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Abstract
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a method to deal with autocorrelations for nonlinear functions of
primary observables as they are met here due to reweighting.
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1 Introduction

In the past years the ALPHA Collaboration has pursued the goal to reliably
compute the QCD gauge coupling at high energy in terms of non-perturbative
low energy parameters. The concomitant necessity to deal with a large energy
ratio in the continuum limit was solved by a breakup into recursive steps.
Here one employs finite size rescaling by repeated factors of two and extrap-
olates to the continuum each step by itself. By a combination of theoretical
reasoning and numerical tests the Schrödinger functional was determined as
a particularly convenient framework for this purpose. The programme has
been completed for the quenched approximation, see refs. [1, 2] for reviews
of the approach and ref. [3] for a summary of data. First tests with a non
vanishing flavour number have been reported [4]. As is well-known, by the in-
clusion of dynamical quarks the numerical cost is boosted by a large factor.
The importance of algorithmic optimization can hence hardly be overesti-
mated. The finite size technique with the Schrödinger functional — beside
its uses for QCD physics — offers the possibility of an investigation of the
lattice spacing dependence of the performance of fermion algorithms with
all physical scales held fixed. Here we report on such results for several
algorithms.

The Schrödinger functional can be regarded as the free energy Γ of QCD
in a finite volume L3 × T ,

exp(−Γ) =

∫

D[U ]D[ψ]D[ψ] exp(−S[U, ψ, ψ]). (1.1)

The action S consists of the usual plaquette action for SU(3) gauge fields
U and two degenerate flavours of clover-improved Wilson fermions. The
box is periodic in space, and fixed gluon potentials and vanishing quark
fields1 are prescribed on the temporal boundaries. The boundary potentials
C and C ′ at x0 = 0 and x0 = T are specified in terms of the scale L and
dimensionless parameters, one of which is called η and is kept variable. A
convenient practical choice with T = L, introduced as point “A” in [5], is used
throughout. Quark fields are periodic in space up to a phase θ = π/5. An
Abelian background field is induced which can be varied by changing η. The
response to such an infinitesimal variation is used to define the renormalized

1 Non-vanishing quark sources are also possible but will not be needed here.



2

coupling

g2
SF(L) =

∂Γ0/∂η

∂Γ/∂η

∣

∣

∣

∣

η=0

, (1.2)

where Γ0/g
2
0 is the tree level value of Γ for bare coupling g0. For a lattice

realization we now have to choose values for L/a, g0 and bare quark mass m0

as well as coefficients for the improvement terms in the action. We take the
latter as smooth functions of g0 either by a perturbative expression or by a
non-perturbative fit [6]. The massm0 is fixed by demanding zero PCAC-mass
[7]. Hence we may approach the continuum limit by a sequence of lattices
with growing L/a and g0 adjusted to maintain a fixed value gSF. Conceptually
this is exactly the same situation as in our quenched computations. The
regularizing lattice spacing a varies while renormalized physics is held fixed.
It is on such ‘trajectories’, that we study algorithm performance.

Our most extensive simulations of the O(a) improved Schrödinger func-
tional have been conducted with the well-known hybrid Monte Carlo method
(HMC) [8]. In our implementation we took advantage of preconditioning and
the refinement proposed in [9]. It amounts to the introduction of two different
step sizes for fermion-gluon and gluonic self-couplings in an approximately
optimal proportion depending on their relative computational cost. In other
long runs we applied the polynomial hybrid Monte Carlo (PHMC) [10, 11].
Here, as for the multiboson technique [12], an approximately inverting poly-
nomial of the Dirac operator is used to bosonize the theory. In the multiboson
proposal the resulting action is represented by many boson fields with near-
est neighbour couplings. For unimproved Wilson fermions finite step-size
updates are employed, which however become impractical when the clover
term is included – the case on that we concentrate here. A further disad-
vantage is the additional slowing down due to collective effects of the many
bosons [13]. With PHMC the operator polynomial is employed to construct
a non-local Gaussian action for only one boson field which is simulated by
HMC. The imperfection of the polynomial can be corrected by an acceptance
or reweighting step. Some results are reported which have been obtained by
a recently proposed multi-level Metropolis procedure (MLM) [14]. Further
details of the various algorithms will be given below.
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2 Algorithms in this study

In this section we briefly describe our implementations of fermion Monte
Carlo algorithms as they are benchmarked in this study. With each of them
the goal is the inclusion of effects of the weight factor det(Q)2 which arises
from integrating two degenerate flavours of quarks out of (1.1),

exp(−Γ) =

∫

D[U ] exp(−Sgauge[U ]) det(Q)2. (2.1)

Here the hermitian operator Q for Sheikholeslami-Wohlert improved Wilson
quarks has the structure

Q = c0γ5M ; M = 1 − T −H. (2.2)

The constant c0 is chosen to contain the eigenvalues of Q in the interior
of the interval (−1, 1). The matrix M contains nearest neighbour hopping
terms in H and the clover term in T , which is diagonal with respect to the
lattice index. The detailed form of these components, including boundary
improvement, can for instance be found in ref. [15].

2.1 Hybrid Monte Carlo

The HMC method [8] has so far been the most popular fermion algorithm
for QCD. In choosing a trajectory length of unity we followed the general ex-
perience that this is close to optimal. In [16] this was confirmed for the
quenched Schrödinger functional, and a test with dynamical fermions at
L/a = 8 showed an almost doubling of computational costs for g2

SF as we
lowered the trajectory length to one half. We reduced discretization errors
by the multiple time scale method proposed in ref. [9] taking the version
given there in eq. (6.7) with n = 4. A test of the performance gain of
the above integration scheme in practical simulations was performed in [17],
where it was demonstrated that a substantial gain is achieved as compared
to a standard leap-frog integrator. The value of n was not varied any further
in this study.

As an essential sophistication we made use of two different forms of pre-
conditioning. Both rely on our ability to factor out of Q matrix factors which
on the one hand are easy to invert and on the other hand capture a part of its
spectral variation to leave us with a better conditioned remaining factor. For
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even-odd preconditioning we exhibit the block structure of M with respect
to even (e) and odd (o) lattice sites and factorize

M =

(

Mee Meo

Moe Moo

)

=

(

Mee 0
Moe 1

)

×
(

1 M−1
ee Meo

0 Moo −MoeM
−1
ee Meo

)

, (2.3)

where the left (lower) block-triangular factor and the block-diagonal Mee are
easy to invert. This factorization can now be used in a two-fold way. If the
original Q under the determinant in (2.1) is plugged into the HMC algorithm
we have to continuously solve linear systems with coefficient matrices given
by Q. With (2.3) these can be transformed into better conditioned systems
with accelerated iterative inversion of

Q̂ = c̃0γ5(Moo −MoeM
−1
ee Meo). (2.4)

The constant c̃0 is again used to normalize the spectrum of Q̂. On the other
hand we may also conclude from (2.3) that up to irrelevant constant factors
the relation

det(Q) ∝ det(Mee) det(Q̂) (2.5)

holds. Now Q̂ enters into the HMC and leads to a different Monte Carlo
dynamics, which also takes det(Mee) into account. When we refer to even-
odd preconditioning in this paper, this second variant will always be meant.
Further details on our implementation of HMC may be found in [18]. As we
only have to invert the squared operator Q̂2 we use the conjugate gradient
method (CG), which was found to be close to optimal in this case.

For SSOR preconditioning a different factorization of M based on factors
triangular with respect to a lexicographic ordering of lattice sites is used
[19, 20, 21]. Due to its complexity, in particular if the clover term is included,
this has to our knowledge only been used to accelerate linear systems and
was for that purpose reported to be superior over even-odd preconditioning if
combined with the BiCGstab [22] inversion algorithm for the preconditioned
M and M †. In the following SSOR will refer to such an implementation. For
the unimproved case, a simplified form of SSOR preconditioning (ILU) was
implemented under the determinant with very positive results [10].

We compared the performance of our two HMC program versions on our
largest lattice, i.e. 124 at β = 9.5. In solving the linear systems with the
respective preconditioned operators we confirmed that in terms of operations
associated with applying these operators to fields, the BiCGstab algorithm
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with SSOR preconditioning outperforms the CG algorithm with even-odd
preconditioning by a factor of about 1.6. Part of this advantage is however
lost in terms of CPU time, because on our Alenia Quadrics (APE) machines
inner products are relatively expensive. Since in the BiCGstab algorithm
inner products and linear combinations are much more frequent than in the
CG algorithm, this is a non-negligible overhead. The overall advantage that
we find for the even-odd version derives however from the different operators
under the determinant. A clear sign of this is the behaviour of the acceptance
rate in both cases. While for the even-odd preconditioned determinant we
could obtain an acceptance rate of 91% with a step size of ∆τ = 0.08, for
det(Q2) it went down to 75% already at a step size of ∆τ = 0.07.

In principle, one could also conceive of the following combination yet
untested by us. One uses the even-odd preconditioned determinant and,
when linear systems with Q̂ have to be solved, one transforms them to the
SSOR preconditioned form, solves, and translates back. It is unclear at
present, whether the overhead still leaves this variant profitable.

2.2 Polynomial Hybrid Monte Carlo

We recall here some basics of the PHMC algorithm. For technical details the
reader is referred to refs. [23, 24]. In the PHMC algorithm the inverse of
Q̂2 is approximately computed by a suitable [12] Chebyshev polynomial of
degree n,

Q̂−2 ≈ Pn,ǫ(Q̂
2). (2.6)

Defining the relative deviation

Rn,ǫ(λ) = λPn,ǫ(λ) − 1, (2.7)

the inversion error for eigenvalues λ ∈ [ǫ, 1] of Q̂2 is bounded by

δ = sup
λ

|Rn,ǫ(λ)| = 2

(

1 −√
ǫ

1 +
√
ǫ

)n+1

. (2.8)

For a given degree n the free parameter ǫ in Pn,ǫ allows to trade between
approximation range and accuracy. For eigenvalues λ < ǫ the error mono-
tonically moves from Rn,ǫ(ǫ) = −δ to Rn,ǫ(0) = −1. With the help of Pn,ǫ we
represent the determinant by a bosonic spinor field (pseudofermion) φ

det(Q̂2) =

∫

D[φ]D[φ†] exp(−SP )W (2.9)
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with the Gaussian action

SP = φ†Pn,ǫ(Q̂
2[U ])φ (2.10)

and the remainder
W = det(Q̂2Pn,ǫ(Q̂

2)) (2.11)

rendering (2.9) exact. As long as the spectrum of Q̂2 is in the approximation
range [ǫ, 1], W is a small correction close to one. Expectation values in the
full QCD ensemble are now given by reweighting with W as

〈O〉 =
〈OW 〉P
〈W 〉P

, (2.12)

where O is some observable and the average 〈. . .〉P is taken with the ac-
tion Sgauge + SP . Since W is still given by a determinant, a straightforward
evaluation is hard. As it is a small correction, however, stochastic (unbi-
ased) estimates should be adequate. For each measurement we construct an
estimator W given by

W =
1

Ncorr

Ncorr
∑

i=1

exp
{

η†i (1 − [Q̂2Pn,ǫ(Q̂
2)]−1)ηi

}

(2.13)

with independent Gaussian random fields ηi. Averaging over Ncorr such es-
timates allows us to reduce and control the extra noise inflicted here. The
true QCD average is then estimated by eq. (2.12) with W replaced by W .

The update of the gauge field and the pseudofermionic field φ follows the
standard HMC pattern with global heatbath for φ and molecular dynamics
for U including the speedup from [9] discussed before. This is chosen, be-
cause, in contrast to the multiboson algorithm [12], finite step size updates
for U are impractical here due to the complicated non-local effective action.

At this point the parameters n, ǫ and, less importantly, Ncorr are at our
disposal for optimization. For small eigenvalues the growth of the ‘inverter’
Pn,ǫ(λ) ∼ 1/λ is cut off at λ ∼ ǫ. For the HMC dynamics ǫ hence, in
some sense, takes over the role of the smallest eigenvalue. It was found ad-
vantageous [23, 24] to choose ǫ a few times larger than the typical smallest
eigenvalue of Q̂2. This allows us to keep the degree of the polynomial lower
for the same approximation accuracy. Configurations with small eigenval-
ues of Q̂2 are produced more frequently than they would be with the exact
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determinantal weight. As the algorithm is still exact, this is precisely com-
pensated by W or respectively W giving smaller weight to the observables
evaluated on these configurations. It should be borne in mind that the un-
quenched lattice path integral is always well-defined. The potential problem
with nearly ‘exceptional’ configurations is a statistical one with rarely sam-
pled large contributions, which is alleviated by our sampling and reweighting
technique. This is the reason for us to prefer the reweighting correction over
an acceptance step.

There is a special round-off problem for PHMC that we briefly summarize
now with more details available in [23, 25]. To generate φ with action (2.10)
it is necessary to factorize

Pn,ǫ(Q̂
2) = Fn(Q̂)†Fn(Q̂) (2.14)

with an n’th degree polynomial Fn. For gauge field updating U -derivatives
of SP have to be taken at fixed φ. To this end we factorize further

Fn(Q̂)φ = [
√
cn(Q̂− rn)][

√
cn−1(Q̂− rn−1)] · · · [

√
c1(Q̂− r1)]φ (2.15)

and store the occurring subproducts to facilitate the force computation.
While the complex roots rk are determined by Pn,ǫ, the real factors

√
ck only

serve to prevent the partial products from growing too large or too small. It
is known [25] that the evaluation of a high order matrix polynomial in factor-
ized form is in principle rather susceptible to round-off error. In particular,
the ordering of factors in (2.15) is of crucial importance in this context. In
[23, 25] orderings were found which make this source of errors negligible for
the runs with n up to 46 reported in this paper, even on the 32-bit APE 100
machines. Further details on tuning the polynomial parameters are deferred
to appendix B.

Another variant of PHMC could be devised by applying an inverting
polynomial to the complex spectrum of γ5Q̂ instead of the real positive Q̂2.
A corresponding multiboson algorithm was investigated in ref. [26]. We shall
investigate this method in the near future.

2.3 Multi-Level Metropolis Algorithm

As for the previous algorithms it is our aim to represent det(Q2) ∝ det(M †M)
in a way suitable for simulation. Here this will be done in part by the explicit
use of a few terms of the hopping parameter expansion in powers of T +H
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(see eq. (2.2)) and by integrals over a collection of pseudofermion fields to
represent the remainder.

The series for the logarithm of the determinant is given by

log det(M) = tr ln(M) = −tr(T +H) − 1

2
tr(T +H)2 − 1

3
tr(T +H)3 + . . . .

(2.16)
In our algorithm, we separate off the series up to some order k. In the
present work we found it convenient to use k = 3, since tr(T + H)i = trT i

can easily be computed for i = 1, 2, 3. At higher orders also mixed terms
would contribute. In order to deal with the remaining terms, we define

M̃ = M exp

(

k
∑

j=1

1

j
(T +H)j

)

. (2.17)

For the inverse of M̃ we introduce a hierarchical approximation by polyno-
mials Pi of order ni in T +H ,

M̃−1 =

j
∏

i=1

P ri

i + O((T +H)nj+1). (2.18)

The full required inversion accuracy is reached for the maximal value j =
l. This is used with r1 + r2 + . . . + rl pseudofermion fields to derive the
representation

det(M̃ †M̃) ∝
∫ l
∏

i=1

ri
∏

a=1

D[φ†
ia] D[φia] exp

(

−
∑

i,a

|Pi φia|2
)

. (2.19)

The powers ri > 1 are advantageous as they lead to a smaller force on the
gauge field which allows larger update steps [14].

Let us summarize the action that is simulated,

S = Sgauge[U ] + Shop[U ] + SPF[U, φ] (2.20)

with2

Shop[U ] = trT +
1

2
trT 2 +

1

3
trT 3 (2.21)

2 trT is small but nonzero, as we also included boundary improvement terms in it.
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and
SPF[U, φ] =

∑

i,a

|Pi φia|2 . (2.22)

We now consider Sgauge[U ] as a zeroth approximation which is taken into
account in generating finite stepsize primary update proposals. All further
terms will eventually be implemented by accept-reject filters. In the first
level action

S(1) = Sgauge + Shop +

r1
∑

a=1

|P1 φ1a|2 (2.23)

the hopping term is included as it would otherwise lead to a single link action
too complex for level zero. All further levels j > 1 are straightforwardly given
by

S(j) = S(j−1) +

rj
∑

a=1

|Pj φja|2 (2.24)

up to j = l.
We now describe the steps of the multi-level Metropolis update scheme.

A proposal at level 0 is given by multiple local updates with the Cabibbo-
Marinari heatbath or the overrelaxation algorithm. One possibility is to
randomly select v links to be updated. In ref. [14] we found it advantageous
to actually update several times a sublattice chosen at random from a set
that covers the lattice. The size of the sublattices is chosen such that a
reasonable acceptance at level one of the algorithm is achieved. The whole
proposal obeys detailed balance with respect to the level zero action as we
reverse the order of link updates with probability 1/2. The remaining levels
now proceed recursively as follows. Generate a proposal Ũ by performing tj
update steps at level j − 1. Accept Ũ as new configuration at level j with
the probability

A(j) = min
[

1, exp(−∆S(j)[Ũ ] + ∆S(j)[U ])
]

, (2.25)

where ∆S(j) = S(j) − S(j−1).
In our implementation, the auxiliary fields φia are kept fixed during the

update cycle of the gauge field after they have been generated by a global
heatbath by solving

φi,a = P−1
i η, (2.26)

where η is a Gaussian random field.
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In its present form the MLM algorithm will not be the method of choice
for large lattices. The reason is that its cost will ultimately grow proportional
to the square of the number of lattice sites. This is because the size of the
updated blocks cannot grow while maintaining the acceptance rate and thus
their number is proportional to the volume. Each evaluation of ∆S(j) is
however also of order volume in complexity. On the other hand, as we shall
see shortly, MLM can produce precise results at L/a = 5 where we have
tested it here. As it contains interesting elements, for instance being a finite
step-size method for improved dynamical fermions, we still found the idea
and the practical test worth reporting and comparing with other methods
here, for instance as a basis for further modification.

3 Benchmarks of algorithmic performance

3.1 Our measure of efficiency

We now define two quantities, Mcost and Dcost, which allow to compare sim-
ulation costs for a certain physics output between different algorithms and
parameters. The first measure is machine dependent and refers to actual
CPU time on the APE100 line of parallel computers currently in use by the
ALPHA Collaboration. The second one is machine independent with the
number of Dirac operator applications to a spinor field being our currency.
As a target quantity, whose statistical accuracy is used for weighing costs in
either units, we take our coupling g2

SF. The precise definitions are

Mcost = (update time in seconds on machine M)

× (error of 1/g2
SF)2 × (4a/T )(4a/L)3 (3.1)

and
Dcost = (number of applications Qφ) × (error of 1/g2

SF)2 . (3.2)

Since the squared error in both formulas goes down inversely proportional
to the run length, both quantities, extracted from given Monte Carlo simu-
lations, do not depend on their lengths. The reason for focusing on absolute
errors of 1/g2

SF is as follows. We assume for the purpose of error analysis

only that the running of gSF with L has the structure of 1-loop perturbation
theory, 1/g2

SF ≈ −2b0 logL+ const. Then

δL

L
=

1

2b0
δ(1/g2

SF) ≈ 8 δ(1/g2
SF) (3.3)
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holds, and we approximately aim at a certain relative scale uncertainty, in-
dependently of the size of gSF. In (3.1) the trivial growth proportional to
the number of lattice sites is cancelled such that both quantities scale in
the same way. The reference machine M in this publication will always be
the smallest 8-node machine of type Q1. Most of our data actually come
from bigger machines with up to 512 nodes. The costs on these machines
are converted by multiplying naively by the ratio of nodes, e.g. 512/8. This
means, we neglect communication overheads, which is a small effect on our
hardware and implementation. Note that with our definitions costs can be
meaningfully compared also under trivial (replica) parallelization, of which
we make extensive use.

While most of the CPU time with dynamical fermions is spent on appli-
cations of the Dirac operator there is also quite some overhead from other
operations, in particular on small lattices. This was neglected in Dcost except
for the contribution to the gauge field force in the PHMC algorithm which
is proportional to the polynomial degree n. As a consequence, the ratio
Dcost/Mcost varies between 50% and 80% of the theoretical value referring to
Qφ operations only. Applications of Q and Q̂ are so close to each other both
in theoretical complexity and actual CPU time, that we neglect their differ-
ence. The SSOR preconditioned operator, on the other hand, is counted as
4/3 Q operations due to extra multiplications of the diagonal (clover) part.

A typical run that entered our benchmarks is entry 12k in Table 1. With
Mcost ≈ 12 and Dcost ≈ 3000 we ran a total of 13000 trajectories on an
L/a = T/a = 12 lattice and achieved 6 % scale accuracy in about 6 days on
256 nodes of APE100.

3.2 Numerical results

In Table 1 we list the most important parameters for a subset of our HMC and
PHMC runs performed to investigate the QCD running gauge coupling with
two massless flavours3. The fourth column indicates which of the algorithms
discussed before was used. This table has to be read in conjunction with
Table 2, where the measured values for Mcost and Dcost are given. Results
for Dcost of MLM follow in Table 4 below. Error estimates for the costs
stem from the error of τint of g−2

SF which is determined by the method of

3 The physical implications of these data will be analyzed in a separate paper [29] while
here we focus on algorithmic aspects.
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Appendix A. Its value here refers to a unit given by complete update cycles
(trajectories). The update time in seconds for one such cycle is normalized
to the APE100-Q1 as discussed with the definition of Mcost. In Fig. 1 we plot
Mcost against L/a for all our runs at a fixed scale L in physical units that is
implicitly determined by the condition g2

SF ≈ 1.1. The line corresponding to
a growth proportional to a−3 is shown as a reference and roughly represents
the rise of the data. This combines effects of a growing variance of our
observable in the Schrödinger functional for g2

SF and of critical slowing down.
The latter accounts for about two powers of 1/a. In Fig. 2 the number
of conjugate gradient iterations is shown for our even-odd preconditioned
HMC runs. At least for smaller g2

SF there is an approximately linear growth
with L/a which contributes one power to critical slowing down. This is the
expected behaviour since 1/L is the infrared cutoff here analogous to the
quark mass in other applications. At larger coupling NCG moderately rises
in the range that has been explored here.

The actual cost to determine the running coupling at fixed error for g−2
SF as

discussed before hence seems to roughly grow like 1/a7 in the continuum limit,
at least at the relatively weak coupling considered here. This seems to be
more optimistic than the quark mass dependence in some previous estimates,
for instance4 in [27]. One reason may be that our growth may be slightly
underestimated due to overhead on the small lattices. Closer inspection
reveals as another source of difference that in our molecular dynamics steps
we are not forced to lower the step size ∆τ at the rate usually estimated
for constant acceptance while lowering the quark mass. Keeping L however
fixed in physical units means that β rises when a/L becomes smaller which
makes the gauge field smoother at the same time. This could lead to smaller
discretization errors and partly be responsible for the observed behaviour.
The integration method [9] may in addition interfere with standard scaling
on intermediate size lattices.

The vertical dotted line in Fig. 1 is located at L/a = 16 and points
to Mcost ≈ 30. This implies about 100 days on 512 nodes for 3% scale
accuracy. Thus at least with the next generation of APE1000 machines a
serious continuum calculation should be within reach. For L/a = 12, our
most expensive lattices so far, we found a slight preference for PHMC. This
conclusion holds also among the larger couplings simulated, with the costs
being approximately independent of g2

SF in the present range between 1.1

4See also the discussion in [28].
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and 1.8. All runs with L/a = 10 have been performed employing HMC with
SSOR5 and reach up to much larger couplings. Here the growth of Mcost and
Dcost with g2

SF becomes clearly visible but not dramatic, see Fig. 3.
With the MLM algorithm for improved fermions we only have results for

L/a = 5 whose parameters are collected in Table 3. As updates on level zero
(gauge action only) we used heatbath sweeps and overrelaxation sweeps over
certain sets of links. With probability 1/2 we update either set A or set B.
Set A consists of all spatial links of one randomly selected timeslice together
with the temporal links at this timeslice in either positive or negative time
direction. Set B are all links with a randomly selected spatial direction plus
the temporal boundary links. In the case of set A we perform a heatbath
sweep over all links followed by five overrelaxation sweeps. In the case of set
B we perform a heatbath sweep over the temporal boundary links followed by
five overrelaxation sweeps over the spatial links of one direction. In both cases
the order of the updating is exactly reversed with probability 1/2 to fulfill
detailed balance. Given the large set of free parameters, some of them had
to be chosen rather ad hoc. As we implemented and ran MLM on PCs but
not on APE100, to which our Mcost-values refer, we only quote the machine
independent Dcost here. Together with results for the coupling, which were
found consistent with HMC results, they are given in Table 4.

4 Conclusions

We have studied several simulation algorithms for the Schrödinger functional
of full QCD with two flavours of massless quarks. Due to relatively high
statistics on lattices up to 124 we obtained precise information on integrated
autocorrelation times. Although our results are relatively close for the al-
gorithms compared, there is a slight advantage for the polynomial hybrid
Monte Carlo for our parameter range and observable. For this numerical
reason and for the expected advantages from its modified sampling at larger
coupling, we plan to focus on PHMC for our coming runs with L/a = 16. In
simulations with ordinary HMC we found even-odd preconditioning of the
determinant more efficient than SSOR preconditioning the solver alone.
Acknowledgement We would like to thank Rainer Sommer for numerous
discussions and for a critical reading of the manuscript. We are grateful to

5 Our even-odd preconditioned (P)HMC code is unsuitable for this lattice size due to
machine topology.
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DESY for allocating computer time on the APE machines at DESY Zeuthen.

A Integrated autocorrelation time for func-

tions of observables

In this appendix we discuss a method to assess the effect of autocorrela-
tions on the statistical error of nonlinear functions of simple expectation
values. We consider a number of observables in a statistical system, and
by Aα, α = 1, 2, . . . we denote their exact mean values. For each observable
we have a chain of N unbiased but (auto-)correlated Monte Carlo estimates
ai

α, i = 1, . . . , N . Assume that we want to estimate F = f(Aα), where f
is an in principle arbitrary function. A simple case arising in the context
of reweighting is the quotient F = A1/A2, while fit parameters extracted
from a correlation function at a sequence of separations would be a more
complicated case.

The obvious estimator for F is given by f(āα), where

āα =
1

N

N
∑

i=1

ai
α (A.1)

are the ensemble-means for our simulation. In a correct and equilibrated
Monte Carlo we expect

〈Aα − āα〉 = 0, (A.2)

〈(Aα − āα)2〉 = O(1/N) (A.3)

to hold, where the expectation values in this appendix mean the average over

an infinite number of identical Monte Carlo simulations of length N . Loosely
speaking, Aα and āα differ by O(1/

√
N) in an individual Monte Carlo run.

By Taylor expanding f around the argument Aα we find

〈F − f(āα)〉 = O(1/N), (A.4)

σ2 = 〈(F − f(āα))2〉 = O(1/N). (A.5)

The first line reveals the (in general unavoidable) bias of our estimator which
has to be suppressed6 by large enough N . The statistical error σ of order

6 In principle it is also possible to cancel the leading bias-term, for instance by the
jackknife method.
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1/
√
N will be discussed in the following. With the gradient vectors

Hβ = f|β(Aα), h̄β = f|β(āα) (A.6)

we define projected observables

AH =
∑

α

AαHα (A.7)

and analogously with h̄α and for āα. Now we conclude that up to higher
orders in 1/N we just need to know the variance of the projected observable,

σ2 ≈ 〈(AH − āH)2〉 ≈ 〈(Ah̄ − āh̄)
2〉. (A.8)

In practice, the projection can only be performed with h̄, taken from the
data, of course.

From here on one may proceed just like in the case of simple expectation
values. We may estimate the relevant autocorrelation function at separation
t for instance7 as

Γ(t) =
1

N − t

N−t
∑

i=1

(

ai
h̄ −

1

N − t

N−t
∑

j=1

aj

h̄

)(

a
(i+t)

h̄
− 1

N − t

N
∑

k=t+1

ak
h̄

)

. (A.9)

From it the error follows as

σ2 =
Γ(0)

N
2τint (A.10)

with

τint =
1

2
+

W
∑

t=1

Γ(t)

Γ(0)
. (A.11)

The summation window W is usually chosen large enough that τint saturates
to a constant within statistical errors. Often this can be achieved by selfcon-
sistently summing until W/τint reaches numbers like 5 . . . 10. Below the role
ofW will be discussed further. In summary, the deviation of 2τint from one for
the projected observable describes the complete effect of (auto)correlations
on the estimation of F . Obviously, σ, Γ and τint all depend on the function
f(Aα) which has remained implicit in our notation.

7 Less symmetrically, one might also subtract āh̄ in each bracket.
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We would like to conclude this appendix by indicating the advantage of
explicitly summing Γ compared to the jackknife binning procedure which is
often applied for the estimation of errors of secondary quantities like best-
fit parameters. There one divides N estimates into N/B bins of length B.
The individual bins are treated as uncorrelated. The fact that this is not
exactly true leads to a systematic error in the error estimate which is of order
τ/B from the correlation of neighbouring bins. Here τ is a general scale of
autocorrelation times involved. This is usually controlled by demanding a
plateau of the errors as the bin length is varied. The statistical uncertainty of
the error estimate is of order

√

B/N . These two errors have to be balanced
at an optimal bin length, which incidentally scales as B ∝ (Nτ 2)1/3.

If we sum Γ up to separation W (summation window), systematic errors
due to the neglected remainder are of order exp(−W/τ). The statistical error
of the error estimate is expected to be of order

√

W/N from the number of
independent windows. In fact, Madras and Sokal quote the formula [30]

δτint

τint
=

√

2(2W + 1)

N
, (A.12)

which follows if one approximates the required summed 4-point autocorre-
lation function by its disconnected part which falls back to the sum over Γ
entering into τint itself. In practice, these errors usually look very reason-
able under repeated runs. The conclusion is that the systematic errors for
the “summation method” are much smaller, which, in balancing systematic
with statistical errors, leads to more accurate error estimates. Taking the
idea of balancing totally seriously, one would conclude that the “error of
the error” decays like [1/N ]1/3 with binning and with [ln(N)/N ]1/2 with the
Γ–summation method.

B Tuning of the PHMC algorithm

Here we summarize our strategy for tuning the free parameters of the PHMC
algorithm, in particular for the Schrödinger functional at small volume or
weak coupling. We are interested in the error σNcorr

of the estimate

〈O〉 =
〈OW 〉P
〈W 〉P

, (B.1)
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for some observable O (mainly g−2
SF at present) and W given in eq. (2.13). All

errors are assessed by the method of the previous appendix. Here the error
can be decomposed as

σ2
Ncorr

= σ2
P + [σ2

∞ − σ2
P ] + [σ2

Ncorr
− σ2

∞]. (B.2)

Here σ2
∞ corresponds to Ncorr = ∞, or equivalently to the use of the exact

reweighting with W as in eq. (2.12), while σ2
P refers to the simple mean 〈O〉P .

The second term in (B.2) reflects a contribution from “ideal” reweighting
and hence from the imperfection of the polynomial approximation, while the
third one is due to our non-ideal stochastic estimation of the correction. Both
would vanish for a perfect polynomial and are naively proportional to δ2, the
scale of polynomial errors. The third term has a factor 1/Ncorr in addition.
We can roughly disentangle them by measuring 〈O〉P and 〈O〉 and their
errors for at least two values of Ncorr. The goal now is to take Ncorr = 1 . . . 4
and find δ, ǫ such that the reweighting part of the error remains acceptable,
less than 20%, say. This is to be achieved at the smallest possible value of
the polynomial degree n.

In [24] we found for β between 5.4 and 6.8 on 83×16 the rule δ ≈ 0.01 and
ǫ ≈ 2λmin to be very efficient, where λmin is the average smallest eigenvalue of
Q̂2. At the larger β-values of the present study we expect the intrinsic fluc-
tuations caused by the gauge field to be smaller and correspondingly found a
too large relative contribution from the third term in (B.2) when the above
tuning is employed. Instead we found it much more efficient to attenuate
this term with a smaller δ. This turned out to be possible essentially with-
out enlarging n, i.e. we could allow ǫ to grow even larger than 2λmin. This
is probably due to smaller fluctuations of the small eigenvalues as well. In
Table 5 and 6 we report simulation parameters of the PHMC runs on 124.
As to the choice of c̃0 it is noted that one has to ensure λmax < 1 for all
configurations for a numerically stable evaluation of (2.15). On the other
hand, the efficiency is not very sensitive to the precise value of 〈λmax〉 which
we hence kept safely below one.
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set L/a β algorithm ∆τ Pacc

12a 12 9.5 HMC (e/o) 0.080 0.91
12b 12 9.5 HMC (SSOR) 0.060 0.86
12c 12 9.5 HMC (SSOR) 0.070 0.75
12d 12 9.5 PHMC (e/o) 0.091 0.83
12e 12 9.5 PHMC (e/o) 0.100 0.76
12f 12 8.5 HMC (e/o) 0.070 0.93
12g 12 8.5 PHMC (e/o) 0.091 0.80
12h 12 8.5 PHMC (e/o) 0.114 0.75
12i 12 7.5 HMC (e/o) 0.075 0.89
12j 12 7.5 PHMC (e/o) 0.098 0.77
12k 12 7.5 PHMC (e/o) 0.098 0.78

10a 10 9.3884 HMC (SSOR) 0.080 0.78
10b 10 8.39 HMC (SSOR) 0.080 0.75
10c 10 7.3619 HMC (SSOR) 0.070 0.79
10d 10 6.877 HMC (SSOR) 0.070 0.72
10e 10 6.5 HMC (SSOR) 0.060 0.80
10f 10 6.0 HMC (SSOR) 0.050 0.83
10g 10 5.5 HMC (SSOR) 0.040 0.82

8a 8 9.2364 HMC (e/o) 0.080 0.96
8b 8 8.2373 HMC (e/o) 0.120 0.91
8c 8 7.2103 HMC (SSOR) 0.100 0.71

6a 6 9.5 HMC (e/o) 0.110 0.97
6b 6 9.0 HMC (e/o) 0.110 0.97
6c 6 8.5 HMC (e/o) 0.100 0.97
6d 6 7.5 HMC (e/o) 0.070 0.98

5a 5 9.3884 HMC (SSOR) 0.120 0.92
5b 5 7.3619 HMC (SSOR) 0.120 0.90

4a 4 9.2364 HMC (e/o) 0.130 0.98
4b 4 8.24 HMC (e/o) 0.120 0.98
4c 4 7.21 HMC (e/o) 0.200 0.93

Table 1: Summary of the simulated parameter sets, which enter our perfor-
mance studies of dynamical fermion algorithms. Quark masses are close to
their critical values.
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set g2
SF τint tupdate/[ s ] Mcost Dcost/102

12a 1.1 2.00(16) 1582 15(1) 36(3)
12b 1.1 1.98(23) 2392 20(2) 30(4)
12c 1.1 2.82(27) 1773 22(2) 37(4)
12d 1.1 1.41(10) 1636 12.9(9) 30(2)
12e 1.1 1.35(7) 1335 12.0(6) 28(2)
12f 1.3 2.19(12) 1768 15.0(8) 38(2)
12g 1.3 1.16(7) 1518 18.3(1.1) 44(3)
12h 1.3 2.47(15) 1103 11.6(7) 27(2)
12i 1.7 2.35(14) 1895 14.7(9) 39(2)
12j 1.7 2.05(14) 1554 12.6(9) 32(2)
12k 1.7 1.81(13) 1371 11.6(9) 28(2)

10a 1.1 1.95(7) 707 9.7(4) 16.2(6)
10b 1.3 2.35(10) 719 10.7(5) 17.5(8)
10c 1.7 2.63(13) 804 11.5(6) 18.7(9)
10d 2.1 3.42(20) 806 14.4(8) 25(1)
10e 2.4 3.46(21) 991 16(1) 28(2)
10f 3.3 3.42(21) 1274 19(1) 33(2)
10g 5.4 3.94(22) 1932 30(2) 49(3)

8a 1.1 1.14(4) 260 4.0(1) 8.2(3)
8b 1.3 1.40(6) 183 3.0(1) 6.2(3)
8c 1.7 2.40(9) 239 5.8(2) 8.4(3)

6a 1.0 0.70(2) 49 1.00(3) 1.98(6)
6b 1.1 0.75(2) 49 1.04(3) 2.09(6)
6c 1.2 0.80(2) 55 1.15(3) 2.34(6)
6d 1.5 1.08(2) 74 2.08(4) 4.50(8)

5a 1.0 0.67(1) 22 0.70(1) 1.03(2)
5b 1.5 1.02(3) 22 0.83(2) 1.26(4)

4a 1.0 0.53(1) 6 0.268(5) 0.428(8)
4b 1.2 0.57(1) 7 0.271(5) 0.445(8)
4c 1.5 0.74(1) 5 0.222(3) 0.397(5)

Table 2: Cost estimates for the simulations in the parameter sets specified
in Table 1. Precise results and analysis on the running of g2

SF will appear in
[29].
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Figure 1: Measured values of Mcost for runs with constant physics fixed by
g2
SF ≈ 1.1 and vanishing quark mass.
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Figure 2: Average number of iterations of the conjugate gradient algorithm
in even-odd preconditioned HMC runs.

β r1 n1 n2 n3 n4 t1 t2 t3 t4 a1 a2 a3 a4

8.39 4 15 31 63 255 1 6 6 10 0.313 0.828 0.966 0.998
8.854 4 15 31 63 255 1 6 6 10 0.347 0.835 0.969 0.999
9.40 3 11 23 63 255 1 8 10 10 0.355 0.742 0.923 0.996

Table 3: Parameters of the MLM update cycle, where l = 4, r2 = r3 = r4 = 1
and aj denotes the acceptance rate at the level j.
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Figure 3: Measured values of Mcost for runs with HMC-SSOR on L/a = 10
lattices versus renormalized coupling.

β 8.39 8.854 9.40

g2
SF 1.1807(12) 1.0778(10) 0.9767(16)

Dcost 290(6) 287(6) 372(15)

Table 4: Dcost for simulations with the multi-level algorithm of 54 lattices
at various β-values.



25

set β Ncorr ǫ n δ

12d 9.5 4 0.0050 44 0.0034
12e 9.5 2 0.0050 44 0.0034
12g 8.5 4 0.0044 44 0.0050
12h 8.5 2 0.0069 42 0.0016
12j 7.5 4 0.0050 46 0.0026
12k 7.5 2 0.0050 46 0.0026

Table 5: Parameters controlling the polynomial approximation to Q̂−2 for
PHMC runs on 124.

set 〈λmin〉 〈λmax〉 c̃0 σ2
Ncorr

/σ2
P

12d 0.002477(15) 0.8582(1) 0.6738653 1.05
12e 0.002474(12) 0.8582(1) 0.6738653 1.10
12g 0.002284(14) 0.8765(1) 0.6686256 1.35
12h 0.002270(13) 0.8765(1) 0.6686256 1.14
12j 0.001869(14) 0.8664(1) 0.6477127 1.06
12k 0.001860(15) 0.8667(1) 0.6477127 1.03

Table 6: Average smallest and largest eigenvalue of Q̂2 (see eq. (2.4) for c̃0)
and ratio of errors in eq. (B.2).


