
CERN-TH/2000-246
UB-ECM-PF-00/10

TOHO-FP-0068

Gauge and BRST Generators for Space-Time
Non-commutative U(1) Theory

Joaquim Gomis †,∗,1, Kiyoshi Kamimura +,2, Toni Mateos∗,3

† Theory Division CERN
CH-1211 Geneva 23, Switzerland

∗ Departament ECM, Facultat de F́ısica
Universitat de Barcelona and Institut de F́ısica d’Altes Energies,

Diagonal 647, E-08028 Barcelona, Spain

+ Department of Physics, Toho University, Funabashi 274-8510, Japan

Abstract

The Hamiltonian (gauge) symmetry generators of non-local (gauge) theories are
presented. The construction is based on the d+1 dimensional space-time formulation
of d dimensional non-local theories. The procedure is applied to U(1) space-time
non-commutative gauge theory. In the Hamiltonian formalism the Hamiltonian and
the gauge generator are constructed. The nilpotent BRST charge is also obtained.
The Seiberg-Witten map between non-commutative and commutative theories is
described by a canonical transformation in the superphase space and in the field-
antifield space. The solutions of classical master equations for non-commutative and
commutative theories are related by a canonical transformation in the antibracket
sense.

1 E-mail: gomis@ecm.ub.es
2 E-mail: kamimura@ph.sci.toho-u.ac.jp
3 E-mail: tonim@ecm.ub.es



1 Introduction

Non-local theories are described by actions that contain an infinite number of temporal
derivatives. There exists an equivalent formulation of those theories in a space-time of
one dimension higher [1]. The space has two times and the dynamics in this space is
described in such a way that the evolution is local with respect to one of the times. The
Hamiltonian formalism is constructed in the d+1 dimensions as a local theory with respect
to the evolution time [1][2][3][4]. The Euler-Lagrange equations appear as Hamiltonian
constraints [2]. A characteristic feature is that there is no dynamics in the usual sense; i.e.
the physical trajectories are not obtained as evolution of some given initial conditions.

In this paper we construct symmetry generators of non-local theories. Corresponding
to symmetries of a non-local Lagrangian the symmetry generators are constructed in a
natural way in d+1 dimensions and are conserved quantities. When original symmetries of
the non-local theory are gauge symmetries the corresponding transformations are realized
as rigid symmetries in the d+1 dimensions.

We analyze in detail the case of space-time non-commutative (NC ) U(1) gauge
theory1. We study the relation between the gauge generators of the NC and commu-
tative theories. The nilpotent Hamiltonian BRST charges are constructed. We also
analyze the BRST symmetry at Lagrangian level using the field-antifield formalism. The
Seiberg-Witten (SW) map [5] is extended to a canonical transformation in superphase
space and in the field-antifield space. The solutions of the classical master equation for
non-commutative and commutative theories are related by a canonical transformation in
the antibracket sense.

The organization of the paper is as follows. In section 2 we study the general prop-
erties of symmetry generators of non-local theories. In section 3 we construct the gauge
symmetry generator for U(1) NC gauge theory. Section 4 is devoted to study the relation
between the gauge generators of commutative and U(1) NC gauge theories. In section 5
we construct the BRST generator. There is an appendix where the ordinary U(1) local
Maxwell theory is analyzed in terms of the d+1 dimensional formalism.

2 Hamiltonian formalism of non-local theories and

symmetry generators

A non-local Lagrangian at time t depends not only on variables at time t but also on
ones at different times. In other words it depends on an infinite number of time derivatives
of the positions qi(t)

2. The analogue of the tangent bundle for Lagrangians depending
on positions and velocities is now infinite dimensional. It is the space of all possible
trajectories. The action is

S[q] =
∫

dt Lnon(t). (2.1)

1Here we use the term ”U(1)” for ”rank one” gauge field. It is not abelian for the NC case.
2In this section we will explicitly consider the case of mechanics.
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The Euler-Lagrange (EL) equation is obtained by taking the functional variation of (2.1),

δS[q]

δqi(t)
=

∫
dt′Ei(t′, t; [q]) = 0, Ei(t′, t; [q]) ≡ δLnon(t′)

δqi(t)
. (2.2)

In previous papers [1][2] we have developed a general Hamiltonian formalism of non-
local theories 3 as one of a local theory in a space one dimension higher than the original
one. This space has two times for the system of (2.1) and it is a two dimensional field
theory. The Hamiltonian system is described in terms of the fields Qi(t, σ) and their
canonical momenta P i(t, σ). The extra local coordinate σ has the signature of time, but
here it is considered as ’spatial’ from the point of view of the chosen evolution time t in
1 + 1 dimensions.

The Hamiltonian is introduced by

H(t) =
∫

dσ [ P i(t, σ)Qi
′(t, σ) − δ(σ)L(t, σ) ], (2.3)

where Q′
i(t, σ) ≡ ∂σQi(t, σ). The ”Lagrangian density” L(t, σ) is constructed from the

non-local Lagrangian Lnon(t) by the following replacements,

qi(t) → Qi(t, σ),
dn

dtn
qi(t) → ∂n

∂σn
Qi(t, σ), qi(t + ρ) → Qi(t, σ + ρ). (2.4)

If the original Lagrangian depends explicitly on t we should replace the t by (t + σ).
Therefore the Lagrangian density L(t, σ) is local with respect the evolution time t. It
depends on the fields Qi(t, σ + ρ) and an infinite number of sigma derivatives of it, but
not on any derivative with respect to the evolution time t. Thus the Hamiltonian (2.3) is
indeed a phase space quantity.

The Hamilton equations are, denoting time (t) derivatives by ”dots”,

Q̇i(t, σ) = Q′
i(t, σ), (2.5)

Ṗ i(t, σ) = P i′(t, σ) +
δL(t, 0)

δQi(t, σ)
= P i′(t, σ) + E i(t; 0, σ), (2.6)

where E(t; σ′, σ) is defined by

E i(t; σ′, σ) =
δL(t, σ′)
δQi(t, σ)

. (2.7)

From (2.5) the two dimensional fields Qi(t, σ) depend only on a chiral combination of
the two times t + σ on shell. They are identified with the position variables qi(t) of the
original system by

Qi(t, σ) = qi(t + σ), i.e. qi(t) = Qi(t, 0). (2.8)

The solutions of this 1+1 dimensional field equations are related to those of the EL
equations (2.2) of the original non-local Lagrangian Lnon(t) if we impose a constraint on
the momentum, [1]

ϕi(t, σ) = P i(t, σ) −
∫

dσ′ χ(σ,−σ′) E i(t; σ′, σ) ≈ 0, (2.9)

3See also [3][4]
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where χ(σ,−σ′) is defined by using the sign distribution ε(σ) as χ(σ,−σ′) = ε(σ)−ε(σ′)
2

.
We use weak equality symbol ”≈” for equations that hold on the constraint surface [6].

The stability condition of (2.9) requires

ϕ̇i(t, σ) ≈ δ(σ) [
∫

dσ′ E i(t; σ′, 0)] ≈ 0. (2.10)

We should require further consistency conditions of this constraint. Repeating this we get
an infinite set of Hamiltonian constraints which are expressed collectively as

ϕ̃i(t, σ) =
∫

dσ′E i(t; σ′, σ) ≈ 0, (−∞ < σ < ∞). (2.11)

If we use (2.5) and (2.8) it reduces to the EL equation (2.2) of qi(t) obtained from Lnon(t).
In this way we can describe the non-local Lagrangian system as a 1 + 1 dimensional

local Hamiltonian system with the Hamiltonian (2.3) and the constraints (2.9) and (2.11).
The formalism introduced here can be thought as a generalization of the Ostrogradski
formalism [7] to the case of infinite derivative theories.

2.1 Hamiltonian symmetry generators

For local theories symmetry properties of the system are examined using the Nöether
theorem [8]. In Hamiltonian formalism the relation between symmetry and conservation
law has been discussed extensively for singular Lagrangian systems, for example [9][10][11].
Here we want to develop a formalism for the case of non-local theories.

Suppose we have a non-local Lagrangian , (2.1), which is invariant under some trans-
formation δq(t) up to a total derivative,

δLnon(t) =
∫

dt′
δLnon(t)

δqi(t′)
δqi(t

′) =
d

dt
k(t). (2.12)

Since our 1 + 1 dimensional theory is local in the evolution time t, we can construct the
corresponding symmetry generator in the Hamiltonian formalism as

G(t) =
∫

dσ [ P i(t, σ)δQi(t, σ) − δ(σ)K(t, σ) ], (2.13)

where δQi(t, σ) and K(t, σ) are constructed from δq(t) and k(t) respectively by the same
replacement (2.4), as L(t, σ) was obtained from Lnon(t). The quasi-invariance of the
non-local Lagrangian (2.12) means∫

dσ′
δL(t, σ)

δQi(t, σ′)
δQi(t, σ

′) = ∂σK(t, σ). (2.14)

When the original non-local Lagrangian has a gauge symmetry the δqi(t) and k(t)
contain an arbitrary function of time λ(t) and its t derivatives. In δQi(t, σ) and K(t, σ)
the λ(t) is replaced by Λ(t, σ) in the same manner as qi(t) is replaced by Qi(t, σ) in (2.4).
However in order for the transformation generated by (2.13) to be a symmetry of the
Hamilton equations, Λ(t, σ) can not be an arbitrary function of t but should satisfy

Λ̇(t, σ) = Λ′(t, σ) (2.15)

3



as will be shown shortly. This restriction on the parameter function Λ means that the
transformations generated by G(t) in the d+1 dimensional Hamiltonian formalism are
rigid transformations in contrast with the original ones for the non-local theory which are
gauge transformations. In the appendix we will see how this rigid transformations in the
d+1 dimensional Hamiltonian formalism are reduced to the usual gauge transformations
in d dimension for the U(1) Maxwell theory.

The generator G(t) generates the transformation of Qi(t, σ),

δQi(t, σ) = {Qi(t, σ), G(t)}, (2.16)

corresponding to the transformation δqi(t) in the non-local Lagrangian . The transfor-
mation of the momentum P i(t, σ) is such that the Hamiltonian and the constraints are
invariant on the phase space satisfying the constraints.

We first see that the generator G(t) is a conserved quantity,

d

dt
G(t) = {G(t), H(t)} +

∂

∂t
G(t) (2.17)

=
∫

dσdσ′
[
Pj(t, σ)

(
δ(δQj(t, σ))

δQi(t, σ′)
Qj

′(t, σ′)− ∂σδ(σ − σ′)δQj(t, σ
′)

+
δ(δQj(t, σ))

δΛ(t, σ′)
Λ̇(t, σ′)

)
− δ(t, σ)

(
δK(t, σ)

δQi(t, σ′)
Qi

′(t, σ′)

− δ(L(t, σ))

δQi(t, σ′)
δQi(t, σ

′) +
δK(t, σ)

δΛ(t, σ′)
Λ̇(t, σ′)

)]
= 0. (2.18)

The last term of (2.17) is an explicit t derivative through Λ(t, σ). In order to show (2.18)
we need to use the symmetry condition (2.14) and the condition on Λ(t, σ) in (2.15).

We can check the invariance of the constraint (2.11) under the symmetry transforma-
tions,

{ϕ̃i(t, σ), G(t)} = {
∫

dσ′′E i(t, σ′′, σ),
∫

dσ′ [ Pj(t, σ′)δQj(t, σ
′) − δ(σ′)K(t, σ′) ]}

=
∫

dσ′dσ′′
δ2L(t, σ′′)

δQj(t, σ′)δQi(t, σ)
δQj(t, σ

′) =
∫

dσ′
δϕ̃j(t, σ′)
δQi(t, σ)

δQj(t, σ
′)

= −
∫

dσ′ϕ̃j(t, σ′)
δ(δQj(t, σ

′))
δQi(t, σ)

≈ 0, (2.19)

where we have used an identity obtained from (2.14),∫
dσdσ′E j(t, σ, σ′)δQj(t, σ

′) =
∫

dσ′ϕ̃j(t, σ′)δQj(t, σ
′) = 0. (2.20)

The invariance of the constraint (2.9) is, using (2.14) and (2.20) ,

{ϕi(t, σ), G(t)} =

= −
∫

dσ′ϕj(t, σ′)
δ(δQj(t, σ

′))
δQi(t, σ)

−
∫

dσ′[
∫

dσ′′χ(σ′,−σ′′)E j(t; σ′′, σ′)
δ(δQj(t, σ

′))
δQi(t, σ)

− δ(σ′)
δ(K(t, σ′))
δQi(t, σ)

+
∫

dσ′′χ(σ,−σ′′)
δE i(t; σ′′, σ)

δQj(t, σ′)
δQj(t, σ

′)]

= −
∫

dσ′ϕj(t, σ′)
δ(δQj(t, σ

′))
δQi(t, σ)

+
∫

dσ′χ(σ,−σ′)ϕ̃j(t, σ′)
δ(δQj(t, σ

′))
δQi(t, σ)

≈ 0. (2.21)
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Thus we have shown that the constraint surface defined by ϕ ≈ ϕ̃ ≈ 0 is invariant under
the transformations generated by G(t).

When the non-local Lagrangian in (2.1) does not depend on t explicitly the time
translation is a symmetry of the Lagrangian. The generator is the Hamiltonian H in
(2.3) and it is conserved. We should recover its expression (2.3) from the general form of
the generator (2.13). The Lagrangian changes as δLnon = εL̇non under time translation
δqi(t) = εq̇i(t). The corresponding generator in the present formalism is

GH(t) =
∫

dσ [ P i(t, σ)(εQi
′(t, σ)) − δ(σ)(εL(t, σ)) ], (2.22)

which is ε times the Hamiltonian (2.3). In this case the conservation of the constraints
(2.9) and (2.10) is understood also from (2.21) and (2.19).

Summarizing, we have constructed the Hamiltonian symmetry generators of a general
non-local theory working in a d+1 dimensional space. In this formulation original gauge
symmetries in d dimensions are rigid symmetries in the d+1 dimensional space. This way
of understanding of gauge symmetries is also useful for ordinary higher derivative theories,
see appendix and [12].

3 U(1) non-commutative gauge theory

The magnetic U(1) non-commutative (NC) gauge theory appears in the decoupling
limit of D-p branes in the presence of a constant NS-NS two form [5]. The theory could
formally be extended to the electric case. However in this case the field theory is acausal
[13][14] and non-unitary [15][16]. In terms of strings this is because there is an obstruction
to the decoupling limit in the case of an electromagnetic background [17][18][19][20][21].
Here we are interested in the general case of space-time non-commutativity with θ0i 6= 0.

We consider the U(1) (rank one) NC Maxwell theory in d dimensions with the action

S =
∫

ddx (−1

4
F̂µνF̂

µν), (3.1)

where F̂µν is the field strength of the U(1) NC gauge potential Âµ defined by4

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]. (3.2)

The commutators in this paper are defined by the Moyal * product as

[f, g] ≡ f ∗ g − g ∗ f, f(x) ∗ g(x) = [ei θµν

2
∂αµ∂βν f(x + α)g(x + β)]α=β=0. (3.3)

The EL equation of motion is

D̂µF̂
µν = 0, (3.4)

where the covariant derivative is defined by D̂ = ∂ − i[Â, ].

4We put ”hats” on the quantities of the NC theory.
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The gauge transformation is

δÂµ = D̂µλ (3.5)

and satisfies a non-Abelian gauge algebra,

(δλδλ′ − δλ′δλ)Âµ = −iD̂µ[λ, λ′]. (3.6)

Since the field strength transforms covariantly as

δF̂µν = −i[F̂µν , λ] (3.7)

the Lagrangian density of (3.1) transforms as

δ(−1

4
F̂µνF̂

µν) =
i

2
[F̂µν , λ] F̂ µν . (3.8)

Using
∫

dx(f ∗ g) =
∫

dx(fg) and the associativity of the star product (3.8) becomes a
total divergence. The action (3.1) is invariant under the U(1) NC transformations (3.5).

The Lagrangian (3.1) contains time derivatives of infinite order and is non-local. The
NC gauge transformation (3.5) is also non-local since, for electric backgrounds (θ0i 6= 0), it
contains time derivatives of infinite order of λ. Here we construct the Hamiltonian and the
generator for the U(1) NC theory using the formalism introduced in the last section. The
canonical structure is realized in the d+1 dimensional formalism. Corresponding to the d
dimensional gauge potential Âµ(t,x), we denote the gauge potential in d+1 dimensional
one as Âµ(t, σ,x). We regard t as the evolution “time” and (σ,xi) ≡ xµ as “spatial”
coordinates. Now x0 = σ is the coordinate denoted by σ of qi(t, σ) in the last section.
The (d − 1) spatial coordinates x are corresponding to the indices i of qi(t, σ). The
signature of d+1 space is (−,−, +, +, ..., +).

The canonical system equivalent to the non-local action (3.1) is defined by the Hamil-
tonian (2.3) and two constraints, (2.9) and (2.10). The Hamiltonian is

H(t) =
∫

ddx [Π̂ ν(t, x)∂x0Âν(t, x)− δ(x0)L(t, x)], (3.9)

where Π̂ ν is a momentum for Âν and

L(t, x) = −1

4
F̂µν(t, x)F̂µν(t, x), (3.10)

F̂µν(t, x) = ∂µÂν(t, x)− ∂νÂµ(t, x)− i[Âµ(t, x), Âν(t, x)]. (3.11)

Here the star product is defined with respect to xµ = (σ,xi) in place of xµ = (t,xi) in
(3.3). Thus it contains infinite order of spatial derivatives but no time derivative. The
Hamiltonian contains no derivative with respect to t and is a function of the canonical
pairs (Âµ(t, x), Π̂ µ(t, x)) with the Poisson bracket

{Âµ(t, x), Π̂ ν(t, x′)} = δµ
ν δ(d)(x− x′). (3.12)
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The momentum constraint (2.9) is

ϕν(t, x) = Π̂ ν(t, x) +
∫

dy χ(x0,−y0) F̂µν(t, y) D̂y
µδ(x− y)

= Π̂ ν(t, x) + δ(x0)F̂0ν(t, x)− i

2

(
ε(x0)[F̂µν , Âµ]− [ε(x0)F̂µν , Âµ]

)
≈ 0.

(3.13)

The constraint (2.10) obtained from the consistency of the above constraint is

ϕ̃ν(t, x) = D̂µF̂µν(t, x) ≈ 0. (3.14)

Note that these constraints are reducible D̂µϕ̃
µ ≡ 0. They reproduce the EL equation of

motion (3.4) using the Hamilton equation (2.5),

∂tÂµ(t, x) = {Âµ(t, x), H(t)} = ∂x0Âµ(t, x) (3.15)

and the identification (2.8), Âµ(t, x
ν) = Âµ(t + x0,x). Since the Lagrangian of (3.1) has

translational invariance the Hamiltonian (3.9) as well as the constraints (3.13) and (3.14)
are conserved.

The generator of the U(1) NC transformation, (2.13), is

G[Λ] =
∫

dx[ Π̂ µδÂµ − δ(x0) K0 ], (3.16)

where the last term is evaluated from∫
dx[−δ(x0) K0 ] =

∫
dx[

ε(x0)

2
∂µKµ ] =

∫
dx[

ε(x0)

2
δL ]. (3.17)

Using (3.8) the U(1) generator becomes

G[Λ] =
∫

dx
[
Π̂ µD̂µΛ +

i

4
ε(x0)F̂µν [F̂µν , Λ]

]
, (3.18)

where Λ(t, xµ) is an arbitrary function satisfying (2.15),

Λ̇(t, xµ) = ∂x0Λ(t, xµ) (3.19)

It can be expressed as a linear combination of the constraints,

G[Λ] =
∫

dx Λ
[
−(D̂µϕµ)− δ(x0)ϕ̃0 +

i

2

(
ε(x0)[ϕ̃ν , Âν]− [ε(x0)ϕ̃ν , Âν ]

)]
. (3.20)

The fact that the generator (3.20) is a sum of constraints shows explicitly the conservation
of the generator on the constraint surface. It also means the U(1) invariance of the
Hamiltonian on the constraint surface. Furthermore G[Λ] is conserved, without using
constraints, for Λ(t, x) satisfying (3.19),

d

dt
G[Λ] = {G[Λ], H} +

∂

∂t
G[Λ] = 0 (3.21)
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in agreement with (2.18).

The Hamiltonian can also be written as

H = G[Â0] +
∫

dx ϕi F̂0i + EL, (3.22)

where the first term is the U(1) generator (3.20) of the parameter Λ = Â0. The last term
EL is the non weakly zero part of the Hamiltonian,

EL =
∫

dx δ(x0) {1

2
F̂2

0i +
1

4
F̂2

ij}

+
i

2

∫
dx Â0

(
1

2
[F̂ ij, ε(x0)F̂ij]− [F̂0i, ε(x0)F̂0i]

)
+

i

2

∫
dx Âj

(
[F̂0i, ε(x

0)F̂ ij]− [ε(x0)F̂0i, F̂ ij]
)
. (3.23)

This expression is useful, for example, to evaluate the energy of classical configurations
of the theory. The two terms in the first line have the same form as the ”energy” of
the commutative U(1) theory. The last two lines are non-local contributions. However
they vanish in two cases, (1) in θ0i = 0 (magnetic) background and (2) for t independent
solutions of Aµ.

4 Seiberg-Witten map, gauge generators and Hamil-

tonians

Seiberg and Witten [5] have introduced a map between the gauge potential Aµ in
an U(1) commutative and Âµ in an U(1) NC theories. Here we discuss the Seiberg-
Witten (SW) map for the space-time U(1) NC theories as a canonical transformation in
the Hamiltonian formalism in d+1 dimensions. We also show how U(1) generator in the
NC theory is mapped to the one of the commutative theory.

The SW map from the U(1) commutative connection Aµ to the U(1) NC one Âµ is

Âµ = Aµ +
1

2
θρσAσ(2∂ρAµ − ∂µAρ) + ... . (4.1)

In the following discussions we keep terms only up to the first order of θ and higher power
terms of θ indicated by ... are omitted.

Under a commutative U(1) transformation of δAµ = ∂µλ, Âµ transforms as

δÂµ = ∂µ{λ +
1

2
θρσAσ∂ρλ}+ θρσ∂σλ∂ρAµ = D̂µλ̂. (4.2)

Although the field Âµ defined above transforms as U(1) NC gauge potentials the gauge

transformation parameter function λ̂ is now gauge field dependent

λ̂(λ, A) = λ +
1

2
θρσAσ∂ρλ. (4.3)
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The field strength F̂µν defined as in (3.2) is, in terms of the commutative fields Aµ and
Fµν ≡ ∂µAν − ∂νAµ, as

F̂µν = Fµν + θρσFρµFσν − θρσAρ∂σFµν (4.4)

and transforms under δAµ = ∂µλ covariantly as

δF̂µν = −θρσ∂ρλ∂σFµν = −i[Fµν , λ] = −i[F̂µν , λ̂]. (4.5)

In the d+1 dimensional Hamiltonian formalism we can regard the mapping (4.1) as a
canonical transformation. Denoting the d+1 dimensional potentials Âµ(t, x) and Aµ(t, x)
corresponding to d dimensional ones Âµ(t,x) and Aµ(t,x) respectively, the generating
function is

W (A, Π̂ ) =
∫

ddx Π̂ µ
(
Aµ +

1

2
θρσAσ(2∂ρAµ − ∂µAρ)

)
+ W 0(A), (4.6)

where W 0(A) is a function of Aµ of order θ. It reproduces the transformation of Aµ as
in (4.1)

Âµ = Aµ +
1

2
θρσAσ(2∂ρAµ − ∂µAρ) (4.7)

and determine the relation between Π µ and Π̂ µ, conjugate momenta of Aµ and Âµ re-
spectively, as

Π µ = Π̂ µ +
1

2
Π̂ σθρµ(2∂ρAσ − ∂σAρ)− ∂ρ(θ

ρσAσΠ̂
µ) +

1

2
∂ρ(Π̂

ρθµσAσ) +
δW 0(A)

δAµ
. (4.8)

It can be inverted, to first order in θ, as

Π̂ µ = Π µ + θµρΠ σFρσ + Π µ 1

2
θρσFρσ + θρσAσ∂ρΠ

µ − 1

2
(∂ρΠ

ρ)θµσAσ − δW 0(A)

δAµ
. (4.9)

Note that the canonical transformation, (4.7) and (4.9), is independent of the concrete
theories we are considering.

In the last section the generator of U(1) NC theory was obtained in (3.18) as

G[Λ̂] =
∫

dx
[
Π̂ µD̂µΛ̂ +

i

4
ε(x0)F̂µν [F̂µν , Λ̂]

]
. (4.10)

The last term appeared since the original Lagrangian Lnon changes as a surface term as in
(3.8) under the gauge transformation. Now we want to see how this generator transforms
under the SW map. It is straightforward to show that, for W 0(A) = 0,∫

dx[ Π̂ µD̂µΛ̂(Λ,A) ] =
∫

dx [ Π µ∂µΛ ], (4.11)
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where

Λ̂(Λ,A) = Λ +
1

2
θρσAσ∂ρΛ, Λ̇ = ∂x0Λ. (4.12)

These results are independent of the specific form of Lagrangian for U(1) NC and com-
mutative gauge theories. On the other hand the term δ(σ)K(t, σ) appearing in (2.13)
depends on the specific theory we are considering. For the U(1) NC theory, (3.1), it is
the Lagrangian dependent term in (4.10) and is up to the first order of θ

i

4

∫
dx ε(x0)F̂µν [F̂µν , Λ̂] =

1

4

∫
dx δ(x0)θ0iFµνFµν∂iΛ. (4.13)

In this case the generator of U(1) NC transformations can be mapped to that of commu-
tative one

G[Λ̂(Λ,A)] =
∫

dx {Π 0∂0Λ + (Π i +
1

4
δ(x0)θ0iFµνFµν)∂iΛ} −

∫
dx

δW 0(A)

δAµ
∂µΛ

=
∫

dx [ Π µ∂µΛ ] (4.14)

for a choice of the canonical transformation with

W 0(A) =
1

4

∫
dx δ(x0) θ0µAµFρσFρσ. (4.15)

The right hand side of (4.14) is the generator for any U(1) commutative theory which is
invariant under the U(1) gauge transformations. See the appendix for case of the U(1)
commutative Maxwell theory.

Now we would like to see what is the form of the U(1) Hamiltonian obtained from
(3.9) under the SW map, (4.7) and (4.9). The U(1) commutative Hamiltonian results to
be

H(c) =
∫

dx [Π ν(t, x)A′
ν(t, x) − δ(x0)L(c)(t, x)] (4.16)

where

L(c)(t, x) = −1

4
FνµFνµ − 1

2
FµνθρσFρµFσν +

1

8
θνµFνµFρσFρσ. (4.17)

It is the d+1 dimensional Hamiltonian for an abelian U(1) gauge theory with the La-
grangian

L(c)(t,x) = −1

4
F νµFνµ − 1

2
F µνθρσFρµFσν +

1

8
θνµFνµFρσF ρσ (4.18)

in the d dimension. One can check that this Lagrangian is, up to a total derivative, the
expansion of BI action up to order F 3 terms when written in terms of the open string
parameters [5] 5.

L(c) ∼ 1−
√
− det(ηµν − θµν + Fµν) ∼ 1−

√
− det(ηµν + F̂µν). (4.19)

5We acknowledge discussions with Joan Simón on this point.
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5 BRST symmetry

In this section we study the BRST symmetry [22][23] at classical and quantum levels
for the U(1) NC gauge theory. We construct the BRST charge and the BRST invariant
Hamiltonian working with the d+1 dimensional formulation. We check the nilpotency of
the BRST generator. The SW map will be generalized in the superphase space. The
BRST charges and Hamiltonians of the U(1) NC and commutative U(1) gauge theories
are mapped each other.

We will also study the BRST symmetry at Lagrangian level using the field-antifield
formalism [24][25], for a review see [26][27][28]. We will construct the solution of the
classical master equation in the classical and gauge fixed basis. We will also realize the
SW map as an antibracket canonical transformation.

5.1 Hamiltonian BRST charge

The BRST symmetry at classical level encodes the classical gauge structure through
the nilpotency of the BRST transformations of the classical fields and ghosts [29][30][31].
The BRST symmetry of the classical fields is constructed from the gauge transformation
by changing the gauge parameters by ghost fields.

The BRST transformations are

δBÂµ = D̂µĈ, δBĈ = − iĈ ∗ Ĉ, (5.1)

δBĈ = B̂, δBB̂ = 0, (5.2)

where Ĉ, Ĉ, B̂ are the ghost, antighost and auxiliary field respectively.
The Lagrangian associated with (3.1) changes under the BRST transformations as

δBL =
i

2
[F̂µν , Ĉ] F̂ µν . (5.3)

We construct the gauge fixing Lagrangian L̂gf+FP by introducing the gauge fixing
fermion

Ψ̂ = Ĉ (∂µÂµ + αB̂) (5.4)

as δBΨ̂ up to total derivative. The L̂gf+FP is given by

L̂gf+FP = − ∂µĈ D̂µĈ + B̂ (∂µÂµ + αB̂). (5.5)

We have

δBL̂gf+FP = ∂µ(B̂D̂µĈ). (5.6)

In order to construct the generator of the BRST transformations and the BRST in-
variant Hamiltonian we should use the d+1 dimensional formulation. We denote the
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d+1 dimensional fields corresponding to the d dimensional ones Ĉ, Ĉ, B̂, using with the

calligraphic letters, as Ĉ, Ĉ, B̂ respectively. The BRST invariant Hamiltonian is giving by

H(t) = H(0) + H(1) (5.7)

H(0) =
∫

dx [Π̂ ν(t, x)Â′
ν(t, x) + P̂c(t, x)Ĉ′(t, x) − δ(x0)L̂0(t, x)], (5.8)

H(1) =
∫

dx [P̂BB̂′(t, x) + P̂C(t, x)Ĉ ′(t, x) − δ(x0)L̂gf+FP (t, x)]. (5.9)

The BRST charge is

QB = Q
(0)
B + Q

(1)
B (5.10)

Q
(0)
B =

∫
dx
[
Π̂ µD̂µĈ − i P̂C ∗ Ĉ ∗ Ĉ +

1

2
ε(x0)δBL̂0(t, x)

]
. (5.11)

Q
(1)
B =

∫
dx
[
P̂C B̂ +

1

2
ε(x0)δBL̂gf+FP (t, x)

]
, (5.12)

It is an analogue of the BFV charge [32][33] for U(1) NC theory. H (0) , Q
(0)
B are the

”gauge unfixed” and the H , QB are ”gauge fixed” Hamiltonians and BRST charges.
Using the graded symplectic structure of the superphase space [34]

{Âµ(t, x), Π̂ ν(t, x′)} = δµ
ν δ(d)(x− x′), {Ĉ(t, x), P̂Ĉ(t, x′)} = δ(d)(x− x′),

{Ĉ(t, x), P̂Ĉ(t, x
′)} = δ(d)(x− x′), {B̂(t, x), P̂B̂(t, x′)} = δ(d)(x− x′)(5.13)

we have

{H(0), Q
(0)
B } = {Q(0)

B , Q
(0)
B } = 0, (5.14)

and

{H, QB} = {QB, QB} = 0. (5.15)

Thus the BRST charges are nilpotent and the Hamiltonians are BRST invariant both in
the gauge unfixed and the gauge fixed levels.

5.2 Seiberg-Witten map in superphase space

Now we would like to see how the BRST charges and the BRST invariant Hamil-
tonians of the NC and commutative gauge theories are related. In order to do that
we will extend the SW map to a canonical transformation in the superphase space
(A, C, C,B,Π ,PC,PC ,PB). We introduce the generating function

W (A, C, C,B, Π̂ , P̂C , P̂C , P̂B) =
∫

dx
[
Π̂ µ

(
Aµ +

1

2
θρσAσ(2∂ρAµ − ∂µAρ)

)
+ P̂C

(
C +

1

2
θρσAσ∂ρC

)
+ P̂CC + P̂BB

]
+ W 0(A, C) + W 1(A, C, C,B),

(5.16)
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where W 0(A, C) depends on the specific form the U(1) NC Lagrangian and W 1(A, C, C, B)
also on the form of the gauge fixing. For the U(1) NC theory and for the gauge fixing
(5.4), we have

W 0(A, C) =
1

4

∫
dx δ(x0) θ0µAµFρσFρσ (5.17)

as in (4.15) and

W 1 =
∫

dx
1

2
ε(x0)

[
∂µ{1

2
θρσAσ(2∂ρAµ − ∂µAρ)}B

+ {1

2
θρσAσ(2∂ρAµ − ∂µAρ)∂σC +

1

2
θρσAσ∂µ∂ρC } ∂µC

]
. (5.18)

The transformations are obtained by

Φ̂A =
∂`W

∂P̂A

, PA =
∂rW

∂ΦA
, (5.19)

where ΦA represent any fields and PA their conjugate momenta and ∂r and ∂` are right
and left derivatives respectively.

Explicitly we have

Âµ = Aµ +
1

2
θρσAσ(2∂ρAµ − ∂µAρ), (5.20)

Ĉ = C +
1

2
θρσAσ∂ρC, (5.21)

Ĉ = C, (5.22)

B̂ = B, (5.23)

and

Π̂ µ = Π µ + θµρΠ σFρσ + Π µ 1

2
θρσFρσ + θρσAσ∂ρΠ

µ − 1

2
(∂ρΠ

ρ)θµσAσ

+
1

2
PCθµσ∂σC − δ(W 0 + W 1)

δAµ
, (5.24)

P̂C = PC +
1

2
θρσ∂ρ(PCAσ) − δr(W

0 + W 1)

δC , (5.25)

P̂C = PC − δrW
1

δC , (5.26)

P̂B = PB − δrW
1

δB . (5.27)

Using this transformation we can rewrite the BRST charge (5.10) as

QB = Q
(0)
B + Q

(1)
B =

∫
dx[Π µ∂µC + PCB − δ(x0)B∂0C ]

=
∫

dx[Π µ∂µC + PCB +
1

2
ε(x0)δBLgf+FP (t, x) ], (5.28)
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where Lgf+FP (t, x) is the abelian gauge fixing Lagrangian and is given by

Lgf+FP = −∂µC ∂µC + B (∂µAµ + αB). (5.29)

The total U(1) Hamiltonian (5.7) becomes

H =
∫

dx [Π νA′
ν + PCC′ + PCC′ + PBB′ − δ(x0)(L(c) + Lgf+FP )]. (5.30)

Remember L(c) is the U(1) commutative Lagrangian given in (4.17).

5.3 Field-antifield formalism for U(1) non-commutative theory

The field-antifield formalism allows us to study the BRST symmetry of a general
gauge theory by introducing a canonical structure at a Lagrangian level [24][25][26][27].
The classical master equation in the classical basis encodes the gauge structure of the
generic gauge theory [30][31]. The solution of the classical master equation in the gauge
fixed basis gives the “quantum action” to be used in the path integral quantization. Any
two solutions of the classical master equations are related by a canonical transformation
in the antibracket sense [35].

Here we will apply these ideas to the U(1) NC theory. Since we work at a Lagrangian
level we will work in d dimensions. In the classical basis the set of fields and antifields are

ΦA = {Âµ, Ĉ}, Φ∗
A = {Â∗

µ, Ĉ
∗}. (5.31)

The solution of the classical master equation

(S, S) = 0, (5.32)

is given by6

S[Φ, Φ∗] = I[Â] + Â∗
µD̂µĈ − iĈ∗(Ĉ ∗ Ĉ), (5.33)

where I[Â] is the classical action and the antibracket ( , ) is defined by

(X, Y ) =
∂rX

∂ΦA

∂lY

∂Φ∗
A

− ∂rX

∂Φ∗
A

∂lY

∂ΦA
. (5.34)

The gauge fixed basis can be analyzed by introducing the antighost and auxiliary
fields and the corresponding antifields. It can be obtained from the classical basis by
considering a canonical transformation, in the antibracket sense,

ΦA −→ ΦA

Φ∗
A −→ Φ∗

A +
∂rΨ

∂ΦA
(5.35)

generated by

Ψ̂ = Ĉ (∂µÂµ + αB̂), (5.36)

6As in usual convention in the antifield formalism, d dimensional integration is understood in
summations.
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where Ĉ is the antighost and B̂ is the auxiliary field. We have

S[Φ, Φ∗] = ÎΨ + Â∗µD̂µĈ − iĈ∗(Ĉ ∗ Ĉ) + Ĉ
∗
B̂, (5.37)

where ÎΨ is the “quantum action” and is given by

ÎΨ = I[Â] + (−∂µĈ D̂µĈ + B̂ ∂µÂµ + αB̂2). (5.38)

The action ÎΨ has well defined propagators and is the starting point of the Feynman
perturbative calculations.

Now we would like to study what is the SW map in the space of fields and antifields.
We first consider it in the classical basis. In order to do that we construct a canonical
transformation in the antibracket sense

Φ̂A =
∂lFcl[Φ, Φ̂∗]

∂Φ̂∗
A

, Φ∗
A =

∂rFcl[Φ, Φ̂∗]
∂ΦA

, (5.39)

where

Fcl = Â∗µ
(
Aµ +

1

2
θρσAσ(2∂ρAµ − ∂µAρ)

)
+ Ĉ∗(C +

1

2
θρσAσ∂ρC). (5.40)

The gauge structures of NC and commutative are mapped to each other

Â∗
µD̂µĈ − iĈ∗(Ĉ ∗ Ĉ) = A∗

µ∂
µC. (5.41)

We can generalize the previous results to the gauge fixed basis. In this case the trans-
formations of the antighost and the auxiliary field sectors should be taken into account.
The generator of the canonical transformation is modified from (5.40) to

Fgf = Fcl +
(
Ĉ
∗
+

1

2
θρσ∂µ (Aσ(2∂ρAµ − ∂µAρ))

)
C + B̂∗B. (5.42)

Note that the additional term gives rise to new terms in A∗µ and C
∗

while the others
remain the same as in the classical basis. In particular

Ĉ = C, B̂ = B. (5.43)

Using the transformation we can express (5.37) and (5.38) as

S[Φ, Φ∗] = IΨ + A∗µ∂µC + C
∗
B (5.44)

where

IΨ = I[Â(A)] + (−∂µC ∂µC + B ∂µAµ + αB2) (5.45)

and I[Â(A)] is the classical action in terms of Aµ. This is indeed a quantum action
for the commutative U(1) BRST invariant action in the gauge fixed basis. In this way
the canonical transformation (5.42) maps the U(1) NC structure of the S[Φ, Φ∗] into the
commutative one in the gauge fixed basis.
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6 Discussions

In this paper the Hamiltonian formalism of the non-local theories is discussed by using
d+1 dimensional formulation [1][2]. For a given non-local Lagrangian in d dimensions the
Hamiltonian is introduced by (2.3) on the phase space of the d+1 dimensional fields.
The equivalence with the original non-local theory is assured by imposing two constraints
(2.9) and (2.10) consistent with the time evolution. The degrees of freedom of the extra
dimension (denoted by coordinate σ) has its origin in the infinite degrees of freedom
associated with the non-locality. It is also applicable to local and higher derivative theories.
In these cases the set of constraints are used to reduce the redundant degrees of freedom of
the infinite dimensional phase space, reproducing the standard d dimensional formulations
[12].

We have analyzed the symmetry generators of non-local theories in the Hamiltonian
formalism. As an example we have considered the space-time U(1) NC gauge theory.
The gauge transformations in d dimensions are described as a rigid symmetry in d+1
dimensions. The generators of rigid transformations in d+1 dimensions turn out to be the
generators of gauge transformations when the reduction to d dimensions can be performed
as is shown for the U(1) commutative gauge theory in the appendix.

We have extended the Seiberg-Witten map to a canonical transformation. This allows
us to map the Hamiltonians and the gauge generators of non-commutative and commuta-
tive theories. We have also seen explicitly the map of the U(1) NC and the BI actions up
to F 3. The reason why we were able to discuss the SW map as a canonical transformation
is that we have considered the phase space of the commutative theory also in the d+1
dimensions.

The BRST symmetry has been analyzed at Hamiltonian and Lagrangian levels. The
relation between the commutative and U(1) NC parameter functions is understood as a
canonical transformation of the ghosts in the super phase space of the SW map. Using
the field-antifield formalism we have seen how the solution of the classical master equation
for non-commutative and commutative theories are related by a canonical transformation
in the antibracket sense. This results shows that the antibracket cohomology classes
of both theories coincide in the space of non-local functionals. The explicit forms of the
antibracket canonical transformations could be useful to study the observables, anomalies,
etc. in the U(1) NC theory.
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A U(1) commutative Maxwell theory in d+1 dimen-

sions

We will show how the U(1) commutative Maxwell theory is formulated using the d+1
dimensional canonical formalism developed for non-local theories in section 2 and see how
it is reduced to the standard canonical formalism in d dimensions.

The canonical system is defined by the Hamiltonian (2.3) and two constraints, (2.9)
and (2.10). The Hamiltonian is

H =
∫

ddx [Π ν(t, x)∂x0Aν(t, x)− δ(x0)L(t, x) ], (A.1)

where

L(t, x) = −1

4
Fµν(t, x)Fµν(t, x), (A.2)

Fµν(t, x) = ∂µAν(t, x)− ∂νAµ(t, x). (A.3)

The momentum constraint (2.9) is

ϕν(t, x) = Π ν(t, x) +
∫

dy χ(x0,−y0) Fµν(t, y) ∂y
µδ(x− y)

= Π ν(t, x) + δ(x0)F0ν(t, x) ≈ 0 (A.4)

and the constraint (2.10) is

ϕ̃ν(t, x) = ∂µFµν(t, x) ≈ 0. (A.5)

The generator of the U(1) transformation is given by using (2.13) as

G[Λ] =
∫

dx[ Π µ∂µΛ ]. (A.6)

It is expressed as a linear combination of the constraints,

G[Λ] =
∫

dx Λ
[
−(∂µϕµ)− δ(x0)ϕ̃0

]
. (A.7)

The Hamiltonian is expressed using the constraints and the U(1) generator as

H = G[A0] +
∫

dx ϕi F0i +
∫

dx δ(x0) {1

2
F0i

2 +
1

4
Fij

2}. (A.8)

The Hamiltonian (A.8) as well as the constraints (A.4) and (A.5) contain no time (t)
derivative and are functions of the canonical pairs (Aµ(t, x),Π µ(t, x)). They are conserved
since the Maxwell Lagrangian in d dimensions has time translation invariance. The U(1)
generator is also conserved, without using constraints, for Λ(t, x) satisfying (2.15),

d

dt
G[Λ] = {G[Λ], H} +

∂

∂t
G[Λ] = 0, Λ̇ = ∂x0Λ. (A.9)
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in agreement with (2.18). Since the parameter Λ is subject to the last relation in (A.9)
the U(1) transformations in the d+1 dimensional canonical formulation are not gauge but
rigid ones. We will see how the gauge transformations appear when it is written in a d
dimensional form.

In case Lagrangians are local or higher derivative ones it is often convenient to make
expansion of the canonical variables using the Taylor basis[36] in reducing them to d
dimensional forms. We expand the canonical variables as

Aµ(t, x) ≡
∞∑

m=0

em(x0) A(m)
µ (t,x), Π µ(t, x) ≡

∞∑
m=0

em(x0) Π µ
(m)(t,x), (A.10)

where e`(x0) and e`(x
0) are orthonormal basis

e`(x0) = (−∂x0)`δ(x0), e`(x
0) =

(x0)
`

`!
, (A.11)∫

dx0 e`(x0) em(x0) = δ`
m,

∞∑
`=0

e`(x0) e`(x
0′) = δ(x0 − x0′). (A.12)

The (A(m)
µ (t,x),Π µ

(m)(t,x)) are d dimensional fields and are the new symplectic coordinates

Ω(t) =
∫

dx δΠ µ(t, x) ∧ δAµ(t, x) =
∞∑

m=0

∫
dx δΠ µ

(m)(t,x) ∧ δA(m)
µ (t,x).

(A.13)

In terms of them the constraint (A.4) is expressed as

ϕµ(t, x) =
∞∑

m=0

em(x0)ϕµ
(m)(t,x), (A.14)

ϕ0
(m)(t,x) = Π 0

(m)(t,x) = 0, (m ≥ 0), (A.15)

ϕi
(0)(t,x) = Π i

(0)(t,x)− (A(1)
i (t,x)− ∂iA(0)

0 (t,x)) = 0, (A.16)

ϕi
(m)(t,x) = Π i

(m)(t,x) = 0, (m ≥ 1). (A.17)

The constraint (A.5) is

ϕ̃µ(t, x) =
∞∑

m=0

em(x0)ϕ̃µ(m)(t,x), (A.18)

ϕ̃i(m)(t,x) = ∂j(∂jA(m)
i (t,x)− ∂iA(m)

j (t,x))− (A(m+2)
i (t,x)− ∂iA(m+1)

0 (t,x)) = 0,

(m ≥ 0), (A.19)

ϕ̃0(m)(t,x) = ∂i(A(m+1)
i (t,x)− ∂iA(m)

0 (t,x)) = 0, (m ≥ 0). (A.20)

It must be noted the identities

ϕ̃0(m+1)(t,x) = ∂iϕ̃
i(m)(t,x), (m ≥ 0). (A.21)
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Thus the only independent constraint of (A.20) is m = 0 case. It is expressed, using
(A.16), as the gauss law constraint,

ϕ̃0(0)(t,x) = ∂iΠ
i
(0)(t,x) = 0. (A.22)

Following the Dirac’s standard procedure of constraints [6] we classify them and elim-
inate the second class constraints. The constraints (A.17) (m ≥ 2) are paired with the
constraints (A.19) (m ≥ 0) to form second class sets. They are used to eliminate canonical

pairs (A(m)
i (t,x),Π i

(m)(t,x)), (m ≥ 2) as

A(m)
i (t,x) = ∂j(∂jA(m−2)

i (t,x)− ∂iA(m−2)
j (t,x)) + ∂iA(m−1)

0 (t,x), (A.23)

Π i
(m)(t,x)) = 0, (m ≥ 2). (A.24)

The constraints (A.17) (m = 1) and (A.16) are paired to a second class set and are used

to eliminate (A(1)
i (t,x),Π i

(1)(t,x)) as

A(1)
i (t,x) = Π i

(0)(t,x) + ∂iA(0)
0 (t,x), (A.25)

Π i
(1)(t,x) = 0. (A.26)

After eliminating the canonical pairs (A(m)
i (t,x),Π i

(m)(t,x)), (m ≥ 1) using the second

class constraints the system is described in terms of the canonical pairs (A(0)
i (t,x),Π i

(0)(t,x))

and (A(m)
0 (t,x),Π 0

(m)(t,x)), (m ≥ 0). The Dirac brackets among them remain same as the
Poisson brackets. Remember the d dimensional fields are identified by (2.8) as

Aµ(t,x) = Aµ(t, 0,x) = A(0)
µ (t,x), Πµ(t,x) = Π µ

(0)(t,x). (A.27)

The remaining constraints are (A.22) and (A.15),

∂iΠ
i
(0)(t,x) = 0, Π 0

(m)(t,x) = 0, (m ≥ 0) (A.28)

are the first class constraints. The Hamiltonian (A.8) in the reduced variables is

H(t) =
∫

dx

[ ∞∑
m=0

A(m+1)
0 (t,x)Π 0

(m)(t,x) − A(0)
0 (t,x)(∂iΠ

i
(0)(t,x))

+
1

2
(Π i

(0)(t,x))2 +
1

4
(∂jA(0)

i (t,x)− ∂iA(0)
j (t,x))2

]
. (A.29)

The U(1) generator (A.7) is

G[Λ] =
∫

dx

[ ∞∑
m=0

Λ(m+1)(t,x)Π 0
(m)(t,x) − Λ(0)(t,x)(∂iΠ

i
(0)(t,x))

]
, (A.30)

where

Λ(t, λ) =
∞∑

m=0

Λ(m)(t,x)em(x0), and Λ̇(m)(t,x) = Λ(m+1)(t,x). (A.31)

19



The first class constraints Π 0
(m)(t,x) = 0, (m ≥ 0) in (A.28) mean thatA(m)

0 (t,x), (m ≥
0) are the gauge degrees of freedom and we can assign them any function of x for all values
of m at given time t = t0. It is equivalent to say that we can assign any function of time
to A(0)

0 (t,x) for all value of t, due to the equation of motion Ȧ(m)
0 (t,x) = A(m+1)

0 (t,x). In
this way we can understand that the Hamiltonian (A.29) is equivalent with the standard
form of the canonical Hamiltonian of the Maxwell theory,

H(t) =
∫

dx
[

Ȧ0(t,x)Π0(t,x) − A0(t,x)(∂iΠ
i(t,x))

+
1

2
(Πi(t,x))2 +

1

4
(∂jAi(t,x)− ∂iAj(t,x))2

]
(A.32)

in which A0(t,x) is arbitrary function of time. In the same manner the U(1) generator
(A.30) is

G[Λ] =
∫

dx
[

λ̇(t,x)Π0(t,x) − λ(t,x)(∂iΠ
i(t,x))

]
, (A.33)

in which the gauge parameter function λ(t,x) ≡ Λ(0)(t,x) is regarded as any function of
time.
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