressed as a linear com bination of the constraints,
Z

GPI= daxbP &) )0+ )~ 1 [ )~

i
2

(3.20)
T he fact that the generator (3.20) isa sum of constraints show s explicitly the conser—
vation of the generator on the constraint surface. Italsom eansthe U (1) iInvariance of
the H am iltonian on the constraint surface. Furthem ore G [b] is conserved, w ithout
usihg constraints, for P(t;x) satisfying (3.19),

d @
—G P]= fG [P}H —GcP1= 0 321
a0 [*] [PLHg + at [*] ( )
In agreem ent with (2.19).

F inally, the H am iltonian tums out to be
Z

H:Gmkjo]+ dX’i 0i T EL; (3.22)
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where the st term is the U (1) generator (3.20) replacing the param eter b by Ppo .
The last term E; is the only relevant one on the constraint surface, and it is

7
Ep, = dx (f)f%ﬂ‘%ﬁ %ﬂ@fjg
7
| - |
+51 ax iy ST GOPy] P G0
2
2 dxb, Eoy; (DY) [ P, BT (323)

T his expression is useful, for exam ple, to evaluate the energy of classical con gu-
rations of the theory. The two term s In the rst line have the sam e form as the
"energy" of the comm utative U (1) theory. T he last two lines are non-local contribu—
tions. However they vanish in two cases, (1) in % = 0 (m agnetic) background and

(2) for t independent solutions of A

4. Selbberg-W itten m ap, gauge generators and H am iltonians

Seberg and W itten [5]have introduced a m ap between the gauge potentialA in
aU (1) comm utative and® nanU (1) NC theories. Herewe show that the Selberg—
W itten (SW ) m ap for the spacetin e U (1) NC theories can be viewed as a canonical
transform ation in the H am ittonian form alian in d+1 dim ensions. T hism akes explicit
the physical equivalence of both theories. By nding the corresponding generating
functional, we are able to m ap quantities between theories. In particular, we show
how the gauge generator and the Ham iltonian obtained in the previous section for
the N C case arem apped to those of the com m utative theory.

4.1 The d form alism
W e recall that the SW map from the U (1) comm utative connection A to the U (1)
NC one® looks like
1
P =1 +5 A (2@ A @A )+ == (4.1)

In the follow ing discussions we keep term s only up to the rstorder n and higher
power term s of , indicated by ::, are om itted.

Undera commutative U (1) transform ation of A = @ ,them appedzb trans-
form s as

1
ﬁ@=@f+5A@g+ @ ea = b (42)

N ote thatalthough the ed 2 de ned above transform sasU (1) NC gaugepotentials
the gauge transform ation param eter function b is now gauge el dependent

1
Plip)= +5 AR (4.3)

11



The ed strengthﬁ® de ned asin (3.2) is, In temm s of the comm utative elds A
and F @A @A ,as

® =F + F F AQF (4.4)

42 Thed+ 1 form alism

Tn the d+1 din ensional Ham iltonian form alian we can regard the m apping (4.1) as
a canonical transform ation. D enoting the d+1 dim ensional potentials 0o (t;x) and
A (t;x) corresponding to d din ensional ones X (t;x)and A (t;x) respectively ©,the
generating function tums out to be

Z

W @a;b)= &xb a + A 20A @A) +W'@) (46)

N

where W °(A ) is any function of A of order . It generates the transfom ation of
A asih (41)

A (2@ A @A ) (4.7)

oz
Il
=]
+
N

and determ ines the relation between and b, conjugatem om enta of A and s
regpectively, to be

1 1 wo@)
=b 4+ Z2b 2@ A A a b “e (P A
t 3 (2@ @ ) @ ( ) + 2@ ( )+ a
(4.8)
It can be Inverted, to rstorderin , as
1 1 woa
b - 4 F + - F + AG@ @ ) A @)
2 2 A
(49)

N ote that the canonical transform ation, (4.7) and (4.9), is iIndependent of the con-
crete theories we are considering.

®R em em ber, hats or elds in the non-com m utative theory, and calligraphic letters for elds in
thed + 1 form alisn

12



TIn the last section the generator of U (1) NC theory was obtained in (3.18) as
Z .
1

GPl= dx Dby v P ;b (410)

The last term appeared since the original Lagrangian L"°" changes to a surface term
as in (3.8) under the gauge transform ation. Now we want to see how this generator
transform s under the SW m ap. It is straightbrward to show that, orw °@ )= 0,

Z Z
dx[P ® b ;a)y1=  ax[ @ J; (4.11)
w here
b 1
(;A)= + 5 A Q@ ; —= (@ 0 : (4.12)

T hese results are Independent of the speci ¢ form of Lagrangian for U (1) NC and
com m utative gauge theordes. O n the other hand the term ( K (t; ) appearing in
(2.14) doesdepend on the speci ¢ theory we are considering. FortheU (1) NC theory,
(31), it is nothing but the Lagrangian dependent term in (4.10), which expanding

to rst order in
Z Z

i 1 :

7 & )P P ;b= 7 & @)% F e (4.13)
In this case the generator of U (1) NC transform ations can be m apped to that of
com m utative one

1 woa
GP(;Aa)=  dxf % + ( 1+Z )% F )& g dx A( a
7
= dx[ @ ] (4.14)
if we choose the canonical transform ation w ith
Z
1
WO(A)=Z dx ) A F F (415)

T he right hand side of (4.14) is the wellknown generator of the U (1) com m utative
theory (see the appendix).

Now we would lke to see what is the form of the U (1) Ham iltonian obtained
from (39) under the SW map, (4.7) and (49). The U (1) comm utative H am iltonian
results to be V4

H®=  dx[ (5xA%(tx) (0L (t5x)] (4.16)
w here

(c) 1 1
LY (x)= ZlF F —F F F +§ F F F (417)
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But thisisnothingbut thed+ 1 dim ensionalH am itonian thatwewould have obtained
from an abelian U (1) gauge theory w ith Lagrangian

(c) 1 1
LY (gx) = ZF F EF F F + F F (4.18)

|~
L5

In d dim ensions. O ne can check that this Lagrangian is, up to a totalderivative, the
expansion of the Bom-In eld action up to order F °, when written in tem s of the
open string param eters [5]” .

q a
L 1 det( +F ) 1 det( + P ): (419)

5.BR ST symm etry

Tn this section we will conclude our work with the U (1) N C gauge theory by
studying its BRST and eld-anti edd properties. First of all, we will study the
BRST symmetry [23]24] at classical and quantum levels. W e w ill construct the
BR ST chargeand theBR ST invariantH am iltonian working w ith thed+ 1 dim ensional
form ulation, and we w ill check the nilpotency of the BR ST generator. T hen, in order
tom ap the BRST charges and Ham ittonians of the U (1) NC and comm utative U (1)
gauge theories, we w ill generalize the SW m ap to the superphase space.

Finally, in the last subsection, we will also study the BRST symm etry at La-
grangian levelusing the eld-anti eld form align [25][26], fora review see [27]28]291.
W e w ill construct the solution of the classical m aster equation In the classical and
gauge xed basis. W e will also realize the SW map as an antibracket canonical
transform ation.

5.1 H am iltonian BR ST charge

The BRST symmetry at classical level encodes the classical gauge structure
through the nilbotency of the BR ST transform ations of the classical eldsand ghosts
[30]31]32]. TheBR ST symm etry ofthe classical elds is constructed from the gauge
transform ation by changing the gauge param eters by ghost elds.

Let us consider again the U (1) N C theory still n d dim ensions. Tts BRST
transform ations are

R =R O P = iR ®; (51)
O =B B = 0; (52)

where ® ;F ;B are the ghost, antighost and auxiliary eld respectively.

"W e acknow ledge discussions w ith Joan Sin on on this point.
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These are again a symm etry of the Lagrangian associated w ith (3.1), since its
change under the BR ST transform ations is

JL = 51[@ 2P (523)

which, as in (3.8), can be shown a total divergence. W e can construct the gauge
xing Lagrangian ng+ rp Ly adding the proper termm of the form 3 b, m this case,
the gauge xing ferm ion is

b- Tk + ®) (5.4)
Then the @qﬁ rp 1S, Up to a totalderivative,
Byver = QOB E®+ DEE+ B): (55)
By construction, this term does not spoil the sym m etry. Tndead
5By = @ BB @): (56)

Tn order to construct the generator of the BR ST transform ations and the BR ST
Invariant Ham iltonian we should use the d+1 dim ensional form ulation. W e denote
the d+1 din ensional elds corresponding to the d dim ensional ones @;48 P, using
w ith the calligraphic letters, as @;@;ﬂ? regoectively. T he results are that the BRST
nvariant H am iltonian is given by

He=5§%+ 8% (5.7)
HO =  ax P @z gx) + B tx) O (Gx); (5.8)
Z
0
H® = ax BB(tx) + Bo(tx)P (%) B re (Gx) (59)

while the BRST charge is

Qp = %;y + o (5.10)
1
0p'= dx DB E ir. & &4+ o o) P x) (511)
Z
1
o= ax BB+ > ) 5 Byerp (%) (5.12)

Tt is an analogue of the BFV charge [33]34]for U (1) NC theory. H @ ,0 Y are the

"gauge un xed" and theH ,Q g are "gauge xed" Ham iltoniansand BR ST charges.
U sing the graded sym plectic structure of the superphase space [35]

20 (x); 0 (x)g = Dx %) )Py (tx)g = Y x");
) iB, (x0g= Y 1 BRE)Bx0g = Y %)
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we have

1 @0 = 000 = o; (5.14)

and

fH;0sg = fQs Qg = O: (5.15)

ThustheBR ST charges arenilpotent and the Ham iltoniansare BR ST invariantboth
In the gauge un xed and the gauge xed levels.

5.2 SeibergW itten m ap in superphase space

Now wewould lke to seehow the BRST chargesand the BRST invariant Ham il-
tonians of the NC and com m utative gauge theories are related. In order to do that
we will extend the SW map to a canonical transfom ation in the superphase space
A ;C;E ;B; PciPziPs). W e ntroduce the generating function

Z

W (A;C;C;B;P;B ;P )= dx P A +

c A (2@ A @A)

1
2
1 _
+ B, C+§ ARC + BC+ BB
+ WP@;C) + WA ;C;CB);
(5.106)
wherew %@ ;C) depends on the speci ¢ form of the U (1) NC Lagrangian and

w'l@a ;C;E;B ) also on the form of the gauge xing. FortheU (1) NC theory and for
the gauge xing (54),we have

WO(A;C)=711 dx ) A F F (517)

asin (4.15) and
Z

w'l= dx (>€)@f3 A (2@A @ A )gB

Nl N

1 _
A (2Q A @A)@C+5 A @@Ccg@cC : (518)

T he transform ations are obtained from the generating function by

@w QW
. P, =

ba _ .
QED, @ ?

(5.19)

where * representany elds,P, their conjuigatem om enta, and @, and @. are right

and left derivatives respectively.
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Explicitly we have

1
o =na + S A (@A QA ); (520)
1
®=c+ 5 R Eec; (521)
F_C; (522)
B=B; (523)
and
b — n F+ ! F + A Q@ }(@ ) A
a 2 2
wWo+w?h
+ =P, @C ; (524)
2 A
W0+ Wt
B.=P.+ = @ (PA ) = ; (525)
W
B - p_ A (526)
C
W 1
B, = Py rB (527)

U sing this transform ation we can rew rite the BR ST charge (5.10) as

Z
1)

O 4 o® - dx[ @ C + P=B @ )BR°C ]

Qs
Z

Qs

1
dx[ @ C + PsB + > ) 5Lgesrp (%) (5.28)

where Lge, rp (§;x) is the abelian gauge xing Lagrangian and is given by
Lysigp = @CR@C + B (@A + B): (529)

The totalU (1) Ham iltonian (5.7) becom es
Z

H= dx[ A%+PcC% PoC+PsB® ()L + Lgers)l  (530)

Reanenber L © is the U (1) comm utative Lagrangian given in (4.17). Summ arizing,
w e have been successful in m apping theN C and com m utative charges in thed+ 1 for-
m alism by generalizing the SW m ap to a canonical transform ation in the superphase
Space.

5.3 Field-anti eld form alism for U (1) non-com m utative theory

The eld-anti ed form alism allow s us to study the BRST symm etry ofa general
gauge theory by Introducing a canonical structure at a Lagrangian level [25]26 127128 1.
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T he classical m aster equation in the classical basis encodes the gauge structure of
the generic gauge theory [31][32]. The solution of the classical m aster equation in
the gauge xed basis gives the \quantum action" to be ussd in the path integral
quantization. Any two solutions of the classical m aster equations are related by a
canonical transform ation In the antibracket sense [36].

Here we will apply these ideas to the U (1) NC theory. Since we work at a
Lagrangin levelwe willwork in d dim ensions. In the classicalbasis the set of elds
and anti elds are

o R ;dg; L= ;@ g (5.31)
T he solution of the classical m aster equation
(S5;8)=0; (532)
is given by®
S[; 1=IR+RPB ® i® (@ &); (5.33)

where I@P] is the classical action and the antlbracket ( ; ) isde ned by

X Y X Y
X ;Y)= X & X &Y | (5.34)
ere, @ ,@-&

The gauge xed basiscan be analyzed by Introducing the antighost and auxiliary
elds and the corresponding anti elds. It can be obtained from the classicalbasis by
considering a canonical transfom ation, in the antlbracket sense,

Ay 2
U N srA (5.35)
generated by
b- T @ + B); (5.36)
where@ is the antighost and B is the auxiliary eld.W e have
S[; =Pk BE i ® &)+ EH; (537)
where P is the \quantum action" and is given by
P oI+ (e ED ®rBed + B (5.38)

The action P haswellde ned propagators and is the starting point of the Feynm an
perturbative calculations.

8A s in usual convention in the anti eld fmm alisn , d din ensional integration is understood

sum m ations.
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Now we would lke to study what is the SW map in the space of elds and
anti elds. W e rst consider it In the classicalbasis. In order to do that we construct
a canonical transform ation in the antibracket sense

pa  @Fal ;P &Fal ;P ]

= 7@% PoaT T (5.39)

w here

1
Fau=2 A + A (@A @A)+d?(c+5 A Q@C): (540)

T he gauge structures of NC and comm utative are m apped to each other
Py i® @ ®)=nc¢ecC: (5.41)

W e can generalize the previous results to the gauge xed basis. In this case the
transform ations of the antighost and the auxiliary eld sectors should be taken into
account. T he generator of the canonical transform ation ism odi ed from (5.40) to

1 _
Fye = Fo + 4c%’+E @ & (20A @A) C+BB: (542)

N ote that the additional term givesrisetonew termsin A  and C while the others
rem ain the sam e as in the classical basis. In particular

®-C; ®=m: (5.43)
U sing the transform ation we can express (5.37) and (5.38) as
S[; ]=I1 +A @C+CB (5.44)
w here
I =IRA)+ ( RCRC+BRA + B?) (5.45)

and ID—@(A )] is the classical action in term s of A . This is Indeed a quantum action
for the comm utative U (1) BRST Invariant action in the gauge xed basis. In this
way the canonical transfomm ation (542)mapstheU (1) NC structure ofthe S| ; ]
Into the com m utative one in the gauge xed basis.

6. D iscussions

In this paper the Ham iltonian form alism of the non-local theories is discussed
by using d+1 din ensional form ulation [1]2]. For a given non—local Lagrangian in d
din ensions the Ham iltonian is introduced by (2.5) on the phase space of the d+1
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din ensional elds. T he equivalence w ith the original non-local theory is assured by
In posing two constraints (2.10) and (2.12) consistent w ith the tin e evolution. The
degrees of freedom of the extra din ension (denoted by coordinate ) has its origin
n the in nite degrees of freedom associated w ith the non-locality. T he fact that we
have been led to a theory with \two tin es" should be intin ately related to their
acausality [13][14]and non-unitarity [15][16].

Thed+ 1 form align is also applicable to localand higher derivative theories. In
these cases the set of constraints are usad to reduce the redundant degrees of freedom
of the in nite dim ensional phase space, reproducing the standard d dim ensional
form ulations [12].

W e have analyzed the sym m etry generators of non—local theories in the Ham il-
tonian form alism . A s an exam ple we have considered the spacetime U (1) NC gauge
theory. T he gauge transform ations in d din ensions are described asa rigid sym m etry
In d+1 din ensions. The generators of rigid transform ations In d+1 din ensions tum
out to be the generators of gauge transform ations when the reduction to d din en-—
sions can be perform ed as is shown for the U (1) com m utative gauge theory in the
appendix.

W e have extended the SelbergW itten m ap to a canonical transform ation. T his
allow s us to m ap the Ham iltonians and the gauge generators of non-com m utative
and comm utative theories. W e have also seen explicitly the map of the U (1) NC
and the BT actions up to F . The reason why we were able to discuss the SW m ap
as a canonical transform ation is that we have considered the phase space of the
com m utative theory also In the d+1 din ensions.

The BRST symm etry has been analyzed at Ham iltonian and Lagrangian levels.
T he relation between the U (1) comm utative and NC param eter functions is under-
stood as a canonical transform ation of the ghosts in the super phase space of the
SW map. Using the eld-anti eld form alisn we have seen how the solution of the
classicalm aster equation for non-com m utative and com m utative theories are related
by a canonical transform ation in the antibracket sense. T his results show s that the
antibracket cohom ology classes of both theories coincide in the space of non—local
functionals. The explicit form s of the antibracket canonical transfom ations could
be useful to study the observables, anom alies, etc. in the U (1) NC theory.
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A .U (1) commutative M axwell theory in d+1 dim ensions

Our d+ 1 formalism can also be usad for describing ordinary local theordes.
A s an exam ple of this, we will show how the U (1) comm utative M axwell theory is
form ulated using the d+1 dim ensional canonical form alisn developed for non-local
theories In section 2 and see how it is reduced to the standard canonical form alian
in d din ensions.

The canonicald + 1 systam is de ned by the Ham iltonian (2.5) and two con-
straints, (2.10) and (2.11). The Ham iltonian is

H = Z dx [ (Gx)@eA (Gx) ()L (5x) J; (A1)
w here
L (tx) = leF (Gx)F  (Gx); @ 2)
F (x)= @A (x) @A (tx): (A 3)
Themom entum constraint (2.10) is
Z
fGx)= (Gx)+ dy &% YOF (Gy) @ (xy)
= )+ @F° (gx) 0 @ 4)
and the constraint (2.11) is
~(x)=@F (tx) O: (A 5)

T he generator of the U (1) transform ation is given, using (2.14), by

The Ham iltonian is expressed using the constraints and the U (1) generator as
Z Z
i 1. 2,12
H=GRol+ dx/'Fo+ dx (K)ESFo’+ Fyo: (B 8)

The Ham iltonian (A 8) as well as the constaints (A 4) and (A .5) contain no
tin e (t) derivative and are functions of the canonicalpairs (A (t;x); (t;x)). They
are consarved since the M axwell Lagrangian in d dim ensions has tin e translation
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Invariance. The U (1) generator is also conserved, w ithout using constraints, for
(t;x) satisfying (2.16),
gG[]=fG[];Hg+ EG[]=O; — @, : (A 9)
dt @t
In agreem ent with (219). Since the param eter is sub fct to the last relation in
(A 9) theU (1) transform ations in the d+ 1 dim ensional canonical form ulation are not
gauge but rigid ones. W e w ill see how the gauge transform ations appear when it is
w ritten in a d din ensional form .

In cases where our Lagrangians are local or higher derivative ones it is often
convenient to m ake expansion of the canonical variables using the Taylor basis[37]
In reducing them to d din ensional form s. W e expand the canonical variables as

® S
A (5x) & (x%) A M) (tx); (t;%) & (x%) |, Ex)AA 10)
m=0 m=0
where e (x°) and e: (x°) are orthonom al basis
0
e’) = ( Go) &) e)-= (X,,); (@ 11)
. !
. X 0 0
dx’ e’ x”) e x°) = . ; exex)= @ x%): @12

ordinates
Z & Z
(t) = dx (x)™ A (tx) = dx ) (Ex) " A (%)
m=0
@A 13)
In term s of them the constraint (A 4) is expressed as
e
Cgx)= &) (Ex); (A 14)
m=0
T Gx) = L (x) = 0; m 0); (& 15)
x) = Emx) @) @A (mx) = 0; (& 16)
T (Ex) = L (Gx) = 0; m 1) (& 17)
while the constraint (A 5) is
X
~o(tx) = & (x°)~ M (gx); (@ 18)
m=0
M (k) = 65@A N (Gx) ea T x) A" mx) eal Vgx) = 0;
m 0); @A 19)
W gx) = 6@ T %) @A %) = 0; m  0): @ 20)
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It m ust be noted the dentities
SO (k) = @~ (Ex); m  0): (A 21)

T hus the only independent constraint of (A 20) ism = 0 case. Tt can be expressed,
using (A .16), as the gauss law constraint,

,NO(O)(t,.X): Q; (io)(t;x) = 0: A 22)

Follow ing the D irac’s standard procedure of constraints [6 ]we classify them and
elin lnate the second class constraints. T he constraints (A 17) (m 2) are paired

w ith the constraints (A 19) (m 0) to form second class sets. They are used to
elim inate canonical pairs (A( (t;x); (m)(tx)) (m 2) as

?m)( x)=@@A" P tx) eAl Ywx)+ @Al Y gx); @ 23)

) (Gix)) = 0; (m 2): A 24)

The constraints (A 17) (m = 1) and (A 16) are paired to a second class set and are

used to elin nate (A [ (tjx); 1, (%)) as
AP mx) = E )+ @A (Gx); (A 25)
) (%) = 0: (& 26)

A fter elim inating the canonical pairs (A im )(t;x ); (im ) (Eix)); (m 1) using the
second class constraints the system is descrlbbed in term s of the canonical pairs
@M (x); §gx)and @ (Gx); & (Gx));m  0). TheD iracbracketsam ong
them rem ain sam e as the POJsson brackets. R em em ber the d din ensional elds are
denti ed by (29) as

A (Gx)=A (50;x) = A9(Ex); (LX) = o tx):  @27)
T he ram aining constraints are (A 22) and (A 15),
@ o (tx) = 0; o) (Eix) = 0: m 0) (A 28)

They are st class constraints. The Ham iltonian (A 8) in the reduced variables is

7
%
H()= dx A5 O wx) AT mx)@ ) x)
m=0
1 .
+ S0 oEx) (@A“”(t ) ea T gx))? - (@ 29)
The U (1) generator (A .7)
Z " }é- #
G[]= dx T gx) o, (Ex) O(Ex) (@ 4 (Lx)) A 30)
m=0
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w here

%
t; )= ™) (5% ), (x°); and S hgx) = ™D (gx)A 31)

m=0

The rstchssconstraits ( (tx)= 0;m  0)in (A 28)mean thatA ¢ ' (tjx);
(m 0) are the gauge degrees of freedom and we can assign to them any function of
x forallvaliesofm atgiven tinet= t. It isequivalent to saying that we can assign
any function of tine to A (()O) (t;x) for all value of t, due to the equation of m otion

A—ém )(t;x) = Aém”)(t;x). In this way we can understand that the Ham iltonian

(A 29) isequivalent to the standard form of the canonicalH am iltonian oftheM axwell
theory,
Z  h
H(= dx Ag(x) (x)  Ag(x)(@ H(5x))

) 1
+ = MEx))P o+ 7 @ALEx) @:A 5 (tx))? (A 32)

Inwhich A (t;x) isarbitrary function of tim e. In the sam em annertheU (1) generator
(A 30) is
Z  h _ i
G[ I= dx  —(x) *(x) (x) (@ "(x)) ; (A 33)

in which the gauge param eter function  (t;x) ©)(£;%) is regarded asany function
of tim e.
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