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The shape function in field theory
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The shape function describes (non-perturbative) Fermi motion effects in semi-inclusive heavy flavour decay. Its
renormalization properties are substantially dependent on the kind of ultraviolet regulator used. For example,
the double logarithm that appears at one loop is larger by a factor 2 in dimensional regularization than in lattice
regularization. We show that factorization of long-distance effects inside the shape function is achieved with any
regulator considered.

1. Introduction

In general, the shape function [1] is introduced
to describe the decay of a hadron HQ containing
a heavy flavour Q into an inclusive hadronic state
X with a large energy and a small invariant mass,
plus non-QCD partons, i.e.

HQ → X+non−QCD partons (mX � EX) .(1)

Specifically, the selected kinematics is

m2
X

EX
∼ O (ΛQCD) , EX � ΛQCD. (2)

In a more formal language, the conditions (2) cor-
respond to the limit

EX →∞, mX →∞, with
m2

X

EX
→ const. (3)

The limit (3) implies the infinite mass limit of the
heavy flavour,

mQ →∞, (4)

as mQ ≥ EX . The heavy quark can then be
treated in the Heavy Quark Effective Theory
(HQET) [2]. The divergence of mX - even though
it is slower than the one of EX - implies that
the final hadronic state can be replaced by a par-
tonic one and that perturbation theory (PT) can
be applied; however, the decay has also a non-
perturbative component - to be factorized in the
shape function - which we introduce with the fol-
lowing model.

We identify a hard subprocess in (1) consisting
in the fragmentation of the heavy flavour Q,

Q→ X̂ + non−QCD partons. (5)

X̂ differs from X in that it does not contain the
light valence quark(s) of HQ. The momentum of
Q can be written as [2] 1

pQ = mHv + k′, (6)

where mH is the mass and

vµ = (1; 0, 0, 0) (7)

is the velocity of HQ, which we take at rest with-
out any loss of generality. The momentum of the
light degrees of freedom in HQ is −k′. The point
k′ = 0 is the elastic one where all the initial light
partons have soft momenta. It is natural to as-
sume that [2,4]

k′+ ∼ k′− ∼ k′⊥ ∼ O (ΛQCD) . (8)

The distribution of the k′-momenta is clearly
non-perturbative and it is related to the well-
known Fermi motion of the heavy quark inside
the hadron [5]. Let us denote by qµ the momen-
tum carried away by the non-QCD partons, taken
along the +z axis; the final hadronic system flies
along the minus direction. X̂ has a mass

m2

X̂
= (Q + k′)2 = m2

X+2EX k′++
m2

X

2EX
k′−+k′2,(9)

where Qµ is the momentum available to the final
partons 2,

Q ≡ mHv − q = (mH − q0; 0, 0,−q3)

1We use mH instead of mQ to define the momentum (6);
this amounts to a shift in the range of k′+ [3].
2The light-cone components are defined as a± ≡ a0 ± a3.
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=
(

EX ; 0, 0,−
√

E2
X −m2

X

)
∼= EX

(
v− +

m2
X

4E2
X

v+

)
, (10)

with v± = (1; 0, 0,±1). The sizes of the terms in
the third member of eq. (9) are

2EX k′+ ∼ O (EXΛQCD) ,

m2
X

2EX
k′− ∼ k′2 ∼ O

(
Λ2

QCD

)
. (11)

We now perform two different approximations:

1. We linearize the problem by dropping the
k′2 term in eq. (9), i.e. we describe the
final hadronic system with the HQET or,
in geometrical language, with a Wilson line
off the light cone;

2. We drop the term m2
X/ (2EX) k′− in the last

member of eq.(9). Qµ is replaced with a
vector lying exactly on the light cone, in
the minus direction. Neglecting these mass
(virtuality) effects, the final hadronic sys-
tem is described by the LEET [6] or, in ge-
ometrical language, by a Wilson line on the
light cone.

Therefore, we have

m2

X̂
' m2

X + 2EX k′+. (12)

Equation (12) is the main result of this section.
Let us comment on it. m2

X̂
depends on a single

light-cone component, k′+ in our reference frame.
Because of eqs. (2) and (8), the two terms on the
r.h.s. of eq.(12) are of the same order: thus m2

X̂
is

affected in a substantial way by the distribution
of the k′+ momenta and cannot be considered con-
stant.

The rate of the elementary process (5) contains
perturbative corrections of double-logarithmic
kind:

αn
S

(
logk [1− x]

1− x

)
+

(0 ≤ k ≤ 2n− 1) , (13)

where 3

x ≡ 1−
m2

X̂

E2
X

(E
X̂
∼= EX). (14)

Since m2
X and m2

X̂
are of the same order of mag-

nitude, the limit (3) implies that the threshold
region (also called large-x region) is approached:

x → 1−. (15)

The perturbative corrections (13) — enhanced
in the threshold region — are large and radi-
cally modify the tree-level distribution [7]. The
physical distribution for (1) is obtained by con-
voluting the perturbative corrections of the form
(13) with the primordial k′+-distribution: this is
the way non-perturbative effects enter the game.
We conclude that the process has a substantial
non-perturbative component related to the k′+-
distribution.

Let us also present another way to establish
the non-perturbative component in the decay (1),
which is a critical analysis of dynamics using only
perturbation theory. We neglect all the bind-
ing effects (confinement, Fermi motion, etc.) and
consider an isolated on-shell heavy quark Q, i.e.
we take k′ = 0 4. Q decays into a massless quark
q plus non-QCD partons:

Q → q + non−QCD partons. (16)

We now consider the emission of a soft gluon, with
momentum components of the order of the QCD
scale:

k+ ∼ k− ∼ k⊥ ∼ O (ΛQCD) . (17)

The invariant mass of the final hadronic state is

m2
X = (pq + k)2 ' 2EX k+ ∼ O (EX ΛQCD) . (18)

An invariant mass of the order of (2), i.e. rather
large, is generated by the emission of a very soft
gluon. A kinematical amplification by a factor
EX has occurred as the kinematics goes from
3The plus-distribution P (x)+ is defined on test func-
tions f (x) in the unit interval x ∈ [0, 1] as∫ 1

0
P (x) [f (x)− f (1)] dx.

4The physical process and the subprocess coincide in this
case.
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time-like to light-like with the fragmentation of
the heavy flavour. Higher-order perturbative cor-
rections replace the bare coupling with the run-
ning coupling evaluated at the transverse gluon
momentum [8],

αS → αS (k⊥) . (19)

For a soft gluon with the momentum (17), the
coupling is evaluated close to the Landau pole, in-
dicating the presence of non-perturbative effects.
We conclude again that the decay (1) has the non-
perturbative component identified before.

Let us observe that the linearization introduced
in 1. and the light-cone limit introduced in 2.
are not valid approximations for a hard collinear
gluon; by this we mean a gluon with momentum
components of order

k− ∼ O (EX) , k+ ∼ O (ΛQCD)

and, in order to have k2 ∼ 0:

k⊥ ∼ O
(√

EX ΛQCD

)
. (20)

For such a gluon, all the terms in the last mem-
ber of eq. (9) are of the same order. Its contri-
bution can be considered a short-distance effect,
since the transverse momentum (20) is substan-
tially larger than that of a soft gluon (17) and
the related coupling constant is in the perturba-
tive region.

According to the above discussion, it is natural
to identify the non-perturbative component in (1)
as the following matrix element:

f (k+) ≡ 〈HQ (v) |h†vδ (k+ − iD+)hv|HQ (v)〉, (21)

where hv is a field in the HQET with velocity
v. This function gives the probability that the
heavy quark in the hadron has a plus virtuality
equal to k+, independently from the other com-
ponents. In the following section we will critically
analyse how the above matrix element factorizes
the non-perturbative effects. We already found
that the hard collinear region (20) cannot be de-
scribed by the shape function but can consistently
be incorporated into a coefficient function 5 [7].
5The coefficient function is also called jet factor, collinear
factor, matching constant, hard factor and short-distance
cross-section.

2. The shape function in various regular-
izations

In order to avoid distributions and to deal only
with ordinary functions, it is convenient to con-
sider the light-cone function [9]

F (k+) ≡ 〈HQ|h†v
1

k+ − iD+ + iε
hv|HQ〉, (22)

from which the shape function is obtained by tak-
ing the imaginary part,

f (k+) = − 1
π

Im F (k+) . (23)

We want to study if the light-cone function factor-
izes the non-perturbative effects by performing a
perturbative computation. This involves 3 steps:

1. To replace the hadronic light-cone function
with a partonic light-cone function 6,

F (k+) = 〈Q|h†v
1

k+ − iD+ + iε
hv|Q〉, (24)

and to perform a perturbative computation.
We take the heavy quark Q with the mo-
mentum (6), i.e off-shell by k′;

2. To perform the same perturbative compu-
tation — with the same external states —
in the original high-energy theory, i.e. full
QCD;

3. To compare the results to see if the differ-
ence is a short-distance effect or not.

All this procedure has a meaning if we ac-
cept the following assumption: the long-distance
effects of perturbative kind — i.e. the lead-
ing infrared logarithms — are able to trace
the long-distance effects of non-perturbative na-
ture. Therefore, if two matrix elements have the
same perturbative long-distance contributions,
they manifest also the same non-perturbative
long-distance effects if computed with a non-
perturbative technique, such as lattice QCD 7.
6The same symbol F (k+) is used for the two different
matrix elements, as this should not cause confusion.
7An exception to this rule seems to be the observed differ-
ence of the fragmentation functions of the heavy flavours,
as extracted from electron and proton collisions [10].
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At the tree level, we have the expected result

F (k+)tree =
1

k′+ − k+ + iε
, (25)

i.e.

f(k+)tree = δ
(
k′+ − k+

)
. (26)

The shape function is a spike when its argument
matches the plus virtuality of the external state,
k+ = k′+, independently of the other components,
k′− and k′⊥. We now consider the double loga-
rithm that appears at one-loop.

Let us first discuss the case of a simple regular-
ization cutting the space momenta:

|−→l | < ΛS , −∞ < l0 < +∞. (27)

Since infrared logarithms are associated to quasi-
real configurations, for which l0 ∼ |−→l |, we expect
this regularization to give the same double loga-
rithm as lattice regularization (after continuation
from Euclidean to Minkowski space). On the lat-
tice, all the momentum components are cut off,

|lµ| < π

a
, (28)

where a is the lattice spacing. The result of the
computation done with the regularization (27) is
[9]

F (k+)ΛS =
1

k + i0

(
−a

2

)
log 2

(
ΛS

−k − i0

)
, (29)

where we defined the usual combination

k ≡ k′+ − k+. (30)

and a ≡ αSCF /π.
The result of the computation done with Di-

mensional Regularization (DR) is [11,9,12] 8

FB(k+) =
1

k + i0

(
−a

2

)
Γ(1 + ε)

Γ(1 + 2ε)Γ(1− 2ε)
ε2

(
µ

−k − i0

)2ε

=
1

k + i0
a

[
− 1

2ε2
− 1

ε
log

(
µ

−k − i0

)
− log 2

(
µ

−k − i0

)]
, (31)

8This result is also in [13], but we disagree with the renor-
malization procedure [9].

where ε ≡ 2 − D/2 (with D the space-time di-
mension) and µ is the regularization scale 9. We
find a double pole of UV nature because infrared
singularities (soft and collinear) are completely
regulated by the light-quark leg being off-shell.
The first problem we encounter is how to renor-
malize the above expression. The point is that, to
obtain a finite result, one has to subtract not only
the double pole, whose coefficient is just a num-
ber, but also the simple pole, which has a log µ/k
coefficient [14,12]. It seems that the subtraction
of the simple pole cannot be performed with a lo-
cal counter-term, as standard textbooks on renor-
malization teach one should do. However, if we
blindly subtract all the poles, we obtain

F (k+)”ren” =
1

k + i0
(−a) log 2

(
µ

−k − i0

)
.(32)

We see that the coefficient of the double logarithm
is 2 times larger than in eq. (29).

Even though we are not able to justify the
renormalization procedure, we believe that the
above result is correct. A hint in favour of this
conjecture is obtained by repeating the same com-
putation in the bare theory at finite ultraviolet
(UV) cut-off, using a regularization similar to
DR, i.e. cutting only the transverse momenta and
not the longitudinal ones 10:

|−→l ⊥| < Λ⊥, −∞ < l+, l− < ∞. (33)

The unbounded integration over the longitudinal
components does not give rise to UV divergences
and we obtain the result [9]

F (k+)Λ⊥ =
1

k + i0
(−a) log 2

(
Λ⊥

−k − i0

)
. (34)

The transposition of symbols should be clear: the
renormalization point µ is replaced by the UV
cut-off Λ⊥. As anticipated, there is agreement
between the two results (32) and (34).

The origin of the factor 2 in the difference of
the double logarithms is easily seen by considering

9Actually, in the last member of (31), µ2 should be re-
placed by µ24π exp[−γE ] (γE is the Euler constant), even
though this rescaling does not affect DLA results.
10The loop measure in DR is indeed regulated as

∫
dDl =

1/2
∫

dl+dl−dD−2l⊥.
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the integrals

IΛS ,Λ⊥ ≡
∫ ∞

0

dε

ε

∫ ε2

0

dl2⊥
l2⊥

θ
(
l2⊥ − εk+

)
θ (ΛS − ε) , θ

(
Λ2
⊥ − l2⊥

)
.

A straightforward computation indeed gives:

IΛS =
1
2

log2 ΛS

k+
, IΛ⊥ = log2 Λ⊥

k+
.

Let us analyse the domains of the 2 integrals in
the plane (ε, l⊥). For IΛS , the integration region
is a triangle-like domain DS limited by the curves

l⊥ =
√

k+ε, l⊥ = ε and ε = ΛS (DS) .

The energies and the transverse momenta in DS

are in the ranges (see fig.1)

k+ < ε < ΛS , k+ < l⊥ < ΛS (DS).

Transverse momenta do become as small as k+ ∼
O (ΛQCD), entering the non-perturbative region.
For IΛ⊥ , the integration region D⊥ has again a
triangle-like shape and it is limited by the curves

l⊥ =
√

k+ε, l⊥ = ε and l⊥ = Λ⊥ (D⊥) .

Assuming Λ⊥ = ΛS , we see that D⊥ contains DS

plus another region ∆D (see fig. 2),

D⊥ = DS ∪∆D.

In the “new” region ∆D√
k+Λ⊥ < l⊥ < Λ⊥, Λ⊥ < ε <

Λ2
⊥

k+
(∆D) .

The integration over ∆D gives a double logarith-
mic contribution equal to the one coming from
the integration over DS: that is the origin of the
factor 2 in the difference between IΛS and IΛ⊥ .
The contribution coming from ∆D is a short-
distance contribution because it always involves
rather large transverse momenta,

l⊥ ≥
√

k+Λ⊥ � ΛQCD (Λ⊥ � ΛQCD).(35)

Let us observe also that in ∆D the energy ε of
the gluon can become much larger than the UV
cutoff, ε � Λ⊥. One usually relates the cutoff
to the hard scale EX in the full QCD process,
which, on the contrary, sets the upper bound for

the gluon energies: ε ≤ EX . It is clear that we
are dealing with highly unphysical regularization
scheme effects.

We now compare with the QCD rate, from
which a full QCD light-cone function can be de-
fined [9], given by

F (k+)QCD =
1

k + i0

(
−a

2

)
log 2

(
EX

−k − i0

)
.(36)

It is clear that Λ⊥ or µ is replaced by EX . It
is immediate to see that the double logarithms
match for the ΛS-regularization, while they do
not match for the Λ⊥-regularization. In the lat-
ter case the “spurious” contribution from ∆D can
be subtracted by means of the coefficient func-
tion, which includes also “true” hard collinear ef-
fects, finite terms, etc. While in the ΛS case the
coefficient function contains at most a single log-
arithm of k+, in the Λ⊥ case it contains also a
double logarithm of k+.

3. Conclusions

We tried to describe in a way as transparent
as possible the problem of factorization of non-
perturbative effects in the decay (1) by means
of the shape function. The starting point of our
analysis is the observation that the shape func-
tion exhibits a different double logarithm at one
loop, depending on the kind of UV regulariza-
tion adopted [9]. In a regularization such as DR
— cutting only transverse loop momenta — the
double logarithm has a coefficient 2 times larger
than the one derived with a lattice-like regulariza-
tion. We have explicitly shown that the difference
between the double logarithms is related to the
integration over a region of large transverse mo-
menta, so it is a short-distance effect. The QCD
rate has a double logarithm equal to the one de-
rived in lattice-like regularization. This implies
that the coefficient function in lattice-like regu-
larization contains at most a single logarithm of
k+ (the infrared scale of the problem), while in
DR it contains also a double logarithm of k+. In
both regularizations, however, non-perturbative
effects are factorized inside the shape function.

In general, we observe that there are UV reg-
ularization effects similar to those found for the
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shape function in other operators incorporating
Wilson lines on the light cone [15].
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Figure captions

Fig.1 (above): Integration region for the soft
gluon in the plane (ε, l⊥) with the ΛS regulariza-
tion. We have taken k+ = 0.3 GeV and ΛS = 1
GeV.

Fig.2 (below): Integration region for the soft
gluon in the plane (ε, l⊥) with the Λ⊥ regulariza-
tion. We have taken k+ = 0.3 GeV and Λ⊥ = 1
GeV. The domain DS is to the left of the dashed
line, ∆D is to the right.
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