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PRELUDE: Standard Model —an example of QFT —atool for precision calculationsin modern
High Energy Physics (HEP)

In this School, the courses on Quantum Field Theory (QFT) and the Standard Model (SM) are
grouped into one course of six lectures.

Maybe, thisis not by chance: the SM finally strengthened itself to be the modern QFT capable for
precision calculations in HEP. In my opinion, in recent years a new discipline has been born: Precision
High-Energy Physics, PHEP, both experimentally and theoretically.

Experimentally, thisisfirst of all due to experiments at the Z resonance: LEP1 and SLAC, with
their unprecedented statistics, bringing the precision of measurements at the per mil level. However, other
facilities, like TEVATRON, also approach PHEP standards. The LHC also expects to be atypical PHEP
facility, not speaking about linear collider (L C) where one expects statisticsin the Z resonance mode 100
timesricher than at LEP1 (GigaZ phase of linear collider).

Theoreticaly, it is basicaly the Standard Model (SM), which nowadays represents an example of
a calculable QFT. This status of the SM was achieved during nearly 40 year’s heroic efforts of alarge
community of theorists’ tracing back to pioneering papers by S. L. Glashow, S. Weinberg and A. Salam
in the beginning of the sixties, and finally recognized by the decision to award the 1999 Nobel Prizein
Physicsto G. t'Hooft and M. Veltman “for elucidating of quantum structure of electroweak interactions
in physics’, and for “having placed this theory on afirmer mathematical foundation”.

An important question that | asked myself whilst preparing these lectures was: Which balance be-

tween QFT and SM? Presumably, idedlly, it should be 50-50. However, eventualy a SM dominated
course emerged. There were different reasons for this.

Objective reasons.

— At present, we face an impressive success of the SM in the description of the LEPL/SLC data;
— We are at the end of the LEP1/SL C data processing;
— Weforesee abright future for PHEP at the colliders of near future.

However, there were also certain subjective reasons:

— | have worked for about 20 yearsin the field of PHEP;

— | wasdeeply involved in the LEPL/SL C analysiswithin the framework of the ZFITTER project and
several CERN Workshops dedicated to precision calculations for the Z resonance;

— Last, but not least abook The Standard Model in the Making [1], written together with Giampiero
Passarino, and finished in 1999. In this book, we tried to show how the SM works for precision
calculations of the Z resonance observables.

Therefore, it is not surprising that this course of lectures is biased to the SM and Z resonance
physics. | would like to say afew words asto why it is so biased towards calculations.

Hereagain | see objective and subjective reasons. Objectively, the precision calculations consume
alot of mathematics and, in my opinion, it is not surprising that the creation of SCHOONSCHIP was
specially mentioned in the decision to award the 1999 Nobel Prize to Prof. M. Veltman. Nowadays, all
the cumbersome diagrammatic calculations are done with algebraic computer systems. However, | am
not going to tell you about corresponding algorithms. In my opinion, the underlying mathematics, which
the SM physics is based upon, is very simple and everybody may master it. So, | shall dare to tell you
about it.

Subjectively, it is our way of understanding physics by means of calculations. When working on
the book, we liked to say: “We do not prove Ward identities — we compute them.” These lectures fol-
low the same approach, although | understand that it may not be appreciated by the majority of the HEP
community. Anyway, the first five lectures are self-contained and may be studied.



I would like to say, that these lectures are not a simple extraction from the book. | see them as
introductory and in many respects as complimentary to thebook. So, inthe second lecturel tried to present
amore extended discussion of the SM Lagrangian compared to the presentation in the book.

Finally, it should be stressed that both in the book [ 1] and in these lecturesthe Pauli metricsis used,
i.e. for an on-mass-shell momentum one has: p? = —M?2. Asaresult of this, some equations are looking
“unnaturally” compared to a more popular choice, the so-called Bjorken-Drell metrics where one has:

p2 — Mz.



1. QFT BASICS. EXAMPLE OF QED

Inthefirst lecture, | briefly recall the basics of the Quantum Field Theory (QFT), in particular of Quantum
Electrodinamics (QED), which for a very long time represented the only example of a calculable QFT.
Nowadays QED is completely absorbed by the Standard Model (SM), which completely inherited the
status of QED. We will devote sometime to a detailed discussion of the SM theoretical status. In passing,
our notation and convention will be introduced.

1.1 Quantum fieldsof the SM and their properties

Webeginwithan overview of the SM fieldsand their properties. The SM involvesphysica fields (fermions,
gauge bosons and Higgs scalar) and unphysical fields (scalars and Faddeev—Popov ghosts).

e geneation o emios o mater <l> C) () ()
<g> _ (3) <§> (2)

possess masses, m ¢, charges, () ¢ (in units of positron charge), and third projections of weak isospin, Ij(f’) :

v l U D v l U D
3
my, Q= 2 1|0 1L P = 1 1
L R 3 7z ts T3
Gaugefields:
Vector bosons Unphysical scalars Faddeev—Popov ghosts
A y4
Z (M) ¢ Y?Z
WH(M,,) ¢* X+
Gluon

pOossesses strong interaction
g Ye
possess physical charges and physical masses
possess physical charges and unphysical masses

and unphysical charges.
Higgsfield:

H (M,,) scaar, neutral, massive.



1.2 Equations of motion
Introduce notation for all fields of the SM:

scalar, neutral and charged: ~ ¢° (z), ¢F (2),

spinor: 4 (z), ¢ (),
electromagnetic:. A, (z),
vector massive, neutral and charged: 7, (z), W (z),
Faddeev—Popov ghosts: X+, Y4, Y?, Y¢. (1)

1.2.1 Equations of motion for freefields

All fieldsin QFT satisfy equations of motion, free, or with sources. Here we recall four types of equation
of motion for free fields which are met in the SM:

Klein—Gordon for scalar fields: (D — M2> gbo (£) =0, where O=0,0,,

Out™ (2) 0utp™ () — M¢™ (2) 97 (2) = 0;
Dirac for spinors; (@ + m) ¢ ( )=0, where @ = 0,7, ;
Maxwell for photons. 9, F,, =0, Fu =0,A, —0,A,;
Procafor heavy vector bosons: 9, F,, — M2Z, =0, Fu =0.2,—-0,7,. 2

1.3 Relation between a Lagrangian £ and equation of motion
1.3.1 Euler—Lagrange equation

In QFT there exists arelation between the Lagrangian density £(x) and eguations of motions (I recom-
mend the book in Ref.[2] for a systematic presentation of this subject), namely, a variation of the La-
grangian with respect to afield and its derivative gives the corresponding equation of motion:

oL oL
dp "9 (ay)

All fields ¢ and all their derivatives 0, (¢ = ¢°, ¢F, ¥, ¥, Aa, Za, €tc.) should be considered as
independent variables at variation.

—0. 3)

1.3.2 Example of a neutral vector field
Consider the Lagrangian of afree heavy vector field Z,,:

1 1
L = — FuwhFu—5MZ,7Z,. (4)
Computing the derivatives,
oL oL
=-MZ,, i~ =—Fu, 5
0%, 0(0uZy) a ®)

and substituting them into the Euler—Lagrange equation (3), we obtain the Proca equation of motion:

oL _, oL
07,  "9(0,2,)

=0y F —M?Z,=0. (6)

Notethe1/2 intheLagrangian for neutral fields contrary to the Lagrangian for charged fields. Inthelatter
case, the fields W are independent and the factor of 2 does not arise at variation.



1.3.3 Example of QED
Consider the QED Lagrangian with interaction:

1 — .
‘C:_ZF,LLVFILLV_w(ﬁ_zleA—i_m)d}‘ (7)
Compute derivatives over al independent fields and derivatives:
oL —. oL
94, = wlle%ﬂ/M m = —Fu,
oL oL
— = —(P—ieQA+m)y, — = 0, 8
Xz ! 0 (9,) (8
oL . oL _
o7 = —yY(—te +m), = - .
59 Y (—ieQ A ) 8 (9,) (Ui
Substituting al these derivativesinto Eq. (3), we get the system of three Euler—L agrange equations:
oL oL —.
8./4,/ - aua (8;“4,/) = Wle%ﬂﬁ + auF‘;w =0 )
oL oL
oo (0.0)
oL oL

T aum = —¢ (—ieQpA+m)+ 0y, =0, 9)

or equivaently — equations of motion for interacting fields, where on the r.h.s we see the sources of the
fields:

auF‘;w = —ile@’Y/ﬂ/%
@+m)y = ieQAy,
V(P—m) = —ieQsyA. (10)

Thefirst oneisthe Maxwell equation with the source and the next two eguations are two Dirac equations
for the ¢ and Dirac-conjugated field 1/, both with sources. From these equationsiit is clear, why in QFT
language one says that sources emit/absorb et e~ -pairs, ye~ and ~ye™, respectively.

1.4 S matrix and amplitude of a process

Now we recall the notions of the S-matrix and the amplitude of a process. Consider a scattering (annihi-
lation) process:
pLtpe — PPy
P = pi+po, initial momentum,
P = pi+p,+---, fina momentum, (11)

where p; denotes simultaneously a particle and its 4-momentum.
In QFT, any process is characterized by a matrix element:
(FIS = 1]i) = (fIRi) (2n)" 6 (P — P) , (12)
of S matrix,

S =T {exp [i/ﬁl () d4x} } , (13)

which is constructed from an interaction Lagrangian density, £, (x), with the aid of atime-ordering op-
eration T

Let us summarise our short ex-course into QFT:
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e Theinteraction Lagrangian density, £,(x), isthe primary object of QFT from which the amplitude
of aprocessis derived;

e L, o coupling constant, which is usually small and a perturbation expansion for a process ampli-
tude may be devel oped;

e Quantum fields, which aLagrangian is made of, may act on initial and final states |¢) and (f|, giv-
ing rise to plane waves describing in and out particles, or contract with each other, giving rise to
propagators,

e Feynmanrulesfor external lines, verticesand propagatorsoffer avery transparent way of construct-
ing process amplitudes, order-by-order in perturbation theory;

e A typical Feynman rule for an externa line (scalar, spinor, photon, vector boson) looks like:

1 1

» — W\/T%><[1,ﬂ<p),€u(p)ae,u(p)v"'}

where pg isthe zeroth component of a4-vector p (energy) and @ (p) , €, (p) , e, (p) are spinors and
polarization vectors, respectively.

15 Cross-sectionsand decay rates

Here we recall practical formulae for cross-sections and decay rates constructed from the amplitudes of
the corresponding processes.

Thetotal transition probability (in the whole space-time) is
1
(2m)*

AW =| (R]i) [ (208 (P = P) —— [0 Pxdtad®shdp - (14)

The transition probability per unit of time per unit of volume is then

— m Wi _ |2 4 / 3,0 73,
dwpi = lm 7= = (fIR}i) |° (2m)76 (P~ P) d°pyd°ps (15)

The differential cross-section is defined as the ratio

dwy;
dogi = "1 (16)
J

where j istheinitial flux

\/(p1p2)2 —mim3

: _ 17
S g &0
Introducing initial densities py, p» and normalization factors N,,, ,
1 1 1
Pi = ) Ny, = ) (18)
(2r)? @2 (o),
the differentia cross-section becomes
1
doy; = | Myi |? d®,, , (19)
4\/(]01292)2 —mimj
where d®,, isthe differential phase space
0%, = 20)' [ I Sy, P (20)
n = (27 —— P — .
k=1 (277)32(192)0 j=1 ’
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The process matrix element squared, | M ; |2,

N2 NZ, HN? | My P=3 | {fIRli) (21)

spins

isdefined without normalization factors V,,, and should be understood as averaged over initial and summed
over final spin degrees of freedom.

For the decay rate of the process:

P = pitpyt- (22
one anaogously has
dwg;
ary = 8 (23)
p
1 . N .
where p = —— istheinitia density.
(2m)
Similarly one obtains,
1

AT = —— i |? dd, . 24
! F, | Myi | (24)

Notethedifferencein the definition of the phase space Eq. (20) with PDG convention, [6]: (27r)4 isshifted
to the phase space. Thisis convenient for calculationsin n dimensions as will be shown below.

1.6 Input parametersin the Standard Model
1.6.1 Number of independent parametersin the SV

In this section we discuss a very important issue, the notion of the input parameter set, IPS. To approach
it, let us consider a sequence of theories, ranging from conventional QED to the Extended SM (hereafter
ESM). The following Table contains the list of parameters, which a theory Lagrangian depends upon,
together with the total number of parameters of the theory N,

Theory List of parameters N,
Conventional QED — e Me 2
Extended QED — e Me my, M,
my me me
mq msg my 10
EW Standard Model —  + M, M, M,
4 mixing angles 17
Conventional SM —  +ag 18
Extended SM -  + my, My, my,.
4 mixing angles 25

One can seethat the number of parameters of the ESM islarge. However, thisisatrivial consequenceof a
large number of fundamental fields and the objective complexity of Nature. ThisTableillustratesthat the
nature of the parametersin all the considered series of theoriesis exactly the same. In conventional QED
itis 2, but only due to the fact that this theory is limited to the description of the interaction of photons
with electrons.



It isimportant to understand that the number 25 isa minimal number. Indeed:
e Three generationsisaminimal number, necessary to have CP violation, which existsin Nature; remem-
ber that the number of complex phasesis

Ny, —1)(Ng—2 )
Nphases = Ny = 1) 2( a=2) ; where N, — number of generations, (25)

therefore, N, = 3 isaminimal number which allows us to have one (minimal number) phase.

All nine fundamental fermions are found experimentally.

¢ Four gauge bosonsis aminimal number, needed to describe all EW interactions existing in Nature. We
have the long range em. interaction and CC and NC short-range weak processes, therefore, we need at
least four vector carriers— A, W+, Z — to mediate these interactions.

All four gauge bosons are found experimentally.

e Fermionic mixing, asis proved in the lectures of Prof. S.M. Bilenky [3] is unavoidable and existsin
Nature both in hadronic and leptonic worlds.

CKM mixing isexperimentally well measured, v-mixing is probably discovered.

¢ Only the Higgs boson has not yet been found. There are indirect indications, however. (To be discussed
in these lectures.)

The ESM isnot ableto calculate these 25 parameters and in this sense the ESM isnot apredictive
theory. Thisiswhy people believe that some day a better theory will be discovered and why they wish to
find some experimental indications of new physics beyond the SM and build and plan new accelerators,
the LHC, LC, etc.

So far, however, neither the experiment has found strong evidence of new physics, (the situation
withthedescription of all v datahasto beclarified and | refer tothelecturesof S. Bilenky [3] and M. Carena
[4] at this School) nor theory proposed the complete explanation of the whole mass spectrum of funda-
mental particles ranging from fractions of eV for lightest neutrino to 175 GeV for heaviest top quark, i.e.
morethan 12 orders of magnitude!

The ESM is able, however, to calculate any experimental observable O;™" in terms of its IPS. We
define

ESM IPS = the 25 parameters of above the Table. (26)

One must emphasize that this set of parametersis not unique. For instance, fermion masses may be re-
placed by Yukawa coupling constants and one of the gauge boson masses may be substituted by the SU (2)
weak coupling constant g. Particle masses seem to be, however, more natural to be chosen for IPS, and,
moreover, they are more suitable objects for a treatment within the one-mass-shell (OMS) renormaliza-
tion scheme.

The comparison procedure of experimental measurements with the ESM predictions may be sym-
bolically written as follows

O (measured) O™ (calculated as afunction of IPS) . (27)

We shall now discuss of what is presently known about the I PS. The various parameters are experimental ly
known with different precision. For instance, precision in measurements of masses ranges from 107 for
m. to the existence of only lower and upper limitsfor M,

me = 0.51099907 £+ 0.00000015 MeV ~ 3x1077

M, = 91.1871 £ 0.0021 GeV ~ 2x107°
M, = 80.394+0.042 GeV ~ 5x1074
m; = 174.3+5.1 GeV ~ 3x1072

100 GeV (direct searches) < M, < 215GeV  (95% c.l. indirect limitations).
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Precision measurements provide constraints on the IPS. Thisis how one may extract information
onyet unknown parameters (or improve our knowledge of poorly measured ones). Thisshould not be con-
fused with prediction in the above mentioned sense. The story of the discovery of the W and Z bosons
and of the t quark isatypical illustration of how information about the masses of yet undiscovered parti-
cleswasextracted from theory constraints. The samestory isnow repeated with the H boson. One should
clearly understand that the ESM does not predict parameters, but gives hints about them via constraints.

1.6.2 More about IPS

Let uslook at typical precisions and scales of various measurements.
The electron anomaly, a. = (g — 2) /2, isatypica low-energy phenomenon, where conventional QED
is sufficient to give very precise predictions:

a®P = 1159652193(10) x 10712
ah = 1159652140(27) x 10712,

Animpressive (8 digits!) agreement between the experiment and QED calculations up to fourth order in
perturbative expansion, O (o), illustrates the calculational power of QED. It cannot be by chance!

The Z resonance observables are measured at LEP1 (CERN) and SLC (SLAC) with
the experimental precision < 1073 (28)

Therefore, one needs to have
the theoretical precision ~ 2.5 x 1074, (29)

Thisisthe high-energy domain, where QED is not sufficient and one has to apply the conventional SM.

1.6.3 Number of free parametersin fits of Z resonance observables

The number of input parameters, which the Z resonance observables depend upon, isactually much lower
than 25. Indeed, al the lepton masses are known very precisely, the worst one,

m, = 1777.057032 MeV < 1074, (30)

is known infinitely precisely in the typical LEP1 precision scale 1073.
Later on, we will see that the Z resonance observables are sensitive to the vacuum polarization:

f
Y v
f
which leads to logarithmic mass singularities:
S
f f

This represents no problem for leptons, since lepton masses are well defined and well measured. On the
contrary, light quark masses are ill-defined and for this reason they are replaced by the other experimen-
tally well defined and well measured quantity o (ee~ — hadrons). This introduces a new parameter

o (Mg) to the theory instead of light quark masses. Next, the Z resonance observables are insensitive
to neutrino masses and fermion mixing angles. So, we are left with only six parameters:

a(Mg), aS(Mg), my, M, M, — M,. (32)
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Furthermore, one should exploit the precision measurement of the muon lifetime 7,. In terms of
the Fermi constant, the relevant precision is better than 10~>, which again means infinite precision in our
scale. Thisallows usto derive M, with atheoretical error of ~ 10 MeV which is much better than the
present combined experimental error of ~ 60 MeV. We are therefore left with only 5 parameters:

oz(M;), Qg (M;), my, M, , M, . (33)

We will call this set the standard LEP1 I PS.

With M, measured at the Z peak with aprecision of ~ 2 x 1075, and with the rich information
available from the other measurements for the parameters,

« (Mg) , ag (Mg) , my, (34)

we are approaching a one-parameter fit situation, with the Higgs mass M, being the only parameter to
fit!

1.6.4 More on coupling constants, typical scales

The LEPL/SLC and LEP2 typical scales, /s, masses of weak bosons, mass of the top quark, estimated
Higgs mass,

Vs ~ M, —200GeV,
M, ~ 80GeV,
M, ~ 91GeV,
my ~ 175 GeV,
M, < 300 GeV, (35

all areof theorder of atypical EW scale: 100-300 GeV. Therefore, one cannot construct asmall parameter
out of /s, M,,, M,, my, M,, andthe caculation must, in principle, be exact (complete) in all
these quantities. In real life, the notion of m?-enhanced termsis introduced: O (Gm7) . We note that
m?/ M‘i ~ 4, therefore this enhancement is not so pronounced. Given a probable interval for the Higgs
mass of 100 < M,, < 300 GeV, the popular expansionsin M2 /m? or m7/M? may have very bad
convergence.

For other than top-quark fermionsit is sufficient to keep thefirst order in m} /s, f=T,c,b; higher
terms may safely beignored at LEP energies.

Present codes include the following QED, EW and QCD corrections:

QED «(0)L = 1/137L upto O [(aL)?],
EW  a(M2) = 1/1289 wto O(a?), (36)
QCD ay (Mg) = 0.119 upto O(ag),
where big log
Lzlnmig—1:23 a s=M>. (37)

Therefore the effective expansion parameter in QED, oL = 0.169, iseven bigger than the QCD coupling
o (Mg) .

Theneglectedterms O (a®L?) ~ 2x10~*and O (o/é) ~ 2x10~* arequalitatively expected to be
at theboundary of importance. However, atestimplementation of even moreimportant term O [(aL)ﬂ ~

8 x 10~ revealed the effect below 10—, All available mixed corrections O (aa) and O (aag) arealso
needed, and they are implemented into the codes.
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1.7 QED freeLagrangian

Before discussing at length the ESM, it is worth recalling the basics of QED, because the ESM is very
similar to QED as far asthe basic principles are concerned.

The QED free (without interaction) Lagrangian reads:

1 1 _
Lo = =7 FuFow — 5 (€ ~ ij by (P +mp) vy, (38)
where the following notations are used:
1
Fo =0,A, —0,A,, D= 0uVu, C* = “z Oy . (39)

Here C# is the gauge fixing term, the meaning of which will be fully understood when we will consider
the ESM Lagrangian. Here we shall only discuss our notation and convention.

We usethe4 x 4 representation for the Dirac matrices:

_ O —iTj . ) (I O
Vi = (ZTJ 9] )) J_17273a 74_(0 _I>7

O -1 10 0 0
'Yl’YQ’Y3’74—<_I O)’ I—<O 1>, O—<O 0)- (40)

The basic properties of the v matrices are

75

Yo Yo + VoV = 25/“/ ) ’Y;r = Yu > '72 =1I. (41)

The Pauli matrices are as usual:

() () ) e

and their basic properties are

1 1 . 1 .
T, = TZ'+’ TiTz.+ = 17 TiTi = I, |:§7'7;, §T]:| = Z€ijk;§7_k;, TiTj = 52] + Wik Tk - (43)

The quantities %n are SU(2) generators and the general SU (2) transformation reads

U = exp {—%nxi} ., UUt =1, detU=1. (44)

Free-particle spinors satisfy the Dirac equations:

(ip+m)ulp) = 0,  (=ip+m)v(p) =0,
u(p) (ip+m) = 0,  v(p) (—ip+m)=0. (45)

1.8 Local gaugetransformation and invariance
Let usrecal the local gauge transformations for al fields entering the QED Lagrangian:

Yh(x) = e Q@ (),
Gpx) = Pp(x)e Q@
A(z) = Au(x) — 9\ (). (46)
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Thefull Lagrangian £ ..., will beinvariant under local gauge transformationsif wereplace 9,, in Eq. (38)
by the covariant derivative,

Oy — D,y =0, —ieQfA, . (47)
The Lagrangian with interaction becomes
1 1 — )
Lapn = =7 FurFur = 5 (€)= 30 (P — ieQpfl +my) vy (48)
f

Here e is positive and e? = 4ra, i.e. it is the positron charge, and Q; = (fraction of charge)x2[}3):
Q=-1,Q,=+2/3and Qs = —1/3.
The gauge invariance may be verified with the aid of identities:

Fy, = 0,4, —0,A, = 0,A, — 0,0,\(x) — O, Ay + 00\ () = Fpuy,
m0 () (x) = my () (x)
/

V(@) (0 — ieQ AL ) V(@) =

D (@)D 10, — ieQ O (2) — i€Qy (A(x) — Bu())] e A ()

= y(2) (O — 1eQrAy) Yy () . (49)
In order to see the invariance of C#, we have to subject it to our gauge transformation, i.e.
1 1 1
“f 8MAL = “f O, + EauauA(x) , where 0,0, = 0. (50)
The gauge invariance will be ensured if one requires
OXz) =0. (51)

Therefore, we discover amassless, non-interacting ghost field A(x) = Y#(x) with the propagator

1 3

gD v P . (52)
1.9 Feynman rulesof QED

TheFeynman rules could be easily derived from the Lagrangian, Eg. (48). The Feynman rulesfor electron
propagator and QED-vertex could be easily guessed looking at the Lagrangian, Eq. (48), are particularly
simple. A complete collection of Feynman rulesin QED is

p—)

1 11 —iptmy
(27r)4i ip+my (271-)4i P2 —|—m? — e’
M 12 1 1

2 Pubv
(2m)*i p? — i€ [5"”(5 1) P }

K (2m)ti ieQ Yy -

Note an appearance of the £-dependent term in the photoni ¢ propagator, aconsegquence of the gaugefixing.
Let usrecall the expressions for the photon propagators in three frequently used gauges.
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e General R, propagator as given above,

1 0
e Feynman gauge, £ = 1, .
eynmen gaLge, & (2m) i P — ic
1 1 PubPv
e Landaugauge, ¢ =0, 77,<51,—“—>.
gage, ¢ (2m)i p? —ie \" p?

Usualy in QED one uses the Feynman gauge. It iswell known that the £-dependence cancels in
the S-matrix for a given physical process. As an example consider any e™e~ — ~* sub-process. The
corresponding S-matrix element in the R¢-gauge will have an additional term

—(€=1) v(p4) (s +p-)ulp-), (53)

which is zero for on-mass-shell fermions by virtue of the Dirac equation. Therefore, the extraterm, pro-
portional to £2 — 1, may be omitted.

2. STANDARD MODEL LAGRANGIAN BUILDING
This lecture is devoted to SM Lagrangian building. We will proceed in the most general R, gauge with
three arbitrary gauge parameters. Let usrecall thefields' content in the electroweak sector of the SM:

e triplet of vector bosons, B¢, and singlet, BY;

e acomplex scalar field K, (in the minimal SM we have only one doublet of complex fields);

e Faddeev—Popov ghost-fields X+, Y7, Y4;

e fermion families.

The total SM Lagrangian should include all thesefields. It may be represented as the sum of the various
parts.

2.1 Yang-Millssector
First part is the standard Yang—Mills Lagrangian:

1 1
EYM = _ZFﬁquu - ZFSVFSV ) (54)

with the usual field-strength tensors

FS, = 0,Bg — 0,B% + gea.B},BS , F)), = 0,B)—0,B) . (55)

Werecall that Yang—Mills Lagrangian follows from the requirement of local SU (2) x U(1) gaugeinvari-
ance, i.e. if one replaces 0, in the free field Lagrangian by the covariant derivative which general form
may be written as a sum of the SU(2) and U(1) parts

7 7
dy — Dy =0, — 59327’“ — §ggi32 , (56)

where g is the SU(2) bare coupling constant. The Lagrangian, Eq. (54), is therefore invariant under
SU(2) x U(1) gauge transformations. We recall that the SU(2) part of Eq. (56) is totally fixed due to
its non-Abelian structure, whilst its Abelian part contains an arbitrary hypercharge g;, see [2] for more
details. The physical fields Z and A are related to the gauge fields B;; and B by awell-known rotation
involving the weak mixing angle 6:

Z . co —S¢ B 3
where s¢(cy) denote the sine and cosine of the weak mixing angle.
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2.2 Thescalar sector
The second part is the Higgs scalar Lagrangian:

1
Ly =—(DuK)" DK — " KVK — 2 (KTK)?, (58)

where A > 0 isthe positive ¢* interaction constant and the mass term has the negative sign, 2 < 0, as
isrequired by the spontaneous symmetry breaking.

The complex scalar field doublet in the minimal realization of the SM is
X
k=L |
V2 \ Vaig
It contains four scalar fields: ¢*, ¢° and H, where H is the physical Higgs boson field and (v) is the
vacuum expectation value (v.e.v.).
The covariant derivative for the scalar field in SU(2) @ U(1) looks similar to Eq. (56)

with x = H + (v) +i¢". (59)

i

DK = ((% — %gBZT“ ~ 35

0
gngM) K, (60)

where we introduced the hypercharge g; which will be fixed below. The scalar field can be conveniently
rewritten as

K:%(H—i—(v)—%iqﬁ%“)(é). (61)
Then the covariant derivative becomes
_ 1 i a_a i 0 - b b 1
D,K = NG <6H — igBMT — 59913“) (H—i— (v) + i’ ) ( 0 >
1 7 0 1 o .a
= 5 {outt - SonBL a1+ ) + o0 62

. a 1 a Z a 1 C a 1
+ {8/@ - QQBM (H + (v)) — 599132¢ + §Q5CbaBu¢b} T } ( 0 > -

Similarly, we represent the hermitian conjugate part

1 i 10w
(DuK)" = (10) = {0, + Som B (H + (0) + 50520
- a 1 a Z a 1 C a
~i[0,0° = 9B + () + Sen B + joranBi] 0} (69
and consider their product
—(D,K)" DK . (64)

This product, whisis only thefirst term of L, Eq. (58), contains 81 terms!
Collecting only terms with (v)?2, we have

1

o st st} -t - o )

_ W ) (9182 + B (1 BY + BL7) ( (1) ) - (65)

8
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Using properties of 7*-matrices, we simplify

1 1
(1,0) Bur* ( 0 ) =B},  (L,0)Bir°Bir’ ( 0 ) = BiB¢

and continue Eq. (65) asfollows

(¢?B0BY + 201 LB} + BLBy)

2 N
= — {(ngngB;j) +B;B;+B§Bﬂ R

Now we proceed in terms of physical fields:

1 1
+ _ L (pl o p2 +_ L (12 0_ 3
Wi = S(BFiB),  ot=s(e'Fi), =4
Z, = cBS—sB), A, = s9Bj + coB)) .

It isseen, that if one chooses g1 = —sp/cp, then EQ. (67) becomes

2 2 1 1
W l_ (Z,)* + QWJWM_] = —-M?(Z,)* - MWW,

8 2 2

Cy

i.e. it lookslike anormal mass-term of a Lagrangian.
Therefore, the Higgs mechanism generates masses of vector bosons;

M —baremassof W boson, M = @ ,
M, —bare mass of Z boson, M, = # .
Co

The two last equations are equivalent to:

M M
= (v) p

(66)

(67)

(68)

(69)

(70)

(71)

and these establish two more relations between the parameters of the Lagrangian. In particular, one can
see that the weak mixing angle is no longer a free parameter if one chooses vector boson masses as the

free parameters of the theory.

Let us continue our study of the product, Eq. (64). At the second step, we substitute (v) and look

at all termswithout interaction constant g:

—(1,0) % {auH +iMgB)) —i ((W - MBﬁ) TC]

1 . 0 . b b b 1
x5 0uH — iMgB) +i (90" - MB) ] | ) =
Omitting legal kinetic terms
1 2
—3 (0uH) etc.,
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then terms, which were aready considered (mass terms), and observing that H ijvo transitions cancel
identically, we are left with

. % (1,0) (91B) + Bir*) (90" ) 7 ( ‘1) )

M o e 1
+ 5 (1,0) (Bue) 7 (ngngBgTb) ( 0 ) — (73)
Taking into account, that
1
(1,0) (Bgfcaﬂgb%b —|—8M¢CTCBsz> ( . > = 2641 BL0,¢", (74)
we arrive at a short expression
— M (1B0u6° + BLoug") — (75)

which being expressed in terms of physical fields, finally becomes
— M (Ciz,ﬁuqbo + W .0~ + W;a“qﬁ) : (76)
0

And this term should be ranked asacriminal one, sinceit standsfor Z — ¢° and W+ — ¢T transitions of
the zeroth-order in the coupling constant, and their contribution must be summed up to all ordersif one
wishes to develop a perturbation theory.

To circumvent this problem one adds a gauge-fixing piece to the Lagrangian, L, which cancels
these mixing terms. However, it breaks the gauge invariance and we must introduce Faddeev—Popov
ghost fields to compensate this breaking.

2.3 Gaugefixing and Faddeev—Popov ghosts
We now add to the Lagrangian the gauge-fixing term

1
Ly = —CTC - [+, (77)
where three terms
a 1 z 1 M + 1 + +
C'=——0,A,, C?=——0uZ,+&,—9°, C* = —20,W; +EMo™, (78)
EA Ez Co g

specify the so-called generalized R, gauge with three different gauge parameters associated with three
different vector fields: A, Z, W=.

Consider, for instance, the term with £, :

1,0 1/ 1 M 0\?
_5 (C ) = —5 <__§Z auZy,‘i'gzggb )
B 11 s M o 1 M 2
- Tag (OuZu)” + P (OuZu) ¢” — B (‘fz Ced) ) : (79)

Thefirst and third terms modify the Z propagator, whilst the second term together with the criminal Z —¢°
transition of Eq. (76) givesthe full derivative

M 0 0y . M 0
0 (Zu8u¢ + (OuZy) & ) = gﬁu (Zu¢ ) ) (80)
which does not contribute to the Lagrangian and the problem of zeroth-order termsis solved.

In order to define the Faddeev—Popov ghost Lagrangian we must subject the C*%* to a gauge
transformation. Thisis, inprinciple, similar to what wedid in QED. Therelevant derivation will be given
below. Contrary to QED, we do have ghost interactions in the SM.
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2.4 Propagatorsin the SM
Consider the sum of the three terms we discussed above,

1 1 ‘
Lo = (D) DK = CHC™ = 5 (€)= 5 (€*)" = Lorop + L2 (81)

The quadratic part (bilinear in fields) of the Lagrangian L;op,

1 1
Eprop = *aNW:_aMWy_ + ( £2> W+8 W_ 8HZV8UZV + 5 < 52) (a Z )
1 1 1 5 1 e 0a L0
—§8NA,,8NAZ, + 3 1— e (OuAu)” — 53#H0MH — 0up" 0up™ — 58/@ Ou
A
1M2 1 ., M? 1
—MPWIW, — Z Z, - EM* ¢t — ,5 ggbogbo - 5MHH?, (82)
gives rise to the propagators of bosonic fields.
The scalar field propagators aretrivially guessed from Eq. (82)
1
— 22 r2 —
- M¢+8u¢ — &M pTT — Yyl etc. (83)
the rule of correspondence for vector fields is more complicated
5“ __ Pubv Pubv
1 1 1 1 v 2 2
0,70, 7+ = (1 - Z “M?2,7 P P .
28# Oy +2( €2)(57 )+2 0 Znu p? + M2 +§i2p2+M02 (84)

It isusually proved in the standard textbooks on QFT, see for example Ref. [2].

2.4.1 Full collection of Feynman rules for propagators
For completeness, we begin with the propagator of afermion, f, athough it was not discussed above:

—i]ﬁ +my
22
f P my
Then, we present three vector boson propagators:
1 2 Pubv
A 2 et (€ -1) P b
1 2 PuDv
z e (o (1) )
1 Pubv
+ 2 [k
W T {5,W +(&-1) T +€2M2}.
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Next, we give propagators of unphysical fields:

N
yA p?’
v &
0 M2 ’ yZ M2 ;
i P& P&
Co Cy
1 §
¢t p?+ M2 X+ p?+&2M2

Finally, the propagator of the physical scalar field, H-boson is

1
H p?+ME

Every propagator should be multiplied by the factor Note that propagators of unphysical fields

om)ti

have apole at an unphysical mass: p? = —¢2M?2.

2.4.2 More about propagatorsin different gauges

Using partial fraction decomposition, one may present the heavy vector boson, W, propagator (for Z
bosonwereplace{ — £,), inthree different forms. They are presented bel ow, together with expressions
in the t' Hooft—Feynman, unitary and Landau gauges.

1 Pubv
+ - 2 _ __prv -
R ER Ve {5’” HE-1) £2M2} Heguge
_ 1 < 5o pupu> _ Pubv
p2 4+ M2 Hy M2 M?2 (pQ 4 §2M2)
. 1 . pupy + 52 pupu
oMz \™ 2 P2 + M2 p2
O
= m for £€=1 ' Hooft—Feynman gauge,
1 Pubv ;
= m <5W + e > for £ =00 unitary gauge,
1 PuPv
= —— (6, —* for £€=0 Landau gauge.
P>+ M? < e ) ¢ M

For the photon propagator, not all of the above cases are possible:

1 PuPv
A — o {5W + (gi - 1) ;—2} Re¢-gauge,
O
= —2;‘2 for ¢, =1 Feynman gauge,
1 Pubv
= 2 (5W — ;2 ) for £, =0 Landau gauge.

The physical gaugeis recovered inthelimit, — 1 and £,,¢ — oo. Therefore, the physical gaugeis
a mixture of the unitary and Feynman gauges.
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2.5 Interaction Lagrangian
25.1 Bosonic Sector

The Lagrangian, describing interactions between vector bosons can be easily derived from Eq. (81) in
termsof physical fieldsusing only Eq. (68) on top of theformer equation. After trivial but lengthy algebra,
we obtain:

£rosl = ige, {a zwhw - z,wlto,w, + z,wlt, W_]}
—zgsa{a Awkwrl = a,wlro,wil + a,wite, Wil
- 29 { W+W— — (wiw;) } P {2, 2,Wiw; - 2,2,W W)}

9755 { Ap AL WEW, = AL AW L 4 gsgcg { A Z,WEW) = 24,2, W W}
—gMH{W+W +— Z Z }
—59{W,i (6"0.0 - ¢*au¢°) — W, (6°0u0" — 6% 0,0°) }
1 L _
+§9 {W: (HOudp™ — ¢~ 0,H) =W, (HOuo" — ¢+8,UH)}
2
+1£Z# (H@uqbo - ¢06MH) +ig (S@Au - ?Zu> MWre™
6

2 ¢y
2

+ig <89A + o SQZ ) (¢+8H¢)_ - ¢_au¢+)

—ngWJW; (HH + % + 2¢+¢>*)
—gg—im {fH 000 +2( - 53) o767}
1 2892 ¢0W + - ] ZgQS—gZuHWIEJrqb_] + EQQSQAHQSOWEFQS_]
2 27 ¢y 2
+59 SQAMHWﬁ(;ﬂ - gZZ—Z (63— 53) ZuAud™ o™ — g*s3AL AT 6, (85)
where we introduced the anti-symmetrized combination
AFB-l = AtB~ — A-B*. (86)

From Eqg. (85) all therelevant Feynman rulesfor three-linear and four-linear verticesare straightforwardly
derived.

25.2 FP Ghost Sector

In order to define the FP ghost L agrangian we must subject C¢ to the gauge transformation. First, wewrite
down the gauge transformations for al bosonic fields of the SM:

BY — B+ geacA'B; — 9,A%, B — Bj — 9,A°,
7: a_a Z 0 . S

K — (1—--gAN7%— g \N" | K, with ¢gg=——. (87)
2 2 cy

From the second row we may straightforwardly derive transformations for separate components:

H+i¢? — H=+ig'T %g {(AB’ +91A0) (H + 2% + i(;SO) + 2iAET|
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O - ¢0— %g (A + 1A%) <H + 2%) + %g (At —Atg),
gF - ¢F - %gA:F (H + 2% + iqﬁO) ¥ %g (—A%+ g1A°) 67, (88)

where A, i = 0,1,2,3 aregroup, and A7, j = 4, Z, A are physical gauge transformation parameters,
related to each other by means of the usual relations:

1 )
Al = (AT 4 A, A2 = LAt oA,
L) )
A3 = C@AZ—I-SQAA, AV = —SQAZ+CQAA,
2
AP gA0 = Laz AL g = T G =5\ 2594
Cy Co

From Egs. (88)—(89) we derive the gauge transformations of physical fieldsin terms of physical param-
eters:

1 A? M
P — <;50_§ga (H+2—>+ —g (AT — AT,

M 2 _ 52
T — ¢ — —gA:F <H+ 2— iwo) + g [T A7 4 o501 ) 6T,
2 g 2 Co
WF — WFFigh¥ (coZ, + s9A,) T ig (coA” + seA™") W — 0, AT,
Ay = Ay tigsy (AW = AW ) = 9,07,
Zy = Zu+igeg (AW, = AYW) = 9,47,
1 1 o
H — H+g (9A% + 91A%) 6 + 5 (AW, + A W) (89)

General gauge transformations may be written in matrix form:

Cl—Cit (MJ + gLiﬂ’) A, where i,j=+7,A. (90)
For i = —, from Eq. (89) we derive the transformation for C:
_ 1 _ _
c- = —EOMWM +&Mo

1
- - gau{—igzr (coZyu + 59A,) +ig (cogA” + sgA*) W — 5;1/\7}

ZCG

+g§M{—1A— (H + oM + i¢0> 39AZ¢ +isgAtp™ }
2 g 2 ¢

: .
— 4+ EDA— —EMPA + %g(?p,{/\_ (coZy + SeAu)}
: 1 o) s
_%gau{(cgf\z + S@AA) W,u }_ing (H + Z¢O> A
g D0 psg g MAYG, (91)
0

and asimilar onefor Ct.
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In full analogy with conventional gauge transformations and the correspondence of gauge param-
eters to gauge fields By}, one may establish the correspondence of physical gauge parameters AT 24
entering Eq. (91) to ghost fields X* = X+, X—,Y? Y4

AT - XE, S A S YA, (92)
The gauge invariance C* = —%%WJ + &M@~ — C* isrestored if AT areidentified with ghost
fields X+ with propagators
1 5 £
00— -5
¢t Xx* p* + & M?

and interactions
gXTLEXI,  j=+7A, (93)
where we introduced four morefidds X' = X, X Y7, 7"
Anaogoudly, from Eq. (89), we obtain the transformation of C*:
1 1 ) _ _
¢ = gy = = 0, ligso (AW, — AW, ) — 9,0
(3

1 .
A A -+t _ A+ -
= C +—§ADA 3 9500, (AW,5 = AT, ). (94)

The gauge invariance is restored if we require the validity of the equation of motion:

. .
~0OYA = L gsed, (X‘W,j - X+W,;) , (95)
€4 €4

i.e. identify Y+ with afield which has the propagator

1h Sa

€4 YA p?
and interaction
gY'LYXI, j=4,7 A. (96)

Finally, for the transformation of C#, from Eqg. (89) we derive:

1 M
zZ — o Z - 0

C ng‘)u wt+&, Cegb

1. . _ _
— 7 - g@u{zg@ (A=W = ATW) = 9,A7 )
M( M 1 A% i _
+§Z—{——AZ——9—H+—9 (A=¢" —ATo )}

Co Co 27 ¢y 2

1 M? i
_ z _— zZ R VA — + At —
= C §Z+DA ¢, CgA 52909({9“(1& W —A WM)

1 M M
—=6,9—5 AN H +if,9g— (A=¢pT —AT97), (97)
2 Cy Co
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giving the propagator of Y #

2
z 0 p2+€3_2
Cy
and interaction
gYLAXI, =+ 7 A. (99)

The complete interaction Lagrangian in the FP sector of the SM derives trivialy from the above
considerations. It reads:

che = igeaW! | (077) X7 = £ (9% V2| wigegW; | (0,5 ) Y7 - & (0,77) x*
+igsgW,H L} (0.7") x~ ~ % (X" )YA] +igsgW,, ; (3, X7) v - gi (2.7 Xﬂ

1 _ _ _ .
+igeog 2 (9, X" X+ -9, X X~ )+zgSQ ol w (0, X X - 9,X Xx7)

1 . N
—59MH <§X Xt 4+eX X +§YZYZ>

—igeM < 989 (XTv7er =X v )+ %g{ZM% (VX ot -V XTo7)
TigsgEM (Y*Yw— - Y*Y%*) + %g&M (Y+X+gb0 - Y*X—gbo) . (99)

Note thetrivia rules:
— Y7 and Y are accompanied by ¢, and ¢ ,, respectively;
— X isaccompanied by ¢;
— theterms Y X~ and Y’X+ or X "X+ and X X — differ by sign for interactionswith all fields but
H.

To summarize our findings, we see that ghosts are fields satisfying the Klein—Gordon equation.
They possess a charge resembling the fermionic charge. In other words, they are scalar fermions, i.e.
have the wrong relation between spin and statistics.

253 Scalar Sector
The interactions in the scalar sector are given by the scalar potential

L= ’KYK - %/\ (KTK)?, (100)
where
L[ H+ ) +ie”
K = 7 o ; <v>=2;,
K+t = % (H+<v> —i¢0,—i\/§¢+>. (101)
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For Lg we derive

£ = = [ 200 + (0 + (¢0) + 20%07

—é)\ {H4 + 4(0)H? + 6(v)2H? + 4(0)> H + (v)* + (¢°)4 +4(p¢7)

+2 (H? + 2(0)H + (v)?) [<¢0)2 +2¢t g™

+4 (¢0)2 ¢+¢} : (102)

To understand better the physical meaning of the various terms, let us collect some selected terms:

2 1 :
constant term: —% (;ﬂ + Z)\<U>2> , irrelevant, may be dropped;
. 1
linear term, H :  —(v) (;ﬂ + 5/\(v>2) = —(v)B,, vacuum tadpole;
quadratic term, H? : 1 (/ﬁ + 1)\<v)2 + A<v>2> _ L (5 + M2) ;
T 2 2 g \"H )
0)? T Y TR RV
[(6°) +20707] - S (B4 5A002) (103)
Here we introduced, for convenience, the following set of parameters:
A g>M? 1 M?
2 2 2
By = —i—Q?M, A= 4M§I:gaH, aH:Zﬁg. (104)

From these relations one sees, that A and «,, are not independent. Since M, is a measurable quantity,
\ derivesfrom g, M, M,, and o, — from M,,, M. On the contrary, u? (or equivaently 3,,) should be
treated as a new parameter, which has to be adjusted such that the vacuum expectation value of the H
field remains zero, order by order in perturbation theory.

Omitting irrelevant constant and massterm, — 3 M 12{ H?, we derivefor theinteraction Lagrangian:

L= -8, {2%1{ + % {HQ +(6°) 420t

- gaar 10+ 11 (o) 21170
~gtan (B4 (00) 212 (&) 4ot w4 (o) 0o+ 4(6767)? - 09)

2.6 Tadpolesand their rolein proving gaugeinvariance
The following 10 diagrams contribute to the vacuum tadpol es:

H

= o+ W+ Z
(1) (2) (3)

+ H + o+ 0
(4) (5) (6) ’

+ X- + X+ + y?
(7) (8) (9)

+ 3,
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In the lowest order, we would have only the tadpole diagram (10) and the constant 3,, must be set
to zero. At the one-loop level, we have to take into account all 10 diagrams and the tadpol e constant must
be adjusted in such away that the vacuum expectation value of the H field remains zero.

We describe the correct procedure of such an adjustment at the one-loop level. First of all, we have
to renormalize the vacuum expectation value itself:

1 X M
K=— . x=H+2=— (14 ¢°8,) +i¢". (106)
\/§ \/§Z¢_ g ( )

Now we set u? + 2 (\/g?) M? = 0, aswe did in the lowest order, and repeat the same derivation as
above. Instead of Eq. (105), for the LIS part of the Lagrangian we derive:

1
L = —2gMM5H - M. (1+3¢°3,) H

58 M5 () + 26767 | ga, M [HP 4+ H () 4 2070707

s 0 (0
Hete +4(#) 6tom +4 (670 ). (107)

with j; (instead of /3,,) fixed by the requirement of a zero vacuum expectation value of the H field. Note
that the only difference between Eq. (107) and Eq. (105) appearsin the H? term.

From the renormalization of (v) we are automatically led to the addition of tadpolesto the W — W
and Z — Z self-energies and to the corresponding vector—scalar transitions:

~g*8y (M2 ZuZ, + 2 MPW W, ),
1 o
—g?> M, <§ OO Zy+ dTOW, + ¢ auwj) : (108)

They are very important for proving that the W, Z and H self-energies are £-independent on their mass
shells,i.e. at p* = —M?, p* = —M?,and p> = —M?2, respectively.

2.7 Interactions of fermionswith gaugefields
Consider a generic fermion isodoublet and decompose it into left (1) and right (R) components:

1
The covariant derivative for the L-fields
Dy, = (8M +gB,3Ti) ¥, i=0,..3, (110)
iswritten in terms of generators of SU(2) ® U(1):
I e S ST (111)
with arbitrary U (1)-hypercharge go, whilst for R-fields
Dy, = (au + gB;ti) ¢,  i=0,..3, (112)
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in terms of generators of U (1):

o= 0, t0:—%<%3 ;4) (113)

with hypercharges g3, g4. We stress, that Eq. (112) iswritten formally similar to Eq. (110) using adiag-
ona matrix t° which should not be confused with the generators of SU(2). Thus, the +, transforms as
adoublet under SU(2) and the v, asasinglet. The parameters g, g3 and g4 are arbitrary hypercharges
which will be fixed below. The kinetic part of the Lagrangian can be written as

Lyt = = P, — b, D, - (114)

As an exercise, consider (0+3) components:
_ i 0o, 0 33 — i 0 93 0
o (9 = g90mBYL = 5081 ) v~ (8“_593“( 0 ))‘”
i [ L (1 0) g (1 0 )] (2
- (uad)L’YH |f1i 2gg2BN ( 0 1 ) QgB“ ( 0 —1 )] ( d )L
o 7 0 U
— (@, d) Y [au - 599232 ( o ) < d )
R

_ — i = _
= T DI~ TP let 59928 (W + duvds )

? _ = t _ -
5980 (T — Ay ) + 5980 (95Tmvuun + gadyudn) — (115)

Using equations:
— 1- - 1-
Fode =5+ o fowfe =5l =) f,

from Eq. (115) we derive further on

o FT a0 [T (1 )+ (14 3) d] (—50 70+ o)
-l-%g (@9 (1 35) w = Ay (1+75) d] (coZy + 50 Ap)
4&9 [935% (1 —75) u+ gady, (1 —75) d} (=502, + coAy) - (116)
First, we collect termswith A,,, i.e. thee.m. current:
3] cogm [0 (1 5) ot D (14 25) (117)
+56 {ﬂw (14 5) u — dyp (1 +75) d} + co [gzﬂ'm (1= 5) u + gady, (1 —5) d}} —

Then, we require the absence of axial currents

cog2 + sg — cog3 =0, €92 — S — cogs = 0,
92—91—93=0, 92+91—94=0,
56
gi = __)‘i7
co
o4 14+XA=0, Ao — 14\ =0, (118)
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The Eq. (118) defines A3 and \4 leading to
— igse{—)\g [ﬂ%ﬂt + Eyﬂd} + v u — dyud 4+ (1= Xo) uyu — (1 + A2) afyud}
= %gse{(l — X2) Uyuu — (14 A2) a%d} = ieQuuy,u + ieQady,d . (119)

Thus, three parameters \; arefixed by the requirement that the e.m. current hasthe conventional structure,
iQref,f, with the charges Q ; = 2[ |Qf| The solutionis

A=1-2Q, = —1-2Qq, A3 = —2Qy, A= —2Qq. (120)

Having all three hypercharges fixed, we derive the final expression for the interaction Lagrangian Efer L

£ = Y [igsaQuAFd + i 2T (vs +apa) /]
f

+Z {zﬁwmw(ww)dﬂ ﬁW;Efyu(l—k%)u], (121)

with vector and axial—vector coupllngs of the Z boson to afermion f:
vp =19 —2Qps3,  ap=19. (122)

Thefirst sumin Eq. (121) runsover al fermions, f, and the second over all doublets, d, of the SM. We see,
that contrary to the Z and A fields, the W= are always coupled to aV + A current. Thisisaconsequence
of the SU(2) ® U (1) gauge transformation, Eq. (110).

2.8 Interactions of fermionswith scalar fields

We now consider the only remaining sector of the SM describing the generation of fermionic masses and
the interaction of fermions with scalar fields. We need not only the field K but also its conjugate K¢
in order to give masses both to the up and down fermions. In our convention, K gives masses to up
fermions, and K¢ to down fermions. We recall K and derive K¢ using the definition of charge conjuga-
tion, K¢ = i72K*. Therelevant set of formulaeis

k- L[ L (o4 (o) + g a)<1>
g _ —_ T ,
V2 vaig ) V2 0
V2igt
K° = iK'= S Y
V2 " V2 L)
x = H+ (v)+i¢" (123)
The corresponding part of the Lagrangian may be written as follows:
LY = —app, Ku,, — B0, Kd,, + h.c. (124)

In order to prove its gauge invariance, consider four gauge transformations:
K — (1 - %gA“ ()% — %gglAO (x) I) K,
K¢ — (1 ZgA“ )T +%gglAO (x)I) K¢,
1[)2 — (1
7 O 0
{ 2(0 0 Vw0 o, (29
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We immediately see that £ will be gauge-invariant if g, = g1 + g3 and go = —g1 + g4, the identities
already established from the requirement that the em. current has a conventional structure.
We then substitute & and K¢ of Eq. (123) into £ of Eq. (124) and derive

H + (v) +i¢° ) V2igt

1
afw Uy +ﬁf1/1 dy + h.c.
V2 V2ip~ Ve g + (v) —i¢®
[ 2M -
= —% (H + 7) Ty up + i, uy ¢ + i\/idLuRqﬁ}
ar [ 2M - -~
—7% (H + 7) Tpu, — itgu, ¢° — iV 20,d, ¢F
[ 2MN —
+% (H+7> d,d, —id,d,¢° +ivV2u,d,¢
- ) - -
+% (H + 7) U, + ideL¢0 — i\@dRuLgé} — (126)
Using equations:
_ _1 1
Upd, =Ty (1+%)d,  Udy, =75 (1-%)d,  dc, (127)

we obtain

_o MY = isud® + —d (1 — D +
ﬁ[(H+ p >uu TUysud +\/§d(1 Vs5) U \/—U(1+75)d¢

+% KH + %) dd + idysd¢ + %ﬂ(l — ) do" — %3(1 +75) up™

(128)

The second term in each row may be identified with mass terms, giving two solutions for the Yukawa
couplings:

1 my, 1 mq

afzﬁgﬁ, ﬁf:—ﬁgﬁv

in terms of physical fermion masses m,, and m, of up and down fermions. The Lagrangian may be pre-
sented as a sum of two terms

(129)

clr— meff+£fe”, (130)
where the second term is the interaction Lagrangian:
fer,1
Ls = Z{2f¢+[M (1+W5)d—ﬁu(1—75)d}

) _ [mg= Moy —

+22\/§¢ {Md(lm)u—ﬁd(l—%)u]}

43 (~5eH T gl P ). (131)
!
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2.9 Fermion mixing

The presentation in the two preceding sections was done negl ecting the fermion mixing. Here we present
ageneralization for the case of mixing. We begin by rewriting the expression for £, Eq. (124),

Ller = wa muaKu, + wa mgKCd, + h.c. (132)
The latter could be generalized to
er g A g A c
Ller = T (wL)a(MU)WK(uR)N NIT: (qu)a(MD)WK (dg)g+hoc,  (139)
where we introduced two columns containing all up and down fermions
Ve e
Vy 7]
Ur T
(uR)ﬂ = w = Uk, (dR)ﬂ = d = Dg, (134)
C S
t R b R
astring of Dirac-conjugated fields
(EJOC - (ue,uu,uﬂ ¢ te ﬁ,?,E,E,I_))L - (U,ﬁ)L : (135)
and complex matrices M,’;”
v_ [ M] (0] [ M O
M” = ( o M) M7 = o M) (136)

with O being a zero-matrix. All these matricesare 3 x 3 matrices. It is easy to see that the Lagrangian
Eq. (133) is aso gauge-invariant under transformations of Eq. (125).

Substituting scalar fields K and K¢ we obtain the generalized mass term

plerm 7—\/§QMU/LMUU§ - ﬁE/LMDD;%+ h.c. (137)

Inorder toreduceit to the usual form, one hasto diagonalize thefour mass matrices. Thismay beachieved
with the aid of bi-unitary transformations (see Ref. [2] for arigorous proof):

MU == Z/{ZrmuuR 5 MD — Dz_md DR, (138)

whereld,, Uy, D, Dy arefour different unitary 6 x 6 matrices.

U, — ( (U%l (OuL)q ) . dc (139)

FieldswithprimesU, , U}, D, , D}, are weak eigenstates. Introducing mass eigenstates U, Ug, D, Dx:
UL :Z/{LUé, UR:Z/{RUIIQ, DL :DLD/L7 DR:DRD;%, (140)

we arrive at ausual mass term of the Lagrangian, written in matrix form

clerm — S Um,U —

V2M
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where m,, and mg4 are diagonal matricesin 6-dimensional U and D spaces. The interaction part, written
in the matrix form, reads

gl — f M —U (14v5)CD — —U (1 —~s) CD]
+is 0™ | TD (1495) C1U = D (1= 5) €T
+3° <—59H%7f + iglj(cg)qbo%f%f) : (142)
7

The charge boson sector contains the mixing matrix

+
C— ( (Us), (DLz)l (OUL)q ), ) _ ( %l gq ) : (143)

whichisnon-diagonal because (¢4, ), and (D,.), [and (¢/.), and (D,),] are, ingeneral, different matrices.
The fermionic mixing matrix C' involves the usual Cabibbo—K abajashi—Maskawa (CKM) mixing
in the quark sector C, and possible leptonic (neutrino) mixing C;.
Finally, the fermion—vector boson interaction, Eq. (121), in presence of mixing generalizesto

£ = S igm0Qu ATt + i 2P or + ap) f
f

—H—W*UW (1+v)CD+i

N 2\fW Dy, (1475) CTU. (144)

2.9.1 Some conclusions about fermionic mixing
To summarize our study of fermion mixing, one may conclude that:
— fermionic mixing arises in the SM very naturally as a consequence of the most general Yukawa
interaction compatible with gauge invariance;
— C, istheusual unitary CKM matrix characterized by 4 real parameters,
— (isitsanalog in lepton sector, also characterized by 4 rea parameters, which are not obliged to
be equal to CKM parameters;
— we therefore have a compl ete lepton—quark analogy and extended SM (ESM) is avery natural ex-
tension of the conventional SM with massless neutrinos;
— nomixing arisesin the neutral currents, aconsequence of the unitarity of matrices (i4,,), (U;'),, etc;
— Eg. (141) involves Dirac mass terms. | refer to the lectures of S. Bilenky [3] and M. Carena[4]
at this School for adiscussion of Majorana mass terms and fermionic mixing beyond the ESM, as
well aswhether the simple extension described in thislecture contradicts present experimental data
or whether we redlly do have experimental indications of any new physics beyond the ESM.

210 QCD Lagrangian

The SM, besides the electroweak sector described in full detail in this lecture, also contains the QCD
sector. For adetailed discussion of the QCD Lagrangian, | refer to the lectures of Prof. J. Stirling [5] at
this School.
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211 Feynman rulesfor vertices

Herewelimit ourselvesto presenting the Feynman rulesfor B f f vertices, where B isaboson field. They
may be straightforwardly derived from the Lagrangian of Egs. (121) and (131). A complete collection of
bosonic and FP-ghost Feynman rules may be found in Chapter 3 of Ref. [1].

f f
:1 ieQ Y 5 i;%e'm (vf +agys)
f f
ﬂ ?
ZV_ i%w (1+75) " —% g%
d f
f T
# ig[}a%% o 125;2 % (L4+75) — % (1 —15)
f d

212 Summary of thetwo lectures
Inlectures 1 and 2 we studied:
e The extended Standard Moddl, its Fields and Lagrangian;
e Gauge transformations and different gauges.
— general R, with three parameters, &, £, ,€,;
— t'Hooft-Feynman with al & = 1;
— Physical or unitary, § — oo, {, — o0, £, = 1.
e Gauge invariance, which will lead to ¢-independence of the amplitudes of physical processes,
e Feynman rules.
We are ready to build diagrams. In the following we will distinguish:
— Born or tree level diagrams;
— loop diagrams (one-loop and multi-loop diagrams).

We emphasize again that we are working in Pauli metrics, i.e. for an on-mass-shell momentum one has:
p? = —M? and the scalar part of a propagator looks like

1
~———— . 145
p2 + M2 ( )
In our convention for Dirac vy-matrices, the left projector looks like
1+
Ny = 275 _ (146)
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We will use the following correspondence between physical and bare parameters

M
M,, «— M, M, — M, = —
co

o sp. (147)

Y SW

At tree-level, we have the following identities for coupling constants and vector boson masses

2 M2
9

where o = 1/137.0359895... is the fine structure constant. Therefore, s%v and g are not independent
parametersif M, and M, are considered among input parameters of the theory.

3. DIMENSIONAL REGULARIZATION AND PASSARINO-VELTMAN FUNCTIONS

Thislectureisdevoted to basic modern toolsfor the cal culation of loop diagrams— dimensional regular-
ization (DR) and Passarino-Veltman functions — which are based on DR and are those most commonly
used for the calculation of one-loop diagrams.

3.1 Feynman parametrization and N-point functions

We begin with areduction of the propagator products to an integral representation. It makes use of iden-
tities, valid for any positive definite A, B, C, D....

1 1d

AB /0 Mzt BA-o)P’

1 /1d 2z

- — x ,

A’B o [Az+ B(1-2)?

1 1 1 1

LT 2!/ d / dz ,

ABC o o ClAC—y) 1 yBrrC(l—a))

1
ABCD ~ (149)

with z, y, z... being caled Feynman parameters.
Define the N-point function, i.e. a one-loop diagram with IV external legs:

D1
q
q+p1 do
dq
D2
do
q + p1 + D2 d3
b3
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where the arrows indicate the direction of the momentum flow (all external momenta are flowing inwards
and the loop momentum flows counter-clockwise). In the figure we also introduced the scalar parts of the
propagators d;,

di=(q+p1+...+p)° +miy —ie. (150)
With the aid of identities, Eq. (149), the N-point function can be reduced to a linear combination of N-
point integrals
1 1 1 .
/ dyy/ dx {14 Gu, -} 5 - (151)
0 0 (q2 —2¢Pay,. +m2,  — iE)

They are called {scalar, vector, second rank tensor, ... } integrals corresponding to the type of numerator
in Eq. (151).

The quantities p,., ... are linear combinations of external momenta p;, and m? , ~— of internal
masses m? and scalar products p? and (p; + ... + pjx)’.

3.2 Basicsof Dimension regularization
All formulae needed in the calculation of N-point functions may be derived from only oneintegral:

1 . n F (Oé — ﬂ) 2«
d” = 2 2)2 . 152
| e = @ () o
For instance, making shift ¢ — ¢ — p, we derive the generic scalar integral:
1 n F (Oé — 2) 2«
= [ d" = ir2 22 (m? —p*)® . 153
() / 1 (¢2 —2q-p+ m? —ie)” v () (m p ) (153)
Differentiating Eq. (153) 9,,J(p) , we derive the vector:
n qu 2l (a—3) 2 2\ 2~
d = - . 154
/ @2 prm?—ie® " " T(a) (m p> P (159
With one more differentiation, we derive the second rank tensor:
n Qudv oo 1 2 2\ 2%
d = - 155
/ @2 prm2—i0® =~ " 'T(a) (m® =) (159)

1 9 9 n n
X [ﬁéuy(m —p)F(a—l—E)—Fpup,,F(a—g)},

etc. We present, for completeness, the third and fourth rank tensors too:

' qudvdp .on 1 2 9\ 5
dr = — 156
/ q(q2—2q-p+m2—ie)a sz‘(a) (m p) (156)

X |:% (5,uz/pp + 5,uppz/ + (51/pp,u> (m2 - p2) r (Oé -1- 5)

n
+p,upl/ppF (a - 5)] )

n qu9v9p9o . n 9 9\ 3~
d = — 157
/ Y@ =2q-p+m?—ie® T (@) <m p> (57
1 2
X h (5#1,5,00 + 0updvo + 51/,06#0) (m2 — p2> T (a -2 - %)
1
‘|‘§ (5,uupppa + 5,uppupa + 5,uapupp + 5uppupa

+0voDubp + Opopupy) (m? = p?) T (O‘ —1- g)

n
+puPvPppol | a0 — 5|
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In particular, consider Eq. (152) for the case m? = 0. Since it holds for any n, we may choose
n/2 — a > 0 and then let m? = 0. Then, we will have

n 1 _
/d 17 =0 (158)

This may be continued for any n. Therefore, in dimension regularization the integral in Eq. (158) is zero
for any values of a.

3.3 Divergence counting: polesversus powers
3.3.1 Ultraviolet divergences
Consider a vector boson self-energy diagram with an internal 1/ boson |oop:

W+

W
In the unitary gauge, the following integral over internal momentum ¢ correspondsto it:
Qv (@+p)o(a+p)s
<5W + ](22 > [5043 + M2
(¢2 + M2) [(g+p)* + M?]

Hpa ~ / dnq Fp,uozraz/,@

/ <5p,l/5aﬂ + _q'UMqZV 5aﬁ + 7quq]l\/4(.]§qﬁ + .. ) Fp,uarauﬁ ( )
— [ dvq , 159
(¢2 + M?2) [(g+p)* + M?]
InA A? A?
1 1 1
n—4 n-—2 n—0 "

In the second row, we considered selected scalar and two tensor integrals contributing to it. Applying
trivial counting of powers of ¢ in the numerator and denominator, it is easy to see that various termsin
the third row have indicated ultraviolet cut-off divergences, which correspond to poles in space-time di-
mensionsn = 4, 2, 0, respectively, as shown in the fourth row. Thisis an example of the general rule of
correspondence between powers of the cut-off divergences and polesin n.

3.3.2 Infrared divergences
Consider another example, the QED vertex diagram:

D2

D1 Q
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with two momentum on-shell p? = p3 = —m? and Q2 = (p; + p2)°. In the Feynman gauge the follow-
ing integral correspondsto it:

N no (=2p2y + %) 1 (2p1y + d)
b /d ‘g (a+p1)° +m?] |(a—p2)* +m?]

B n —4p1 - Py + 2 (P17 — YuYal2) Ga + (2 — 1) YaVu V89048
= d"q ; (160)
(2 +2¢-p1)(¢® — 20 )
Scaar Vector Tensor
Infrared Finite Ultraviolet .

Here we have scalar, vector, and tensor integrals with different types of divergences. The scalar exhibits
infrared divergence, the vector isfinite, and the tensor is ultraviolet divergent.

In all the considered cases the type of divergence may be determined by counting the powers of ¢
in the numerator and denominator in the corresponding regimes:
— ultraviolet, when ¢ — oo;
—infrared, when ¢ — 0.

In what follows, we will use the dimensional regularization while calculating 1, 2, 3, 4-point one-
loop integrals using the language of the A, B, C, D functions by Passarino and Veltman.

3.4 One-point integrals, A functions
One-point integrals are met in the calculation of tadpole diagrams:

m
and in the reduction of higher-order integrals.
3.4.1 Scalar one-point integral
The Aq function is defined by the integral
; —-n n 1
ir2 Ay (m) = i /d T (161)

where we introduced the t’ Hooft scale parameter . in order to prevent changing the dimension of thisin-
tegral at the variation of the space-time dimension n. Theintegral iscomputed using the general formula,

Eqg. (152) with v = 1,
n m2 n/2—2
Ay (m) = x> (1 - 5) m? <?> . (162)
If oneintroducese = 4 — n and expands around n. = 4 then

2
Ag(m)—m2<—§+7+lnﬂ+lnm—2>—1+(’)(5). (163)
W
It is customary to define a quantity 1/ by

2
:g—’y—lnﬂ, (164)

o] =
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then by dropping higher ordersin ¢, we get the final answer

1 2
Ao (m) =m?(—= +In% —1). (165)
5 12

Note that the pole has an ultraviolet origin and that it is accompanied by a scale-containing logarithm.

3.4.2 Tensor one-point integrals

The vector-like A; is zero, since the A functions do not depend on an external momentum and it isim-
possible to construct a vector, aswell as any odd-rank tensor. The even-rank tensors may be constructed
and the lowest order, second rank, tensor must be proportional to 6,,,, i.e.

- 2 4n n_ 9udv
im“ Ay, (m) = d"q ,
™ Ay (m) / q @2 +m2—ie

A,uzz (m) = A (m) 5,ul/ . (166)

To calculateit, we contract Eq. (166) with §,,,,, use Egs. (158) and (165) and expand around » = 4 again,
where one should proceed carefully, namely

11 1 2 11 1
= <_+"'>_Z:+§' (167)

neé T4 € \€
In thisway, we finadly derive

1 1
Ay (m) = —Zmon(m)+§m4. (168)

Rank four tensor integral may be reduced in a similar way, see Section 5.1.1.2 of Ref. [1].

3.5 Two-point integrals, B functions
B functions appear when considering self-energies and transitions

m1

ma2
Their family isfar more reach compared to A functions.

35.1 Scalar two-point integral

The scaar By function is defined by the integral containing two propagators dy and d;, one of which
depends on an arbitrary externa momentum p:

1
. 2 2 4—n n
i B, imi, My ) = /d _—
o(p 1 2) H qdod1
do=q@+m?—ie, di=(q+p)?+mi—ic. (169)

Using Eqg. (152) for o = 2, it is easy to derive the general result for the By function, valid for arbitrary
internal masses

1 mim m? —m3 . m?
2. _ 17702 1 2 1
By (p ,ml,mg) = R—1In 2 + o2 In —m% + 2. (170)
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where A2 = X\ (—p?, m?, m3) istheKalen function: A (z,y, 2) = 2% + y? + 22 — 22y — 272 — 2yz, and

A p?—ide+m?+m3—A

=——1 171
i p? ! 2mymsg (473
Some particular cases are a so frequently met:
1. ifmi=ma=m
1 m? B+1 4m?
2, _ _ 2 _ )
Bg(p,m,m>—€_ lnu2+2 ﬂlnﬁ_l, I} _1+p2—i67 (172)
2. if one of the internal massesis zero
2 2 2 _ .
BO(pQ;O,m):l—lnm—Q—i-Q—<1+m—2>ln<1+p 2“); (173)
5 0 D m
3. if both internal lines are massless
1 2
By (1%:0,0) = - -mZ " 12, (174)
€ 1

The By function develops an imaginary part above the physical threshold, s = —p? > (m; + m»)%:

A (s,m?, m3
TmBy (p%m1,ma) = W%H(s—(ml—l—mg)z). (175)
3.5.2 Tensor two-point integrals

Here we describe the calculation of the vector and tensor B functions. The calculation exploits the so-
called reduction to alinear combinations of scalar functions. We begin with the vector:

in*By, (pz;ml,mz) = u47"/ d"q% = ir’By (p2;m1,m2) Pu - (176)

Using the relations

1 .
C=do-mi, qp=g(di-do+f), with fi=-ptmi-mi, (177
we derive the identity
1
p* By (pQ;ml,mz) = 3 [Ao (m1) — Ao (m2) + f7Bo (p2;m1,m2>} : (178)

which is the required reduction to the scalar integrals. One may easily derive a symmetry property:
By (p25m27m1> =-B (PQ;ml,mz) — By (pQ;ml,Tsz) - (179)
The rank two tensor integral can be reduced to two functions By and Bss:
.92 2, A Quiv . 2 2, 2,
i B,U«V (p yma, m2) =K n/ dn(]ﬁ =T |:B21 (p ,mlamQ) Pubv + B22 (p ,mlamQ) 5€Vio)
1

The last relation can be multiplied by 6, and by p,, which leads to the system of two linear equations
for Bo; and Bag:

p*Bay <p2;m1,m2) + nBa (pQ;ml,mz) = Ag(m2) —miBy (PQ;m1,m2> ;

p°Ba (pQ;mth) + Ba (P2§m17m2) = % [Ao (ms) + f{ B (PZ;ml,WQ)} . (18))
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The appearance of n in front of a function to be derived prevents the trivial solution of this system. In
order to solveit, and similar ones, we have to know the singular parts of al one- and two-point functions.
Only then may we properly expand around n = 4 (cf. discussion around Eq. (167)). The calculation of
poles may be achieved straightforwardly with the aid of the formulae in Section 3.2. We derive:

BO (pQ;ml’mQ) = - _/ dxn ( > Slng 1 7

sing _% (m% +m3+ —p2) L (182)
where we used
x(z) = —p*z? + (p2 +m3 — m%) x+m? —ie. (183)
Using therelations in Eqg. (182), we obtain (analogoudly to the derivation of Eq. (167))

n Bay (pQ;m1,m2) = 4By (pQ;mlmw) + %2 )
K? = p*+3(mi+m3). (184)

Furthermore, we introduce the matrix

2
_(p 4
X2 - ( p2 1 > ) (185)

and the vector b with components
KQ
? )
1
by = 3 {Ao (m2) + f1B1 (pz;ml,m2)} : (186)

by = Ag(ma)—miBy (pQ;mhmz) -

The By; (p?; m1, m2) functions can be obtained by inversion

BZZ' (p2; ml,m2> = [XQ]Z_jl bj . (187)

3.5.3 List of thefinal results

By (pQ;m17m2> = 212 [Ao (m1) — Ag (m2) + (Am2 —P2) By (PQ;ml,ﬂw)} ;

3(m?+mi) +p>  Am?—p? Am? — 2p?
By (p23m17m2> _ 3mi 18p22) + 31 Ao (m1) — T
A(=p® mi,m3) —3p*mi , (4

3 By (p 7m1,m2> ;

Ao (m2)

_l’_

B22(p2;m1,m2) _ _3(mi 182) r_ 12p2p Ao (m1) +

2 2 2
A pléggpmz) By <p2;m1’m2)’ with Am?=m? —m3. (188)

A 2 2
m—‘HDAO
12 p?

(m2)
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3.54 Reduction for p?> =0
As seen from Eq. (188), the reduction fails at p? = 0. In this case, the results should be derived from the
integral representations Eqg. (182)

Ap (m2) — Ag (M)

Bo (0;my,ma) = o — ;
1 2
. _ 1 . Ly o o .
B1(07m17m2) - 2B0(07m17m2)+2 my my BOP(O7m17m2)7

OB 2.
where Bop (O;mlij) — 0(p 7m17m2)

) _ 1 9 o\ (1 mims 3 m‘ll —|—m‘2L m%
Byy (0;my,ma) = 1 (ml +m2) <E —In—— + —> + mlnm—% . (189)

3.5.5 Derivativesof B functions

In actual calculations one also needs the derivatives of B functions (already seen in Eg. (189)). They ap-
pear in the renormalization factors associated with external lines. Again, from theintegral representations
Eq. (182), we derive:

OBo1,01y / d —r*a } (1-2)
Op? N ’
W - / (i)
o 1 2 B dzx (1 —z)ln 2 (190)

They all but derivative of By, arefinite. The latter contains an UV-pole. For QED diagrams the deriva
tives are infrared divergent and must be regularized. As usual, we use the dimensional regularization,
however, now we haveto usen = 4 + . We derive

1 n/2—2
By (PQ; m,O) = 7"/272r (2 - ﬁ) / e (%> ;o with x(2) = (1 - =) (PP +m?),
2/ Jo M

9 2. o ( ) / z(1-x) (x(x))s’”
pQBo(p,m,O) = —rlr({1-5) | d e 2 :
/ 2 El/2
_ _pp(;_ g\ L (m (1_ 1)
2 - r<1 2)m2<u2> ST ) (191)

Expanding the various termsin ¢/, we obtain

0 1 (1 2
By (p*m, 0) - [Z—2em ™), (192)
op? o 2m? \ & u?
pi=—m
where we introduced the infrared pole:
1 2 2 1
Z=SHythr= —— 4y thr=—. (193)
€ 4 €

Similarly, one obtains the derivative of By:

0 7€' /2 g m? €'/ 1 2 1
— B (p% = rl1==) 2 s L
op? 1<p,m,0) P2 m? ( 2)<M2> <€’ 1+5’+2+6’>
1 1 m2
SR [ Y L 194
2m? (é 3+nu2> (194)



In this section we have presented quite an exhaustive study of B functions and their basic properties. As
we have seen, they are much more involved than the simple case of A functions. A similar degree of
complication takes place at each step towards the C' and D functions. For this reason it would be impos-
sible to cover the subject with the same degree of detail as for the A and B functions in these lectures.
Therefore, | will limit myself to definitions and to aminimal amount of information about 3- and 4-point
functions. For more details, refer to Sections 5.1.4 and 5.1.5 of the book in Ref. [1].

3.6 Three-point integrals, C functions
C functions appear when considering vertices:

pP3
P m
mg
ma
3.6.1 Scalar 3-point function P2
Thisis defined by the integral:
i Co (2,1, Q% s, ma, ma) = it [ (195)
) ) b ) 7 d0d1d2 )
where d; are
2 2 . _ 2 2 . _ 2 2 .
do = q° + m7 — ie, dy = (q+p1)° +ms — ie, dy = (g + Q)" +m35 —ie. (196)

Next, Q = p1 + p2 and Q% = (p1 + p2)? isone of the Mandelstam variables, Q% = —s(¢ or ), for an
arbitrary 2 — 2 amplitude. In terms of a particular choice of Feynman parameters Cy becomes

1 T —1
Cy (p%,p%,@2;m1,m2,m3) :/ dx / dy (am2+by2+cxy+d:v+ey+f) , (197)
0 0
with

a = —-p3, b=-p}, c=pi+p3—Q°,  d=ps+mj—mj,
e = —pr+Q+m?2—m3, f:mg—ie. (198)

The scalar C function isinvariant under simultaneous cyclic permutationsin the two sets of arguments:
{ptp3Q°} and {mimams}.

3.6.2 An example of the massive Cj function

Thereis only one generic three-point scalar integral which occursin the calculation of two fermion pro-
duction when al external fermionic massesareignored. In thiscase only one fermion mass hasto be kept
— thetop-quark mass, which appearsin thevirtual state. To such aCj function, thefollowing choice cor-
responds:

Pla=0, (p+p)’=Q% mi=M, me=DM, mgz=DMs. (199)
Then the coefficients in the quadratic form in Eq. (198) become:
a = 0, b = 0, c = —Q2,
d = M2- M2, e = Q*+ M{- M3, f = M3—ie,
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and the integral in Eq. (197) for Cy reducesto

1 T 1
Co (0.0, Q% My, Mo, My) = [ o [y (200)
0 0 x(@,y)
where the quadratic in the x and y form x in this case linearizes (a = b = 0):
X(@,y) = Q®y (1 —z) + Miy + M3 (x —y) + M3 (1 - z). (201)
In this particular case we get
C —ii( 1)% [L (zo 1)—Li ( 0 ﬂ (202)
O_QQizl Lo — Zi ? xo—xi /)]
with four different roots
M} — M3 M3
g = 1+ 0? , T3 MZ— M2
Q%+ ME — M F /A (—Q2, M7, M3)
1,‘172 = 2@2 . (203)
The dilogarithm function is defined by:
(1— xy
Lis (x / dy (204)

All masses squared are understood with equal infinitesimal imaginary parts: M? — M2 — ie. Itis nec-
essary to properly define the analytic continuation at Q% — —s.

3.6.3 The special caseswhich are met in practical calculations

Co (0,0,Q% M0, Ms)

Co (0, 0,Q% M, 0, M1>

Co (0,0,Q% My, My, 0)

C (0,0,Q%0,M5,0)

Co (—mQ, —mQ,QQ;O,m,O) =

with

Y1,2

] xT9 1 35'1—1
—Il n
Q2 ﬂfg*l I ’

1 AM?
_12/8Q+ BQ: 1_|_ 1’
Q@ fop-1° Q?

Co (0,0, Q% 0, Mo, Ml)

A
2
2
é [Lig (1) — Lis (1 - E—Qﬂ

m {2Lig (i) — 2Liy (i) + Liz (y1) — Lis (yz)} ;
(205)

Q*+ M?
M3

I

1+ %) . (206)



3.6.4 Infrared divergent Cy function

In all the cases considered above the C functions were finite. However, the QED vertex contains IRD
divergence. It deserves a specia study. The corresponding vertex:

f
f
f

f

isdivergent at p? = —m?, p3 = —m? and in order to regularize it, in older days people introduced
infinitesimal photonic mass, my = A, with X being small with respect to al the other quantities. Although
by now theinfrared singularities are treated within the dimensional regularization approach, thisexample
isauseful bridge with the mass-regularization method. The defining integral in this case reads:

1 1 z
Co (fm2,7m2,Q2;m,)\,m> = / dy/ dx , (207)
Jo 0 x(z,y)
where
X(@,y) = x(y) + X (1 —z) —ie,  with x(y) =m” + Q% (1 —y). (208)
Integrating it once and exploiting the infinitesimalness of A,
1 x(y )) A
/ ) +>\2 (1-=2)  2x(y) hl( ) PO\ Aw ) (209

we obtain the following decomposition:

1 2
Co = [F11n<‘;2>+F2

2 Bntl
In

2
o= /oldyxﬁmwm B — 17
[

(y () F11<Q2M;i5>

)

2 2 —
g 5m+1n oty () o ()
with 2
8 =1 +4Qﬁ2 _ (212)

In the next lecture, | will present the derivation of this Cy by the dimensional regularization method. It
will be shown that the identification

2
1
In (g) o2 (212)

establishes the bridge between the two regularizations.

In the most general case the Cy function contains 12 dilogarithms and several Veltman's n-func-
tions, see Section 5.1.4.3 of Ref. [1].
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3.6.5 Tensor three-point integrals
The rank one tensor integral is defined by

w2 Cy (.23, Q% mama,ma) = [ g 0o (213)

and its decomposition looks like

i [Cn (p%,pga Q% my, ma, m3> piu + Cia (pf,p% Q% m1, ma, ms) pzu} : (214)

The rank two tensor integral,

) 4-n n  Qudv
L= d"q—"A—, 215
im=Cy 7 / qdodldg (215)
aready contains four structures
im? [021p1up11/ + Caopappav + Cos {p1p2}t, + 0245,4 7 (216)

where the symmetrized combination is introduced

{p1p2},, = P1up2v + 1oy - (217)

The reduction of these tensors is developed using standard technique. All the details may be found in
Sections 5.1.4.4 and 5.1.4.5 of Ref. [1].

3.7 Four-point integrals, D functions
They appear in the calculation of box diagrams.

D1 P4

D2 ms p3

Fig. 1: The box diagram.

The four-point functions are again much more complicated than the previous ones. Only definitions and
some particular cases will be presented here.

3.7.1 Thescalar four-point integral, Dy function
The integral defining a D function with 10 argumentsis

. _ 1
im* Dy (P%,pgapipi (p1 +p2)%, (P2 +p3)2;m1,m2,m3,m4) =u! ”/ d"q——— . (218)
dodydads
The four propagators in this case are
do = ¢* + mi — ie, di = (q+p1)* +m3 — i,
dy=(q+p1+p2)>+m3 —ie, ds=(q+p1+p2+ps3)° +m?—ie,

with all four-momenta flowing inwards as shown in Fig. 1, so that p; + p2 + p3 + p4 = 0. In terms of
Feynman variables =, y and z it reads

1 T Y 1
DO:/ dx/ dy/ dz : 2
0 0 0 (ax?4+by?+gz2+caxy+hxz+ jyz+de+ey+kz+ f)

(219)
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with

a = —pi3=-13, b = —piy =13,

g = —py=-ni ¢ = —pi3+pis+ 033,

h = —pi3 —pia + Poo + 13, j = —Poo+ P +0i2,

d = m3—mj+pis, e = m3—mj+pi;—pis,
k= mf—m3+pg —pis, f= mi—ie,

and p7; = (pi — pj)*

3.7.2 Reduction of tensor four-point integrals
The 1-, 2- and 3-rank tensors

. 9 . . 4 n {qmqMQV;QuQVQa§qMQVQOzQﬁ}
i {DM,DW,DWQ} = / d"q dodrdads ;

contain 3, 7 and 13 structures and tensor functions D;;, respectively:

D, = Duipiy+ Di2p2y + D13pay,

Dy, = Doapiupiv + Daopaupay + Da3psupa
+Doa {p1p2},,, + D25 {p1ps},, + D26 {p2ps},, + Dardu
Dyva = Dsip1upivpia + Ds2poupovpra + D33psupsvpsa

+D3a {p2p1P1} 0 + D35 {psp1p1} 0 + Dae {p10202} 100
+Ds7 {p1P3P3} 0 + D3s {pspap2} 0 + D3o {p2p3p3} 100

+D310 {p1P2p3} 0 + D311 {P16} 0 + D312 {p26} 0 + D313 {p36} 0 -

For rank-3 tensor an additional symmetrized structure appears

{pkl}uya = Pu {kl}ya + ku {pl}ya + lu {pk}ya :

(220)

(221)

(222)

Thereduction is performed by making use of standard technique. Details may befound in Section 5.1.5.2

of Ref. [1].

For the e™ e~ annihilation into fermion pairs, SM boxes are met only in two topologies: direct or

crossed. For WW internal linesthereis a peculiar aspect due to charge conservation:

only direct box ispresentfor ete™ — dd;
only crossed box is present for eTe™ — uu.

The full collection of box diagrams for e*e~ annihilation into afermion pair is presented in the Fig. 2.

et (ZA) 7 et (Z,A) f

AA-, ZA-, ZZ-boxes
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Fig. 22 WW-boxes.

3.7.3 Some particular cases of D functions
Case 1). The most general expression which one encounters when considering Z 7 and W W boxes with
four massless external fermionsis obtained with
pi = 0, (p1+p2)° = Q% (p2 +ps3)* = P,
my = Ml, m2:0, m3:M1, m4:M2. (223)

With an appropriate choice of Feynman parametersit may be presented and calculated as follows:

1 1 1
Dy (07o,o,o,QQ,PQ;Mho?Ml,MQ)=/0 dz/o ydy/o dz
1
2
@ﬁy+N@G—y%+P%L—wO—w%+Q%¢xO—xﬂ

4 2 _ _
Q (P2+M2 Vd zzlg 1 [ 2 (xj—xi> 12 Tj— (224

X

with six roots

1 4M?
T2 = —(1:F 1+—>, 531,22%(1:F\/@>,

2 Q2
M3 P%+ M3
= — = 225
€3 M2—M12 ) X4 P2+M22—M12 y ( )
and
4AMEP? (P? + M3 — M}
di=1 P (P + - ) (226)
Q* (P? + M)
For My = 0 (in practical applicationsm; = 0), it smplifiesto
Dy (o 0,0,0,Q%, P% M;,0, M, 0) -z 22: (=1 Liy ( Zi ) (227)
) ) ) ) ) ) b ) ) (0) pa 5/‘1 — 1 b
Q2P2\/d4 ij=1 J
with the roots
LT 0) 0 _ , , AMP(P? - M7)
T1,2 = ? (1 + d4 > , d 1+ Q2P2 . (228)

Case 2). This case is encountered when considering ZA and AA boxes, where it is useful to introduce
three infrared free auxiliary integrals:

. 97 2 p2. R - n 2¢-(¢+ Q)

iy (@ Plimemy) = /d%m>mmmmm@mﬂ’

9= n n 2q-Q

Z7T2J»yz (QQ,P2;me,mf) = ut /d 0y ds (o) da (M) ds (m))

. 97 2 p2. - n 2Q - (¢+ Q)

T (@ Prmemg) = [ e @
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These auxiliary integrals are simple to calculate. Moreover, the following identities are very useful to
exhibit and disentengle the infrared behaviour of the scalar functions Dy:

Dg (—mg,—mg, mﬁc mf»QQ P2:0,me, 0, mf) Q2{ jw (Q2,P2;me,mf)

+Co (—mg, —mfchQ;m@O,mf) +Co (—m?, —m?2, P ;mf70,me)},

1 _
2 2 2 2 N2 p2. _ 2 p2.
Dg (—me,—me,—mf,—mf,Q , P ,O,me,MZ,mf> = 7622 —I—Mg {—Jyz (Q , P 7me,mf>
—c( P2 me, M Co (—=m2, —m2. P%:my.0.m,)]
0 mf7 e, My,my) + Co (—m¥%, —mg, P7ymy,0,me ) |,
1

e’

Dy (—mg,—m2 mﬁc mf,Q2 P2 M, .m0, mf> {Jzﬂf (é2,P2;m6,mf)

Q2_|_M2

+C'o< —mf,P Me, 0, mf) C’g( mf, me,Pz;mf7MZ7me)_. (230)

Here we present the answers for the auxiliary integrals, in terms of one-fold integrals:

_ 1 1 P2.
2 p2. _ X( ,me,mf)
_ M2+Q2 1
T (@4 Phimemy) = =T, (Q P mevmf) 1“—/ P meimy)”

where x (P?;me, ms) = P?z (1 —x) + m? (1 — x) + m7x isthe usual quadratic form. The explicit
answersfor .J. ¢ 1 (Q*, P?;me,my) may be befound in Section 5.1.5.3 of Ref. [1].

3.8 Special PV functions: a,b, ¢\, d)
The standard Passarino-Veltman (PV) functions, A, B, C, D, considered in this lecture, are sufficient to
calculate one-loop correctionsiné = 1 and U gauges. Inthe R¢-gauge additional complicationsarise. Let
us consider adiagram with internal photonic lines, with photon propagators, which contain an additional
term (&2 — 1)quqv/q*, Fig. 3. Thisleads to a special class of two- (three-, four-) point functions.

w

w

Y
Fig. 3: An example of Feynman diagram leading to special PV functions.

3.8.1 Thescalar by function
It is defined by the integral:

im? by (pQ;m) =" / dq !

@ ((a+p)+m?)

(232)

Thisintegral isabadly divergent object intheinfrared regime. Using the standard infrared regul arization:
n=4+¢, ¢ >0,andintroducing adimensionless y = 1 + (1 — z)p?/m?, we have

e'/2 _ /
bo (pz, m) = 727 (1 - il) m_2 /1 dp x~ 11 /2 (1 —a)x /2
’ 2 M2 0 m2
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/2 e (m2\? 1+e' /2
~ 7t F(l——) — / drx™ /% h(x),

1—=x

W) = <1+%ln><). (233)

By adding and subtracting /(0) and by noticing that == [h(x) — h(0)] isfinite for ¢’ — 0, we obtain
1 1 m? m? p?
2. _ - mo _ Ll
bo(p,m)—p2+m2 lé+1nu2+<1 p2>ln<1—|—m2>]. (234)
Thisintegral is defined in the whole n-plane for p? # —m? and it shows an infrared pole at n = 4.

3.8.2 \ector b; function
Thisis defined by

in?by (p%m) b, = N47n/dnq /M
(i) () ((a+p)* +m?)
1 n/2—2 (1 _
PP _n )[ N U )]
i “p, I (3 2) ; dx (m2x)37"/2 . (235)

This function is free of singularitiesif p? # —m?, where it could be computed at n = 4. We have

1 2 2
2. _ T 1 m P

Thereis an alternative way of evaluating b (p?;m). With d = (¢ + p)? + m?, we derive

2 2
wpt (phim) = %/ T [(qi)2 - % - p(q;;f; ’
p°b (pz;m) = % [ao — By (pQ;O,m) — (p2 + m2) bo (pQ;m)} : (237)

In the previous derivation we have introduced a new integral,

1
. 2 n
T ag = / d"q . (238)
(4)°
Since we have,
2 2 2
Bo(pZ;O,m)zl_+2—lnm—— 1+m— In 1—|—p— , (239)
g ©2 P2 m2
then from Egs. (234) and (236), which are valid for any n, we obtain the proper definition of thisintegral
Go=s+1=0, (240)
9 9

fully consistent with our previousfindings, cf. Eg. (158). Inthisway we derive atypical relation between
special and standard PV functions

by (pQ;m) = —% {BO (pQ;O,m) + <p2 + m2) bo (pQ;m)} . (241)
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3.8.3 Therank two tensor integral
The tensor is defined by

. —_n ' m q QV
in? (barpupy + ba2duw) = i / ! @) ((a : p)+m?) o

Using Feynman parametrization (the second Eq. (149), and Eq. (155)), we derive

1 1 /92— n/2—2
ba2 (pz;m) = 577”/2’2/14’”1“ (2 - g) /0 drx (1 —x) /22 (m2 +p2w) . (243)

From which it is easy to obtain the singular part of bos (p%;m) and the rule of multiplication by n:

nbo (pPm) = 4 (p%m) - % . (244)
By applying of the usual method one obtains the system:
Pbor (p%m) + nboa (p%m) = By (p*0,m),
o ) (o) = L[5 (0 o (2 ) 1 ()] 29
and its solution
() = L0 (20m) 4 30 (0m) 4 (%) () 1]
by (pPm) = —dbss (p%m) + Bo (p%0,m) + % . (246)
After theidentification 1/¢ = —1/ thefollowing identities may be established:
(2 +m?) b (Pim) = 240 (m) +20” — (* —m?) Bo (% 0.m)
(P +m?) b (p2im) = —1- ]% (4 (m) +m? By (p%0,m)], (247)
which give more relations between special and standard PV functions:
bo (pPm) = %Bo (p%0,m) + = {Bl (p%0,m) _z% |40 (m) +m*Bo (pz;O,m)}},
(i) = L (o)
—g <31 (p%0,m) — % |4 (m) +m?By (pQ;o,m)D - %} . (248)

3.8.4 Onemore special series
One more class of functions, b, are met when calculating y~y boxes in the R¢ gauge. The scalar function
by is defined by:
;27 -n n 1
in*bo (Q%) = u* / a'g— . (249)
(@)’ ((1+Q)°)
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With infrared regularization, n = 4 + ¢/, astraightforward calculation leads to

@) = (e ) () [ oo
= éwa’ﬂr(%%) (%) B(%/,1+%/)
_ é(éﬂn?—j—gza{bo(@z ) CH

3.85 \ector and tensor b integrals
We present only definitions:

. 927 —n n q
’L7r2()1 (Q2) Qu - M4 / d q(q2)2 ((q':_ Q)2)2 )
()90 s (@] = 4 [arr

and answers;

61 (QQ) = _%BO (Q2) ’ 621 (QQ) QQ [bO (Q2 ) é] X 622 (Q2> = % .

Actualy only infrared finite objects will appear in the calculation, such as, for instance:

/d” quq+Q) _ L
@ (@+@?)" 2@ (Q2)

o2 QMQV .

(250)

(251)

(252)

(253)

The full collection of scalar, vectors and tensors is, nevertheless, needed if we wish to develop an auto-
matic computer program for the generation and calculation of all possible one-loop diagramsin the Ry

gauge.

3.8.6 cgj ) functions

When considering arbitrary four-fermion processes one encounters additional functions. An exampleis
given by four classes of special functions, called cl(.j) functions, j = 0, 1,2, 02. Thefunction with 7 = 02
isa pinch of the yy-box diagram. Here we give only defining equations for the scalar functions, referring

to Section 5.1.6.2 of Ref. [1] for more detail s and the reduction:

5 (0 n [ o AL Gu Gt}
Zﬂ—zcgl),u,uy} <p%7p%7Q2;07m27m3) = 4 / d d;dlgg y
2 (1) _ 4 n n {1 Q,ua(quy}
im c{lu/u/} <p17p27Q m170 m3) = / d d0d2d2 ;

2 (2 no [ o s Guay
Zﬂ-QCf{l)”u,;w} (p%apgaQQ;mlym% ) = 4 /d { d:d152 } )
2 (02) 2 2 2, _ 4 n n {1 qu, 4 QV}
Zﬂ- C{IMMV} (p17p27Q 707m27 ) - / d d;dltl;Q .
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3.8.7 dgj ) functions

Finally, there are special functions associated with four-point integrals. The class of the dl(j ) functions
is richer than that of the cEJ ) functions. As usual, we limit ourself to the functions which appear when
considering of 2f — 2f processes. Thisiswhy only definitions of three classes of dgj ) functions with

j=0,2,02 aregiven:

. 2 5(0) 2 2 2 2 2 p2. _ i [ {L qu, quav t
v d{l,,u,,p,u} (pl7p27p37p47Q 7P 70am2am37m4) - / d d0d1d2dd 5
2 1(2) 2 2.2 2 H2 p2. =i [ {1, g quav }
i d{l,u;u/} (p17p27p37p47Q 7P 7m17m2707m4) = / d d0d1d2d3 )
24002 2.2 2 2 9 52 — i n AL Qus Quav }
d{lyp,y} (p1>p27p3’p47Q 7P aoam2303m4) = / d d2d1d2d3 .

Their reduction may be found in Section 5.1.6.3 of Ref. [1].

3.9 Summary of thethree Lectures
In lectures 1-3 we studied:
e Basicsof present QFT
— Standard Moddl, itsfields, and Lagrangian;
— Different gauges. R¢, (=1, U,
— Gauge invariance;
— Feynman rules, and building of diagrams.
e Dimension regularization and N-point functions;
e Calculation of loop integrals:
— gtandard PV functions: A, B, C, D;
— specia PV functions. a, b, ¢, d ;

It istime to calculate diagrams.
We emphasize that there are Ultraviolet and Infrared dimensional regularizations:

2

Ultraviolettn = 4—¢ — =— —~v—Inm,
n—4

1
g
1
Infrared: n = 4+ — =
13

2
=+——+~v+hnw,
n—4
. . e . . . . 1 1
which could be identified with the aid of identity: E + = 0.

4. TOWARDSPRECISION PREDICTIONS FOR EXPERIMENTAL OBSERVABLES

(255)

(256)

(257)

Inthislecture wewill exploit the knowledge mastered in the previouslectures for cal culating the simplest
QED diagrams. The second half of the lecture will be devoted to acompl ete cal culation of QED radiative
corrections for the Z decay for final-state massless fermions using a technique specific to the massless

case.
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4.1 Calculation of simplest QED diagrams
4.1.1 Photonic self-energy diagram
Photonic self-energy is described by atensor, IT,,,.:

q

—(p+4q)

Applying the Feynman rules for vertices and propagators, we construct an initial expression to be inte-
grated over an internal momentum g:

H;w =

202 n M"‘mf)%(zié"‘@ﬁ"‘mf)%}
Q: /d q —i—mf) [(q+p) +mf}

_ 12Q? / dnq%(q +m7 +ap) — (qupy + @wpp) — 2000
e
(@ +m3) @ +p?+m3

Using the definitions of the Ay function, Eq. (161), and of the vector and tensor B functions, Egs. (176)
and (180), we immediately get the answer:

(258)

M, = ir’ 462623{5;“, [Ao (m?) + By (pQ;mf,mf)} — 2ppyB1 (pQ;mf,mf)

(pz;mf,mf) pﬂpu}}
(

p2; my, mf) — 2B99 (pQ;mf,mf)}

—2 [322 (pQ; mf,mf) Ouv + Bo1
= z'71'2462QZ{ w [Ao mf +p ’B;

—2pupy [31 (p mf,mf) + Ba (pQ;mf,mf)} } (259)
It must be transverse as a conseguence of QED U (1) gauge invariance:
My = in?462Q? (p*d — pup) Ty (p?). (260)
This property will be satisfied if
A (myg) + p*By (pQ;mfvmf) — 2Bagy (pQ;mf,mf)
— 2p? [Bl (p2;mf,mf) 4 By (p2;mf,mf)} . (261)

Thefour functions, Ay, B1, Be1, By, may bereduced to only two scalar integrals. Ay, By. Therefore,
relations among the four are possible. Indeed, from the general result, Eq. (188), in the case of equal
masses one has:

By (p%m,m) = —5Bo (p%m,m)
B (pz;m, m) = %;_2192 + 3—;2140 (m) + pQ:;;mQ By (p m m)
Bas (pz; m, m) = —%;ﬁ + éAO (m) — %Bo (pQ; m,m) ) (262)



and the desired equality isimmediately verified.

Thefinal result for 11 (p?) deserves careful examination. We give three representations for it:

1) in terms of higher rank functions, Bo; 1;

2) in terms of scalar functions, Ag, Bo;

3) explicitly, in terms of the separated out UV-pole and afinite logarithm.
All expressions are equally compact:

Il (pQ) = 2 [Bm (pz;mf,mf) + B (pQ;mf,mf)}
= %};pz + ginAo (my) = ]%Bo (p*smymy)

1/ omi\ 11 m} Br+1
= ——(z-mL)+-+Z(1-2-L)(Bm —2
3(5 nu2>+9+3( pQ)(ﬂf Br—1 )

where

Two limiting cases are of practical interest:

1(1 m> 5 1 2
w et )b ()3 n

1/(1 m? 2
o et i) (1) ey

Thefinite (i.e. free of UV divergence) difference,

is the renormalized photonic self-energy, as will be proved later.

4.1.2 Fermionic self-energy
Fermionic self-energy isa4 x 4 matrix, described by the diagram:

(263)

(264)

(265)

(266)

Applying the Feynman rules, we derive an initial expression, which again may beimmediately writtenin

terms of B functions:

— 202 [ Yu (2g +my)7,
) = < /d q + m? —ze) [(q—k;) —ie}

= in? <—€2Qz) [(2 —n) By <p2;mf,0) ip + nmy By (p2;mf,0)} .

Furthermore,

(267)

(268)



Therefore, remembering Eq. (182), we derive multiplication by n rules
nBy=4By—2, nBy=4B;+1, (269)
and the final result for the fermionic self-energy becomes
S(p) = in?elQ? { [231 (p2; my, 0) + 1} ip—my [430 (p2; my, o) - 2}} . (270)

Thefermionic self-energy onthefermion massshell isultraviolet divergent but finiteintheinfrared regime,
whilst its derivative, 0% (p) / 8p2|p2:_m? , develops a singularity due to the zero mass of the photon,

which isof infrared origin. We recall, that

0 1 1 m2
—— By (p*m,0 = —— | =—24+In— ],
op2 0 (p m ) Pe—m? 2m? (é T ,u2>
0 1 1 m?2
— By (p%:m,0 = — [-=3+In— 271
8p2 1 (p 7m7 ) p2:7m2 2m2 <é + n ’I_,L2 ) ? ( )

from which we derive

9% (p)
9

p2=—m?2

= —7? eQQg [231 (p2;m, 0) +1

— 8m2i By (pQ; m, O)

0
—4m®— By (p%
m a2 1 (p ,m,O) P a2

p2_m2]
1 2

2
= —n?e2Q? (——_+—A+3lnm—2—4>. (272)
g € o
413 QED vertex

The one-loop QED f f~ vertex corresponds to the diagram:

b2

For on-mass-shell fermions the most genera structure, compatible with both Lorenz and gauge invari-
ances, reads:

62

Ay = (2m)tiieQo——r
p = (2m) i ieQ 1622

{WFl (Q2,m> + o (p1 + p2), mEF (QQ,WH- (273)
We note that:

1. The QED vertex dresses the Born expression as

(27?)4 iieQeyy — (277)4 11eQeYu + Ay, Qe =—1,
2. F isthe Dirac electric form factor, it is ultraviolet and infrared divergent;
3. F; isthe anomalous magnetic moment of the electron, it isfinite.
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Using Dirac equalions for on-shell fermions, v(p2) po = —imv(p2), pru(p1) = imu(p), and
Pt =ps = , Q% = (p1 +p2)® = —2m? + 2p; - po, Wearriveat

. 3, 4-—n n 1
A = i(eQe)”ut /d ‘e [(a+ 20"+ ] [(a = p2)? + 2 .

Nu = —4p “p2Yu + 2 (ISI'Ya'Yu - 7//704?52) Qo + (2 - n) Ya VY3995 - (274)

With the standard Feynman parametrization, and notations: k, = xps — (1 —z)p; and x (Q%,z) =
Q%x (1 — x) + m?, we derive further on:

1 1 1
A :iee3f‘3/da:/d 4*"/01” N
" (eQe) ()O o dyyn q(q272yq.kx)3 u

= ir%i(eQ.)’ {— (Q2 + 2m2) S + 2 (P1Ya = YuYab2) Vo + vauvsT aﬁ} - (219)

For the scalar integral we use the infrared regulator ¢’

1 1
S = dx d
0 o M @2y k)
//2
7 / 1 1 / 1 (Q2 JI) :
- 9 5 /21“ <1 _ E_) / dZ’/ d —1+e X ) 276
" 2/ Jo o x (@Q?, ) 1 (e76)
After y-integration, which can be performed for any value of ¢
1 1
/ dyy "= ———| k=—1,0,1... (277)
0 1-k—c¢
we get an expression in terms of aone-fold integral:
7'['6//2 5/ 1 1 X (Q2 x) 5//2
= 2 I'i1—-—= ’ 27
s e ( 2)/0 dxx(QQ,x) p? 19
Finally, expanding around £’ = 0, we have:
1 1 1 x (Q% )
S:/ dr———— | = + In =—-+ . 279
o x(@%w) | p? @79)

For the vector and tensor, we usethe ultraviolet regulator . For the vector, we proceed asfollows:

d"qqa
Va:FS— d:c/dyy/
(2 — 2yq - ky)°

—&/2
1 1 1 (QZ x)
— —8/2r(1+5>/ dka/ dyy ¢ X\
" 2) Jo “Jo M@ G
—_ /2
_ (=p)y _—epl(1+5/2) / L [x@uo)]
I = oo § e %0
We see that the vector isfinite, and we may set ¢ = 0, yielding
v, = P2=pis ;pl)aFg (@%m),  B(Q4m / d:ni. (281)
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Then, we have to perform a Dirac algebra for the vector

(P2 —P1)o _

2 (P17aVu — YuVal2) 5

2 [(QQ + 4m2) Yy +im (p1 — pQ)M} ) (282)

For the tensor integral we have to consider the full contraction:

d"qqaq
T = T @) potsg [ [ gy [
(¢* — 2yq - ks)

= /01 dx/o dy (278) ’YMX<Q2733)*(2*5)5}{7$7#}{7$}

—&/2
ool e\ - 1 (Q% )
e/2- < 1—¢ X ’
gt <2>y Q%) | ' (253)
After applying y-integration and Dirac algebra
}éx’m }éx = YuX (Q27 ‘T) - 2imkx,u s (284)
we get
—€/2
e (€N [t I x (@)

1 2 —e/2

Therefore, the tensor reduces to the one-fold integral:
1 1 X (Q27 .Z') . 2
YaYu¥8Tog = Yu (E —/0 dzln T -2 —im(;m —pg)u 13 (Q ,m) . (286)
Now we are ready to collect the scalar, vector, and tensor together. Moreover, we use the Gordon identity

i(p1 —p2), Vu = —2m VYU + Vo (p1 + P2), U, (287)

in order to arrive at the standard parametrization of the QED vertex, Eq. (273), with Fy (Q*,m) and
Fy (Q%,m). Thelatter is given by Eq. (281), whilst the former is

FHHX(Q?I)]
E 7

+——/ dn X )72+2(Q2+3m / dr————~

B (Qhm) = —(Q*+2m?) /0 1 dx%

7x)

. (288
o @
In the derivation presented above we intenti onaIIy did not use the formalism of PV functionsin order to
show that in some cases adirect application of the formulae of Section 3.2 may be profitable. Of course,
al the integrals of Egs. (281) and (288) may be given in terms of PV functions. We have,

/ dx————~ Q2 —H X (?j ?) %C(] (—mQ, —mQ,Qz;m,O,m) ,
é_/o dwln%ﬁ’@ = Bo(Qz;m,m),
1
<Q2 + 4m2) /0 davm = -2 {Bo (QZ; m,m) — By (—mz; m,O)} .

Two limiting cases deserve our attention:
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1 m2 1 2 —S — 1€
Fy (- = ——In— —2(Z4+mm— |1
1(—s,m) B nu2 <é+nu2> 3
—In? _fn_ e 3772 +3n m_2 e (289)
2 1 2 2
2.Q7=0, Fi(m) = ——=-3m"% +4. (290)
g € 2

The quantity of physical interest is F; subtracted at zero momentum. From Egs. (289)—(290), we derive
its high-energy limit, s > m?:

F5° = By (—s,m) — Fy (0,m) =

1 2 o o o o 1 o
-2 7+lnm— (ln i 26—1)—ln2 i + 72 +31n— €y, (291)
é u? m? m?2 3 m2

Note that the subtracted vertex is UV-finite but IR-divergent. The latter divergence cancels with the in-
frared divergence originating from the soft bremsstrahlung contribution.

4.1.4 QED box diagrams
For the annihilation ete~ — ff there are two QED box diagrams: the direct (a) and the crossed (b):

The integration of box diagrams over internal momentum ¢ is rather involved and we will not present
it here. However, for completeness, we will give answers since boxes are the last QED one-loop dia-
grams. In the one-loop approximation, the boxes contribute viainterference with the lowest order (Born)
~-exchange diagram. For thisreason we give, first of al, the Born amplitude squared, summed over final
spins and averaged over initial spins:

t+u

Z|Mo ?=2¢'Q2 Q7

spins

(292)
The corresponding contribution from the interference of the direct box diagram with the Born one reads

iQReM;‘Bdr - Q3Q 535;X (s,t,u), (293)

spins

Alnt 4

where
box _ 27yt 21N\—
5% (s, t,u) =u D, (s,t,u)+t D, (s, t,u). (294)

Similarly, the contribution of the crossed box is obtained with the replacement ¢ < « and the change of
overal sign

o= Z2Re/\/l BC‘"— 2Q3Qf 5b°>< (s,u,t). (295)

spins
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Only two functions D% (s,t,u) are needed to describe boxes

_ t?
tQD'yfy (S,t,U) = ; do (Sat) + Co (8;07m870) + o (S;O,mf,())},
£2 4 42
u22);r7 (s, t,u) = P {do (8,t) 4 co (5;0,me,0) 4+ co (5;0,my, 0)}

+ (u—1) co (t;me,0,my) + u{Bo (—s;0,0) — By (—t;me, mf)}, (296)

where the following scaled functions with a reduced list of arguments are introduced:

dop (s,t) = stDg (—mg, —mg, —mfc, —m%, —s,—t;0,me, 0, mf> ,
€0 (3;07m870) = s5Cp (—mz,—mz,—s;o,me,O) )
co (t;me,0,my) = th( mf, —t;me, 0, mf) (297)

The function dy may be split into an infrared divergent function ¢, plus afinite remainder:

do (s,t) =t Jyy (=5, —t;me,my) — 2co (t;me, 0,my) . (298)

With the aid of thisexpression we provethat theinfrared divergencesin the boxesfactorizeinto the lowest
order

2

2 2 2
U e, t°+u
?D,;i—,y (S, t, U) + ZD’Y’Y (S, t, U)

=2
82

co (tme, 0, my) . (299)

IR

Thebox ingredientsaresimplein practical caseswhen external fermion massesaresmall: m?, mfe L —t
and m? < s, 2

2 2
_ 1 me t 1 m 1
Iy (=8, —t;me,my) = — lln fln—+ In2 e +—1n2—f+—772] ,

t t2 —t 2 —t 3
1 /1 m2 1 m2
2 _ - - 2 e -2 - e
Co (—me,— —s;0,me, ) = 5 (2 In e —|—67r —I—Zﬂ'ln—s ),
C 2 —t;me, 0 _ L[ memy (1, 112m§ L™ Lo
o (s —time,Oump) = gy [In T (G kg )+ gt T gwt T g

By (—s;0,0) — By (—t;me,my) = —In it + . (300)

For the total interference terms, the lowest order x box diagrams we have

6
€ X
A})ncix = - 2 Qng fbo (57 ta U) )
1

box (s,t,u) = S[5b°><(s,t,u)—533X(s,u,t)}, (301)

where

2 +u? (1 t
Re beX (s,t,u) = 2 —|—2u <g +1In i) In —
s

n()-2m() S e () o ()]

Note, that contrary to the vertices, the box diagrams show no mass singularities (In m isnot present). This
isan exhibition of ageneral property of absence of collinear divergencesin interference-like contributions
(boxes behave similarly to the initial—final bremsstrahlung interference).
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4.2 Massless World

In this section we present an alternative derivation of QED corrections for a simple case of the decay
of aneutral heavy particle into massless fermions, avoiding PV functions. We will present aformalism
originally proposed in QCD for massless quarks and gluons. It could be applied to QED too. Within this
formalism, all the cal culations, including kinematics, must be consistently donein n-dimensions. For this
reason we begin with aderivation of the two-body phase spacein n-dimensions. We will then discussthe
calculation of the vertex function for massless fermions, and finally present the three-body phase space
in n-dimensions, a calculation of the bremsstrahlung contribution, and of the total correction.

4.2.1 Two-body phase space in n-dimensions
We use the phase space definition:

dn—lp dn—lq
o, = (2n)"putm / / §M(Q-p—2q), 303
2 (2m)" p @ om0 ) @ 200 (Q—p—q) (303)

which differs from a convention of the Particle Data Group (PDG) [6]. In Eg. (303) all the 4-momenta
are assumed to be in n-dimensions, and the final state particles— on-shell, i.e. p?> = 0, ¢®> = 0. Wethen
derive:

@, = @0t [dpst?) [ dat @8 @ —p—a)
= @nP T [ @R Q- ). (304)

where Q% = —M? and where 5 (p?) = 6 (po) d (p?). Furthermore,
n—1
d'p=d"'pdpo, P’ =|F*-p5, |BP=D_pi-pi- (305)
=1

Now we go fromn — 1 rectangular coordinates to spherical coordinatesinvolving | 7 | and n — 2 angular
variables:

p1 = |p|costy,
p2 = |p|sinb;cosby,
p3s = |p|sinf;sinbycosbs
Pn—2 = |P|sin6;sinfysinbs---sinb,_3cosb,_s ,
Pn—1 = |P|sinf;sinfysinfs---sinf,_3sinb, o , (306)
with limits
0<0; <wm fori=1,2,---,n—3; 0<6,9<2m. (307)

Calculating the Jacobian of the transformation Eq. (306),

d"p = | F"2d| P sin™ > 61df; sin " Gadby - - -
- sin? 0,,_4d0y_4 Sin 0,,_3d0,_3d0,_o (308)
and using
o L(im+1)
/ Sin™ 0df = /7 (f ) , (309)
0 I (3(m+2)
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one has

1 1
Cnoden a1l e ['(5(n—=3)) I'(5(n—4)
¢, = (2n)* "yt /!p! S od | P[P dpor™/*? (1 ) <1 )
2 P (3n-2)) T (30 -3)
T(3
. (2> r{) 206 (| | —pd) 0T (—M? + 2Mpg) sin™ 3 01d6; . (310)
r'@ r(3)
After simplification of Eg. (310) we reach an important intermediate result:
et PRIV S
o, = (2 4_”LL<—) —/ in" 4 . 11
) (2m) r—i . F(%n—l) ; sin”~* 01d cos 01 (312)

For infrared regularization n = 4 + €', with the variable cos 61 = y, and taking into account that | 5 |=
po = M /2, we continue:

e 712 M\ 1 1 2\ &' /2
o, = (20 T <ﬂ> FIa o /_1 (1-) " ay. (312)

Furthermore, introducing one more variable, z = % we integrate over it,

1 ! 2 / 1 /
/ (1 - yQ)E/ dy = 2'F / [2(1—-2)]° 24z
1 0

, 1 1 T (1+¢/2)?
1+e i — ) - 9lte
2 B<1+2€,1+2€> 2 T2t (313)
and get a representation convenient for expansionsin &’
2\ ¢'/2 —&'_&'/2 /
o, — 1 (M (2m) = 7= /4T (14 €' /2) (314)
8 \ p? (14+e)T(1+¢€)
For fun of it, using the so-called duplication Legendre formula:
1
VAT (22) = 22510 ()T (z + 5) , (315)
it can be reduced even further
2\ /2 52/ _1/2-¢'/2
, = 1 (M 27w e ’ (316)
167 \ p2 T (3/2+¢/2)

to arepresentation containing only one I" function. It is not convenient for expansions, however.

4.2.2 Calculation of Z decay width with QED radiative corrections

In order to calculate O (o) QED radiative corrections for Z decay, one has to consider virtual and real
corrections. The former originate from all possible insertions of a virtual photon line into the tree-level
(Born) diagram and, aswill be shown below, only the vertex diagram contributes. Thelatter are described
by two usual bremsstrahlung diagrams. Therefore, in total we have to consider only three diagrams:

f f f

~
i
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423 QED vertex

I recommend that the same line of calculations for the vertex, as presented in Section 4.1.3 be followed.
For on-shell massless fermions and on-shell vector boson, we have: p? = p3 = 0, ©(p2) p2 = 0,
pru(pr) =0, Q*=2p;-py=—M?2 and the expression, with which one has to start, becomes

1
Mo = i(eQ [ e N,
! 2(q+p1)*(a—p2)* "
Nu = —4p ‘P2 + 2 (]61704’7# - 'Yu'Ya]b2) Qo + (2 - n) YaYuYB4a4p - (317)

Inthe masslesscase: k, = zps — (1 —2)p1, x (Q% z) = Q*r (1 — =), and the decomposition into
scalar, vector and tensor simplifies to:

Ap = i(eQe)® [~Q%S7 + 2 (hrravn — Tu¥abs) Vi + Yot ¥5Tas) (318)
For the scalar we now continue the integration in n dimensions, using, as before, the infrared reg-
ulator &’
2¢  _ /2 € Q 2-1( e /2—1
-Q°S = -2 o r (1— 5) (—2 / dza®/ —x)
e'/2 2 ’o
- o (1 6—) @ B (5—,6—)
g’ 2) \ 12 272

B 7€' /2 Q2 T2 (6//2)
= 27T (1 - 5) (F) T (319)

Similarly for the vector we also use the infrared regulator and derive:

/2 2 2 (¢ /2
2 (e — rah) Vee= 1271 (1= 5) (ffz ) . (320

Note that contrary to the massive case, the massless vector is not finite and we may not set < = 0. Inthe
massive case we had mass singularities which exhibited themselves as In m, and now we have, instead,
collinear divergences (CD), which develop polesin the infrared regulator 1/¢’.

For the tensor we may also use the infrared regulator, in spite of the fact that it has an UV diver-
gence. It also has CD, and we may use the same infrared regulator for both, remembering the existence
of an identification of two types of divergences, Eq. (257). For the tensor, we have:

VaV;L’YﬁTaﬁ = T (1 + EI) //ZF ( ) ( > / drx® /2 1 - x) €/2

2 2 5/
— fy‘u(l_‘_gl) 6/21—‘( 2)<g2> % (321)

Because of the presence of double poles all the expansions should be performed up to 2. They are

achieved by means of equations:

I(1+z) = 1—fyx+%[() ?lat+o(a*), @)=
a®* = 14 (Ina)zx %

(na)*z? + O (a°) . (322)
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Hewe we introduce some new notations and recall some old ones:

1 2
g = g'i"}’-i—hlﬂ', Fy=v+Inmw, C(2):%,
—M? —je M?Z2
zv = mh—5—=In—F —ir. (323)
@ 7
In the massless case, only F; remains:
4 e
AH: (27'(') iieQeW’qul, (324)
with the ingredients
2 2 -2 2
Scalar = —é—2+g(7—2v)—7 —zy +((2),
4
Vector = g_8+42'v;
1
Tensor = —z A (325)
The complete F; reads:
1 2/ 3\ 5 o
P = —25—2—#5 7—zv+§ -7 — 2, +((2) + 32y — 8. (326)

To summarize our study of the massless QED vertex we note:
/2
1. Fy a zero momentum is zero, thisis because (%)8 / =0, for ¢ > 0; aproperty of infrared
regularization;
2. Inthetensor integral we faced a migration of the ultraviolet poleinto an infrared one;
3. The physical origin of double polesisthe product: infraredx collinear divergences.

4.24 Fermionic self-energy in the masslessworld
The massive expression for the fermionic self-energy, Eq. (267), in the massless world reduces to:

— 202 n WMW
v @f T (a0 i

= in? (—eQQg) (2 — )72 <g - 2) /01 dxx

p?r (1 —x) =/ ,

/ / / 2\ &/2
2272\ /2 / € € A '
= in? (2Q2) 7 (2+5)F( 2)3(2+2,1+2) (;P) ip.  (327)

We see that the fermionic self-energy in the massless world vanishes on the fermion mass-shell, i.e. at
p? = 0 (for the same reason as F} (0) = 0, seeitem 1, above).

4.2.5 \Virtual correction in n-dimensions
Virtual corrections contribute viatheir interference with the Born amplitude. Recalling Eqg. (24),

: _ 1 1 ~ Born 41L
Virtual = ——— o 78 §2Re (A A ) (328)
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Thefactor 1/(n — 1) follows from averaging over the V' polarizations.
For a correct treatment of the factors 2 7, we must not forget to replace

4 (27T)4 —e
d*q — ~d"q = (2r)"° d"q, (329)
(2m)
remembering the integration over an internal momentum gq.
Furthermore, it is easy to verify that

62

1L Born
A = AP (330)
therefore,
2
Virtual = [APor Lov. (331)
T
Finally, one has to properly account for n dimensionsin the square of the Born amplitude:
- 2 /
S [aren)” (1 n %) , (332)

spins
(thisis achieved by means of the trace calculation in n dimensions).
After expanding all the ingredients, we obtain the final expression for the virtual correction

1 2 19 19 19 173
Ve~ 2 (L,——)—2L%2 —29L ) -2+ Ly + —y— = 333
0 2 é(v 12) ¢ —2yLy, +5¢(2) TAgvt T 15 (333)
with
M?
— \%4
L,=1In @2 (334)

4.2.6 Three-body phase space

For the study of bremsstrahlung in n dimensions, one has to consider the three-body phase space in n-
dimensions. We define,

dnfl dnfl dnflk

de, = (2m)" M8_2n n—lp n—lq n—1
(2m)" " 2pg (2m)" 77 2q0 (2m)"T " 2k
= M2 (2m)* P S d 5T (pP)d g 5T () d k6T (KP)

§"(Q—p—q—k)

X6 (Q ~p—gq—k)d"Ps"™ (P~ p—k)d (~P?) 5" (~P*+ (p+ k)*) . (335)

This parametrization of the phase space corresponds to the kinematical cascade (shown in Fig. 4) of the
two two-body decays where one of the particles of the first decay is a compound with the invariant mass
-P2
After reordering the termsin Eqg. (335), we can use the intermediate result for the two-body phase
space directly, Eq. (311):
_ 1 2
e, = _d (-P?)
x (2m)* 7" a6t (gR)d P ST (—P2+ (Q - q)?) 6™ (Q - P —q)
x (2m)2 7" A p 6 (p2)dk 61 (K26 (P — p — k)

= 50 (-7
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Fig. 4: Kinematical cascade for the 1 — 3 decay.

x4 P2\ (M2 P\ :
2m) ' = in®' §d cos 0
<@ R ( 2017 ) ( 2Mp ) T(tveyzy 0%

x (2m) sin® 0yd cos 0, . (336)

_o w2 (/P2 i 1
167 2u r'(1+¢/2)
The two remaining angular integrations in Eq. (336) should be treated differently. The first one may be

taken, since the matrix element squared isindependent of the angle of rotation of the whole picture of the
cascade in Fig. 4. Therefore,

T, 1 /2 T (14 ¢€/2)?
€ 0 .2 _ ol4e
/0 sin® fd cosf = /71 (1 y ) dy =2 T ete) (337)
For the second one we substitute z = 1+Ty
m / 1 /2 , ’
/0 sin 0§ dcos 6y = / X (1 — y2) / dy=2""[2(1 - 2)° /2dz, (338)

and keep the integral untaken, since the matrix element squared may depend on it. Substituting two an-
gular integrals, we have

eyt s 2

4% = 71 (2+¢) M2 Mu [

E/
) [2(1—2))"/%d2. (339)
Introducing — P? = zM?, wefinaly get

M2 (M2 @n)E 2 g o ot ,
e el ) /2 (1 _ \l+e _ \E/2
o, 573 ( 2 > r2te) /0 dxx®/* (1 — x) ./0 dzlz(1—=2)]" /7.  (340)

427 Theradiativedecay V — ff~v

For the radiative process, we define 4-momenta, V(Q) — f(p) + f(q) + (k). Its kinematics may
be specified in terms of two invariants, for which it is convenient to choose two dimensionless invariant
masses, z and y:

M2 =—(p+k)?  (y+ )M =—(Q+k)>. (342)
All the scalar products may be expressed in terms of x and y:
—2p-k = J}Mg, —2q-k = (y—a:)Mg,
—2Q-k = yM?, —2p-q = (1—yMZ,
—2Q-q = (1—z)M2, —2Q-p = (1—y+z)M2.
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The bremsstrahlung amplitude has the standard form,

(4 +F)
(q+k)°

P+ k)
(p+k)°

Mo = i e (p) | ¢ /¢

4 v(q), (342)

where e(Q) and ¢(k) arethe V' and photon polarization vectors.
The amplitude squared in terms of the invariants x, z reads:

E‘Mbmmge%*{2<L_1_1>+€_F v +2+z(1_1>”. (343)
Zr x 8 |z1—=x T

spins
Here,e* =8 +4&c’andy = (1 — z) z + .
One should also include an extra factor,

1 1
n—12M,’

(344)

from averaging over the IV boson spin.

The complete bremsstrahlung contribution is the product of the amplitude squared x the phase-
space factor integrated over the z, z. All the bremsstrahlung integrals can easily be performed in n di-
mensions and at the very end of calculations one expands around &’ = 0:

1 1 / et 119 8\? 16
/dx/ dz /% (1 — o)1 [2 (1 — 2)]F /2 AProm — ot (§> - 52 480(2) | (349)
0 0

If one include phase space and all the relevant factors, one finaly gets:

1 2 19 19 19_ 373

of = ERa (LV — E) +2L% + 29Ly — 5((2) +7° — Shv—%7+ 36 (346)
4.2.8 Total QED correction
The compl ete expression is the sum of the virtual and real contributions. We define:
reep _ pBom (1 n géQED> . (347)
™
Summing up Egs. (333) and (346), we obtain the total QED correction:
373 173 3
SQED  _ 6R+6V:%7§:Z' (348)

To summarize our exercises of massless cal culations, we conclude:

1. All thedoubleand single poles (infrared and collinear) and all the unphysical terms, likelogarithms
of the t'Hooft scale and the Euler constant, cancel in the combined expression;

2. The cancellation of the infrared divergences is the consequence of the Blokh—Nordsiek theorem,
whilst the cancellation of the collinear divergences — of Kinoshita—L ee-Nauenberg (KLN) theo-
rem for the inclusive set-up (i.e. integrated over the full photonic phase space);

3. No renormalization was needed in this example; we simply computed all the diagrams, summed
them up, and got the finite answer. Aswe will see below, when we study renormalization, thisis
aproperty of the massless theory only, where the fermionic self-energy diagrams vanish on-mass-
shell. The relevant counter-terms, involving the derivative of the self-energy and the F3(0) also
vanish, and renormalization is effectively not needed.
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4.3 Summary of thefour lectures
As usual, we summarize what we have learned so far:
e Standard Modél, itsfields and Lagrangian;

Feynman rules — building of diagrams;
Regularization, INV-point functions, PV functions: A, B, C, D functions— calculation of diagrams.
QED one-loop diagrams, building blocks:

— photonic and fermionic self energies;

— vertices and boxes;

First feeling of renormalization — subtraction at zero momentum;
Example of calculation of RC'sfor the decay V' — f f in massless QED:

. 3«
— well-known correction - was recovered;
™

— first feeling of divergence cancellation;
— Why renormalization is needed? Not clear yet...

5. ONE-LOOP DIAGRAMSAND THEIR PROPERTIES
In this lecture we continue our study of one-loop approximation in the SM. We present an overview of
the one-loop diagrams and of some simple physics related with them.

Remember that in QED we had only one bosonic self-energy diagram, one fermionic self-energy
diagram, one QED vertex and a couple of boxes. In the SM model in the arbitrary gauge the number of
diagrams grows drastically. In next two figures we give only two examples of bosonic self-energies; the
7 self-energy described by 14 diagrams, see Fig. 5, and W self-energy — by 17 diagrams, Fig. 6. A full
collection of all self-energies and transitions occupies many pages, see Chapter 5 of Ref. [1]. Thetypical
number of vertices and boxesin the SM is also of the order of tensinstead of 1-2 in case of QED.

5.1 Bosonic self-energy diagrams
Any vector boson self-energy diagram and, therefore the sum too, look like a tensor

Syy (p2)5,w + 7Ty, (pQ)pMpH . (349)

At the one-loop level the second term does not contribute (see Section 6.5 of Ref. [1]). We will denote
by 34,(p?) the d,,,, part of the total 1V boson self-energy (or transition) related to S, 5 (p?):

2 9253 & (.2 2 9%s9 £ (2
S’y’y(p )= 16%22’7’7@ ) Syz(p )= 1671'269272(1) )
2 2
2 g £ (.2 2 g 3 2
=2 === . 350
Sz2(p7) 16%203 z2(p7) Sww (p7) 1672 ww (P7) (350)

Furthermore, Egv(o) = 0 asdictated by QED U (1)-invariance. Therefore, one may introduce Hgv(pQ)
defined by:

2\ 2 2
S5, (p7) = I, (p?) . (351)
2
Every 233 (p*) could be represented as a sum of two terms,

58, (p?) = S (p?) + x2dd(p?) | (352)

AB

the first of which correspondsto the ¢ = 1 gauge and the second contains all £ dependence and vanishes
for & = 1.

66



5.1.1 Bosonic component of bosonic self-energies

By bosonic component we will understand the sum of all but the first [marked by (1) in both figures]
diagrams of Figs. 5-6. It is a gauge-dependent quantity and we will look at ¥, asatypical example,
in two types of gauges.

u,d W+ Z
7, A Z, A
= + +
0 v
(1) a,d (2) w- 3 H
W+ ot
+ +
4) ¢ (5) wW-
¢° oF
+ +
6) H (7)o
X~ X+
+ +
8) X~ 9 X
(10) w (11) H
+ +
(12) o7 (13) ¢
+ +

(14) g (2)

Fig. 5: (Z, A)-boson self-energy; Z — A transition.
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(1) d 2 2
Wt ¢r
_|_
4 H () 2
o ¢t
+
(n H (8) ¢
Y, 4 X+t
+
(9) X~ (10) YZ,A
(1) w (12) Zz
_I_
(14) g (15) o7
_|_

(17) i/

Fig. 6: W -boson self-energy.
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R¢ gauge.
Its¢ = 1 part israther short

M2 4 M2 10 2
1y _ _{_ [S_g (1+8c3)p—2— 5 + 54 4 16¢ + (1—4009> e ] B (p* M, M,)

wwoo 2 s
2 2

2M2 M P
) 10+2W+—]Bo (p MH,M)

—8s2 (K +2- 5—2> By (p2; 0, M)

by

M2

M? M2] Ay (M)
) — 14+ SGW] o

2
sg N M M
_l_(1+8ce)p—2—1—18M% +16 9] i

1 M? 1
12| 5425 —2( 5 +18+ A - C——5
" <c§+>M2 <cg+ METERNEYTE

H
whilst the additional part is extremely cumbersome and hardly fits on one page

,7\[2 pZ ]\[2 p2 p
dd 4 2 4 2 2 4
ZiVW = 412 S@ _p2 -1 + 409 + 09 — 69 (2 + C0) M2 C@ M4

< [Bo (97 €01.€,08,) = Bo (0. € )

: My €01) — By (1 M, M )]

4
sy M
+2 (—p— 10 + 8¢5 — 9M2> |Bo (p*

:
+ 33%22 1-964+ ¢ (2~ 9@% 03%]

[0 (508.6,30) = B (5 20, )]
w2t (G 3543 ) [0 (%20.00) — 3 (%200
(e eensgs)ealen (o)

e 0] (4 ) mrann
(e ) (§g+1—203>]\;—22+2c§ (1+MQ2>BO (v 7M€, 0, )
t(e-) |ae (o-d) G +d) - (- 4)' 2
13 (2- )+ 2031\104—221 By (% My, €M)
25 (1) |(€41) 3 +2] 3o (.01
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+352 (gi - 1) [(1 - 52]‘5—22) (1 - AZ—Z) Bo <p2;0,§M)

- (J\;—;+4— ]\104—22> By (pQ;O,M)]

M? A M) — Ag (M, Ag (EM) — Ag (M

_|_

2 1) 2 (- n) (2 1)) ol
2 [cz (&-1) (1\]34_ . 1> —a(e—1) 1‘5_1 06,0,

~G(e@-1) [(2 - ) J‘;_; N 03} AUL) a2 <J\p4_22 ) 1) Ao (M)

2

—1

—3s3 &4 5
p

+4c2 (gg - 1) +4 (52 - 1) + 2452 (gi - 1)}

+252 (gi - 1) [M?B0 (p2; 0, M) + Ao (M) — MQ] . (354)

As seen, the additional part vanishesnot only at ¢ = 1, but also at p? = —M?, i.e. at the W mass
shell. Thisis aproperty of the R, gauge and is due to a proper treatment of the tadpoles (see discussion
in Section 2.6). This &-dependent part is bound to cancel with the other £-dependent parts coming from
the vertices and boxesfor each physical amplitudeit contributesto. Thisexampleteachesusthat working
inthe R¢ gauge, we mostly produce unphysical terms. Thisisthe price being paid for an explicit control
of gauge invariance.

Actually, there is another approach to the calculation of the one-loop amplutudes, which is orga-
nized in such away that all £-dependences cancel before calculation of integrals over Feynman parame-
ters.

U gauge. The number of diagrams contributing to the total self-energies, as well as the number of total
self-energies themselves in the U gauge, is very limited. Below the whole list is presented, where the
following short-hand notations are used:

w=-—, z=-a-, h=2—, wy=-——, h)=(1-w); (35
M2 M M T
sU (%) 1 21 3 2 1 1 271
WW 2 4 2 4
- |- 2o 247 —A )+ (= —4-14
M2 [ <12c;lv+3cgv 2+3cw+12cw)w+3(cﬁv CW+CW>
3 8 3 2 1
(550 g ) wtgeh (14wt = G| Bo (%0, 0, )
83‘/ ) 2 2
o 5—1—17— 17w — dw* | By (p ;O,MW)
)
—E(%—10+2wh+w)B0(p2;MH,MW>
1/1 1 1 1
(= _9 2 A4 —_9 -2 - 4
+ 12(03 +c, cW—i-wh)w +60W 12cW
1 9 4 1 4 o] A0 (M)
+ﬁ (—10 +c,, + CW) w + 12w MVQV



1/1 s  4\1 1 7, 3,
+|:_1_2<%+9_9CW_CW)E_E_ECW_ZCW
1 2 4 1 4 2:| AO (MZ) 1 (1 1 > AO (MH)
— -9 —(=-=-2
g (G =9k ) w534 M2 12\w  h M2
1 1 2 4 1 2 7 4
—6<CT+22+CW+CW+’LU}1>—5(2+3CW+§CW w
w
1 3 2 5 4 2 1 4 3
-5 (1+§cw+§cw)w BT (356)
¥V (p?) 17 4 w? 4w\ Ag(M,,)
T2z Ay 20 - 2 2. _ 2 Fop— 220w )
MVQV = cw( 4+ 3w+3w 12>Bo(p,MW,MW> cw(4+3w 6) Mg
1 1 wy, 2)1 10 ] )
— (== -2 — 4+ — 2w, —w|Bo (p* M, , M
+12[ <c§v C§V+wh w+c%V Wh =W 0(p’ H3 Z)
1 /1 1 Ao (M 1 /1 1 Ao (M
iy (1 1) R (1 L)
12¢ z ps 12cW z p
1 4 Wp, 4 4 4 2 I 4 3
—[@+4W+?+(1—8+§cw>w+§cww +1—8ch ;
U %) = LY, BY (%) = p YY),
1 17 4 w3
U 2 _ o - =2 P 2.
Y (p%) w[( 44wt gu 12)30 (p ,MW,MW)
4 w?\ Ao (M,,) 4 5 w3
4 = - w 4 - _ 2__:|
+( 3" )2 379" T8/
2 () w? 2 9
STl <3+w+Z)Bo (% My My, ) + SuiBo (07 M, M,,)
1 22 w\ Ao (M,,)
b (3024 ) B (o 00) + (5 5) M2
3 w\ Ao (M,) 3 Ay(M,)
S e R S 2 e Rl 22 357
+(2cg 4) Mz 1T (357)

Note, that the mixing, XU, (p?) o p*II¥ (p?). Therefore, £¥ (0) = 0 which provides far reaching sim-
plifications for arenormalization procedure. Thisisaproperty of the U gauge only. In the unitary gauge,
we note the appearance of the so-called non-unitary terms, growing with w = p?/ MVQV aspowers of w3,
thereby violating the unitary limit. These terms must also cancel in the sum of all one-loop diagrams con-
tributing to aphysical amplitude. (Similar terms cancel in Eq. (354), although it is not as easy to seethis
property.)

5.1.2 Fermionic components of bosonic self-energies

By fermionic component of abosonic self-energy we understand the contribution of thefirst diagramsin
Figs. 5-6. They are gauge-independent contributions and an interesting physicsis confined in them. This
iswhy we give all self-energy and transitions for physical fields:

5% = 4 ¢;Q3By (Pimymy)
7

5 () 2" ¢;Qpup®By (pimy,my) |

f
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S0 = Ser[(0F+0d) 8y (i) ~ a0 (i ).

f
Zievrw »*) = Z CfPZBf (pQ?mf’7mf) + ZcfmifBl (pQSmemf) ;
f=d f
m> p2 + 4m?
St = ey [Ao (ms) — ——5—"Bo (pQ;mf,mf)] : (358)
f w

where c; denotes the color factor, equal to 1 for leptons and to 3 for quarks.
The fermionic component of the H — V' transition vanishes, sinceit is proportional to

x {Bo (pQ;mf,mf) + 2B, (pQ;mf,mf)} Du (359)
see Eq. (179). In Eq. (358) we have introduced an auxiliary function B:
By (pQ;mf/,mf) =2 [Bgl (pQ;mf/,mf) + By (pQ;mf/,mfﬂ , (360)

and m ¢ stands for the mass of the weak isospin partner of the fermion f.
Then, we will need the pole and finite parts of the B;; functions:

1 M?
2. _ 2.
Bij (p ,ml,mz) = cij <E —1In M;V> + Bj; (p ,m17m2) ; (361)
with
—1 _ ! 1 (362)
o = ) 1 = 2 ) Co1 = 3 .
For equal masses m; = my = my, one has.
2 2m2 m2 1
2 (2. _pr f f .1 2 2\ pr (. 2.
p° By (p ,mf,mf> =3 + 3 ID_M‘?V + 3 <2mf D )BO (p ,mf,mf), (363)
and
1
2, _ 2.
Bl (p amfamf) — _530 (p )mfamf) )
m? Br+1
BE (p% = 2-In—L —g;m*
0 (p 7mf7mf) nM‘?V ﬁf nﬁf_lu
1 2m} 1 Br+1 . mj
Bop, (p%me,mp) = —=+ —1In , with B =+/1+4—L . (364)
p( f f) 2 pt By Br—1 f P2

5.2 Heavy top asymptotic behaviour of self-energies; parameter Ap

Here we discuss one example of asymptotic behaviour of fermionic components of some bosonic self-
energies. Inrealistic calculations, say for LEPL/SLC, one may ignore al fermion masses but top quark.
Here we will use one more approximation:

P’ < mi, (365)

although it is not so good at LEP1/SLC energies and is absolutely untrue at LEP2 energies. We need it
for an academic study of asymptotic behaviour when m; isthe largest parameter and is the only scale of
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the problem. Consider three cases in the asymptotic regime of Eq. (365):

1) 2) 3)
myg = my, my =0, mg =My,
my = mg, my =my, my =0,
m? m?
BE (p*mypmy) = —In—, 1-In—%, the same,
W 2 (366)
1 m2 1 m2 1 1 m2 3
2. t ¢ ¢
Bf (pmpmy) — g, PR A R e R
1 2 1 2 5
B (Psmp,myg) — Slnt gintg — g, thesame.
2 pu 3 p? 18

Using this table, one easily derives the heavy top asymptotic for ZZ and WV self-energies:

or 3 m?
EfZZ (0) = 57’)’2% IHM—; s
. 3 m? 1
Consider now the so-called Veltman's A p parameter, which was originally defined as
1
Apg = W [EWW (0) - 2zz (O)] : (368)
w
Using Eq. (367), we find the asymptotic behaviour of Veltman's Ap parameter:
3 m?
fer o < t
Apy" ~ 1 —MVZV . (369)

A supscript ‘fer’ reminds that only fermionic components of the bosonic self-energies contribute in the
considered asymptotic regime.

Note, that the higher term m? In ’:Z—E cancelled and therefore the asymptotic is quadratic in the ¢ quark
mass. Thisiswhy one sometimes says that the A pg is quadratically enhanced by the top quark mass.

Consider now another definition of a A p parameter, which, aswill be seen below, isavery relevant
quantity for all electroweak radiative corrections. It is made of complete self-energies:

1

Ap=——

S (M2) =3, (M2)] . (370)

This quantity is gauge-invariant, asis clear from the discussion in the previous section. For this reason

it is used for the re-summation of large corrections, see below. If one ignores all masses but top quark

mass, for its asymptotic we will have the same answer asfor Apyg:
3 m?

Apfr = —Z L 371

p 12 (371)

It is very important to emphasize that Ap is the gauge-invariant but ultraviol et-divergent object.

By the way, the quantity Apq, defined by Eq. (368), is neither gauge-invariant nor finite. In theliterature,

alot of other p’s definitions are met. This creates a mess and a Babylon situation. One should always
bear in mind which definition of p is meant, before making any controversial conclusion.

"We do not discuss here the so-called p parameter, defined as the ratio of NC/CC effective Fermi couplings, and its relation
to parameter Ap. For more detail, see Section 6.11.3 of Ref. [1].
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5.3 Ultraviolet behaviour of fermionic components of bosonic self-energies

Other interesting physicsis related to the ultraviolet behaviour of fermionic components of bosonic self-
energies. Consider two fermionic self-energy diagrams for avector and ascalar field:

u, d f
v v H H

u,d f
We begin with acommon initial expression, valid for both cases:
Tr[(zg—l—mf/)ﬂ (ip +ig +my) 'y }
(¢ 4mp) (@4 +mi]

X

(372)

For the vector case, e.g. I'y = 7, I'2 = 7, one has:

6MV [q (p + Q) + mﬂ - (QleV + QI/pu) - QQMQV
(@ +m2) [(a+p)+m3]

(Ev)w (373)

For the scalar case, 'y = I's = 1, and we get instead:

¢ —p-q—mj
(q2+m§) {(q+p)2+mﬂ .

Yy o 4 (374)

Let us examine the leading UV divergences in both cases:

S d” = 24uqy
(@ +m3) [(a+p)* +m3]

.on 1 n 2 2%—11 n
5ﬂy172mr<1—§>(m —p) 5(771—2)%1—‘(2_5))

q2

! (q2 + m?) [(q +p)’ + mfc]
= iﬂ'%ﬁf (1—%) (mz—p2)%_lg —>F<1—g) . (375)

As seen, the UV-behaviour is quite different. From Eq. (372), by counting of powers of ¢, one could
expect quadratic divergences (or poles at n = 2) in both cases. However, in the vector case quadratic
divergences from the scalar and tensor parts of the diagram cancel, yielding residual logarithmic diver-
gence. In the scalar case the quadratic divergence survives.

This observation is traded as an exhibition of a non-naturalness of the radiative corrections to the
mass of a scalar field and is being used as one of the motivations for SUSY, where the quadratic diver-
gences cancel if one adds the contribution from sfermions.

In the framework of the SM, however, this does not represent any problem since the SM needs
renormalization anyway, and after renormalization all the divergences, both quadratic and logarithmic,
cancel identically. (Seethe discussion on renormalization below in the next lecture.)

Ev)w o< 4

Y X
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5.4 Calculation of decay ratesin the Born approximation
5.4.1 Calculation viatree diagrams

In order to exhibit another interesting property of self-energy diagrams, we have to understand the Born
expressions for the partial width of a boson decay into a fermion—antifermion pair. The Born diagram
looks like:

f
p

f

where we have indicated al the particles momenta.
In our convention for phase space, the differential probability is given by (cf. Eq. (24)):

1 _—
dl = mz | M |2 dd, , (376)
spins
with the two-body massive phase space:
d3p d3q
P, = 2774/ / 5(Q—p—q). 377
= O et e ) 57

Below we sketch the calculation of &, for the case where the final-state fermion masses are not ignored.
The calculation proceeds as follows:
1 d®p
o = [0 [dast (P rmd)a@-p-
> @2 o (+m3)o@-p—aq)

with 6% (p* +m3) =0 (po) & (p* + m3)]

1 | pIPd|p + 2 2
= dQd, o — +m
(2m)? / 2po P [(Q P) f}
[using |p|d|p|=podpy and dQ, — 4%]

1Pl (378)

. M | M2 |17 Am3 -
Using further on: pg = — pl=1/— —m2, and M)=""=1/1—-—L  wefinal
J Po 9 7 ‘p‘ 4 mf ﬁf( ) 0 M2 y

get
1

o, = gﬁf (M) . (379)

Next, Wecalculateofi | M |? for three decays: V, Z, H.
spins
For the vector and axial—vector cases, we derive:

~ 1 v\ orn orn
SIMPE = §<5W+Q£>ZM5 (MEem)™,
spins spins

MR = ifu(q) v (v + agys) v (p)

(MB™)" = ifm ) (v +aps)ula). (380
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where the coupling constants for two cases are

e, for V' = heavy photon,
f= 9 , for V=272
2cy

For non-polarized fermions the summation over the final spins gives

Sulq)ale) = —ig+mg, S vp)o(p)=—ip—my,

spins spins
and we obtain
%eQMg <1+2M];> for V = heavy photon,
Do IMP=
. ARG
33 (f+af)< +2W>—6af@1, for V=2,

Similarly, for the scalar case, we derive

i | M |2 — iMBorn (MBorn)+ ’
spins spins
M,‘Ejorn - _ 27]7\2{/‘/ m (q) v (p) , (MBorn>+ _ mf v (p) u (Q) )

and

_ i
S IMP= mgz B} (M)
spins

We conclude our exercise with alist of answers for partial widths:

r(v—fr) = QMV@( )(1+2—?>

M2

T (2= fT) = 4ToB(M,) | (v} +a}) <1+2M2Z>—6afﬂn;§],

_ Grm M
P(H=1T) = = 5 0.
Here we used the notation:
GF_ g2 9 _M‘?V r _GFMg
Ve sz WAz 0T g e

5.4.2 Calculation through self-energy functions

(381)

(382)

(383)

(384)

(385)

(386)

(387)

Now we are ready to present another calculation of partial widths and to compare it with what we got in

the previous section. From Eq. (358) at the bosonic mass shell, p? = —M?2, one gets:

e2

Sy = e |- MiABy (~MZmpmy)],
Ser = s [ (67 ) w28y (2 mg) i ()|
Y TR |

w
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Let usrecall the definition of the By (—M?;m¢, m) function, Eq. (360) and take imaginary parts:
Im AO (mf) = 0,

Im B (—M2;mf, f) = ——ImBo( M2;mfamf)a
Im By (—M%my,my) = :1%(1_%) fm By (— M2 my,my)
ImBo( M?: mf,mf) = 7wl (M). (389)

Substituting theimaginary partsinto Eqg. (388) and comparing the resultswith Eq. (386), we immediately
verify the validity of identity:

Im Sy = MDD (B - ff) : (390)
i.e. theimaginary part of the fermionic component of the bosonic self-energy on the bosonic mass shell
isequal to the boson mass times the partial bosonic decay width into thisfermionic pair. A similar prop-

erty takes place for the fermionic component of the W self-energy and for the bosonic component of
bosonic self-energies.

5.5 Dispersion relation for II (p?)

Asthe last application of bosonic self-energies, we will consider the dispersion relation for IT (p?). It is
being used for the cal culation of the hadronic contribution to the running electromagnetic coupling «a(s).
We begin with apartial contribution to IT (p?) dueto afermion pair f f, see the second row of Eq. (263):

6m?2 + p? 2 p? — 2m?>
2 f f
I (47) = Pt

02 +3—pQAo (my) — 32 By (p2;mfamf>- (391)

Let usrecal itsingredients
2

1 m
By (pg;mf,mf) = e In — 2 +B0 (p mf,mf>
ﬁ +1
2 m?”
By = 1+ 4p2 et (392)

From it we construct the renormalized vacuum polarization (p? = —s):

ren ]' 1 m2
Hf (s) :Hf(s)—Hf(O) = 9 3 <1+2?f> By (—s;mf,mf), (393)
and take itsimaginary part:
ren 1 2 1 m?c
Im [T (s) = — 3 1+2— Im Bf (— s;mf,mf):—§ 1+2? B . (394)
Now compute the dispersion integral:
oo Im IT°" (7 oo m2 4m2
am? r(r—s—ie) 3 4m27'(7'—s—7,e) T
1 m2 o d Am2  2m2 o (¢ 4m
— g (14272 [ M-S S - (@)
3 S 4m§7'(7'—5—ze) T 3 4m2 T
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The above two integrals could easily be taken:

- = pmET- o,

m2 T (T — s — i€) T p—1

f
% g 4m? 1
Tyi-—L = —. (396)
4m? T T 6mf

Substituting these two integrals, we verify the identity

ren(s) = > / ¥ g ) (397)

T Jam? T(T — 8 —i€)

/OO sdt 4771? 6+1
4

Theresult for the hadronic contribution to the running electromagnetic coupling, Aag’) (s),isob-
tained in the literature by making use of asimilar dispersion relation:

o0 R, (s
A (5) __a / 9l
ay’(s) 37T3Re i ds Y ——g (398)
with theratio
o (efe” — 4* — hadrons)
R'Y(S) - o (6+€7 N ,y* N /~L+//J7) ) (399)
as an experimental input.
For the hadronic contribution at A/, it gives:
Aai? (M?) = 0.0280398 (400)
For more details about this subject see Section 1.5 of Ref. [1].
5.6 Fermion sdf-energiesin the Standard M odel
Inthe R gauge there are six fermion self-energy diagrams, shownin Fig. 7.
f f f
f o _ 7 f n f f n f f
(1) A 2) Z B w
f f f
n f f N f f n f f
4) H (5) ¢ 6 ¢
Fig. 7: Fermionic self-energy diagrams
where f’ isthe weak isospin partner of the f-fermion, and the couplingsto the Z boson are
vp=1 —253Qp,  ap=1Y, (401)
We will also use combinations of couplings:
oy = vytay, 0;2) :v%—kafc, a}: (vf—i-af)z,
_ @ _, 2 2 i ‘
5f = vf—af, 5f —vf—af, 5f_ (vf—af> . (402)
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Each self-energy diagram containing a boson B-lineis denoted by 3 (p) and has the structure:
2
4. 9
Y5 (p) = (2m) ZWAB , P = PaVa - (403)
Thereare six A functionsin the R, gauge, and only four [from (1) to (4) inFig. 7] inthe U gauge. As
an example we give QED contribution in the R, gauge:

Ai = 52 Q%{i}ﬁ[QBl (p2;mf,0) + 1} —2my [2Bo (pQ;mf,O> — 1}
— @+ my) (2 =1) [Bo (p%my, 0) +my (i — mg) b (p%my )] } (404)

where one sees the presence of the special PV function b; (p%;my).
Inthe U gauge, the two diagrams with heavy vector bosons may be expressed as

U 1 @) P +mj 2 U (2
AZ = —Q{lﬁ (Uf +2'Ufaf"}/5) |: MO2 Bl (p 7M07mf) +Aw (p 7M07mf):|
1
—l—mfé](?) [330 (P2; M,, mf) + WAO (my) — 2} }7
0
1. p2+m2,
AVUV = _ZZ}/) (14 s5) {TfBl (p2;M, mf) + Ag (p2;M, mf)}, (405)

i.e. by means of acommon auxiliary function:
1
AY (p2;M, m) =2B; (pQ;M, m) + By (pz; M, m) + WAO (m)—1. (406)

Self-energy diagrams, both bosonic and fermionic, are universal in the sense that they depend only on the
type of propagating particle. On the contrary, vertices and boxes depend on the process, and in this sense
are termed to be non-universal.

5.7 The Standard Model vertices
I will limit myself to only one example of avertex shownin Fig. 8. Thefollowing classification is useful:
e (1) isthe QED diagram;
e (2) and (12) form the Z Abelian cluster;
e (3) and (8) are similarly the W Abelian cluster;
e (4) and (9)—(11) form the W non-Abelian cluster;
e remaining (5)—(7) and (13)—<(14) form the H cluster.

Only diagrams (1)—(7) remain in the unitary gauge; Only diagrams (1)—(4) contributein the case of mass-
less fermions.

Asan example, consider the W Abelian cluster with virtual (W, ¢) exchangefor the case of the VV bb
vertex. Even for the massless b-quark, the diagrams 8.(8-11) will contribute, sincein thiscase f/ = t and
m; cannot be neglected.

The vertex is a vector, V#W" (Q?%), which, in turn, is different for two cases:

— ) 3

Drffvete,  VI(Q?) = emtic5 T (<17) (1465, (@),  (@o7)
_ - 3

2 ZfFvetex, V' (Q?) = (277)42‘%02—9(—1}3))7ﬂ(1+75)Z§Vn(Q2). (408)
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Fig. 8: (Z, A) — ff vertices. The symbol (Z) in some graphs indicates that it contributes only to the Z vertex.

TheGY, (Q?) and AR (Q?) are scalar form factors, bearing the sup-index ¢ = gauge. In general, they

n

are different for vf f and Z f f vertices. Inthe U gauge, however, one has:

GL Q%) =28 (Q*) =FY (@), (409)

m2/ m2/ 2
7 <2 ! )Q—] M2Cq <O,O,QQ;M,mf/,M)

M2 \" o2Mm2?2) M2
2 m%/ 3 m}, Q2 Q4 ,
— |z 53] ~m B ‘M, M
[3 20?2 (2 2 ) a2 18| (%M, M)
_ I £y Mt Sy £ 9 B . /
[(1 M2> <2+ M2> QQ 3+2M2 2M4] |:BO (Q ,M,M) BO(Oamf,M):|
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2 Q%) 1 1 2 my (4 mp\ Q2 Q!
(2o ) Ay (M) — —Ag () — - L (2 b . (41
(3 6M2> a2 Ao (M) o(mg) =3 o 1z ) 3z~ 1sar - 10

This vertex, as well as the Abelian diagrams of Fig. 8.(3,8) with virtual (W, ¢) exchange, are one more
source of m7 /M?2, enhanced terms. These terms are also called non-universal.

Theworld of vertices and boxesis much morerich than that of self-energies. Many more examples
may be be found in Sections 5.9-5.12 and 14.13-14.14 of Ref. [1]. We also would like to emphasize that
nowadays, one-loop diagrams are usually cal culated using the methods of computer algebra. For instance,
al calculations in Ref. [1] are achieved by a set of codes written in form. These codes automatically
generate all the possible on-loop diagrams, substitute the Feynman rules and make the tensorial reduction
up to the scalar PV functions. In principle, they are accessible from the authors upon request.

5.8 Summary of five Lectures
Let us briefly summarize what we have studied and learned in the five lectures:
e Standard Model, itsfields and Lagrangian;
Feynman rules — building of diagrams;

e Regularization, N-point functions;
PV functions — calculation of diagrams,

e Groups of diagrams, building blocks:
— Tadpoles reduce to one-point functions;
— Sdlf-energies reduce to two- and one-point functions,
while studying them, we discussed:
* p-parameter;
* m3-enhanced terms;
* problem of quadratic divergences,
— Vertices reduce to 3,2,1 point functions;
— Boxes (direct/crossed) reduce to 4,3,2,1 functions.

We are approaching:

e Calculation of amplitudes for physical observables;
¢ Understanding the inevitability of renormalization.

6. RENORMALIZATION, ONE-LOOP AMPLITUDES, PRECISION TESTSOF THE SM

In thefive previouslectures, our presentation was rather complete and consequent. Approaching the most
interesting subject, we face alack of time and impossihility to continue with the same degree of compre-
hension. Thisiswhy the following presentation will be unavoidably brief and fragmentary.

6.1 Renormalization for pedestrians

We begin with an explanation of the main principles of renormalization. However, first of al, we haveto
devote some time to the Dyson re-summation.
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6.1.1 Dyson re-summation

Consider a bare propagator. Turning to the dressed one, we have to sum up all the one-loop insertions.
This may be schematically depicted in the following figure:

1 1
(2m)ti (p?+ M?)’

= -+

(2m)ti

1

This procedure is known as the Dyson re-summation.
In the case of conventional QED, we have the well-known result:

_ L 9929 2
S = (27r)4i e (p S —pupy) ATI(p*). (412)

Thep,,p, part doesnot contribute whenever one considers S,,,, asbeing coupled to aconserved fermionic
currents. Therefore, Dyson re-summation results in the substitution:

L w1 Ow ! (412)
(2m)ti p? (2m)ti p? 1_iﬂ( 2) ’
grz P
with II(p?) given by Eq. (263). This equation describes the running electromagnetic coupling.
Similarly, for the Z boson propagator in the £ = 1 gauge we obtain:
1 . 92

Sw = (2m)hi ”72% <5MVZZZ(p2) +PuvaZZ(p2)> ) (413)

1 S 1 Opv
. — . (414)

(271')41 p? + M? (27r)4z 02+ M2 g9

2 fomzz Sr ()

Thereis a big difference between Egs. (412) and (414). The former does not change the position of the
pole of the photon propagator, which was at p?> = 0 before summation (bare propagator) and remained
at p? = 0 after. We must emphasize however that it does change the residue of the photon propagator,
which was equal to one before summation. On the contrary, Eq. (414) drastically changes the position
of the pole of the Z propagator. The bare propagator had the pole at p?> = —Mg. Let us recall now
Egs. (388) and (390). We see that the pole of the re-summed propagator shifts into the complex plane
because 3%, , (p*) has an imaginary part. Therefore, the Dyson re-summation results in the Breit-Wigner
form of the propagator of an unstable particle. However, it isnot afull story. The quantity 3, (p?) also
possesses a divergent rea part and the re-summed expression is meaningless. To continue, we must learn
more about renormalization procedure.
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6.1.2 Renormalizationin QED

We come back to QED describing the interaction of spi n-% particles with photons. We recall the QED
Lagrangian in the Feynman gauge:

1 1 — .
Lapp = =7 FurFur = 5 (€)= 30 (9 — ieQpf +my) vy, (415)
f
where
Fl, = 0,A, —0,A,, C*=-0,A,, (416)

and the sum runs over the fermion fields f (with charge e, and massm ). We also recall the Feynman
rules of QED:

P= 1 —4¢—+7nf

(2m)*i p? +m7 — e

)

2 14 1 1

__________T_d ,
2m)ti p? —ie

K (2m)ti eQ Yy -

There are many alternative ways to describe renormalization. Here we use the language of the so-
called on-mass-shell renormalization (OMS).

The QED Lagrangian is unambiguous at tree level. Moving to higher orders, we face problems
because both theindividual diagramsand their sum contain UV and IR divergences, and one hasto modify
something in the procedure of the calculationsin order to get a meaningful answer.

A natural question might be raised: Which are the fields and parameters that the Lagrangian of
Eq. (415) ismade of ? We assume that it is made of some bare fields and parameters |abelled with indices
0, and specify the renormalization constants for both fields — A,, and 1) — and parameters — the mass
m and the charge e — as follows:

Aou = Z}x/Q Au ) Yy = Zi,/z v,
eo = Zee, mO:me:m+625m+(’)(e4). (417)

The renormalization constants, as everything else within a perturbative approach, are assumed to be rep-
resentable as Taylor expansionsin the coupling constant €2, i.e.

Zi=1+e%7,+0 (64) : (418)
The Lagrangian can now be re-written, up to terms O (e?)

L — ER = ‘CQED + £ct 3 (419)

QED QED

with a counter-term Lagrangian

La = LG +0(e"),

1 1 _
c? = — 02 FyFy, — 5 02, (0,A.)2 — 624 P
_ 1 _
— (6Zym, + 5m) P — i (526 67, + §5ZA> Ay, (420)
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Thefirst part of the Lagrangian, £,,;,, generates the standard set of diagrams and Feynman rules which
were shown in the previous figure. The counter-term Lagrangian generates a new set of diagrams with
Feynman rules:

— €262, ,
¢ - —e2 (§Zyip + 6 Zym + om)
et
A . 3 1
— —teyue” | 0Ze + 02y + §5ZA ,
1

and we have to take into account contributions generated by both parts.

The crucial moment in the above modification is an assumption that we have two kind of fields
and parameters, bare and physical ones, and that they are related by the simplest kind of transformation,
amultiplicative scale transformation Eg. (417) with some yet unknown renormalization constants. Inthis
way, weintroduced into the theory a set of new parameters (degrees of freedom) which should somehow
be fixed. We will seethat thereisavery physical way of their fixation, after which al UV-divergences do
automatically cancel. In order to understand better the meaning of thefixation procedure, wewill consider
once again diagrams of a different kind.

The photon propagator.
With the new Lagrangian Eq. (419) after Dyson re-summation, instead of Eq. (412), we will have:
1 1
v 421
(27r)4i p? (421)

L0z, - ()

The essence of the on-mass-shell renormalization schemeisto preserve the meaning of the origina
parameters of the Lagrangian. For the dressed photonic propagator, we require that its residue should be
unchanged at the photonic mass shell, p? = 0, i.e.

1

=1. (422)
&

1+e202, — —
+e AT

This requirement guarantees that the wave function for external photonic lines does not change due to

one-loop radiative corrections (for the proof see Section 1.4 of Ref. [1]) and simultaneously fixes e?6 7 ,:

e2

2 _
Recalling Eq. (265), we substitute IT (0) and obtain an explicit answer for one of the counter-terms:
1 1 m?
074 = ——+In— ). 424
A 127r2<5+n,u2> (424)

In other words, one can say that we used the first fixation condition and fixed the counter-term 6 Z ,.

The electron propagator.
With the Lagrangian Eq. (419), we have

1
(2m)*i

-1
(1+€202,) (i +m) + *m — 5 (;6)] . (425)

(2m)ti
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The second fixation condition. For the dressed electron propagator we also requireresidue = 1 (residue
one) at the electron mass shell, ip = —m, i.e. the on-shell propagator should be equal to

1
5= @r)%i (ip+m) (426)

In order to exploit this fixation condition, we have to expand X () around the physical electron mass
ip = —m (thispoint is sometimes called the subtraction point). It is sufficient to take into account only
the first two termsin the Taylor expansion

S (p) = S (im) + (i + m) Dy + O ((ip +m)*), (427)

where the coefficient of the linear term is called the wave function renor malization factor

_ 9x(p)
Yor = 20D . (428)
For the re-summed propagator we derive
— 1 2 . 2
S = W {<1+6 6Z¢) (ip +m) +e“om
-1
1
- [2 (im) + (i + m) Sy + O (i + m)2>} . (429)
(2m)* i
the residue one requirement will be fulfilled if
e26m, = = (mj), . €07y = ng - (430)
(2m)* i (2m)"

Thefirst equationismassrenormalization, whilst the second iswave function renormalization. theresidue
one requirement preserves the external line electron wave function from being renormalized by the one-
loop radiative corrections and simultaneously fixes two more counter-terms.

By straightforward calculations in dimensional regularization, we derive
3 2
Y (im) = i77262m<—: +3In ’m_2 — 4>,
€ @
Tor = im2e? {231 (fm2; m, O) +1—4m? {Blp (fm2; m, O) + 2 By (fm2; m, O)}}
2

1 2
- iﬂ262(——+7+31nm—2—4>. (431)
g £ I

Substituting these results into Eq. (430), we obtain explicit answers for two more counter-terms:

m 3 m? 1 1 2 m?
om=——|—= In— —4 0y =—=|—=+~= In— —4). 432

m 167r2<5+3nu2 >’ v 16W2<5+é+3nu2 > (432)
TheveTe™ vertex. Consider the yeTe™ vertex with both fermions on mass shell. Collect again all con-
tributions to the ,,-part of the ye™e™ vertex in the one-loop approximation. In terms of £ (Q?%,m),
introduced in Subsection 4.1.3, we have

4 .. 2 1 1 2
— (2m) zze{l—i—e [5Z6+56ZA+5Z¢,+WF1 (Q ,m) Yo - (433)
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Third fixation condition.
In the spirit of on-mass-shell renormalization we have to preserve the meaning of the parameters of the
original Lagrangian. For the one-loop corrected vertex we require it to be

—(2n)*i ey, (434)

at Q% = 0, which preserves the Thompson limit of the electric charge from being renormalized by one-
loop radiative corrections, i.e.

1 1
(5Z6+ §5ZA+(5Z¢+ @Fl (O,m) =0. (435)
Substituting the already fixed counter-term §Z,,, and the derived expression for F (0, m), we observe
the famous QED Ward identity

1

that fixes the last counter-term
1
02, = —562A. (437)

So, all the counter-termsin the Lagrangian are fixed and one may calculate any QED process at the one-
loop level.

Let us summarize our findings:

e The one-loop and the counter-term contributions for any external on-shell line compensate each
other identically; thisis known as the principle of non-renormalizability for external lines,

e For any 2 — 2 fermion process, at the one-loop level, we encounter only two building blocks:
1) The effective (running) electric charge, e? (p?), entering the photonic propagator,

62

’D,, = e 2(p?) = , (438)
c o (2m)*i p? ‘ (p) 1_%Hren (p2)

a
[\
—

=
[\
~—
=2

the evolution of which is governed by the renormalized quantity
e (p?) =10 (p?) ~ 11 (0) (439)

2) The renormalized vertex, F1* (Q?, m), entering the complete ye e~ vertex,

-3
A, = (2m)ti =

W [’qufen (Q27 m) +ow (pl + p2),, mFy (QQ, m)] ' (440)

The renormalized vertex is again the difference

F (Q3m) = Py (Q%m) — Fi (0,m). (441)
Integral representations, limiting cases.
At the end of our study of renormalization in QED, we present the integral representation of two renor-
malized quantities and discuss some of their properties.

We recall the expression for IT*» (p?):

1 1 m? 1 x (p?, 7)
ren 2\ _ & - _ AN T
e (p*) = 9" (1 ? p2> /0 doln =2 (442

3
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with

X (p%7) =p*e(1—2) + m? (443)
For very low p?, one has
ren 2 p2 2
T (p) = 5. for P =0, (444)

which is the well-known contribution to the Uehling effect, i.e. the modification of Coulomb law dueto
vacuum polarization.
Alternatively for large s = —p?, we have
1
et (pQ) =3 <1n S zw) for s=—p®— occ. (445)

The FF® (Q?,m) in an integral form reads:

ren B 1 m? Q% +2m? 1 1
7 (@hm) = 2(5““?) = dwm]

1 1 2
2 2 X (@, z)
_ (Q + 2m / dx N In m2
) 2 1
The last expression still contains a pole and a scal e-dependent logarithm,
2
L -, (447)
€ Jz

which hasaninfrared origin and which will be compensated in any realistic cal culation by the contribution
of the real soft photons emission and also by the box diagrams which are ultraviolet finite by themselves.

6.2 Non-minimal OMS renormalization schemein the U gauge

Now we briefly discuss the on-mass-shell renormalization in the SM. In the spirit, it is absolutely anal-
ogous to that we have considered in QED. Moreover, in the U gauge, we are dealing only with physical
fields, and the renormalization procedure is particularly simple.

6.2.1 Multiplicative renormalization in the SM

In the SM, the independent quantities of the scheme are: the electric charge, the masses of al particles
and all fields. They undergo a multiplicative renormalization.

For fields.
i 1/2 j i 1/2 j
Vo = (ZL )ij L Yor = (ZR )ij R
Wo,u = Z‘}V/QW,u ) ZO,LL - Zé/QZy ) (448)
H, = Zy*H, Ay = ZA+2Y27,.

For bosonic masses:

M*=12Z, ZgjMi, M}=2, Z;'M;, M, =2, Z;,'M,. (449)

Fermionic mass renormalization is more involved, due to the mixing. We introduce the matrices of the
renormalization constants Z,,, , and Z,, ;-

Lo~ = (8, 2yt + 0,20 b, —omyt) . (450)
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All but one of therenormalization constantsarefixed by requiring that theresidue of all the propagatorsare
1. Thisremaining renormalization constant is associated with the renormalization of the electric charge

o = Z. 7% . (451)

Alternatively, one may use an additive renormalization of the electric charge

eg = 240,
de?
6_2 - 2(Ze—1)—(ZA—1) (452)

If the electric charge renormalization is defined by Eq. (451), then the relevant Ward identity implies
Ze=1. (453)

Within the OMS renormalization scheme, one has to adopt two definitions, valid to all ordersin
the perturbation theory.

1. The OMSwesk mixing angle, 6y ( ¢, = cosfy):
2 2 2 .
MZc, =M, ; (454)

2. The OMSweak charge, g:

2 VE
2 € 2 2 w
- =1— =1- . 455
g 32W ’ (SW C Mg ) (455)

The necessity to adopt them as definitions follows from the fact that s, and g are not independent quan-
titiesin this framework.

6.2.2 Counter-term Lagrangian

With the aid of the same procedure used in the case of QED, it israther easy to derive the counter-terms
Lagrangian from an origina one, using multiplicative renormalization Egs. (448)—(451). Here we present
only thefina result.

The kinetic and mass terms for bosonic fields are

in,A 1
L = = (Za= 1) (4w),
in 1 1 1
ﬁl(jt 7 = 7 (ZZ + ZM - 1) (ZMV)2 Y (ZM - 1) Mi (ZN)Z - _Zx}&/QZif/zAuVZuua
4 2 z 2
kin 1
L& = =5 (G = D)Wl = (2, —1) My WP,
Kin, H 1 1
L™ = 5 (Zu =) OuH) ~ 5 (2, 1) M H?, (456)
with
Viw =0,V, =0,V (457)
The fermionic kinetic term reads,
Kin, f 1— t t
Lt = =200 (V2 V2 — 1) v+ (V2 V2 — 1) 7] 0. (458)
Here we introduced:
Ye=1%17. (459)
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Since /7, and /Z; are understood to be the matrices acting in the full fermionic-flavour space, the
equation,

NS AN (460)

should be understood as anotation. In general, these matrices are non-diagonal and even non-Hermitian,
due to the mixing induced by loop corrections. The renormalization requirement fixes the combinations,

Vea

which directly enter the kinetic term.
In the one-loop approximation we may consistently accept that \/Z, » are Hermitian matrices,

\/ZR—I:%Q\/ZR\Z—I), (462)

and al the combinations entering the interaction Lagrangian become known.
For the V (H) f f interaction parts of the Lagrangian one obtains:

it = %&f@%{(’\/i2—1)7++<‘\/7R‘2—1>7+2(Ze—1)]¢f4u»

2 ZMZ ZW 1/2 7 1(3)
ZuZy Ze g

2 2 Zy Zw \'?
7++‘\/27R\7><7MZ > —11

ZAZMW Ze

. ’\/Z_R‘Q—I, (461)

then

ZfFf 1 e —
g - v
w=w

2,8 B (Vz
_2QfchW (% ‘ \/Z

2 1 2 7 1/2
7++§‘\/ZR ‘ ’Y—) <_ZM) }¢ZM7
A

ZW )1/2 _c
L,

r A ca—
!’ = 2—\/55—1/1 YuV+ [\/ Zul TC\/ Zar, < v + hec.
w

w

1/2
/JHff = —LE E (Zm Y-+ Z} ’y+) _Znw —my | (463)
ot 2M,, s, |2\ m ZaZy, Ze ’

where

5c? M? 5c? SM? SM?2
Ze=1-—73"%, Sy =1- 5 5= e T A
s7, MZ c, MW MZ

(464)

with M, and M, being the physical masses of the vector bosons, and C' being the CKM mixing matrix.

The full list of bosonic renormalization constants, which is derived after their fixation by residue
one requirements, looks asfollows: (we notethat an unnatural looking of thefirst threerowsisan artifact

of the definition Eq. (449)).
sM2, e

_ — _ 2
Paty, = 2w M2 16w2M2, B (M)
SM? g2

_ — zZ __ 2
D, ~ 4z = M2 16m2c3 M2 Pz (MZ>’
SM? g° )
Zuy =% = oot = T T (m2),
H H
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2
172 _ 9 Sw 2
2" = 16m2c,, M2 za (MZ) ’

62

ZA -1 = WH,W (0) 5
2 D) 2
Zy,—1 = 19228 gzg(p) :
6m=cy D PR M2
2 D) 2
ZW - 1 - 1g P) 8 Vvawz(p ) )
6m D =2
2 D) 2
Zn=1 = 10 0 %HQ(p ) (465)
s D pQZ—Mf{
It should be noted that we use a convention for arguments. For every self-energy function: X, IL,,...

if p? = —s or p* = —M?, wewill omit the minus sign, i.e. we will write .., (s)... On the contrary, in
the argument list of every By, Ck... function, we will explicitly maintain the sign.

6.2.3 Linearized form of the counter-term Lagrangian

Since we are working within the perturbation theory, where all renormalization constants are a power
series in the coupling constant e (cf. Eq. (418)), we may simplify a little the counter-term interaction
Lagrangian EqQ. (464) and rewrite it as

2 1 C2 2 562
_1+§<(ZZ—1)_(ZA—1)+—W wo w1y,

2
—I)fy

+ C—WZL/Q] } Wz, .

7 T e —
Ethff = 35 @Z”YM{U\/ZL

25,,Cy

—2Q;s2, E (’\/Z_L g I) T+ +% OVZT?

+3 ((zz—n S (Zi-1)- i%)

2 s2 2 Sy
£y - %ﬁi@“ww{(@ ~1)C+C(Var ~ 1)
+C %(Zw—l)—%(ZA—I)—l—%]}wd—i-h.c.,
cﬁﬁ = —%E{(me—mf)—l—mf E(ZH—l)—%(ZMW—Q
5 (Zw =)= 3 (Za-1)+ %%1 } . (466)

Thisisthe so-called linearized form of the counter-term Lagrangian from which one easily derives addi-
tional Feynman rules for vertices involving renormalization constants.

6.2.4 Fermionic renormalization constants

In previous sections we calculated all the renormalization constants associated with bosonic fields and
masses. We still need to fix fermionic renormalization constants, Eq. (461), and fermionic mass renor-
malization, Z, ., Eq. (450).

The procedure of fixationisvery similar to that of QED, athough it has some peculiar features due
to the presence of ~5. Below we briefly sketch the procedure.
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Consider afermionic self-energy diagram:

f

B
The most general expression for such a diagram looks like:

S(ip) = (2m)"i |1 (p) + a2(p*)5 + (a3(0?) — aa(p?)s ) i) (467)

However, in the Standard Model we have aways as(p?) = 0 (see the proof in Section 6.6 of Ref. [1]).
Therefore, it reduces to

S(ip) = (2m)*i [a1(p?) + a3 (p?)ip + aa (PP)ips] (468)
The kinetic and mass terms of the counter-term Lagrangian may be symbolically depicted as:

f f

and their contribution, derived from Egs. (450) and (458), as:
1. 2 2
b [(‘\/ZL - I) vi+ (\\/ZR - 1) 7_} — (Zuy —my). (469)

From the requirement that the sum vanishes on the fermion mass shell, one derivesall thefermionic renor-
malization constants:

Vs

2
‘\/ZR ’ —1 = az(m?) —2m%dy(m?) + 2ma) (m?) — as(m?),

2
—1 = az(m?) —2m?a5(m?) + 2ma) (m?) + as(m?),

Zm; = m+ ay(m?) 4 2m2a) (m?) — 2m3as(m?), (470)

wherea; denotesthederivatives, a;(m?) = da;(p*) /0p?|,2— _,,> and where we have used the expansion:

ai(p?) = a;(m?) + 2m(ip + m)al(m?), (471)

assuming that from the left side of Eq. (468) the Dirac equation holds, i.e. ip = —m. Equation (470) is
obtained by means of re-shuffling the termsasfollows, A + B(ip +m) + O ((z’]é + m)2) , and requiring
A =0, B =0. Higher-order terms O ((i + m))* may be neglected on the mass shell.
To summarize our study of the renormalization procedure, we recall the important steps:

e Dyson re-summation;

e Invention of the renormalization constants;
Construction of the counter-term Lagrangian;
Fixation of the renormalization constants in the spirit of the OMS scheme;
e Physical meaning of the residue one requirement.

Werecall that the residue one requirement meansthat we preserve the physical meaning of the parameters
of the origina Lagrangian. This meansin turn, that renormalization has nothing to do with the cancella-
tion of divergences. We obtain the cancellation of UV-divergencesfor free as abyproduct of a procedure
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aimed at preserving the physical meaning of the parameters from being changed by radiative corrections.
Thismeansin turn, that within a renormalizable theory, the problem of UV-divergences simply does not
present. We need, of course, to exploit a well-defined regularization, nowadays dimensional regulariza-
tion, in order to parametrize the divergences of individual terms. However, after proper treatment of the
Lagrangian parameters, all the UV-divergences cancel identicaly, in other words the theory becomes UV-
finite.

It is necessary to understand, however, one important difference of the SM from usual QED. In
QED we were able to introduce the notion of the renormalized diagram for every individual diagram,
see Egs. (442) and (446). Inthe SM it is, in general, impossible. As an example, consider Z self-energy
(Fig. 5) in general R, gauge. It could be subdivided into a fermionic component, Fig. 5.(1), and bosonic
one, Fig. 5.(2-14).

Define the renormalized self-energy by means of the expression:

0¥z (p2)

. (472)
Op? pP=—M2

ErZe;(pQ) = 2ZZ(pQ) - EZZ(ME) - (p2 + M;)

It iseasy to verify that the fermionic component of X7 (p?), whichisknown to be gauge-invariant, isfree
of UV-pole, and therefore, full analogy with QED holds. However, the bosonic component of Eq. (472),
although also UV-free, doesdepend on &, and therefore the notion of therenormalized self-energy diagram
is meaningless. In the unitary gauge, the quantity > (p*) even contains UV-divergences. The gauge-
dependent terms cancel in the sum of self-energy, vertex and box diagramsfor aphysical amplitude. The
same istrue for UV-polesin the unitary gauge.

With this minimal knowledge about the renormalization procedure, we are ready to discuss the
amplitudes for some physical processes.

6.3 One-loop amplitudes
6.3.1 The Born amplitude and diagrams

To approach the discussion of the amplitudes and to introduce more notions, we begin with the Born ap-
proximation of the amplitude of the processeTe~ — ff. It is described by the two tree-level diagrams
with v and Z exchanges:

+

~

4]
+

i

(&

e f e f
The photon exchange amplitude has a unique vector @ vector structure, whilst the Z exchange amplitude
may be written in two basises, VA or LQ:

*QeQ
AEOHI - Se f’y.u ® PYM 9
Born e? -
A" = Jaa Xe(8) u(ve + aens) @ vy + agpys) — VA-basis,
w “w
ABorn i (s) [[(3) —-2Q 52 } ® {1(3) — 20 2] - LOQ-basis. (473)
z B 4s§vc3VXZ T |Fe 70+ eSw | O |Lf T+ IS .
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Here v+ = 1 £ 5 andthe symbol ® isused in the following short-hand notation:

Yu (V1 + a175) @ Y (v2 + a2ys) = 6 (p4) Y (vi + a1ys) v (p—) 0 (q=) Y (v2 + a2ys) u (q4) . (474)

Furthermore, the x , (s) denotes the Z boson propagator:

1
xz(s) = . : (475)
z s —M?2+isl', /M,
From the basic relations between the parameters,
@2 G a2 e My (476)
8Mv2V \/5 w 92 w w Mg
one easily derives
< BGM? (477)
A ~M2
452 2 z
or, using e? = 4ma, we define the conversion factor:
2.2 .2
fo V2O Moty (478)

uye:;

which is equal to one in the lowest order. Of course, it may differ from one due to radiative corrections.
Thiswill be the subject of next section.

6.4 Muon decay, Sirlin’s parameter Ar

Asalready mentionedinthefirst lecture, one hasto exploit somehow the preci se measurement of the muon
lifetime, since in terms of the Fermi coupling constant, G = 1.16639(2) x 1075 GeV 2, the relevant
accuracy is O (107°). Inthis section we briefly discuss the relevant issues. For acomplete presentation,
see Chapter 4 and Section 7.13 of Ref. [1].

6.4.1 Muon lifetime
The process being considered is

p—e+v,+ 7. (479)

If oneincludes|owest-order QED corrections and 1/ boson propagator effects, then for the inverse muon
life-time one obtains, (cf. with the standard presentation in Ref. [6]):

1 Gmd (m2 3 m a(m) /o5
- FlZe) (1422m) 1y (22 2) 480
m 1927 \m2) U saz ) T e <4 ") (480)
where
F(r)y=1-8r+8r —rt—1272Inr (481)

is the phase space factor, and o~ ! (mi) ~ 136 isthe QED running coupling constant at the scale m,,.
Thislow-energy decay process may be described with the effective four-fermion Fermi Lagrangian

G _
Lr= 7% eV ¥+, Y ¥+ v, + hec. (482)
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One usually calculates the observable distribution, d1°(z), in terms of akinematical variable z = % ,
where FE, isthe electron energy in the muon rest frame.

If the electron mass is neglected, x varies from 0 to 1. Then, in the lowest order (tree level), one

has
G2m?® 1 G?mb
I%z) = 2L 22(3-2 —=_Ir, 4
dI”(x) 96,3 © (3—2x)dx — T 1024 (483)

Since the electron mass m., is very small, it is sufficient to calculate the real and virtual QED radiative
corrections ignoring the electron mass.

6.4.2 Real correctionsin p-decay
The bremsstrahlung, or real photon emission, in u-decay, i.e. the process

p—e+v,+Tet7, (484)

is described in Fermi theory by two Feynman diagrams:

Vy Yy

The quantity of experimental interest is the transition probability summed over the full photonic phase
space. After lengthy calculations of the decay probability of the bremsstrahlung process, one derives:

: Grmy, o
al*(z) = 963 27 (x)dx,
9 1 mMyuMe (1—z)? . .
I(z) = 2x°(3—2) B +1In 2 +1In . (L — 1)+ Lig (x) — Lig (1)

—:1:(3—2x)(1—x)ln(l—x)—i—%(l—x) [(5+ 172 — 342?) L — 222 + 342?],

whee L = In <x@> (485)

Me

Note the appearance of the IR-pole term, which is due to the soft photon emission.

6.4.3 Virtual QED corrections for -decay

There are three diagrams that contribute to the O () QED correctionsin the Fermi theory, which are due
to the virtual photon exchange (actually only the third one, see Section 6.1):

e
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The effect of the virtual diagrams may be seen as dressing the lowest-order interaction ey, v+, With
QED corrections, resulting in the appearance of a more complicated structure:

(07

7 1
_—4 (fl')/a’}/—&- + —1I Qu.aY— + F3 Qe,of)’—> . (486)
m m# m“

Notethat only thefirst term hasthe Born-like structure, the second and third ones are new and thisiswhy

we use the nation of induced structures for them. The result of calculating the diagrams reads:
Fo= 2 [G +ln m;;”) (L — 1)+ Liy (1) — Lis (x)}

1
+{2L—21n(1—x)—|—1—} Inx —3L+4,
-z

R = xlna:—l—l—x},

2
(1-x)? [
F; = %[(1—2‘%)111%—1—%:1:}. (487)
(1—x)

Thevirtual corrections contribute viainterference of the amplitude Eq. (486) with the Born ampli-
tude. After calculating the traces one derives:

9673 4
The lowest-order result is multiplied by a correction factor, 71, which is ultraviolet finite (after renorma-
lization), but infrared divergent; the induced form factors, F5 and F3, arefinite. The latter should be the
case, sincethere are no other sourcesto compensate any divergence of induced form factors. Theinfrared

divergence must cancel when we combine the contribution of the virtual photons, Eg. (488), with redl
photons contribution, dI*(z), Eq. (485).

A1 (z) = (1 = fﬂ) d10(z) + 2 (Fy + F3)dz. (488)
T

6.4.4 Total QED corrections for j-decay

The experimentally observable quantity isthe sum of the two transition probabilities for real and virtual
processes, which is free of infrared divergences. For the sum, we obtain:

G2m? «
I = B 1232 —AI ]
() = = [:r (3~ 20) + - M) de,
1-— 1
Al(z) = 22°(3-22) KZIH x+g)(L—1)+2Lig(x)—2L12(1)+1n(1—x)1nw—5
X
1-— 1-—
- xln(l—az)] —3x21nx—l—Tx (54172 - 342%) L — 222 +3427] . (489)
X
Thetotal QED correction is derived by integrating dI(x) over = from O to 1, yielding
1 Gim, a (25
— = 1+ — (22— . 490
T 192%3{—’_277(4 ”)} (490)

Let us emphasize again that this result was calculated within QED & effective 4-fermion Fermi theory.
Of course, the calculation could be performed exclusively within the Standard Model framework. This
would give something like

1 mi gt o
— = = (1+ =6, ). 491
T 19273 32 MY ( T on “) (49m)

However, the Fermi constant was historically defined by Eq. (490). Thisiswhy we sketched, first of all,
aderivation within the Fermi theory. Now we turn to a compl ete cal culation within the SM.
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6.4.5 EW correctionsfor muon decay, Srlin’s parameter Ar

Turning to the discussion of complete one-loop corrections to . decay, we note first of al that the QED
corrections, discussed in the previous section, form a gauge-invariant result. Moreover, both the QED
and remaining EW corrections are infrared- and ultraviolet-finite and gauge-invariant, therefore they can
be treated separately and we may write:

O =6, + .7 (492)
or, equalizing Egs. (490) and (491), we obtain
GF _ 92 « em o 92 « ew
oS [1+E(6H—5M )}_ng (1+E(5ﬂ ) (493)

Recalling the basic definitions of the OMS scheme

e
M2 =M2, ¢=—, (494)
. . S
and using them, we derive w
2 2 yiyes . . (6% ew
SWCW = ﬂG—FMg (1 + A’I") 5 W|th AT‘ = E(s'“‘ . (495)

Alberto Sirlin (1980) suggested that the last equation be rewritten as

9 ye’ 1
= , 496
w \/§GFM§ 1—Ar (496)

Sa/,c
asif it could be re-summed to al orders (similar to the Dyson re-summation) as would be true for A«
(see Eq. (502) below).

After lengthy calculations (see Section 7.13 of Ref. [1]), one derives thefiniteresult for Ar inthe
one-loop approximation

o 1 2 2 11 5 9¢?
AT:——{52 {———H%;’F(O) —|—STWApF+Ap€V—|———§C‘2/V <1+03V)+—Wlnc‘%v ,

drs2 | W 3 2 2 452
(497)
where finite parts of the Ap” factors defined by,
ApF _ ApbOS’F + Apfer,F, Apgv _ Ap]&?S’F + Apf/‘e/r,F7 (498)
have fermionic and bosonic contributions
1
bos(fer), _ bos(fer), 2 bos(fer), 2
Ap s(fer).r - = W |:EW§V( W (MW> - EZZS( e (Mz)] ’
w
bos(fer),F 1 bos(fer), bos(fer), 2
Apyy = o [T (0) - Zhenee (a1 )] (499)
w

The bosonic contributions, written down explicitly, are

bos,F 1 4 17 2 2.
ApW = _<W+37_§_4CW Bg (_MW7MZ7MW)
w w

3

% 3. 11 } PR G RN U TS & T
—+ - — —wp | wpInw — — -+~ ] Inc
A1 —wy) 4 12 MR G2ed T 122 2 g

_ (1 — —wp + ﬁwh> Bf (—M2; M, M,,)
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PRNE I SR T TR B S (Z_w)
12¢4° 782 T 36 24w gTw 12 "\2 M)

1 4 1
ApbOS’F = _< + § — 70

+(1—§wh+1iw,% wi My, W)
_ (1 - %zh + %z,%) %Bg (-2 M, M)
+%s%vw}2l(lnwh—1)— (1216;/ +%—2+1—wh> Inc;,
_E%__§§§—§§+sa, (500)
where we introduced two ratios
M? M?
wh:M—é’/, Zh:ﬁg’ (501)

and the finite parts of the By function asin Egs. (361)—(362).

6.4.6 Re-summation of large corrections

In order to reach a high precision of theoretical predictions, one hasto improve upon the one-loop expres-
sion. We begin with the extraction of Aa/fe" (Mg) from Ar. From the definition of Aafer (M§> ,

fer 2 «Q

a® (M2) = , (502)

( Z> 1 — Aqafer (Mg)

and the definition of the em. running coupling

o H ren

=g, Wwith II"(s) = I*(s) = ILy(s) — [,4(0),  (503)
1— —T1I"(s)

4
we derive the following representation for Ar

_ f 2 o 2 2 t, 14-5¢, 2
Aro= Aa™ (MD)+ {SW [_g — 57 (0) — 45 (MZ)}
w

a(s)

Ci2/VAF ApF 115, 14 2 963;/1 2 504
+% p+ pW+7—§cW(+cw)+anW ) (504)
where the superscript [ + 5¢ stands for a summation over leptons and five light quarks.

Note, that the running QED coupling, Aafer (Mg) is defined at the scale p = M,. The two
quantities in Eq. (499) are defined at the scale n = M, as an artifact of the definition in Eq. (361).
It is reasonable to re-scale all the relevant quantities to the natural value of the scale p = M,. The
quantity Ap”, evaluated at © = M, is a gauge-invariant object, and therefore a good candidate for a
re-summation. Define the leading and remainder contributionsto Ar:

Ar, = —%Ap

_ o 2 2 t, 1+5q, 2 1 1 2 2
Afrem = 471—53(/ {SW {_g - H’Y’IY7 (0) - H’Y’Y o (MZ)] + (éNf 6 7CW lncw

11 5 9¢c?
+Apy, + CHE gczv (1 —|—c§v) + 45—;‘/11&03"}
w

(505)

,u:]WZ
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The re-summed one-loop representation reads

\/QGFMES?chV _ 1 (506)
T 2G M2 2 2 :
(1 _ Aafer (Mg) o ATrem) (1 + \/7 F ;SWCW A,l,.L)
s

The re-summation of Aq/fer (Mg) is dictated by renormalization group arguments. The re-summation

of terms containing Ap'"*  (Ar,) finds its roots in the two-loop EW calculations (G. Degrassi et al.
1996-1999). The Eq. (506) is therefore an improved version of the one-loop result Eq. (496).

Higher orders, in particular QCD corrections of O (ar,) and second-order electrowesak correc-
tionsO (GZm}) and O (Gim%Mg) , are applied by means of modifications of the leading and remainder
terms:

Ary, — Arp + Arbe, Arrem — ATrem + AT (507)

rem

Equation (506) formally looks like an equation for conversion factor f, cf. Eq. (478). If all radiative
corrections are switched off, f = 1, and f differsfrom 1 due to non-zero radiative corrections. We may
consider the Eq. (506) as an equation with respect to M. The results of an iterative solution of this
equation for the M,,, which incorporate second-order €lectroweak corrections, without and with QCD
correction O (ac ), are shown in the Tab. 1. This Table is shown not only to give some taste of the

Table 1: The W-boson mass, M,,, [GeV] in OMS scheme, oo, = 0 — first entry, o, = 0.120 — second entry.

my [GeV] M, [GeV]
65 | 300 | 1000
170.1 80.445 | 80.349 | 80.256
80.375 | 80.279 | 80.186
1756 | 80.482 | 80.3%6 | 80.291
80.409 | 80.312 | 80.219
181.1 80.521 | 80.423 | 80.329
80.444 | 80.346 | 80.252

numbers. It shows that the two-loop corrections of O (ac) shift the predicted mass of the M., boson
by about 80 MeV, which is bigger than the present experimental error of direct measurements of M, !
Itisaniceillustration of the importance of precision calculations.

6.5 Z resonance observables at oneloop

Before discussing Z resonance observables, we have to give two definitions in order to understand the
terminology that has arisen in the depths of the LEP community.

Definition 1 Realistic Observables. They are the cross-sections o/ (s) and asymmetries A/ (s) of the
reactions,

ete” = (v,2) — ff(nv), (508)
calculated for agivenvalueof s = 4E? with all available higher-order corrections(QCD, EW), including
real and virtual QED photonic corrections, possibly accounting for kinematical cuts.

Definition 2 Pseudo-Observables. They are related to measured cross-sections and asymmetries by a
de-convolution or unfolding procedure (i.e. undressing of QED corrections). The concept of the pseudo-
observability itself israther difficult to define. Oneway to introduce it isto say that the experiments mea-
sure some primordial (basically cross-sections and thereby also asymmetries) quantities which are then
reduced to secondary quantities under a set of specific assumptions. Wthin these assumptions, the sec-
ondary quantities, the pseudo-observables, also deserve the label of observability.
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6.5.1 The Z partial widths

The Z partial widths represent atypical example of pseudo-observables, i.e. they have to be defined. At
the Born level, we define the partial width of the Z — f f decay as a quantity described by the square of
one diagram:

f

Fig. 9: Process Z — f f; Born approximation.

Its amplitude is written by the direct application of the Feynman rules of Section 2.11. Like Eq. (473),
the amplitude of the process Z — ff decay amplitude may be written in two basises:

V A-basis, ;

ZFF _ 4. g
VZIT = (2m)* T6a2e [vf +ag ’y5], (509)
LQ-basis,
VAT = (omyli 0 90,8 510
I _( 77) 1167T2CW W/L{f Y+ — Qfsw} ( )

Both expressions are identical and we write both for didactic reasons only. The partial width of the Z —
f f decay in the Born approximation is given by Eq. (386) which we recall here:

_ GrM3 2 2
r (Z = ff) — 6\/%2 Bf (M) (vj% +a§) (1 +2ﬂ%> —6a?c]\n;—}z;1 . (511)

Here the Z—fermion couplings are defined by Eq. (401).

6.5.2 QED diagrams and corrections
QED corrections in the massl ess approximation are described by three diagramsin Fig. 10.

f I f

Fig. 10: Process Z — ff; QED corrections.

QED diagramsare separately gauge-invariant and finite. Their contributionintegrated over thefull bremsstrahlung
photon phase space is (see derivation in Section 4.2)

3
r¢e® =l (1 + Z% Q?) . (512)

99



6.5.3 TheZ — ff decay amplitude

All remaining one-loop diagrams refer to EW corrections. They form another gauge-invariant subset
of diagrams. Recall that all the counter-terms were fixed in such a way that all external lines remain
unchanged by radiative corrections, therefore only vertex diagrams and vertex-type counter-terms con-
tribute:

f f

f f

Fig. 11: Process Z — ff; fermion vertex and its counter-terms.

The effect of radiative corrections may be parametrized in terms of amplitude formfactors. In the mass-
less approximation, the amplitude has a Born-like structure with only two form factors and again two

basi ses might be used:
V A-basis, 5
_ ) 7
V“fo = (27T)4 1 Lz %L |:Fv (Mg) + FA (Mg) ’75:| ) (513)
16 w=c,,
LQ-basis,
_ ;3
Zff _ 4. Y9 (3) 2 2 2
Vit = @m)i g I, (M2) 74 = 2Qps7, Fo (M) |- (514)

We see that the only difference from the Born case is the replacement 1 — F, (Mg) With the aid

of this amplitude one constructs the Z partial widths, I" ¢, which can be compared, in principle, with the
experimental data.

6.5.4 The Z width in the one-loop approximation
Consider the sum of the Born and of the one-loop corrected amplitudes for the Z boson decay

ie

Ve (Mg) x o |:-[J(¢‘3)fZ7L’Y+ - QQfSa,fZ@}

28y, Cy,
_ defazr Y [1(3)% —2Qys” (1 + fz0—fz L)} 19
2SWCW B f w ) ) )
where @
B 2
fop@ =1+ irs?, Fyoe (M) o

Using the definition of Ar, Eq. (496), rewritten as follows,

e 1
=2 2G-M?2(1—-ZA 17
- N Z( | 7’), (517)

wEw

we eliminate the ratio e/(s, ¢, ) in favour of the Fermi constant G, and F, , (Mg) receive shifts of

—Ar /2. This procedure eliminates running QED coupling A« (M?) from F, (Mg) and to an extent
minimizes the radiative correction, since Aa(Mg) contains big logs. Define the two effective couplings
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p]; (one more p!, thistime finite and gauge-invariant, see comments below) and ”"ch ,

,oJ; = 1+ ﬁPFZ,L (Mg) — 83‘/52”’],
w
Wo= 14 ﬁ [Foq (M2) = F,, (M2)]. (518)

where ¢, was discussed in Section 6.4.5. In terms of these effective couplings the one-loop improved
expression for the partial width of Z — £ f decay becomes

GeM3 o [0 FN\2of (32 pf
N L [(veﬁ) Rl + (1) RA}, (519)

where
3 )

vgﬁ = IJ(c ) 2Qfs1n2 0({ ,

sin? Hécff = HéS

(520)

In Eq. (519), we included factors R{, and RJ;, which accumulate final state (FSR) QED and QCD correc-
tions. The lowest-order QED ® QCD result may be obtained from Eqg. (512) if one remembersthe colour
trace QCD factor 4/3:

3
RI=RL=1+22Q2+% (521)
47 T

Now many more terms have been are computed and really needed to match the high precision of the ex-
periment. The factors R}, , look like a seriesin a(M?2) and a (M?):

2
Ré 1 3O‘<M§)Q?+ as(Mg) _ O‘(Mg) O‘S(ME)Q?_’_C‘(/Z) (%(i‘@)) T

47 T 47 T

2 2 2 2)\ 2
2 Q%%(MZ) _a(MZ)aS(MZ)Q%ng) (%) . 62

T 47 T

The discussion of FSR QED ® QCD corrections deserves a separate |ecture.
At the end of this section | would like to emphasize:

1. We met an important notion of the amplitude form factors. Since they describe a physical ampli-
tude (or another physical quantity, like the anomal ous magnetic moment), they are gauge-invariant
and divergence-free functions (or constants). Moreover, we may rephrase slightly the definition of
pseudo-observables given above, as follows:

2. Definition: Inavery general sense, the pseudo-observableisa construction made of gauge-invariant
form factors of an amplitude of a process.

Therefore, Sirlin’s parameter Ar or the p-parameter of Eq. (518), pJZ”, aretypical pseudo-observab-
les, whilst Veltman’s parameter Ap is not.

6.5.5 Re-summation of large corrections

In asimilar way to what has been done for Ar, one has to improve upon the one-loop approximation for
pS and xJ . Define the leading (enhanced) and remainder contributionsto p/ and r/:

p}; = 1+p{+p{ema
kI o= 1+ +rl,. (523)
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When we eliminate Ar and normalize amplitudes to the Fermi constant G, all large corrections
containing of* (Mg) are automatically accounted for.

Therefore, in contrast to what happened in the re-summation of Ar, here one has to re-sum only
the m?-enhanced terms. Asfor Ar, one derives:

1+ pl
f — rem
pl = 555 . (524)
zZ 1 + \/iGF AdZSWCW {

P

yiye?

For  one hasto follow a dlightly different procedure,

2G p M?s2 c? 1
wl = (1 + K{ﬂﬂ) (1 + V26 My sy, ey, k1) + STIm-parts, (525)

yiye; w

where somelm-partsare added (see Section 6.11.6.3 of Ref. [1]). Theseare second-order terms, enhanced
by 72N (where N is the total number of fermions in the SM) which have to be taken into account as
soon as the leading two-loop corrections are added.

The leading contributions are made of the gauge-invariant quantity Ap” as follows

OtC2

Ap” f— T W ARE = Ap, . 526
P, Ky 47['36[, 1% rL ( )

a 1
ol

S %
Theinclusion of higher-order irreducible effects, is achieved by means of the modification of the leading
and of the reminder terms. Asfor Ar, we have:

Ar;, — AT’L—FATEO,

h
Pl —  plowm + plhe,

kL — kL +wDO (527)

rem rem rem

The numerical resultsfor sin? 8%, derived including the re-summation of the leading corrections and the
leading and sub-leading two-loop irreducible electrowesk corrections O (GZm}) and O (G%m,?Mg),
areshownin Tab. 2.

Table 2: The OMSsin? 6.

my [GeV] M, [GeV]
65 300 | 1000

170.1 0.23109 | 0.23187 | 0.23253
175.6 0.23090 | 0.23168 | 0.23234
181.1 0.23070 | 0.23149 | 0.23215

This table illustrates that the sin? 6% is quite sensitive to variations of both m, and M,,. Itisin-
structive to compare atypical variation due to Higgs mass ~ 0.00045 with the present combined exper-
imental error ~ 0.00026. Thisillustrates why the present precision already ensures a sensitivity to the
mass of the Higgs boson.
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6.6 Realistic observablesin theprocessete™ — ff

For this process we may also consider a gauge-invariant subset of QED diagrams. QED vertices, vy and
Z~ boxes. It has to be considered together with four QED bremsstrahlung diagrams, Fig. 12. The sum
of all the QED diagramsisfree of infrared divergences.

el f el f

Y

+

e 7 f e f
et f et f

Y 0

0 + 0

e f e f

Fig. 12: Bremsstrahlung processe™e™ — f f7.

6.6.1 One-loop diagrams and correctionsfor ete™ — ff

The remaining one-loop diagrams form the non-QED or weak corrections. Thetotal weak amplitude may
be represented as the sum of dressed + and Z exchange amplitudes plus the contribution from weak box
diagrams, i.e. ZZ and WW boxes. The Z Z boxes are separately gauge-invariant.

Fermionic loops are also separately gauge-invariant and may be re-summed. Bosonic loops have
to be expanded to the first order. Dressed v and Z exchanges may be symbolically depicted as.

el f el f

(Z,A) (Z,A)

e” f e” f

Fig. 13: Processete™ — (Z, A) — £, final fermion vertex and its counter-terms.

et f el f

Fig. 14: Processete™ — (Z, A) — ff; electron vertex and its counter-terms.
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Fig. 15: Processete™ — (Z, A) — ff; sdf energies and kinetic counter-terms.

If external fermion masses are neglected, then the complete one-loop amplitude (OLA) can be described
by only four scalar functions and by the running electromagnetic constant o (s).

There are two ways of representing the dressed amplitude:
1) In terms of four scalar form factors, F; (s, t),

21®) 3
AT = WXZ(S){WW v+ Frp (3,8) = 41Qel 82,7 @ vy Fop (5,1)
_4|Qf|5‘2,v'7,u'7+ ® 'Y,LLFLQ (s,1) + 16|Qle|5€V’7,u @ 'Y;LFQQ (S,t)}; (528)

2) Interms of the effective couplings p.¢(s,t) and x;;(s,t), which in this case are s, t-dependent,
contrary to the Z decay where they were constants. (The t-dependence is due to the weak boxes.)

3
AT = \/§GFI§3)I} )Mng(S)Pef(Sa t){’m% ® Vvt — 4Qels?, ke, £)Vu ® Vuv+
_4|Qf|sav"{f(5> t)’y,u’)”r Qv+ 16‘Q€Qf|sév"</ef(sv t)'Yu ® ’Yu}- (529)

On top of the AD' there is the corrected y-exchange amplitude, which contains, by construction, only
the QED running coupling o (s):

4 fer
A(A)LA — %(S)fy‘u ® Yy - (530)

There are residual corrections to the photon exchange diagram but it is always possible to assign them to
the Z exchange amplitude, since both contain the same Dirac structure v, ® v,,.

The effective couplings p and «'s are related to the form factors F;; (s, ¢) and to the quantity Ar
(or 6¢™, see Section 6.4.5) by the following equations:

@ ew
pes(s,t) = 14— [F, (s.0) = 57,677,
w
(6%
Ke(s,t) = 1+ a2 {FQL (s,t) — F,, (s,t)},
w
(6%
K“f(sat) = 1+ A g2 [FLQ (s,t) = F,, (Svt):|7
w
(6%
Fep(s,t) = 14— (Faq (5:1) = Fyy (5,1)] (531)
w

Here 1 is due to the Born amplitude which has also been included.
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6.6.2 Convolution with QED radiation

Here we briefly discuss the subsequent chain of calculations. Having constructed OLA amplitudes,
Egs. (529)—<531), which may aso be called the Improved Born Approximation (or IBA) amplitudes, we
may calculatethecorresponding | BA cross-section. Thelatter may also be called doubly de-convoluted
cross-section, i.e. prior to subsequent convolution with Initial State (ISR) and Final State (FSR) radia-
tions. It is convenient to introduce the notion of a singly de-convoluted cross-section, i.e. with FSR and
without ISR; the latter being a function of the reduced c.m.s. energy s’ and possible kinematical cutsin
thefina state.

S0, the natural next step would be: From IBA — IBA & FSR cross-section. Thiswould give usakernel
cross-section for a subsequent convolution with the ISR.

o9 = 5(s', cuts). (532)

The final step would be: From IBA @& FSR cross-section — complete QED convoluted cross-section,
which would account for multiple real bremsstrahlung in the ISR, virtual | SR corrections and corrections
due to the emission of real and virtual unobserved pairs, shown symbolically in Fig. 16.

f

ol

v, 4

€ f
Fig. 16: ISR®FSR QED correctionsfor ez — (Z,v) — ff.

Thel SR corrections are accounted for by means of the structure functions (SF), D (z; s), or theflux
function (FF), H (x; s). The QED convoluted cross-section o (s) isrelated to the kernel cross-section by
the convolution integral,

1—s0/s
o(s)= / dxH (x; s) 6’((1 — ) s), (533)
0
where the flux function H isrelated to the structure functions by:
1 —
H(:r;s):/ d—ZD(z;s)D(1 m;s). (534)
1-z < z
The FF may be presented as a sum of virtual + soft photon (V+S) and hard photon (H) contributions:
H(xz;s) = BaB~teVHs 4 51,
2
g = 2@ (1n12_1), (535)
T mg

with the virtual + soft photon part being exponentiated.

The flux function is known up to O (a?) completely, and up to O (a3L3) in the leading log ap-
proximation (LLA). These issues deserve, indeed, a separate lecture.
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6.7 Experimental status of the SM

| shall present only two plots taken from Ref. [7], courtesy of M. Grinewald, referring for a comprehen-
sive experimental review of thisfield to Ref. [7] and to hiswork Ref. [8].

The overall status of the SM might be well illustrated by the so-called pulls, Fig. 17. Although
there are severa points where deviations between the theory and experiment approach two standards, the
average situation should be ranked as extremely good. We notethat thelevel of precision reached is of the
order of ~ 1073, and that itisextremely non-trivial to control all the experimental systematicsat thislevel.
In the second figure, Fig. 18, we present the famous blue-band showing the Ax2,; (M2) distribution
derived from acombined fit of all the world experimental datato the SM exploiting the best knowledge of
precision theoretical calculationswhich isrealized in computer codes ZFITTER and TOPAZO. It illustrates
what we call an indirect discovery of the Higgs boson made via the study of constraints, provided by
PHEP, as discussed in the first lecture.

Stanford 1999

Measurement Pull Pull
-3-2-1012 3
m, [GeV] 91.1871 +0.0021 .08
r,[GeV] 2.4944 + 0.0024 -.56

Opagr [ND] 41.544 +0.037 1.75

R, 20768 +0.024  1.16
AYE 0.01701 + 0.00095 .80
sin’e 0.2321+0.0010 .60
Ry 0.21642 + 0.00073 .81
R, 0.1674 +0.0038  -1.27
AL 0.0988 + 0.0020  -2.20
AY* 0.0692 + 0.0037  -1.23
A, 0911+0025  -95
A 0.630+0.026  -1.46

C
sin’8s?  0.23099 * 0.00026 -1.95

m, [GeVv] 80.448+0062  1.02 p—
m, [GeV] 1743 +5.1 .22 "
Aa® (m,) 0.02804 +0.00065 -.05

3210123

Fig. 17: Pullsfor pseudo-observables. The pull isdefined asthe difference between the measurement and the SM prediction cal-
culated for the central values of the fitted SM IPS [a(M2) = 1/128.878, a (M2) = 0.1194, M, = 91.1865GeV, m; =
171.1 GeV] divided by the experimental error.
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®) - : 1
. Do = ; |
‘— 0.02804+0.00065 ;
%+ 0.02784+0.00026 ; I
4 ' i -
. 1
> |
<
2 ] —]
0 Excluded S Preliminary
2 3
10 10 10

m,, [GeV]

Fig. 18: The Blue-Band. Curve showing AxZ, (M2) = Xzuin(M2) — X asafunction of M, . The width of the shaded
band around the curve shows the theoretical uncertainty. The two lines correspond to different calculations of Aa(®) (M2),
namely Aa® (M2) = 0.02804 + 0.00065 (Eidelman, Jegerlehner) and Ao (M?2) = 0.02784 £ 0.00026 (theory-driven
analyses). Also shown isthe region excluded at 95% CL by the negative direct search for the Higgs boson at LEP2, ~ 100 GeV.

These figures, aswell as many more proofs of the correctness of the SM collected in recent exper-
iments, convinces us to conclude these lectures with:

7. CONCLUSION

e The Standard Model has been completed theoretically and must be ranked as The Standard Theory,
which should completely replace QED.

e The Standard Theory has not been completed experimentally.
The Higgs boson is the only ingredient still waiting to be discovered, and it will inevitably be dis-
covered. However, it isvery difficult to predict where and when?
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