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Abstract
This is a course of six lectures that was given at the European School of High-
Energy Physics, Slovakia, August–September, 1999.

OUTLINE

Prelude: Standard Model (SM) – an example of QFT – a tool for precision calculations in modern
High Energy Physics (HEP);

1. QFT BASICS. EXAMPLE OF QED
• Quantum Fields of the SM and their Properties;

• Equations of motion;

• Relation between a Lagrangian L and equation of motion;

• S matrix and amplitude of a process;

• Cross-sections and decay rates;

• Input parameters in the Standard Model;

• QED free Lagrangian;

• Local gauge transformation and invariance;

• Feynman rules of QED.

2. STANDARD MODEL LAGRANGIAN BUILDING
• Yang–Mills sector;

• The scalar sector;

• Gauge fixing and Faddeev–Popov ghosts;

• Propagators in the SM;

• Interaction Lagrangian;

• Tadpoles and their role in proving of gauge invariance;

• Interactions of fermions with gauge fields;

• Interactions of fermions with scalar fields;

• Fermion mixing;

• QCD Lagrangian;

• Feynman rules for vertices;

• Summary of two Lectures.

3. DIMENSIONAL REGULARIZATION AND PASSARINO–VELTMAN FUNCTIONS
• Feynman parametrization and N-point functions;

• Basics of Dimension regularization;

• Divergences counting: poles versus powers;

• One-point integrals, A functions;

• Two-point integrals, B functions;

• Three-point integrals, C functions;
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• Four-point integrals, D functions;

• Special PV functions: a, b, c(j), d(j);

• Summary of three Lectures.

4. TOWARDS PRECISION PREDICTIONS FOR EXPERIMENTAL OBSERVABLES
• Calculation of simplest QED diadrams;
− photonic self-energy;

− fermionic self-energy;

− QED vertex;

− QED box diagrams;
• Massless World;
− Two-body phase space in n dimensions;

− Calculation of Z decay width with QED radiative corrections;

− QED vertex;

− Fermionic self-energy in massless world;

− Virtual correction in n-dimensions;

− Three-body phase space;

− The radiative decay V → ffγ;

− Total QED correction;
• Summary of four Lectures.

5. ONE-LOOP DIAGRAMS AND THEIR PROPERTIES
• One-loop diagrams in the SM in Rξ gauge;
− Bosonic self-energy diagrams;

− Fermionic components of bosonic self-energies;
• Heavy top asymptotic behavior of self-energies; ρ parameter;

• Ultraviolet behaviour of fermionic components of bosonic self-energies;

• Calculation of decay rates in the Born approximation;
− Calculation via tree diagrams;

− Calculation through self-energy functions;
• Dispersion relation for photonic vacuum polarization;

• Fermion self-energies in the Standard Model;

• The Standard Model vertices;

• Summary of five Lectures.

6. RENORMALIZATION, ONE-LOOP AMPLITUDES, PRECISION TESTS OF THE SM
• Renormalization for pedestrians;
− Dyson resummation;

− Renormalization in QED;
• Non-minimal OMS renormalization scheme in the U gauge;

• One-loop amplitudes;

• Muon decay, Sirlin’s parameter ∆r;

• Z resonance observables at one loop;

• Realistic observables in the process e+e− → ff .

• Experimental status of the SM.
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PRELUDE: Standard Model – an example of QFT – a tool for precision calculations in modern
High Energy Physics (HEP)

In this School, the courses on Quantum Field Theory (QFT) and the Standard Model (SM) are
grouped into one course of six lectures.

Maybe, this is not by chance: the SM finally strengthened itself to be the modern QFT capable for
precision calculations in HEP. In my opinion, in recent years a new discipline has been born: Precision
High-Energy Physics, PHEP, both experimentally and theoretically.

Experimentally, this is first of all due to experiments at the Z resonance: LEP1 and SLAC, with
their unprecedented statistics, bringing the precision of measurements at the per mil level. However, other
facilities, like TEVATRON, also approach PHEP standards. The LHC also expects to be a typical PHEP
facility, not speaking about linear collider (LC) where one expects statistics in the Z resonance mode 100
times richer than at LEP1 (GigaZ phase of linear collider).

Theoretically, it is basically the Standard Model (SM), which nowadays represents an example of
a calculable QFT. This status of the SM was achieved during nearly 40 year’s heroic efforts of a large
community of theorists’ tracing back to pioneering papers by S. L. Glashow, S. Weinberg and A. Salam
in the beginning of the sixties, and finally recognized by the decision to award the 1999 Nobel Prize in
Physics to G. t’Hooft and M. Veltman “for elucidating of quantum structure of electroweak interactions
in physics”, and for “having placed this theory on a firmer mathematical foundation”.

An important question that I asked myself whilst preparing these lectures was: Which balance be-
tween QFT and SM? Presumably, ideally, it should be 50–50. However, eventually a SM dominated
course emerged. There were different reasons for this.

Objective reasons:

− At present, we face an impressive success of the SM in the description of the LEP1/SLC data;

− We are at the end of the LEP1/SLC data processing;

− We foresee a bright future for PHEP at the colliders of near future.

However, there were also certain subjective reasons:

− I have worked for about 20 years in the field of PHEP;

− I was deeply involved in the LEP1/SLC analysis within the framework of the ZFITTER project and
several CERN Workshops dedicated to precision calculations for the Z resonance;

− Last, but not least a book The Standard Model in the Making [1], written together with Giampiero
Passarino, and finished in 1999. In this book, we tried to show how the SM works for precision
calculations of the Z resonance observables.

Therefore, it is not surprising that this course of lectures is biased to the SM and Z resonance
physics. I would like to say a few words as to why it is so biased towards calculations.

Here again I see objective and subjective reasons. Objectively, the precision calculations consume
a lot of mathematics and, in my opinion, it is not surprising that the creation of SCHOONSCHIP was
specially mentioned in the decision to award the 1999 Nobel Prize to Prof. M. Veltman. Nowadays, all
the cumbersome diagrammatic calculations are done with algebraic computer systems. However, I am
not going to tell you about corresponding algorithms. In my opinion, the underlying mathematics, which
the SM physics is based upon, is very simple and everybody may master it. So, I shall dare to tell you
about it.

Subjectively, it is our way of understanding physics by means of calculations. When working on
the book, we liked to say: “We do not prove Ward identities – we compute them.” These lectures fol-
low the same approach, although I understand that it may not be appreciated by the majority of the HEP
community. Anyway, the first five lectures are self-contained and may be studied.
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I would like to say, that these lectures are not a simple extraction from the book. I see them as
introductory and in many respects as complimentary to the book. So, in the second lecture I tried to present
a more extended discussion of the SM Lagrangian compared to the presentation in the book.

Finally, it should be stressed that both in the book [1] and in these lectures the Pauli metrics is used,
i.e. for an on-mass-shell momentum one has: p2 = −M2. As a result of this, some equations are looking
“unnaturally” compared to a more popular choice, the so-called Bjorken–Drell metrics where one has:
p2 = M2.
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1. QFT BASICS. EXAMPLE OF QED

In the first lecture, I briefly recall the basics of the Quantum Field Theory (QFT), in particular of Quantum
Electrodinamics (QED), which for a very long time represented the only example of a calculable QFT.
Nowadays QED is completely absorbed by the Standard Model (SM), which completely inherited the
status of QED. We will devote some time to a detailed discussion of the SM theoretical status. In passing,
our notation and convention will be introduced.

1.1 Quantum fields of the SM and their properties

We begin with an overview of the SM fields and their properties. The SM involves physical fields (fermions,
gauge bosons and Higgs scalar) and unphysical fields (scalars and Faddeev–Popov ghosts).

Three generation of fermions or matter fields:

f =
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(
ν
l

)
=

(
U
D

)
=

(
νe

e−

)
(

u
d

)
(

νµ

µ

)
(

c
s

)
(

ντ

τ

)
(

t
b

)

possess masses, mf , charges, Qf (in units of positron charge), and third projections of weak isospin, I(3)
f :

mf , Qf =


ν l U D
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 .

Gauge fields:

Vector bosons Unphysical scalars Faddeev–Popov ghosts

A Y A

Z (MZ ) φ0 Y Z

W±(MW ) φ± X±

Gluon
possesses strong interaction

g Y G

possess physical charges and physical masses

possess physical charges and unphysical masses

and unphysical charges.
Higgs field:

H (MH ) scalar, neutral, massive.
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1.2 Equations of motion

Introduce notation for all fields of the SM:

scalar, neutral and charged: φ0 (x) , φ± (x) ,

spinor: ψ (x) , ψ (x) ,

electromagnetic: Aα (x) ,

vector massive, neutral and charged: Zα (x) , W±
α (x) ,

Faddeev–Popov ghosts: X±, Y A, Y Z, Y G. (1)

1.2.1 Equations of motion for free fields

All fields in QFT satisfy equations of motion, free, or with sources. Here we recall four types of equation
of motion for free fields which are met in the SM:

Klein–Gordon for scalar fields:
(
2−M2

)
φ0 (x) = 0 , where 2 = ∂µ∂µ ,

∂µφ+ (x) ∂µφ− (x)−M2φ+ (x)φ− (x) = 0;
Dirac for spinors: (/∂ + m)ψ (x) = 0 , where /∂ = ∂µγµ ;

Maxwell for photons: ∂µFµν = 0 , Fµν = ∂µAν − ∂νAµ ;
Proca for heavy vector bosons: ∂µFµν −M2

0
Zν = 0 , Fµν = ∂µZν − ∂νZµ . (2)

1.3 Relation between a Lagrangian L and equation of motion

1.3.1 Euler–Lagrange equation

In QFT there exists a relation between the Lagrangian density L(x) and equations of motions (I recom-
mend the book in Ref.[2] for a systematic presentation of this subject), namely, a variation of the La-
grangian with respect to a field and its derivative gives the corresponding equation of motion:

∂L
∂ϕ
− ∂α

∂L
∂ (∂αϕ)

= 0 . (3)

All fields ϕ and all their derivatives ∂αϕ (ϕ = φ0, φ±, ψ, ψ, Aα , Zα, etc.) should be considered as
independent variables at variation.

1.3.2 Example of a neutral vector field

Consider the Lagrangian of a free heavy vector field Zµ:

L = −1
4
FµνFµν −

1
2
M2

0
ZµZµ . (4)

Computing the derivatives,

∂L
∂Zν

= −M2
0
Zν ,

∂L
∂ (∂µZν)

= −Fµν , (5)

and substituting them into the Euler–Lagrange equation (3), we obtain the Proca equation of motion:

∂L
∂Zν

− ∂µ
∂L

∂ (∂µZν)
= ∂µFµν −M2

0
Zν = 0 . (6)

Note the 1/2 in the Lagrangian for neutral fields contrary to the Lagrangian for charged fields. In the latter
case, the fields W±

α are independent and the factor of 2 does not arise at variation.
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1.3.3 Example of QED

Consider the QED Lagrangian with interaction:

L = −1
4

FµνFµν − ψ (/∂ − ieQf/A + m) ψ . (7)

Compute derivatives over all independent fields and derivatives:

∂L
∂Aν

= ψieQfγνψ ,
∂L

∂ (∂µAν)
= −Fµν ,

∂L
∂ψ

= − (/∂ − ieQf/A + m) ψ ,
∂L

∂
(
∂µψ

) = 0 ,

∂L
∂ψ

= −ψ (−ieQf/A + m) ,
∂L

∂ (∂µψ)
= −ψ γµ .

(8)

Substituting all these derivatives into Eq. (3), we get the system of three Euler–Lagrange equations:

∂L
∂Aν

− ∂µ
∂L

∂ (∂µAν)
= ψieQfγνψ + ∂µFµν = 0 ,

∂L
∂ψ
− ∂µ

∂L
∂
(
∂µψ

) = − (/∂ − ieQf/A + m)ψ = 0 ,

∂L
∂ψ
− ∂µ

∂L
∂ (∂µψ)

= −ψ (−ieQf/A + m) + ∂µψ γµ = 0 , (9)

or equivalently — equations of motion for interacting fields, where on the r.h.s we see the sources of the
fields:

∂µFµν = −ieQfψγµψ,

(/∂ + m)ψ = ieQf/Aψ,

ψ (/∂ −m) = −ieQfψ/A. (10)

The first one is the Maxwell equation with the source and the next two equations are two Dirac equations
for the ψ and Dirac-conjugated field ψ, both with sources. From these equations it is clear, why in QFT
language one says that sources emit/absorb e+e−-pairs, γe− and γe+, respectively.

1.4 S matrix and amplitude of a process

Now we recall the notions of the S-matrix and the amplitude of a process. Consider a scattering (annihi-
lation) process:

p1 + p2 → p′1 + p′2 + · · ·
P = p1 + p2 , initial momentum ,

P ′ = p′1 + p′2 + · · · , final momentum , (11)

where pi denotes simultaneously a particle and its 4-momentum.

In QFT, any process is characterized by a matrix element:

〈f |S − 1|i〉 = 〈f |R|i〉 (2π)4 δ
(
P ′ − P

)
, (12)

of S matrix,

S = T

{
exp

[
i

∫
LI (x) d4x

]}
, (13)

which is constructed from an interaction Lagrangian density, LI (x), with the aid of a time-ordering op-
eration T .

Let us summarise our short ex-course into QFT:
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• The interaction Lagrangian density, LI(x), is the primary object of QFT from which the amplitude
of a process is derived;

• LI ∝ coupling constant, which is usually small and a perturbation expansion for a process ampli-
tude may be developed;

• Quantum fields, which a Lagrangian is made of, may act on initial and final states |i〉 and 〈f |, giv-
ing rise to plane waves describing in and out particles, or contract with each other, giving rise to
propagators;

• Feynman rules for external lines, vertices and propagators offer a very transparent way of construct-
ing process amplitudes, order-by-order in perturbation theory;

• A typical Feynman rule for an external line (scalar, spinor, photon, vector boson) looks like:

p → 1

(2π)3/2

1√
2p0
× [1, ū (p) , εµ (p) , eµ (p) , . . .]

where p0 is the zeroth component of a 4-vector p (energy) and ū (p) , εµ (p) , eµ (p) are spinors and
polarization vectors, respectively.

1.5 Cross-sections and decay rates

Here we recall practical formulae for cross-sections and decay rates constructed from the amplitudes of
the corresponding processes.

The total transition probability (in the whole space-time) is

dWfi =| 〈f |R|i〉 |2 (2π)8 δ
(
P ′ − P

) 1
(2π)4

∫
ei(P ′−P )xd4xd3p′1d

3p′2 · · · (14)

The transition probability per unit of time per unit of volume is then

dwfi = lim
V,T→∞

dWfi

V T
=| 〈f |R|i〉 |2 (2π)4 δ

(
P ′ − P

)
d3p′1d

3p′2 · · · (15)

The differential cross-section is defined as the ratio

dσfi =
dwfi

j
, (16)

where j is the initial flux

j = ρ1ρ2

√
(p1p2)

2 −m2
1m

2
2

(p1)0 (p2)0

. (17)

Introducing initial densities ρ1, ρ2 and normalization factors Npk ,

ρi =
1

(2π)3 , Npk =
1

(2π)3/2

1√
2 (pk)0

, (18)

the differential cross-section becomes

dσfi =
1

4
√

(p1p2)
2 −m2

1m
2
2

| Mfi |2 dΦn , (19)

where dΦn is the differential phase space

dΦn = (2π)4
n∏

k=1

d3p′k
(2π)3 2

(
p′k
)
0

δ

 n∑
j=1

p′j − P

 . (20)
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The process matrix element squared, | Mfi |2,

N2
p1

N2
p2

n∏
k=1

N2
p′
k
| Mfi |2=

∑
spins

| 〈f |R|i〉 |2 , (21)

is defined without normalization factors Npk and should be understood as averaged over initial and summed
over final spin degrees of freedom.

For the decay rate of the process:

P → p′1 + p′2 + · · · (22)

one analogously has

dΓfi =
dwfi

ρ
, (23)

where ρ =
1

(2π)3 is the initial density.

Similarly one obtains,

dΓfi =
1

2P0
| Mfi |2 dΦn . (24)

Note the difference in the definition of the phase space Eq. (20) with PDG convention, [6]: (2π)4 is shifted
to the phase space. This is convenient for calculations in n dimensions as will be shown below.

1.6 Input parameters in the Standard Model

1.6.1 Number of independent parameters in the SM

In this section we discuss a very important issue, the notion of the input parameter set, IPS. To approach
it, let us consider a sequence of theories, ranging from conventional QED to the Extended SM (hereafter
ESM). The following Table contains the list of parameters, which a theory Lagrangian depends upon,
together with the total number of parameters of the theory Np:

Theory List of parameters Np

Conventional QED → e me 2

Extended QED → e me mµ mτ

mu mc mt

md ms mb 10

EW Standard Model → + MW MZ MH

4 mixing angles 17

Conventional SM → + αS 18

Extended SM → + mνe mνµ mντ

4 mixing angles 25

One can see that the number of parameters of the ESM is large. However, this is a trivial consequence of a
large number of fundamental fields and the objective complexity of Nature. This Table illustrates that the
nature of the parameters in all the considered series of theories is exactly the same. In conventional QED
it is 2, but only due to the fact that this theory is limited to the description of the interaction of photons
with electrons.
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It is important to understand that the number 25 is a minimal number. Indeed:
• Three generations is a minimal number, necessary to have CP violation, which exists in Nature; remem-
ber that the number of complex phases is

Nphases =
(Ng − 1) (Ng − 2)

2
, where Ng − number of generations, (25)

therefore, Ng = 3 is a minimal number which allows us to have one (minimal number) phase.
All nine fundamental fermions are found experimentally.
• Four gauge bosons is a minimal number, needed to describe all EW interactions existing in Nature. We
have the long range e.m. interaction and CC and NC short-range weak processes, therefore, we need at
least four vector carriers — A, W±, Z — to mediate these interactions.
All four gauge bosons are found experimentally.
• Fermionic mixing, as is proved in the lectures of Prof. S.M. Bilenky [3] is unavoidable and exists in
Nature both in hadronic and leptonic worlds.
CKM mixing is experimentally well measured, ν-mixing is probably discovered.
•Only the Higgs boson has not yet been found. There are indirect indications, however. (To be discussed
in these lectures.)

The ESM is not able to calculate these 25 parameters and in this sense the ESM is not a predictive
theory. This is why people believe that some day a better theory will be discovered and why they wish to
find some experimental indications of new physics beyond the SM and build and plan new accelerators,
the LHC, LC, etc.

So far, however, neither the experiment has found strong evidence of new physics, (the situation
with the description of all ν data has to be clarified and I refer to the lectures of S. Bilenky [3] and M. Carena
[4] at this School) nor theory proposed the complete explanation of the whole mass spectrum of funda-
mental particles ranging from fractions of eV for lightest neutrino to 175 GeV for heaviest top quark, i.e.
more than 12 orders of magnitude!

The ESM is able, however, to calculate any experimental observable Oexp
i in terms of its IPS. We

define

ESM IPS ≡ the 25 parameters of above the Table. (26)

One must emphasize that this set of parameters is not unique. For instance, fermion masses may be re-
placed by Yukawa coupling constants and one of the gauge boson masses may be substituted by the SU(2)
weak coupling constant g. Particle masses seem to be, however, more natural to be chosen for IPS, and,
moreover, they are more suitable objects for a treatment within the one-mass-shell (OMS) renormaliza-
tion scheme.

The comparison procedure of experimental measurements with the ESM predictions may be sym-
bolically written as follows

Oexp
i (measured) ↔ Otheor

i (calculated as a function of IPS) . (27)

We shall now discuss of what is presently known about the IPS. The various parameters are experimentally
known with different precision. For instance, precision in measurements of masses ranges from 10−7 for
me to the existence of only lower and upper limits for MH :

me = 0.51099907± 0.00000015 MeV ∼ 3× 10−7

MZ = 91.1871± 0.0021 GeV ∼ 2× 10−5

MW = 80.394± 0.042 GeV ∼ 5× 10−4

mt = 174.3± 5.1 GeV ∼ 3× 10−2

100 GeV (direct searches) ≤MH ≤ 215 GeV (95% c.l. indirect limitations).
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Precision measurements provide constraints on the IPS. This is how one may extract information
on yet unknown parameters (or improve our knowledge of poorly measured ones). This should not be con-
fused with prediction in the above mentioned sense. The story of the discovery of the W and Z bosons
and of the t quark is a typical illustration of how information about the masses of yet undiscovered parti-
cles was extracted from theory constraints. The same story is now repeated with the H boson. One should
clearly understand that the ESM does not predict parameters, but gives hints about them via constraints.

1.6.2 More about IPS

Let us look at typical precisions and scales of various measurements.
The electron anomaly, ae = (ge − 2) /2, is a typical low-energy phenomenon, where conventional QED
is sufficient to give very precise predictions:

aexp
e = 1159652193(10)× 10−12 ,
ath

e = 1159652140(27)× 10−12 .

An impressive (8 digits!) agreement between the experiment and QED calculations up to fourth order in
perturbative expansion, O

(
α4
)
, illustrates the calculational power of QED. It cannot be by chance!

The Z resonance observables are measured at LEP1 (CERN) and SLC (SLAC) with

the experimental precision ≤ 10−3 . (28)

Therefore, one needs to have
the theoretical precision ∼ 2.5× 10−4 . (29)

This is the high-energy domain, where QED is not sufficient and one has to apply the conventional SM.

1.6.3 Number of free parameters in fits of Z resonance observables

The number of input parameters, which the Z resonance observables depend upon, is actually much lower
than 25. Indeed, all the lepton masses are known very precisely, the worst one,

mτ = 1777.05+0.29
−0.26 MeV < 10−4, (30)

is known infinitely precisely in the typical LEP1 precision scale 10−3.

Later on, we will see that the Z resonance observables are sensitive to the vacuum polarization:

γ γ

f

f

which leads to logarithmic mass singularities:∑
f

ln
s

m2
f

. (31)

This represents no problem for leptons, since lepton masses are well defined and well measured. On the
contrary, light quark masses are ill-defined and for this reason they are replaced by the other experimen-
tally well defined and well measured quantity σ (e+e− → hadrons). This introduces a new parameter

α
(
M2

Z

)
to the theory instead of light quark masses. Next, the Z resonance observables are insensitive

to neutrino masses and fermion mixing angles. So, we are left with only six parameters:

α
(
M2

Z

)
, αS

(
M2

Z

)
, mt, MZ , MW , MH . (32)
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Furthermore, one should exploit the precision measurement of the muon lifetime τµ. In terms of
the Fermi constant, the relevant precision is better than 10−5, which again means infinite precision in our
scale. This allows us to derive MW with a theoretical error of ∼ 10 MeV which is much better than the
present combined experimental error of ∼ 60 MeV. We are therefore left with only 5 parameters:

α
(
M2

Z

)
, αS

(
M2

Z

)
, mt , MZ , MH . (33)

We will call this set the standard LEP1 IPS.

With MZ measured at the Z peak with a precision of ∼ 2 × 10−5, and with the rich information
available from the other measurements for the parameters,

α
(
M2

Z

)
, αS

(
M2

Z

)
, mt, (34)

we are approaching a one-parameter fit situation, with the Higgs mass MH being the only parameter to
fit!

1.6.4 More on coupling constants, typical scales

The LEP1/SLC and LEP2 typical scales,
√

s, masses of weak bosons, mass of the top quark, estimated
Higgs mass,

√
s ∼ MZ − 200 GeV ,

MW ∼ 80 GeV ,

MZ ∼ 91 GeV ,

mt ∼ 175 GeV ,

MH ≤ 300 GeV , (35)

all are of the order of a typical EW scale: 100–300 GeV. Therefore, one cannot construct a small parameter
out of

√
s , MW , MZ , mt, MH , and the calculation must, in principle, be exact (complete) in all

these quantities. In real life, the notion of m2
t -enhanced terms is introduced: O

(
GFm2

t

)
. We note that

m2
t /M2

W
≈ 4, therefore this enhancement is not so pronounced. Given a probable interval for the Higgs

mass of 100 ≤ MH ≤ 300 GeV, the popular expansions in M2
H

/m2
t or m2

t /M
2
H

may have very bad
convergence.

For other than top-quark fermions it is sufficient to keep the first order in m2
f/s , f = τ, c, b; higher

terms may safely be ignored at LEP energies.

Present codes include the following QED, EW and QCD corrections:

QED α (0)L = 1/137L up to O
[
(αL)3

]
,

EW α
(
M2

Z

)
= 1/128.9 up to O

(
α2
)
,

QCD αS

(
M2

Z

)
= 0.119 up to O

(
α3
S

)
,

(36)

where big log

L = ln
s

m2
e

− 1 = 23 at s = M2
Z

. (37)

Therefore the effective expansion parameter in QED, αL = 0.169, is even bigger than the QCD coupling
αS

(
M2

Z

)
.

The neglected termsO
(
α3L2

)
∼ 2×10−4 andO

(
α4
S

)
∼ 2×10−4 are qualitatively expected to be

at the boundary of importance. However, a test implementation of even more important termO
[
(αL)4

]
∼

8×10−4 revealed the effect below 10−4. All available mixed correctionsO (ααS ) andO
(
αα2

S

)
are also

needed, and they are implemented into the codes.
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1.7 QED free Lagrangian

Before discussing at length the ESM, it is worth recalling the basics of QED, because the ESM is very
similar to QED as far as the basic principles are concerned.

The QED free (without interaction) Lagrangian reads:

L0
QED

= −1
4

FµνFµν −
1
2

(CA)2 −
∑
f

ψf (/∂ + mf )ψf , (38)

where the following notations are used:

Fµν = ∂µAν − ∂νAµ , /∂ = ∂µγµ , CA = −1
ξ

∂µAµ . (39)

Here CA is the gauge fixing term, the meaning of which will be fully understood when we will consider
the ESM Lagrangian. Here we shall only discuss our notation and convention.

We use the 4 × 4 representation for the Dirac matrices:

γj =

(
O −i τj

i τj O

)
, j = 1, 2, 3; γ4 =

(
I O
O −I

)
,

γ5 = γ1γ2γ3γ4 =

(
O −I
−I O

)
; I =

(
1 0
0 1

)
, O =

(
0 0
0 0

)
. (40)

The basic properties of the γ matrices are

γµγν + γνγµ = 2δµν , γ+
µ = γµ , γ2

µ = I. (41)

The Pauli matrices are as usual:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
, (42)

and their basic properties are

τi = τ+
i , τiτ

+
i = I , τiτi = I ,

[
1
2
τi,

1
2
τj

]
= iεijk

1
2
τk , τiτj = δij + iεijkτk . (43)

The quantities
1
2
τi are SU(2) generators and the general SU(2) transformation reads

U = exp
{
−i

1
2
τiλi

}
, UU+ = I , detU = 1 . (44)

Free-particle spinors satisfy the Dirac equations:

(i/p + m) u(p) = 0 , (−i/p + m) v(p) = 0 ,

u(p) (i/p + m) = 0 , v(p) (−i/p + m) = 0 . (45)

1.8 Local gauge transformation and invariance

Let us recall the local gauge transformations for all fields entering the QED Lagrangian:

ψ′f (x) = e−ieQfλ(x)ψf (x) ,

ψ
′
f (x) = ψf (x)eieQfλ(x) ,

A′µ(x) = Aµ(x)− ∂µλ(x) . (46)
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The full LagrangianLQED will be invariant under local gauge transformations if we replace ∂µ in Eq. (38)
by the covariant derivative,

∂µ → Dµ = ∂µ − ieQfAµ . (47)

The Lagrangian with interaction becomes

LQED = −1
4

FµνFµν −
1
2

(CA)2 −
∑
f

ψf (/∂ − ieQf/A + mf )ψf . (48)

Here e is positive and e2 = 4πα, i.e. it is the positron charge, and Qf = (fraction of charge)×2I
(3)
f :

Ql = −1, Qu = +2/3 and Qd = −1/3.

The gauge invariance may be verified with the aid of identities:

F ′µν = ∂µA′ν − ∂νA
′
µ = ∂µAν − ∂µ∂νλ(x)− ∂νAµ + ∂µ∂νλ(x) = Fµν ,

mfψ
′
f (x)ψ′f (x) = mfψf (x)ψf (x) ,

ψ
′
f (x)

(
∂µ − ieQfA′µ

)
ψ′f (x) =

ψf (x)eieQfλ(x)
[
∂µ − ieQf∂µλ(x)− ieQf (Aµ(x)− ∂µλ(x))

]
e−ieQfλ(x)ψf (x)

= ψf (x) (∂µ − ieQfAµ)ψf (x) . (49)

In order to see the invariance of CA, we have to subject it to our gauge transformation, i.e.

−1
ξ

∂µA′µ = −1
ξ

∂µAµ +
1
ξ

∂µ∂µλ(x) , where ∂µ∂µ = 2 . (50)

The gauge invariance will be ensured if one requires

2λ(x) = 0 . (51)

Therefore, we discover a massless, non-interacting ghost field λ(x) ≡ Y A(x) with the propagator

1
ξ
2

Y A

ξ

p2
. (52)

1.9 Feynman rules of QED

The Feynman rules could be easily derived from the Lagrangian, Eq. (48). The Feynman rules for electron
propagator and QED-vertex could be easily guessed looking at the Lagrangian, Eq. (48), are particularly
simple. A complete collection of Feynman rules in QED is

p→
1

(2π)4 i

1
i/p + mf

=
1

(2π)4 i

−i/p + mf

p2 + m2
f − iε

,

µ ν 1
(2π)4 i

1
p2 − iε

[
δµν +

(
ξ2 − 1

) pµpν

p2

]
,

µ (2π)4 i ieQf γµ .

Note an appearance of the ξ-dependent term in the photonic propagator, a consequence of the gauge fixing.

Let us recall the expressions for the photon propagators in three frequently used gauges:
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• General Rξ, propagator as given above,

• Feynman gauge, ξ = 1,
1

(2π)4 i

δµν

p2 − iε
,

• Landau gauge, ξ = 0,
1

(2π)4 i

1
p2 − iε

(
δµν −

pµpν

p2

)
.

Usually in QED one uses the Feynman gauge. It is well known that the ξ-dependence cancels in
the S-matrix for a given physical process. As an example consider any e+e− → γ∗ sub-process. The
corresponding S-matrix element in the Rξ-gauge will have an additional term

−
(
ξ2 − 1

)
v̄ (p+) (/p+ + /p−)u (p−) , (53)

which is zero for on-mass-shell fermions by virtue of the Dirac equation. Therefore, the extra term, pro-
portional to ξ2 − 1, may be omitted.

2. STANDARD MODEL LAGRANGIAN BUILDING

This lecture is devoted to SM Lagrangian building. We will proceed in the most general Rξ gauge with
three arbitrary gauge parameters. Let us recall the fields’ content in the electroweak sector of the SM:

• triplet of vector bosons, Ba
µ, and singlet, B0

µ;

• a complex scalar field K, (in the minimal SM we have only one doublet of complex fields);

• Faddeev–Popov ghost-fields X±, Y Z, Y A;

• fermion families.

The total SM Lagrangian should include all these fields. It may be represented as the sum of the various
parts.

2.1 Yang–Mills sector

First part is the standard Yang–Mills Lagrangian:

LYM = −1
4
F a

µνF
a
µν −

1
4
F 0

µνF
0
µν , (54)

with the usual field-strength tensors

F a
µν = ∂µBa

ν − ∂νB
a
µ + gεabcB

b
µBc

ν , F 0
µν = ∂µB0

ν − ∂νB
0
µ . (55)

We recall that Yang–Mills Lagrangian follows from the requirement of local SU(2)×U(1) gauge invari-
ance, i.e. if one replaces ∂µ in the free field Lagrangian by the covariant derivative which general form
may be written as a sum of the SU(2) and U(1) parts

∂µ → Dµ = ∂µ −
i

2
gBa

µτa − i

2
ggiB

0
µ , (56)

where g is the SU(2) bare coupling constant. The Lagrangian, Eq. (54), is therefore invariant under
SU(2) × U(1) gauge transformations. We recall that the SU(2) part of Eq. (56) is totally fixed due to
its non-Abelian structure, whilst its Abelian part contains an arbitrary hypercharge gi, see [2] for more
details. The physical fields Z and A are related to the gauge fields B3

µ and B0
µ by a well-known rotation

involving the weak mixing angle θ:(
Z
A

)
=

(
cθ −sθ

sθ cθ

)(
B3

B0

)
, (57)

where sθ(cθ) denote the sine and cosine of the weak mixing angle.
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2.2 The scalar sector

The second part is the Higgs scalar Lagrangian:

LS = − (DµK)+ DµK − µ2K+K − 1
2
λ
(
K+K

)2
, (58)

where λ > 0 is the positive φ4 interaction constant and the mass term has the negative sign, µ2 < 0, as
is required by the spontaneous symmetry breaking.

The complex scalar field doublet in the minimal realization of the SM is

K =
1√
2

 χ

√
2iφ−

 , with χ = H + 〈v〉+ iφ0 . (59)

It contains four scalar fields: φ±, φ0 and H , where H is the physical Higgs boson field and 〈v〉 is the
vacuum expectation value (v.e.v.).

The covariant derivative for the scalar field in SU(2)⊗ U(1) looks similar to Eq. (56)

DµK =
(

∂µ −
i

2
gBa

µτa − i

2
gg1B

0
µ

)
K , (60)

where we introduced the hypercharge g1 which will be fixed below. The scalar field can be conveniently
rewritten as

K =
1√
2

(H + 〈v〉+ iφaτa)

(
1
0

)
. (61)

Then the covariant derivative becomes

DµK =
1√
2

(
∂µ −

i

2
gBa

µτa − i

2
gg1B

0
µ

)(
H + 〈v〉+ iφbτ b

)( 1
0

)
=

1√
2

{
∂µH − i

2
gg1B

0
µ (H + 〈v〉) +

1
2
gBa

µφa

+i

[
∂µφa − 1

2
gBa

µ (H + 〈v〉)− i

2
gg1B

0
µφa +

1
2
gεcbaB

c
µφb

]
τa
}(

1
0

)
.

(62)

Similarly, we represent the hermitian conjugate part

(DµK)+ = (1, 0)
1√
2

{
∂µH +

i

2
gg1B

0
µ (H + 〈v〉) +

1
2
gBa

µφa

−i

[
∂µφa − 1

2
gBa

µ (H + 〈v〉) +
i

2
gg1B

0
µφa +

1
2
gεcbaB

c
µφb

]
τa
}

, (63)

and consider their product

− (DµK)+ DµK . (64)

This product, whis is only the first term of LS , Eq. (58), contains 81 terms!

Collecting only terms with 〈v〉2, we have

− (1, 0)
1√
2

{
i

2
gg1B

0
µ〈v〉+ i

1
2
gBb

µ〈v〉τ b
}

1√
2

{
− i

2
gg1B

0
µ〈v〉 − i

1
2
gBc

µ〈v〉τ c
}(

1
0

)

= −g2〈v〉2
8

(1, 0)
(
g1B

0
µ + Bc

µτ c
) (

g1B
0
µ + Bb

µτ b
)( 1

0

)
→ (65)
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Using properties of τa-matrices, we simplify

(1, 0) Ba
µτa

(
1
0

)
= B3

µ , (1, 0) Bc
µτ cBb

µτ b

(
1
0

)
= Ba

µBa
µ , (66)

and continue Eq. (65) as follows

→ −g2〈v〉2
8

(
g2

1B
0
µB0

µ + 2g1B
0
µB3

µ + Ba
µBa

µ

)
= −g2〈v〉2

8

[(
g1B

0
µ + B3

µ

)2
+ B1

µB1
µ + B2

µB2
µ

]
→ (67)

Now we proceed in terms of physical fields:

W±
µ =

1√
2

(
B1

µ ∓ iB2
µ

)
, φ± =

1√
2

(
φ1 ∓ iφ2

)
, φ0 ≡ φ3,

Zµ = cθB
3
µ − sθB

0
µ , Aµ = sθB

3
µ + cθB

0
µ . (68)

It is seen, that if one chooses g1 = −sθ/cθ, then Eq. (67) becomes

→ −g2〈v〉2
8

[
1
c2
θ

(Zµ)2 + 2W +
µ W−

µ

]
= −1

2
M2

0
(Zµ)2 −M2W +

µ W−
µ , (69)

i.e. it looks like a normal mass-term of a Lagrangian.

Therefore, the Higgs mechanism generates masses of vector bosons:

M – bare mass of W boson, M =
g〈v〉
2

,

M0 – bare mass of Z boson, M0 =
g〈v〉
2cθ

. (70)

The two last equations are equivalent to:

cθ =
M

M0

and 〈v〉 = 2
M

g
, (71)

and these establish two more relations between the parameters of the Lagrangian. In particular, one can
see that the weak mixing angle is no longer a free parameter if one chooses vector boson masses as the
free parameters of the theory.

Let us continue our study of the product, Eq. (64). At the second step, we substitute 〈v〉 and look
at all terms without interaction constant g:

− (1, 0)
1√
2

[
∂µH + iMg1B

0
µ − i

(
∂µφc −MBc

µ

)
τ c
]

× 1√
2

[
∂µH − iMg1B

0
µ + i

(
∂µφb −MBb

µ

)
τ b
]( 1

0

)
→

Omitting legal kinetic terms

−1
2

(∂µH)2 etc., (72)
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then terms, which were already considered (mass terms), and observing that HBa,0
µ transitions cancel

identically, we are left with

→ M

2
(1, 0)

(
g1B

0
µ + Bc

µτ c
) (

∂µφb
)

τ b

(
1
0

)

+
M

2
(1, 0) (∂µφc) τ c

(
g1B

0
µ + Bb

µτ b
)( 1

0

)
→ (73)

Taking into account, that

(1, 0)
(
Bc

µτ c∂µφbτ b + ∂µφcτ cBb
µτ b
)( 1

0

)
= 2δbcIBb

µ∂µφc, (74)

we arrive at a short expression

→M
(
g1B

0
µ∂µφ0 + Ba

µ∂µφa
)
→ (75)

which being expressed in terms of physical fields, finally becomes

→M

(
1
cθ

Zµ∂µφ0 + W +
µ ∂µφ− + W−

µ ∂µφ+
)

. (76)

And this term should be ranked as a criminal one, since it stands for Z−φ0 and W±−φ∓ transitions of
the zeroth-order in the coupling constant, and their contribution must be summed up to all orders if one
wishes to develop a perturbation theory.

To circumvent this problem one adds a gauge-fixing piece to the Lagrangian, Lgf , which cancels
these mixing terms. However, it breaks the gauge invariance and we must introduce Faddeev–Popov
ghost fields to compensate this breaking.

2.3 Gauge fixing and Faddeev–Popov ghosts

We now add to the Lagrangian the gauge-fixing term

Lgf = −C+C− − 1
2

[
(CZ)2 + (CA)2

]
, (77)

where three terms

CA = − 1
ξA

∂µAµ , CZ = − 1
ξZ

∂µZµ + ξZ
M

cθ
φ0, C± = −1

ξ
∂µW±

µ + ξMφ±, (78)

specify the so-called generalized Rξ gauge with three different gauge parameters associated with three
different vector fields: A, Z, W±.

Consider, for instance, the term with ξZ :

−1
2

(CZ)2 = −1
2

(
− 1

ξZ
∂µZµ + ξZ

M

cθ
φ0
)2

= −1
2

1
ξ2
Z

(∂µZµ)2 +
M

cθ
(∂µZµ)φ0 − 1

2

(
ξZ

M

cθ
φ0
)2

. (79)

The first and third terms modify the Z propagator, whilst the second term together with the criminal Z−φ0

transition of Eq. (76) gives the full derivative

M

cθ

(
Zµ∂µφ0 + (∂µZµ)φ0

)
=

M

cθ
∂µ

(
Zµφ0

)
, (80)

which does not contribute to the Lagrangian and the problem of zeroth-order terms is solved.

In order to define the Faddeev–Popov ghost Lagrangian we must subject the CA,Z,± to a gauge
transformation. This is, in principle, similar to what we did in QED. The relevant derivation will be given
below. Contrary to QED, we do have ghost interactions in the SM.

18



2.4 Propagators in the SM

Consider the sum of the three terms we discussed above,

LYM − (DµK)+ DµK − C+C− − 1
2

(CZ)2 − 1
2

(CA)2 = Lprop + Lbos,I. (81)

The quadratic part (bilinear in fields) of the Lagrangian Lprop,

Lprop = −∂µW +
ν ∂µW−

ν +
(

1− 1
ξ2

)
∂µW +

µ ∂νW
−
ν −

1
2
∂µZν∂µZν +

1
2

(
1− 1

ξ2
Z

)
(∂µZµ)2

−1
2
∂µAν∂µAν +

1
2

(
1− 1

ξ2
A

)
(∂µAµ)2 − 1

2
∂µH∂µH − ∂µφ+∂µφ− − 1

2
∂µφ0∂µφ0

−M2W +
µ W−

µ −
1
2

M2

c2
θ

ZµZµ − ξ2M2φ+φ− − 1
2
ξ2
Z

M2

c2
θ

φ0φ0 − 1
2
MHH2, (82)

gives rise to the propagators of bosonic fields.

The scalar field propagators are trivially guessed from Eq. (82)

−∂µφ+∂µφ− − ξ2M2φ+φ− → 1
p2 + ξ2M2

etc. (83)

the rule of correspondence for vector fields is more complicated

−1
2
∂µZν∂µZν +

1
2

(
1− 1

ξ2

)
(∂µZµ)2 +

1
2
M2

0
ZµZµ →

δµν −
pµpν

p2

p2 + M2
0

+

pµpν

p2

1
ξ2 p2 + M2

0

. (84)

It is usually proved in the standard textbooks on QFT, see for example Ref. [2].

2.4.1 Full collection of Feynman rules for propagators

For completeness, we begin with the propagator of a fermion, f , although it was not discussed above:

f

−i/p + mf

p2 + m2
f

.

Then, we present three vector boson propagators:

A
1
p2

{
δµν +

(
ξ2
A
− 1

) pµpν

p2

}
,

Z
1

p2 + M2

{
δµν +

(
ξ2
Z
− 1

) pµpν

p2 + ξ2
Z
M2

}
,

W± 1
p2 + M2

{
δµν +

(
ξ2 − 1

) pµpν

p2 + ξ2M2

}
.
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Next, we give propagators of unphysical fields:

Y A

ξA
p2

,

φ0

1

p2 + ξ2
Z

M2

c2
θ

,
Y Z

ξZ

p2 + ξ2
Z

M2

c2
θ

,

φ±
1

p2 + ξ2M2
,

X±
ξ

p2 + ξ2M2
.

Finally, the propagator of the physical scalar field, H-boson is

H

1
p2 + M2

H

.

Every propagator should be multiplied by the factor
1

(2π)4 i
. Note that propagators of unphysical fields

have a pole at an unphysical mass: p2 = −ξ2M2.

2.4.2 More about propagators in different gauges

Using partial fraction decomposition, one may present the heavy vector boson, W , propagator (for Z
boson we replace ξ → ξZ ), in three different forms. They are presented below, together with expressions
in the t’Hooft–Feynman, unitary and Landau gauges:

W± → 1
p2 + M2

{
δµν +

(
ξ2 − 1

) pµpν

p2 + ξ2M2

}
Rξ-gauge,

=
1

p2 + M2

(
δµν +

pµpν

M2

)
− pµpν

M2 (p2 + ξ2M2)

=
1

p2 + M2

(
δµν −

pµpν

p2

)
+

ξ2

p2 + ξ2M2

pµpν

p2

=
δµν

p2 + M2
for ξ = 1 t’Hooft–Feynman gauge,

=
1

p2 + M2

(
δµν +

pµpν

M2

)
for ξ =∞ unitary gauge,

=
1

p2 + M2

(
δµν −

pµpν

p2

)
for ξ = 0 Landau gauge.

For the photon propagator, not all of the above cases are possible:

A → 1
p2

{
δµν +

(
ξ2
A
− 1

) pµpν

p2

}
Rξ-gauge,

=
δµν

p2
for ξA = 1 Feynman gauge,

=
1
p2

(
δµν −

pµpν

p2

)
for ξA = 0 Landau gauge.

The physical gauge is recovered in the limit ξA → 1 and ξZ , ξ → ∞. Therefore, the physical gauge is
a mixture of the unitary and Feynman gauges.
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2.5 Interaction Lagrangian

2.5.1 Bosonic Sector

The Lagrangian, describing interactions between vector bosons can be easily derived from Eq. (81) in
terms of physical fields using only Eq. (68) on top of the former equation. After trivial but lengthy algebra,
we obtain:

Lbos,I = −igcθ

{
∂νZµW [+

µ W−]
ν − ZνW

[+
µ ∂νW

−]
µ + ZµW [+

ν ∂νW
−]
µ

}
−igsθ

{
∂νAµW [+

µ W−]
ν −AνW

[+
µ ∂νW

−]
µ + AµW [+

ν ∂νW
−]
µ

}
+

1
2
g2
{(

W +
µ W−

ν

)2
−
(
W +

µ W−
µ

)2
}

+ g2c2
θ

{
ZµZνW

+
µ W−

ν − ZµZµW +
ν W−

ν

}
+g2s2

θ

{
AµAνW

+
µ W−

ν −AµAµW +
ν W−

ν

}
+ g2sθcθ

{
AµZνW

[+
µ W−]

ν − 2AµZµW +
ν W−

ν

}
−gMH

{
W +

µ W−
ν +

1
2c2

θ

ZµZµ

}
− i

2
g
{
W +

µ

(
φ0∂µφ− − φ−∂µφ0

)
−W−

µ

(
φ0∂µφ+ − φ+∂µφ0

)}
+

1
2
g
{
W +

µ

(
H∂µφ− − φ−∂µH

)
−W−

µ

(
H∂µφ+ − φ+∂µH

)}
+

1
2

g

cθ
Zµ

(
H∂µφ0 − φ0∂µH

)
+ ig

(
sθAµ −

s2
θ

cθ
Zµ

)
MW [+

µ φ−]

+ig

(
sθAµ +

c2
θ − s2

θ

cθ
Zµ

)(
φ+∂µφ− − φ−∂µφ+)

−1
4
g2W +

µ W−
µ

(
HH + φ0φ0 + 2φ+φ−

)
−1

8
g2

c2
θ

ZµZµ

{
HH + φ0φ0 + 2

(
c2
θ − s2

θ

)2
φ+φ−

}
−1

2
g2 s2

θ

cθ
Zµφ0W [+

µ φ−] − i

2
g2 s2

θ

cθ
ZµHW [+

µ φ−] +
1
2
g2sθAµφ0W [+

µ φ−]

+
i

2
g2sθAµHW [+

µ φ−] − g2 sθ

cθ

(
c2
θ − s2

θ

)
ZµAµφ+φ− − g2s2

θAµAµφ+φ−, (85)

where we introduced the anti-symmetrized combination

A[+B−] = A+B− −A−B+. (86)

From Eq. (85) all the relevant Feynman rules for three-linear and four-linear vertices are straightforwardly
derived.

2.5.2 FP Ghost Sector

In order to define the FP ghost Lagrangian we must subject Ca to the gauge transformation. First, we write
down the gauge transformations for all bosonic fields of the SM:

Ba
µ → Ba

µ + gεabcΛbBc
µ − ∂µΛa, B0

µ → B0
µ − ∂µΛ0,

K →
(

1− i

2
gΛaτa − i

2
gg1Λ0

)
K, with g1 = −sθ

cθ
. (87)

From the second row we may straightforwardly derive transformations for separate components:

H ± iφ0 → H ± iφ0 ∓ i

2
g

[(
Λ3 + g1Λ0

)(
H + 2

M

g
± iφ0

)
± 2iΛ±φ∓

]
,
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φ0 → φ0 − 1
2
g
(
Λ3 + g1Λ0

)(
H + 2

M

g

)
+

i

2
g
(
Λ−φ+ − Λ+φ−

)
,

φ∓ → φ∓ − 1
2
gΛ∓

(
H + 2

M

g
± iφ0

)
∓ i

2
g
(
−Λ3 + g1Λ0

)
φ∓, (88)

where Λi, i = 0, 1, 2, 3 are group, and Λj , j = ±, Z, A are physical gauge transformation parameters,
related to each other by means of the usual relations:

Λ1 =
1√
2

(
Λ+ + Λ−

)
, Λ2 =

i√
2

(
Λ+ − Λ−

)
,

Λ3 = cθΛZ + sθΛA, Λ0 = −sθΛZ + cθΛA,

Λ3 + g1Λ0 =
1
cθ

ΛZ , −Λ3 + g1Λ0 = −c2
θ − s2

θ

cθ
ΛZ − 2sθΛA.

From Eqs. (88)–(89) we derive the gauge transformations of physical fields in terms of physical param-
eters:

φ0 → φ0 − 1
2
g
ΛZ

cθ

(
H + 2

M

g

)
+

i

2
g
(
Λ−φ+ − Λ+φ−

)
,

φ∓ → φ− − 1
2
gΛ∓

(
H + 2

M

g
± iφ0

)
± i

2
g

(
c2
θ − s2

θ

cθ
ΛZ + 2sθΛA

)
φ∓,

W∓
µ → W∓

µ ∓ igΛ∓ (cθZµ + sθAµ)± ig (cθΛZ + sθΛA) W∓
µ − ∂µΛ∓,

Aµ → Aµ + igsθ

(
Λ−W +

µ − Λ+W−
µ

)
− ∂µΛA,

Zµ → Zµ + igcθ

(
Λ−W +

µ − Λ+W−
µ

)
− ∂µΛZ,

H → H +
1
2

(
gΛ3 + g1Λ0

)
φ0 +

1
2

(
Λ+W−

µ + Λ−W +
µ

)
. (89)

General gauge transformations may be written in matrix form:

Ci → Ci +
(
Mij + gLij

)
Λj , where i, j = ±, Z, A . (90)

For i = −, from Eq. (89) we derive the transformation for C−:

C− = −1
ξ
∂µW−

µ + ξMφ−

→ C− − 1
ξ
∂µ

{
−igΛ− (cθZµ + sθAµ) + ig (cθΛZ + sθΛA)W−

µ − ∂µΛ−
}

+gξM

{
−1

2
Λ−

(
H + 2

M

g
+ iφ0

)
+

i

2
c2
θ − s2

θ

cθ
ΛZφ− + isθΛAφ−

}
= C− +

1
ξ
2Λ− − ξM2Λ− +

i

ξ
g∂µ

{
Λ− (cθZµ + sθAµ)

}
− i

ξ
g∂µ

{
(cθΛZ + sθΛA)W−

µ

}
−1

2
ξgM

(
H + iφ0

)
Λ−

+
i

2
ξgM

c2
θ − s2

θ

cθ
ΛZφ− + iξgsθMΛAφ−, (91)

and a similar one for C+.
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In full analogy with conventional gauge transformations and the correspondence of gauge param-
eters to gauge fields Ba

µ, one may establish the correspondence of physical gauge parameters Λ+,−,Z,A

entering Eq. (91) to ghost fields Xi = X+, X−, Y Z, Y A:

Λ± → X±, ΛZ → Y Z , ΛA → Y A. (92)

The gauge invariance C± = −1
ξ
∂µW−

µ + ξMφ− → C± is restored if Λ± are identified with ghost

fields X± with propagators

1
ξ
2− ξM2

X±
ξ

p2 + ξ2M2

and interactions

gX
±L±jXj , j = ±, Z, A , (93)

where we introduced four more fields: X
i = X

+
, X
−
, Y

Z
, Y

A
.

Analogously, from Eq. (89), we obtain the transformation of CA:

CA = − 1
ξA

∂µAµ → CA −
1
ξA

∂µ

[
igsθ

(
Λ−W +

µ − Λ+W−
µ

)
− ∂µΛA

]
= CA +

1
ξA

2ΛA − i

ξA
gsθ∂µ

(
Λ−W +

µ − Λ+W−
µ

)
. (94)

The gauge invariance is restored if we require the validity of the equation of motion:

1
ξA

2Y A =
i

ξA
gsθ∂µ

(
X−W +

µ −X+W−
µ

)
, (95)

i.e. identify Y A with a field which has the propagator

1
ξA

2
Y A

ξA
p2

and interaction

gY
ALAjXj , j = ±, Z, A . (96)

Finally, for the transformation of CZ , from Eq. (89) we derive:

CZ = − 1
ξZ

∂µZµ + ξZ
M

cθ
φ0

→ CZ − 1
ξZ

∂µ

{
igcθ

(
Λ−W +

µ − Λ+W−
µ

)
− ∂µΛZ

}
+ξZ

M

cθ

{
−M

cθ
ΛZ − 1

2
g
ΛZ

cθ
H +

i

2
g
(
Λ−φ+ − Λ+φ−

)}
= CZ 1

ξZ
+ 2ΛZ − ξZ

M2

c2
θ

ΛZ − i

ξZ
gcθ∂µ

(
Λ−W +

µ − Λ+W−
µ

)
−1

2
ξZg

M

c2
θ

ΛZH + iξZg
M

cθ

(
Λ−φ+ − Λ+φ−

)
, (97)
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giving the propagator of Y Z

1
ξZ

2− ξZ
M2

c2
θ Y Z

ξZ

p2 + ξ2
Z

M2

c2
θ

and interaction

gY
ZLZjXj , j = ±, Z, A. (98)

The complete interaction Lagrangian in the FP sector of the SM derives trivially from the above
considerations. It reads:

LI
gf = igcθW

+
µ

[
1
ξZ

(
∂µY

Z
)

X− − 1
ξ

(
∂µX

+
)

Y Z

]
+ igcθW

−
µ

[
1
ξ

(
∂µX

−)
Y Z − 1

ξZ

(
∂µY

Z
)

X+
]

+igsθW
+
µ

[
1
ξA

(
∂µY

A
)

X− − 1
ξ

(
∂µX

+
)

Y A

]
+ igsθW

−
µ

[
1
ξ

(
∂µX

−)
Y A − 1

ξA

(
∂µY

A
)

X+
]

+igcθ
1
ξ
Zµ

(
∂µX

+
X+ − ∂µX

−
X−

)
+ igsθ

1
ξ
Aµ

(
∂µX

+
X+ − ∂µX

−
X−

)
−1

2
gMH

(
ξX

+
X+ + ξX

−
X− +

ξZ
c2
θ

Y
Z
Y Z

)

−igξM
c2
θ − s2

θ

cθ

(
X

+
Y Zφ+ −X

−
Y Zφ−

)
+

i

2
gξZM

1
cθ

(
Y
Z
X−φ+ − Y

Z
X+φ−

)
+igsθξM

(
X
−
Y Aφ− −X

+
Y Aφ+

)
+

i

2
gξM

(
X

+
X+φ0 −X

−
X−φ0

)
. (99)

Note the trivial rules:

− Y
Z

and Y
A

are accompanied by ξZ and ξA , respectively;

− X
±

is accompanied by ξ;

− the terms Y
Z
X− and Y

Z
X+ or X

+
X+ and X

−
X− differ by sign for interactions with all fields but

H .

To summarize our findings, we see that ghosts are fields satisfying the Klein–Gordon equation.
They possess a charge resembling the fermionic charge. In other words, they are scalar fermions, i.e.
have the wrong relation between spin and statistics.

2.5.3 Scalar Sector

The interactions in the scalar sector are given by the scalar potential

LI
S

= −µ2K+K − 1
2
λ
(
K+K

)2
, (100)

where

K =
1√
2

 H + 〈v〉+ iφ0,

i
√

2φ−

 , 〈v〉 = 2
M

g
,

K+ =
1√
2

(
H + 〈v〉 − iφ0 ,−i

√
2φ+

)
. (101)
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For LI
S

we derive

LI
S

= −1
2
µ2
[
H2 + 2〈v〉H + 〈v〉2 +

(
φ0
)2

+ 2φ+φ−
]

−1
8
λ

{
H4 + 4〈v〉H3 + 6〈v〉2H2 + 4〈v〉3H + 〈v〉4 +

(
φ0
)4

+ 4
(
φ+φ−

)2
+2
(
H2 + 2〈v〉H + 〈v〉2

) [(
φ0
)2

+ 2φ+φ−
]

+ 4
(
φ0
)2

φ+φ−
}

. (102)

To understand better the physical meaning of the various terms, let us collect some selected terms:

constant term: −〈v〉
2

2

(
µ2 +

1
4
λ〈v〉2

)
, irrelevant, may be dropped;

linear term, H : −〈v〉
(

µ2 +
1
2
λ〈v〉2

)
= −〈v〉βH , vacuum tadpole;

quadratic term, H2 : −1
2

(
µ2 +

1
2
λ〈v〉2 + λ〈v〉2

)
= −1

2

(
βH + M2

H

)
;[(

φ0
)2

+ 2φ+φ−
]

: −1
2

(
µ2 +

1
2
λ〈v〉2

)
. (103)

Here we introduced, for convenience, the following set of parameters:

βH = µ2 + 2
λ

g2
M2, λ =

g2M2
H

4M2
= g2αH , αH =

1
4

M2
H

M2
. (104)

From these relations one sees, that λ and αH are not independent. Since MH is a measurable quantity,
λ derives from g, M , MH and αH — from MH , M . On the contrary, µ2 (or equivalently βH ) should be
treated as a new parameter, which has to be adjusted such that the vacuum expectation value of the H
field remains zero, order by order in perturbation theory.

Omitting irrelevant constant and mass term,−1
2
M2

H
H2, we derive for the interaction Lagrangian:

LI
S

= −βH

{
2
M

g
H +

1
2

[
H2 +

(
φ0
)2

+ 2φ+φ−
]}
− gαHM

[
H3 + H

(
φ0
)2

+ 2Hφ+φ−
]

−1
8
g2αH

[
H4 +

(
φ0
)4

+ 2H2
(
φ0
)2

+ 4H2φ+φ− + 4
(
φ0
)2

φ+φ− + 4
(
φ+φ−

)2]
. (105)

2.6 Tadpoles and their role in proving gauge invariance

The following 10 diagrams contribute to the vacuum tadpoles:

H
= f

(1)
+ W

(2)
+ Z

(3)

+ H
(4)

+ φ
(5)

+ φ0

(6)

+ X−
(7)

+ X+

(8)
+ Y Z

(9)

+ βH
(10)
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In the lowest order, we would have only the tadpole diagram (10) and the constant βH must be set
to zero. At the one-loop level, we have to take into account all 10 diagrams and the tadpole constant must
be adjusted in such a way that the vacuum expectation value of the H field remains zero.

We describe the correct procedure of such an adjustment at the one-loop level. First of all, we have
to renormalize the vacuum expectation value itself:

K =
1√
2

 χ

√
2iφ−

 , χ = H + 2
M

g

(
1 + g2βt

)
+ iφ0. (106)

Now we set µ2 + 2
(
λ/g2

)
M2 = 0, as we did in the lowest order, and repeat the same derivation as

above. Instead of Eq. (105), for the LI
S

part of the Lagrangian we derive:

LI
S

= −2 gMM2
H

βt H − 1
2
M2

H

(
1 + 3 g2βt

)
H2

−1
2

g2M2
H

βt

[(
φ0
)2

+ 2φ+φ−
]
− gαHM

[
H3 + H

(
φ0
)2

+ 2Hφ+φ−
]

−1
8
g2αH

[
H4 +

(
φ0
)4

+ 2H2
(
φ0
)2

+4H2φ+φ− + 4
(
φ0
)2

φ+φ− + 4
(
φ+φ−

)2]
, (107)

with βt (instead of βH ) fixed by the requirement of a zero vacuum expectation value of the H field. Note
that the only difference between Eq. (107) and Eq. (105) appears in the H2 term.

From the renormalization of 〈v〉we are automatically led to the addition of tadpoles to the W −W
and Z − Z self-energies and to the corresponding vector–scalar transitions:

−g2βt

(
M2

0
ZµZµ + 2 M2W +

µ W−
µ

)
,

−g2 Mβt

(
1
cθ

φ0∂µZµ + φ+∂µW−
µ + φ−∂µW +

µ

)
. (108)

They are very important for proving that the W , Z and H self-energies are ξ-independent on their mass
shells, i.e. at p2 = −M2, p2 = −M2

0
, and p2 = −M2

H
, respectively.

2.7 Interactions of fermions with gauge fields

Consider a generic fermion isodoublet and decompose it into left (L) and right (R) components:

ψ =

(
u
d

)
, ψL,R =

1
2

(1± γ5)ψ . (109)

The covariant derivative for the L-fields

DµψL =
(
∂µ + gBi

µT i
)

ψL , i = 0, ..., 3 , (110)

is written in terms of generators of SU(2)⊗ U(1):

T a = − i

2
τa , T 0 = − i

2
g2I , (111)

with arbitrary U(1)-hypercharge g2, whilst for R-fields

DµψR =
(
∂µ + gBi

µti
)

ψR , i = 0, ..., 3 , (112)
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in terms of generators of U(1):

ta = 0, t0 = − i

2

(
g3 0
0 g4

)
, (113)

with hypercharges g3, g4. We stress, that Eq. (112) is written formally similar to Eq. (110) using a diag-
onal matrix t0 which should not be confused with the generators of SU(2). Thus, the ψL transforms as
a doublet under SU(2) and the ψR as a singlet. The parameters g2, g3 and g4 are arbitrary hypercharges
which will be fixed below. The kinetic part of the Lagrangian can be written as

Lfer,I
V = −ψ

L
/DψL − ψ

R
/DψR . (114)

As an exercise, consider (0+3) components:

−ψ
L
γµ

(
∂µ −

i

2
gg2B

0
µI − i

2
gB3

µτ3
)

ψL − ψ
R
γµ

(
∂µ −

i

2
gB0

µ

(
g3 0
0 g4

))
ψR

= −(u, d)Lγµ

[
∂µ −

i

2
gg2B

0
µ

(
1 0
0 1

)
− i

2
gB3

µ

(
1 0
0 −1

)](
u
d

)
L

−(u, d)Rγµ

[
∂µ −

i

2
gg2B

0
µ

(
g3 0
0 g4

)](
u
d

)
R

= −f
L
/∂fL − f

R
/∂fR +

i

2
gg2B

0
µ

(
uLγµuL + dLγµdL

)
+

i

2
gB3

µ

(
uLγµuL − dLγµdL

)
+

i

2
gB0

µ

(
g3uRγµuR + g4dRγµdR

)
→ (115)

Using equations:

f
L
γµfL =

1
2
fγµ (1 + γ5) f , f

R
γµfR =

1
2
fγµ (1− γ5) f ,

from Eq. (115) we derive further on

→ −f/∂f +
i

4
gg2

[
uγµ (1 + γ5)u + dγµ (1 + γ5) d

]
(−sθZµ + cθAµ)

+
i

4
g
[
uγµ (1 + γ5)u− dγµ (1 + γ5) d

]
(cθZµ + sθAµ)

+
i

4
g
[
g3uγµ (1− γ5)u + g4dγµ (1− γ5) d

]
(−sθZµ + cθAµ) . (116)

First, we collect terms with Aµ, i.e. the e.m. current:

i

4
g

{
cθg2

[
uγµ (1 + γ5) u + dγµ (1 + γ5) d

]
(117)

+sθ

[
uγµ (1 + γ5)u− dγµ (1 + γ5) d

]
+ cθ

[
g3uγµ (1− γ5) u + g4dγµ (1− γ5) d

]}
→

Then, we require the absence of axial currents

cθg2 + sθ − cθg3 = 0 , cθg2 − sθ − cθg4 = 0 ,

g2 − g1 − g3 = 0 , g2 + g1 − g4 = 0 ,

gi = −sθ

cθ
λi ,

−λ2 + 1 + λ3 = 0 , −λ2 − 1 + λ4 = 0 , (118)
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The Eq. (118) defines λ3 and λ4 leading to

→ i

4
gsθ

{
−λ2

[
uγµu + dγµd

]
+ uγµu− dγµd + (1− λ2) uγµu− (1 + λ2) dγµd

}
=

i

2
gsθ

{
(1− λ2) uγµu− (1 + λ2) dγµd

}
= ieQuuγµu + ieQddγµd . (119)

Thus, three parameters λi are fixed by the requirement that the e.m. current has the conventional structure,
iQfefγµf , with the charges Qf = 2I

(3)
f |Qf |. The solution is

λ2 = 1− 2Qu = −1− 2Qd , λ3 = −2Qu , λ4 = −2Qd . (120)

Having all three hypercharges fixed, we derive the final expression for the interaction Lagrangian Lfer,I
V :

Lfer,I
V =

∑
f

[
igsθQfAµfγµf + i

g

2cθ
Zµfγµ (vf + afγ5) f

]

+
∑
d

[
i

g

2
√

2
W +

µ uγµ (1 + γ5) d + i
g

2
√

2
W−

µ dγµ (1 + γ5) u

]
, (121)

with vector and axial–vector couplings of the Z boson to a fermion f :

vf = I
(3)
f − 2Qfs2

θ , af = I
(3)
f . (122)

The first sum in Eq. (121) runs over all fermions, f , and the second over all doublets, d, of the SM. We see,
that contrary to the Z and A fields, the W± are always coupled to a V +A current. This is a consequence
of the SU(2)⊗ U(1) gauge transformation, Eq. (110).

2.8 Interactions of fermions with scalar fields

We now consider the only remaining sector of the SM describing the generation of fermionic masses and
the interaction of fermions with scalar fields. We need not only the field K but also its conjugate Kc

in order to give masses both to the up and down fermions. In our convention, K gives masses to up
fermions, and Kc to down fermions. We recall K and derive Kc using the definition of charge conjuga-
tion, Kc = iτ2K∗. The relevant set of formulae is

K =
1√
2

 χ

√
2iφ−

 =
1√
2

(H + 〈v〉+ iφaτa)

(
1
0

)
,

Kc = iτ2K∗ = − 1√
2


√

2iφ+

χ∗

 = − 1√
2

(H + 〈v〉+ iφaτa)

(
0
1

)
,

χ = H + 〈v〉+ iφ0. (123)

The corresponding part of the Lagrangian may be written as follows:

Lfer
S = −αfψ

L
KuR − βfψ

L
KcdR + h.c. (124)

In order to prove its gauge invariance, consider four gauge transformations:

K →
(

1− i

2
gΛa (x) τa − i

2
gg1Λ0 (x) I

)
K,

Kc →
(

1− i

2
gΛa (x) τa +

i

2
gg1Λ0 (x) I

)
Kc,

ψ′
L
→

(
1− i

2
gΛa (x) τa − i

2
gg2Λ0 (x) I

)
ψL ,

ψ′
R
→

(
1− i

2
g

(
g3 0
0 g4

)
Λ0 (x)

)
ψR . (125)
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We immediately see that Lfer
S will be gauge-invariant if g2 = g1 + g3 and g2 = −g1 + g4, the identities

already established from the requirement that the e.m. current has a conventional structure.

We then substitute K and Kc of Eq. (123) into Lfer
S of Eq. (124) and derive

−αfψ
L

1√
2

 H + 〈v〉+ iφ0

√
2iφ−

uR + βfψ
L

1√
2


√

2iφ+

H + 〈v〉 − iφ0

 dR + h.c.

= − αf√
2

[(
H +

2M

g

)
uLuR + iuLuRφ0 + i

√
2dLuRφ−

]
− αf√

2

[(
H +

2M

g

)
uRuL − iuRuLφ0 − i

√
2uRdLφ+

]
+

βf√
2

[(
H +

2M

g

)
dLdR − idLdRφ0 + i

√
2uLdRφ+

]
+

βf√
2

[(
H +

2M

g

)
uRuL + idRdLφ0 − i

√
2dRuLφ−

]
→ (126)

Using equations:

uRdL = u
1
2

(1 + γ5) d , uLdR = u
1
2

(1− γ5) d , etc., (127)

we obtain

→ − αf√
2

[(
H +

2M

g

)
uu− iuγ5uφ0 +

i√
2
d (1− γ5)uφ− − i√

2
u (1 + γ5) dφ+

]
+

βf√
2

[(
H +

2M

g

)
dd + idγ5dφ0 +

i√
2
u (1− γ5) dφ+ − i√

2
d (1 + γ5)uφ−

]
. (128)

The second term in each row may be identified with mass terms, giving two solutions for the Yukawa
couplings:

αf =
1√
2
g
mu

M
, βf = − 1√

2
g
md

M
, (129)

in terms of physical fermion masses mu and md of up and down fermions. The Lagrangian may be pre-
sented as a sum of two terms

Lfer
S = −

∑
f

mfff + Lfer,I
S , (130)

where the second term is the interaction Lagrangian:

Lfer,I
S =

∑
d

{
i

g

2
√

2
φ+
[
mu

M
u (1 + γ5) d− md

M
u (1− γ5) d

]
+i

g

2
√

2
φ−
[
md

M
d (1 + γ5)u− mu

M
d (1− γ5)u

]}
+
∑
f

(
−1

2
gH

mf

M
ff + igI

(3)
f φ0 mf

M
fγ5f

)
. (131)
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2.9 Fermion mixing

The presentation in the two preceding sections was done neglecting the fermion mixing. Here we present
a generalization for the case of mixing. We begin by rewriting the expression for Lfer

S , Eq. (124),

Lfer
S = − g√

2M
ψ
L
muKuR +

g√
2M

ψ
L
mdK

cdR + h.c. (132)

The latter could be generalized to

Lfer
S = − g√

2M

(
ψ
L

)
α

(MU)α,β K (uR)β +
g√
2M

(
ψ
L

)
α

(MD)α,β Kc (dR)β + h.c., (133)

where we introduced two columns containing all up and down fermions

(uR)β =



νe

νµ

ντ

u
c
t


R

= UR , (dR)β =



e
µ
τ
d
s
b


R

= DR , (134)

a string of Dirac-conjugated fields(
ψ
L

)
α

=
(
νe, νµ, ντ , u, c, t; e, µ, τ , d, s, b

)
L

=
(
U,D

)
L

, (135)

and complex matricesMU,D
l,q

MU =

(
MU

l O
O MU

q

)
, MD =

(
MD

l O
O MD

q

)
, (136)

with O being a zero-matrix. All these matrices are 3 × 3 matrices. It is easy to see that the Lagrangian
Eq. (133) is also gauge-invariant under transformations of Eq. (125).

Substituting scalar fields K and Kc we obtain the generalized mass term

Lfer,m
S = − g√

2M
U
′
LMUU ′R −

g√
2M

D
′
LMDD′R + h.c. (137)

In order to reduce it to the usual form, one has to diagonalize the four mass matrices. This may be achieved
with the aid of bi-unitary transformations (see Ref. [2] for a rigorous proof):

MU = U+
L mu UR , MD = D+

L mdDR , (138)

where UL, UR, DL, DR are four different unitary 6× 6 matrices:

UL =

(
(UL)l O

O (UL)q

)
, etc. (139)

Fields with primes U ′L, U
′
R, D′L, D

′
R are weak eigenstates. Introducing mass eigenstates UL, UR, DL, DR:

UL = ULU ′L , UR = URU ′R , DL = DLD′L , DR = DRD′R , (140)

we arrive at a usual mass term of the Lagrangian, written in matrix form

Lfer,m
S = − g√

2M
UmuU − g√

2M
DmdD , (141)
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where mu and md are diagonal matrices in 6-dimensional U and D spaces. The interaction part, written
in the matrix form, reads

Lfer,I
S = i

g

2
√

2
φ+
[
mu

M
U (1 + γ5) CD − md

M
U (1− γ5)CD

]

+i
g

2
√

2
φ−
[
md

M
D (1 + γ5)C†U − mu

M
D (1− γ5) C†U

]

+
∑
f

(
−1

2
gH

mf

M
ff + igI

(3)
f φ0 mf

M
fγ5f

)
. (142)

The charge boson sector contains the mixing matrix

C =

(
(UL)l (D+

L )l O
O (UL)q (D+

L )q

)
=

(
Cl O
O Cq

)
, (143)

which is non-diagonal because (UL)l and (DL)l [and (UL)q and (DL)q] are, in general, different matrices.

The fermionic mixing matrix C involves the usual Cabibbo–Kabajashi–Maskawa (CKM) mixing
in the quark sector Cq, and possible leptonic (neutrino) mixing Cl.

Finally, the fermion–vector boson interaction, Eq. (121), in presence of mixing generalizes to

Lfer,I
V =

∑
f

[
igsθQfAµfγµf + i

g

2cθ
Zµfγµ (vf + afγ5) f

]

+i
g

2
√

2
W +

µ Uγµ (1 + γ5) CD + i
g

2
√

2
W−

µ Dγµ (1 + γ5)C†U. (144)

2.9.1 Some conclusions about fermionic mixing

To summarize our study of fermion mixing, one may conclude that:

− fermionic mixing arises in the SM very naturally as a consequence of the most general Yukawa
interaction compatible with gauge invariance;

− Cq is the usual unitary CKM matrix characterized by 4 real parameters;

− Cl is its analog in lepton sector, also characterized by 4 real parameters, which are not obliged to
be equal to CKM parameters;

− we therefore have a complete lepton–quark analogy and extended SM (ESM) is a very natural ex-
tension of the conventional SM with massless neutrinos;

− no mixing arises in the neutral currents, a consequence of the unitarity of matrices (UL)l (U+
L )l, etc;

− Eq. (141) involves Dirac mass terms. I refer to the lectures of S. Bilenky [3] and M. Carena [4]
at this School for a discussion of Majorana mass terms and fermionic mixing beyond the ESM, as
well as whether the simple extension described in this lecture contradicts present experimental data
or whether we really do have experimental indications of any new physics beyond the ESM.

2.10 QCD Lagrangian

The SM, besides the electroweak sector described in full detail in this lecture, also contains the QCD
sector. For a detailed discussion of the QCD Lagrangian, I refer to the lectures of Prof. J. Stirling [5] at
this School.
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2.11 Feynman rules for vertices

Here we limit ourselves to presenting the Feynman rules for Bff vertices, where B is a boson field. They
may be straightforwardly derived from the Lagrangian of Eqs. (121) and (131). A complete collection of
bosonic and FP-ghost Feynman rules may be found in Chapter 3 of Ref. [1].

A

µ

f

f

ieQfγµ
Z

µ

f

f

i
g

2cθ
γµ (vf + afγ5)

W−

µ

u

d

i
g

2
√

2
γµ (1 + γ5)

H

f

f

−1
2

g
mf

M

φ0

f

f

igI
(3)
f

mf

M
γ5

φ−
u

d

i
g

2
√

2

[
md

M
(1 + γ5)−

mu

M
(1− γ5)

]

2.12 Summary of the two lectures

In lectures 1 and 2 we studied:

• The extended Standard Model, its Fields and Lagrangian;

• Gauge transformations and different gauges:
– general Rξ, with three parameters, ξ, ξZ , ξA ;

– t’Hooft–Feynman with all ξi = 1;

– Physical or unitary, ξ →∞, ξZ →∞, ξA = 1.

• Gauge invariance, which will lead to ξ-independence of the amplitudes of physical processes;

• Feynman rules.

We are ready to build diagrams. In the following we will distinguish:

− Born or tree level diagrams;

− loop diagrams (one-loop and multi-loop diagrams).

We emphasize again that we are working in Pauli metrics, i.e. for an on-mass-shell momentum one has:
p2 = −M2 and the scalar part of a propagator looks like

∼ 1
p2 + M2

. (145)

In our convention for Dirac γ-matrices, the left projector looks like

γL =
1 + γ5

2
. (146)
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We will use the following correspondence between physical and bare parameters

MW ↔M , MZ ↔M0 ≡
M

cθ
, sW ↔ sθ . (147)

At tree-level, we have the following identities for coupling constants and vector boson masses

s2
W

=
e2

g2
= 1− M2

W

M2
Z

, e2 = 4πα . (148)

where α = 1/137.0359895... is the fine structure constant. Therefore, s2
W

and g are not independent
parameters if MW and MZ are considered among input parameters of the theory.

3. DIMENSIONAL REGULARIZATION AND PASSARINO–VELTMAN FUNCTIONS

This lecture is devoted to basic modern tools for the calculation of loop diagrams — dimensional regular-
ization (DR) and Passarino–Veltman functions — which are based on DR and are those most commonly
used for the calculation of one-loop diagrams.

3.1 Feynman parametrization and N -point functions

We begin with a reduction of the propagator products to an integral representation. It makes use of iden-
tities, valid for any positive definite A, B, C, D...:

1
AB

=
∫ 1

0
dx

1
[Ax + B(1− x)]2

,

1
A2B

=
∫ 1

0
dx

2x

[Ax + B(1− x)]3
,

1
ABC

= 2!
∫ 1

0
dyy

∫ 1

0
dx

1
{A(1− y) + y[Bx + C(1− x)]}3

,

1
ABCD

= · · · (149)

with x, y, z... being called Feynman parameters.

Define the N-point function, i.e. a one-loop diagram with N external legs:

p1

q + p1

q + p1 + p2

p2

p3

q

d0
d1

d2

d3
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where the arrows indicate the direction of the momentum flow (all external momenta are flowing inwards
and the loop momentum flows counter-clockwise). In the figure we also introduced the scalar parts of the
propagators di,

di = (q + p1 + . . . + pi)
2 + m2

i+1 − iε . (150)

With the aid of identities, Eq. (149), the N -point function can be reduced to a linear combination of N -
point integrals

. . .

∫ 1

0
dyy

∫ 1

0
dx

{1, qµ, qµqν , . . .}(
q2 − 2q · px,y,... + m2

x,y,... − iε
)N

. (151)

They are called {scalar, vector, second rank tensor, ... } integrals corresponding to the type of numerator
in Eq. (151).

The quantities px,y,... are linear combinations of external momenta pi, and m2
x,y,... — of internal

masses m2
i and scalar products p2

i and (pj + . . . + pj+k)
2.

3.2 Basics of Dimension regularization

All formulae needed in the calculation of N -point functions may be derived from only one integral:∫
dnq

1
(q2 + m2 − iε)α = iπ

n
2
Γ
(
α− n

2

)
Γ (α)

(
m2
)n

2
−α

. (152)

For instance, making shift q → q − p, we derive the generic scalar integral:

J(p) =
∫

dnq
1

(q2 − 2q · p + m2 − iε)α = iπ
n
2
Γ
(
α− n

2

)
Γ (α)

(
m2 − p2

)n
2
−α

. (153)

Differentiating Eq. (153) ∂µJ(p) , we derive the vector:∫
dnq

qµ

(q2 − 2q · p + m2 − iε)α = iπ
n
2
Γ
(
α− n

2

)
Γ (α)

(
m2 − p2

)n
2
−α

pµ . (154)

With one more differentiation, we derive the second rank tensor:∫
dnq

qµqν

(q2 − 2q · p + m2 − iε)α = iπ
n
2

1
Γ (α)

(
m2 − p2

)n
2
−α

(155)

×
[
1
2
δµν

(
m2 − p2

)
Γ
(

α− 1− n

2

)
+ pµpνΓ

(
α− n

2

)]
,

etc. We present, for completeness, the third and fourth rank tensors too:∫
dnq

qµqνqρ

(q2 − 2q · p + m2 − iε)α = iπ
n
2

1
Γ (α)

(
m2 − p2

)n
2
−α

(156)

×
[
1
2

(
δµνpρ + δµρpν + δνρpµ

) (
m2 − p2

)
Γ
(

α− 1− n

2

)
+pµpνpρΓ

(
α− n

2

)]
,∫

dnq
qµqνqρqσ

(q2 − 2q · p + m2 − iε)α = iπ
n
2

1
Γ (α)

(
m2 − p2

)n
2
−α

(157)

×
[
1
4

(
δµνδρσ + δµρδνσ + δνρδµσ

)(
m2 − p2

)2
Γ
(

α− 2− n

2

)
+

1
2

(
δµνpρpσ + δµρpνpσ + δµσpνpρ + δνρpµpσ

+δνσpµpρ + δρσpµpν

) (
m2 − p2

)
Γ
(

α− 1− n

2

)
+pµpνpρpσΓ

(
α− n

2

)]
.
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In particular, consider Eq. (152) for the case m2 = 0. Since it holds for any n, we may choose
n/2− α > 0 and then let m2 = 0. Then, we will have∫

dnq
1

(q2)α = 0 . (158)

This may be continued for any n. Therefore, in dimension regularization the integral in Eq. (158) is zero
for any values of α.

3.3 Divergence counting: poles versus powers

3.3.1 Ultraviolet divergences

Consider a vector boson self-energy diagram with an internal W boson loop:

W−

W +

In the unitary gauge, the following integral over internal momentum q corresponds to it:

Πρσ ∼
∫

dnq

(
δµν +

qµqν

M2

)[
δαβ +

(q + p)α (q + p)β

M2

]
(q2 + M2)

[
(q + p)2 + M2

] ΓρµαΓσνβ

=
∫

dnq

(
δµνδαβ +

qµqν

M2
δαβ +

qµqνqαqβ

M4
+ . . .

)
ΓρµαΓσνβ

(q2 + M2)
[
(q + p)2 + M2

] , (159)

ln Λ Λ2 Λ4

1
n− 4

1
n− 2

1
n− 0

.

In the second row, we considered selected scalar and two tensor integrals contributing to it. Applying
trivial counting of powers of q in the numerator and denominator, it is easy to see that various terms in
the third row have indicated ultraviolet cut-off divergences, which correspond to poles in space-time di-
mensions n = 4, 2, 0, respectively, as shown in the fourth row. This is an example of the general rule of
correspondence between powers of the cut-off divergences and poles in n.

3.3.2 Infrared divergences

Consider another example, the QED vertex diagram:

µ

p2

p1

q

Q
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with two momentum on-shell p2
1 = p2

2 = −m2 and Q2 = (p1 + p2)
2. In the Feynman gauge the follow-

ing integral corresponds to it:

Λµ ∼
∫

dnq
(−2p2ν + γν/q)γµ(2p1ν + /qγν)

q2
[
(q + p1)

2 + m2
] [

(q − p2)
2 + m2

]
=

∫
dnq
−4p1 · p2γµ + 2 (/p1γαγµ − γµγα/p2) qα + (2− n) γαγµγβqαqβ

q2
(
q2 + 2q · p1

)(
q2 − 2q · p2

) , (160)

Scalar Vector Tensor

Infrared Finite Ultraviolet .

Here we have scalar, vector, and tensor integrals with different types of divergences. The scalar exhibits
infrared divergence, the vector is finite, and the tensor is ultraviolet divergent.

In all the considered cases the type of divergence may be determined by counting the powers of q
in the numerator and denominator in the corresponding regimes:
– ultraviolet, when q →∞;
– infrared, when q → 0.

In what follows, we will use the dimensional regularization while calculating 1, 2, 3, 4-point one-
loop integrals using the language of the A, B, C, D functions by Passarino and Veltman.

3.4 One-point integrals, A functions

One-point integrals are met in the calculation of tadpole diagrams:

m

and in the reduction of higher-order integrals.

3.4.1 Scalar one-point integral

The A0 function is defined by the integral

iπ2 A0 (m) = µ4−n
∫

dnq
1

q2 + m2 − iε
, (161)

where we introduced the t’Hooft scale parameter µ in order to prevent changing the dimension of this in-
tegral at the variation of the space-time dimension n. The integral is computed using the general formula,
Eq. (152) with α = 1,

A0 (m) = πn/2−2Γ
(

1− n

2

)
m2

(
m2

µ2

)n/2−2

. (162)

If one introduces ε = 4− n and expands around n = 4 then

A0 (m) = m2
(
−2

ε
+ γ + lnπ + ln

m2

µ2

)
− 1 +O (ε) . (163)

It is customary to define a quantity 1/ε̄ by

1
ε̄

=
2
ε
− γ − lnπ , (164)

36



then by dropping higher orders in ε, we get the final answer

A0 (m) = m2
(
−1

ε̄
+ ln

m2

µ2
− 1

)
. (165)

Note that the pole has an ultraviolet origin and that it is accompanied by a scale-containing logarithm.

3.4.2 Tensor one-point integrals

The vector-like A1 is zero, since the A functions do not depend on an external momentum and it is im-
possible to construct a vector, as well as any odd-rank tensor. The even-rank tensors may be constructed
and the lowest order, second rank, tensor must be proportional to δµν , i.e.

iπ2 Aµν (m) = µ4−n
∫

dnq
qµqν

q2 + m2 − iε
,

Aµν (m) = A2 (m) δµν . (166)

To calculate it, we contract Eq. (166) with δµν , use Eqs. (158) and (165) and expand around n = 4 again,
where one should proceed carefully, namely

1
n

1
ε̄

=
1

4− ε

(
2
ε

+ . . .

)
=

1
4

1
ε̄

+
1
8

. (167)

In this way, we finally derive

A2 (m) = −1
4

m2A0 (m) +
1
8
m4 . (168)

Rank four tensor integral may be reduced in a similar way, see Section 5.1.1.2 of Ref. [1].

3.5 Two-point integrals, B functions

B functions appear when considering self-energies and transitions

p→
m1

m2

Their family is far more reach compared to A functions.

3.5.1 Scalar two-point integral

The scalar B0 function is defined by the integral containing two propagators d0 and d1, one of which
depends on an arbitrary external momentum p:

iπ2B0

(
p2;m1, m2

)
= µ4−n

∫
dnq

1
d0d1

,

d0 = q2 + m2
1 − iε, d1 = (q + p)2 + m2

2 − iε . (169)

Using Eq. (152) for α = 2, it is easy to derive the general result for the B0 function, valid for arbitrary
internal masses

B0

(
p2;m1, m2

)
=

1
ε̄
−R− ln

m1m2

µ2
+

m2
1 −m2

2

2p2
ln

m2
1

m2
2

+ 2 . (170)
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where Λ2 = λ
(
−p2, m2

1, m
2
2

)
is the Källen function: λ (x, y, z) = x2 +y2 + z2−2xy−2xz−2yz, and

R = − Λ
p2

ln
p2 − iε + m2

1 + m2
2 − Λ

2 m1m2
. (171)

Some particular cases are also frequently met:

1. if m1 = m2 = m

B0

(
p2;m, m

)
=

1
ε̄
− ln

m2

µ2
+ 2− β ln

β + 1
β − 1

, β2 = 1 +
4m2

p2 − iε
; (172)

2. if one of the internal masses is zero

B0

(
p2; 0, m

)
=

1
ε̄
− ln

m2

µ2
+ 2−

(
1 +

m2

p2

)
ln

(
1 +

p2 − iε

m2

)
; (173)

3. if both internal lines are massless

B0

(
p2; 0, 0

)
=

1
ε̄
− ln

p2 − iε

µ2
+ 2 . (174)

The B0 function develops an imaginary part above the physical threshold, s = −p2 ≥ (m1 + m2)2:

ImB0

(
p2;m1, m2

)
= π

√
λ
(
s, m2

1, m
2
2

)
s

θ
(
s− (m1 + m2)

2
)

. (175)

3.5.2 Tensor two-point integrals

Here we describe the calculation of the vector and tensor B functions. The calculation exploits the so-
called reduction to a linear combinations of scalar functions. We begin with the vector:

iπ2Bµ

(
p2;m1, m2

)
= µ4−n

∫
dnq

qµ

d0d1
= iπ2B1

(
p2;m1, m2

)
pµ . (176)

Using the relations

q2 = d0 −m2
1 , q · p =

1
2

(
d1 − d0 + f b

1

)
, with f b

1 = −p2 + m2
1 −m2

2 , (177)

we derive the identity

p2 B1

(
p2;m1, m2

)
=

1
2

[
A0 (m1)−A0 (m2) + f b

1B0

(
p2;m1, m2

)]
, (178)

which is the required reduction to the scalar integrals. One may easily derive a symmetry property:

B1

(
p2;m2, m1

)
= −B1

(
p2;m1, m2

)
−B0

(
p2;m1, m2

)
. (179)

The rank two tensor integral can be reduced to two functions B21 and B22:

iπ2Bµν

(
p2;m1, m2

)
= µ4−n

∫
dnq

qµqν

d0d1
= iπ2

[
B21

(
p2;m1, m2

)
pµpν + B22

(
p2;m1, m2

)
δµν

]
.

(180)
The last relation can be multiplied by δµν and by pν , which leads to the system of two linear equations
for B21 and B22:

p2B21

(
p2;m1, m2

)
+ nB22

(
p2;m1, m2

)
= A0 (m2)−m2

1B0

(
p2;m1, m2

)
,

p2B21

(
p2;m1, m2

)
+ B22

(
p2;m1, m2

)
=

1
2

[
A0 (m2) + f b

1B1

(
p2;m1, m2

)]
. (181)
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The appearance of n in front of a function to be derived prevents the trivial solution of this system. In
order to solve it, and similar ones, we have to know the singular parts of all one- and two-point functions.
Only then may we properly expand around n = 4 (cf. discussion around Eq. (167)). The calculation of
poles may be achieved straightforwardly with the aid of the formulae in Section 3.2. We derive:

B0

(
p2;m1, m2

)
=

1
ε̄
−
∫ 1

0
dx ln

(
χ

µ2

)
sing→ 1

ε̄
,

B1

(
p2;m1, m2

)
= −1

2
1
ε̄

+
∫ 1

0
dxx ln

(
χ

µ2

)
sing→ −1

2
1
ε̄

,

B21

(
p2;m1, m2

)
=

1
3

1
ε̄
−
∫ 1

0
dxx2 ln

(
χ

µ2

)
sing→ 1

3
1
ε̄

,

B22

(
p2;m1, m2

)
= −1

2

(
1
ε̄

+ 1
)∫ 1

0
dxχ +

1
2

∫ 1

0
dxχ ln

(
χ

µ2

)
sing→ −1

4

(
m2

1 + m2
2 +

1
3
p2
)

1
ε̄

, (182)

where we used

χ(x) = −p2x2 +
(
p2 + m2

2 −m2
1

)
x + m2

1 − iε . (183)

Using the relations in Eq. (182), we obtain (analogously to the derivation of Eq. (167))

n B22

(
p2;m1, m2

)
= 4 B22

(
p2;m1, m2

)
+

K2

6
,

K2 = p2 + 3
(
m2

1 + m2
2

)
. (184)

Furthermore, we introduce the matrix

X2 =

(
p2 4
p2 1

)
, (185)

and the vector b with components

b1 = A0 (m2)−m2
1B0

(
p2;m1, m2

)
− K2

6
,

b2 =
1
2

[
A0 (m2) + f b

1B1

(
p2;m1, m2

)]
. (186)

The B2i
(
p2;m1, m2

)
functions can be obtained by inversion

B2i

(
p2;m1, m2

)
= [X2]

−1
ij bj . (187)

3.5.3 List of the final results

B1

(
p2;m1, m2

)
=

1
2p2

[
A0 (m1)−A0 (m2) +

(
∆m2 − p2

)
B0

(
p2;m1, m2

)]
,

B21

(
p2;m1, m2

)
=

3
(
m2

1 + m2
2

)
+ p2

18p2
+

∆m2 − p2

3p4
A0 (m1)−

∆m2 − 2p2

3p4
A0 (m2)

+
λ
(
−p2, m2

1, m
2
2

)
− 3p2m2

1

3p4
B0

(
p2;m1, m2

)
,

B22

(
p2;m1, m2

)
= −3

(
m2

1 + m2
2

)
+ p2

18
− ∆m2 − p2

12 p2
A0 (m1) +

∆m2 + p2

12 p2
A0 (m2)

−λ
(
−p2, m2

1, m
2
2

)
12p2

B0

(
p2;m1, m2

)
, with ∆m2 = m2

1 −m2
2 . (188)
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3.5.4 Reduction for p2 = 0

As seen from Eq. (188), the reduction fails at p2 = 0. In this case, the results should be derived from the
integral representations Eq. (182)

B0 (0;m1, m2) =
A0 (m2)−A0 (m1)

m2
1 −m2

2

,

B1 (0;m1, m2) = −1
2
B0 (0;m1, m2) +

1
2

(
m2

1 −m2
2

)
B0p (0;m1, m2) ,

where B0p (0;m1, m2) =
∂B0

(
p2;m1, m2

)
∂p2

∣∣∣∣∣
p2=0

,

B22 (0;m1, m2) = −1
4

(
m2

1 + m2
2

)(1
ε̄
− ln

m1m2

µ2
+

3
2

)
+

m4
1 + m4

2

8
(
m2

1 −m2
2

) ln
m2

1

m2
2

. (189)

3.5.5 Derivatives of B functions

In actual calculations one also needs the derivatives of B functions (already seen in Eq. (189)). They ap-
pear in the renormalization factors associated with external lines. Again, from the integral representations
Eq. (182), we derive:

∂B{0;1;21}
∂p2

= −
∫ 1

0
dx
{x;−x2;x3} (1− x)

χ
,

∂B22

∂p2
= − 1

12
1
ε̄

+
1
2

∫ 1

0
dxx (1− x) ln

(
χ

µ2

)
. (190)

They all but derivative of B22 are finite. The latter contains an UV-pole. For QED diagrams the deriva-
tives are infrared divergent and must be regularized. As usual, we use the dimensional regularization,
however, now we have to use n = 4 + ε′. We derive

B0

(
p2; m, 0

)
= πn/2−2Γ

(
2− n

2

)∫ 1

0
dx

(
χ

µ2

)n/2−2

, with χ(x) = (1− x) (p2x + m2) ,

∂

∂p2
B0

(
p2;m, 0

)
= −πε′/2Γ

(
1− ε′

2

) ∫ 1

0
dx

x (1− x)
χ (x)

(
χ (x)
µ2

)ε′/2

,

∂

∂p2
B0

(
p2;m, 0

) ∣∣∣∣∣
p2=−m2

= −πε′/2Γ
(

1− ε′

2

)
1

m2

(
m2

µ2

)ε′/2 (
1
ε′
− 1

1 + ε′

)
. (191)

Expanding the various terms in ε′, we obtain

∂

∂p2
B0

(
p2;m, 0

) ∣∣∣∣∣
p2=−m2

= − 1
2m2

(
1
ε̂
− 2 + ln

m2

µ2

)
, (192)

where we introduced the infrared pole:

1
ε̂

=
2
ε′

+ γ + lnπ =
2

n− 4
+ γ + lnπ = −1

ε̄
. (193)

Similarly, one obtains the derivative of B1:

∂

∂p2
B1

(
p2;m, 0

) ∣∣∣∣∣
p2=−m2

=
πε′/2

m2
Γ
(

1− ε′

2

)(
m2

µ2

)ε′/2 (
1
ε′
− 2

1 + ε′
+

1
2 + ε′

)

=
1

2m2

(
1
ε̂
− 3 + ln

m2

µ2

)
. (194)
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In this section we have presented quite an exhaustive study of B functions and their basic properties. As
we have seen, they are much more involved than the simple case of A functions. A similar degree of
complication takes place at each step towards the C and D functions. For this reason it would be impos-
sible to cover the subject with the same degree of detail as for the A and B functions in these lectures.
Therefore, I will limit myself to definitions and to a minimal amount of information about 3- and 4-point
functions. For more details, refer to Sections 5.1.4 and 5.1.5 of the book in Ref. [1].

3.6 Three-point integrals, C functions

C functions appear when considering vertices:

m1

m2

m3

p1

p3

p23.6.1 Scalar 3-point function

This is defined by the integral:

iπ2 C0

(
p2

1, p
2
2, Q

2;m1, m2, m3

)
= µ4−n

∫
dnq

1
d0d1d2

, (195)

where di are

d0 = q2 + m2
1 − iε , d1 = (q + p1)

2 + m2
2 − iε , d2 = (q + Q)2 + m2

3 − iε . (196)

Next, Q = p1 + p2 and Q2 = (p1 + p2)
2 is one of the Mandelstam variables, Q2 = −s(t or u), for an

arbitrary 2→ 2 amplitude. In terms of a particular choice of Feynman parameters C0 becomes

C0

(
p2

1, p
2
2, Q

2;m1, m2, m3

)
=
∫ 1

0
dx

∫ x

0
dy
(
ax2 + by2 + cxy + dx + ey + f

)−1
, (197)

with

a = −p2
2 , b = −p2

1 , c = p2
1 + p2

2 −Q2, d = p2
2 + m2

2 −m2
3 ,

e = −p2
2 + Q2 + m2

1 −m2
2 , f = m2

3 − iε . (198)

The scalar C0 function is invariant under simultaneous cyclic permutations in the two sets of arguments:
{p2

1p
2
2Q

2} and {m1m2m3}.

3.6.2 An example of the massive C0 function

There is only one generic three-point scalar integral which occurs in the calculation of two fermion pro-
duction when all external fermionic masses are ignored. In this case only one fermion mass has to be kept
— the top-quark mass, which appears in the virtual state. To such a C0 function, the following choice cor-
responds:

p2
1,2 = 0, (p1 + p2)

2 = Q2, m1 = M1 , m2 = M2 , m3 = M3 . (199)

Then the coefficients in the quadratic form in Eq. (198) become:

a = 0 , b = 0 , c = −Q2 ,

d = M2
2 −M2

3 , e = Q2 + M2
1 −M2

2 , f = M2
3 − iε ,
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and the integral in Eq. (197) for C0 reduces to

C0

(
0, 0, Q2;M1, M2, M3

)
=
∫ 1

0
dx

∫ x

0
dy

1
χ(x, y)

, (200)

where the quadratic in the x and y form χ in this case linearizes (a = b = 0):

χ(x, y) = Q2y (1− x) + M2
1 y + M2

2 (x− y) + M2
3 (1− x) . (201)

In this particular case we get

C0 =
1

Q2

3∑
i=1

(−1)δi3

[
Li2

(
x0 − 1
x0 − xi

)
− Li2

(
x0

x0 − xi

)]
, (202)

with four different roots

x0 = 1 +
M2

1 −M2
2

Q2
, x3 =

M2
3

M2
3 −M2

2

,

x1,2 =
Q2 + M2

1 −M2
3 ∓

√
λ
(
−Q2, M2

1 , M2
3

)
2Q2

. (203)

The dilogarithm function is defined by:

Li2 (x) = −
∫ 1

0
dy

ln (1− xy)
y

. (204)

All masses squared are understood with equal infinitesimal imaginary parts: M2
i → M2

i − iε. It is nec-
essary to properly define the analytic continuation at Q2 → −s.

3.6.3 The special cases which are met in practical calculations

C0

(
0, 0, Q2;M1, 0, M3

)
=

1
Q2

ln
x2

x2 − 1
ln

x1 − 1
x1

,

C0

(
0, 0, Q2;M1, 0, M1

)
=

1
Q2

ln2 βQ + 1
βQ − 1

, βQ =

√
1 +

4M2
1

Q2
,

C0

(
0, 0, Q2;M1, M2, 0

)
= C0

(
0, 0, Q2; 0, M2, M1

)
=

1
Q2

[
Li2

(
1− M2

1

M2
2

)
− Li2

(
1− Q2 + M2

1

M2
2

)]
,

C0

(
0, 0, Q2; 0, M2, 0

)
=

1
Q2

[
Li2 (1)− Li2

(
1− Q2

M2
2

)]
,

C0

(
−m2,−m2, Q2; 0, m, 0

)
=

1
m2 (y1 − y2)

[
2Li2

(
1
y1

)
− 2Li2

(
1
y2

)
+ Li2 (y1)− Li2 (y2)

]
,

(205)

with

y1,2 = − m2

2Q2

1±
√

1 +
4m2

Q2

 . (206)
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3.6.4 Infrared divergent C0 function

In all the cases considered above the C0 functions were finite. However, the QED vertex contains IRD
divergence. It deserves a special study. The corresponding vertex:

f

f

A
f

f

is divergent at p2
1 = −m2, p2

2 = −m2 and in order to regularize it, in older days people introduced
infinitesimal photonic mass, m2 = λ, with λ being small with respect to all the other quantities. Although
by now the infrared singularities are treated within the dimensional regularization approach, this example
is a useful bridge with the mass-regularization method. The defining integral in this case reads:

C0

(
−m2,−m2, Q2;m, λ, m

)
=
∫ 1

0
dy

∫ 1

0
dx

x

χ(x, y)
, (207)

where

χ(x, y) = x2χ(y) + λ2 (1− x)− iε, with χ(y) = m2 + Q2y (1− y) . (208)

Integrating it once and exploiting the infinitesimalness of λ ,∫ 1

0
dx

x

χ(y)x2 + λ2 (1− x)
=

1
2χ(y)

ln
(

χ(y)
λ2

)
+O

(
λ√
χ(y)

)
, (209)

we obtain the following decomposition:

C0 =
1
2

[
F1 ln

(
µ2

λ2

)
+ F2

]
,

F1 =
∫ 1

0
dy

1
χ (y)

=
2

Q2βm
ln

βm + 1
βm − 1

,

F2 =
∫ 1

0
dy

1
χ (y)

ln
χ (y)
µ2

= F1 ln

(
Q2 − iε

µ2

)

+
1

Q2βm

[
ln

βm + 1
βm − 1

ln
m2β2

m

Q2
− 2Li2

(
βm + 1
2βm

)
+ 2Li2

(
βm − 1
2βm

)]
, (210)

with

β2
m = 1 +

4m2

Q2
. (211)

In the next lecture, I will present the derivation of this C0 by the dimensional regularization method. It
will be shown that the identification

ln
(

µ

λ

)2

↔ 1
ε̂

(212)

establishes the bridge between the two regularizations.

In the most general case the C0 function contains 12 dilogarithms and several Veltman’s η-func-
tions, see Section 5.1.4.3 of Ref. [1].
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3.6.5 Tensor three-point integrals

The rank one tensor integral is defined by

iπ2Cµ

(
p2

1, p
2
2, Q

2;m1, m2, m3

)
= µ4−n

∫
dnq

qµ

d0d1d2
, (213)

and its decomposition looks like

iπ2
[
C11

(
p2

1, p
2
2, Q

2;m1, m2, m3

)
p1µ + C12

(
p2

1, p
2
2, Q

2;m1, m2, m3

)
p2µ

]
. (214)

The rank two tensor integral,

iπ2Cµν = µ4−n
∫

dnq
qµqν

d0d1d2
, (215)

already contains four structures

iπ2
[
C21p1µp1ν + C22p2µp2ν + C23 {p1p2}µν + C24δµν

]
, (216)

where the symmetrized combination is introduced

{p1p2}µν = p1µp2ν + p1νp2µ . (217)

The reduction of these tensors is developed using standard technique. All the details may be found in
Sections 5.1.4.4 and 5.1.4.5 of Ref. [1].

3.7 Four-point integrals, D functions

They appear in the calculation of box diagrams.

m3

m2

m1

m4

p1

p2 p3

p4

Fig. 1: The box diagram.

The four-point functions are again much more complicated than the previous ones. Only definitions and
some particular cases will be presented here.

3.7.1 The scalar four-point integral, D0 function

The integral defining a D0 function with 10 arguments is

iπ2D0

(
p2

1, p
2
2, p

2
3, p

2
4, (p1 + p2)

2 , (p2 + p3)
2 ;m1, m2, m3, m4

)
= µ4−n

∫
dnq

1
d0d1d2d3

. (218)

The four propagators in this case are

d0 = q2 + m2
1 − iε , d1 = (q + p1)

2 + m2
2 − iε ,

d2 = (q + p1 + p2)
2 + m2

3 − iε , d3 = (q + p1 + p2 + p3)
2 + m2

4 − iε ,

with all four-momenta flowing inwards as shown in Fig. 1, so that p1 + p2 + p3 + p4 = 0. In terms of
Feynman variables x, y and z it reads

D0 =
∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

1
(ax2 + by2 + gz2 + cxy + hxz + jyz + dx + ey + kz + f)2 , (219)
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with

a = −p2
23 = −p2

3 , b = −p2
12 = −p2

2 ,

g = −p2
01 = −p2

1 , c = −p2
13 + p2

12 + p2
23 ,

h = −p2
03 − p2

12 + p2
02 + p2

13 , j = −p2
02 + p2

01 + p2
12 ,

d = m2
3 −m2

4 + p2
23 , e = m2

2 −m2
3 + p2

13 − p2
23 ,

k = m2
1 −m2

2 + p2
03 − p2

13 , f = m2
4 − iε ,

and p2
ij = (pi − pj)2 .

3.7.2 Reduction of tensor four-point integrals

The 1-, 2- and 3-rank tensors

iπ2
{
Dµ;Dµν ;Dµνα

}
= µ4−n

∫
dnq
{qµ; qµqν ; qµqνqα; qµqνqαqβ}

d0d1d2d3
, (220)

contain 3, 7 and 13 structures and tensor functions Dij , respectively:

Dµ = D11p1µ + D12p2µ + D13p3µ ,

Dµν = D21p1µp1ν + D22p2µp2ν + D23p3µp3ν

+D24 {p1p2}µν + D25 {p1p3}µν + D26 {p2p3}µν + D27δµν ,

Dµνα = D31p1µp1νp1α + D32p2µp2νp2α + D33p3µp3νp3α

+D34 {p2p1p1}µνα + D35 {p3p1p1}µνα + D36 {p1p2p2}µνα

+D37 {p1p3p3}µνα + D38 {p3p2p2}µνα + D39 {p2p3p3}µνα

+D310 {p1p2p3}µνα + D311 {p1δ}µνα + D312 {p2δ}µνα + D313 {p3δ}µνα . (221)

For rank-3 tensor an additional symmetrized structure appears

{pkl}µνα = pµ {kl}να + kµ {pl}να + lµ {pk}να . (222)

The reduction is performed by making use of standard technique. Details may be found in Section 5.1.5.2
of Ref. [1].

For the e+e− annihilation into fermion pairs, SM boxes are met only in two topologies: direct or
crossed. For WW internal lines there is a peculiar aspect due to charge conservation:

only direct box is present for e+e− → dd ;
only crossed box is present for e+e− → uu .

The full collection of box diagrams for e+e− annihilation into a fermion pair is presented in the Fig. 2.

e+ (Z, A) f

e f

e− (Z, A) f

+

e+ (Z, A) f

e f

e− (Z, A) f

AA-, ZA-, ZZ-boxes
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e+ W d

νe u

e− W d

+

e+ W u

νe d

e− W u

Fig. 2: WW -boxes.

3.7.3 Some particular cases of D0 functions

Case 1). The most general expression which one encounters when considering ZZ and WW boxes with
four massless external fermions is obtained with

p2
i = 0 , (p1 + p2)

2 = Q2, (p2 + p3)
2 = P 2,

m1 = M1 , m2 = 0 , m3 = M1 , m4 = M2 . (223)

With an appropriate choice of Feynman parameters it may be presented and calculated as follows:

D0

(
0, 0, 0, 0, Q2, P 2;M1, 0, M1, M2

)
=
∫ 1

0
dz

∫ 1

0
ydy

∫ 1

0
dx

× 1[
M2

1 y + M2
2 (1− y) + P 2(1− y)(1− z) + Q2zy2x(1− x)

]2
=

1
Q2(P 2 + M2

2 )
√

d4

4∑
i=1

2∑
j=1

(−1)δi3+δj2

[
Li2

(
x̄j

x̄j − xi

)
− Li2

(
x̄j − 1
x̄j − xi

)]
, (224)

with six roots

x1,2 =
1
2

1∓
√

1 +
4M2

1

Q2

 , x̄1,2 =
x4

2

(
1∓

√
d4

)
,

x3 =
M2

2

M2
2 −M2

1

, x4 =
P 2 + M2

2

P 2 + M2
2 −M2

1

, (225)

and

d4 = 1 +
4M2

1 P 2
(
P 2 + M2

2 −M2
1

)
Q2
(
P 2 + M2

2

)2 . (226)

For M2 = 0 (in practical applications mt = 0), it simplifies to

D0

(
0, 0, 0, 0, Q2, P 2;M1, 0, M1, 0

)
=

2

Q2P 2

√
d

(0)
4

2∑
ij=1

(−1)i+1 Li2

(
x̃i

x̃i − xj

)
, (227)

with the roots

x̃1,2 =
x4

2

(
1∓

√
d

(0)
4

)
, d

(0)
4 = 1 +

4M2
1

(
P 2 −M2

1

)
Q2P 2

. (228)

Case 2). This case is encountered when considering ZA and AA boxes, where it is useful to introduce
three infrared free auxiliary integrals:

iπ2J̄γγ

(
Q2, P 2;me, mf

)
= µ4−n

∫
dnq

2q · (q + Q)
d0 (0) d1 (me) d2 (0) d3 (mf )

,

iπ2J̄γZ

(
Q2, P 2;me, mf

)
= µ4−n

∫
dnq

2q ·Q
d0 (0) d1 (me) d2 (MZ ) d3 (mf )

,

iπ2J̄Zγ

(
Q2, P 2;me, mf

)
= µ4−n

∫
dnq

2Q · (q + Q)
d0 (MZ ) d1 (me) d2 (0) d3 (mf )

. (229)
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These auxiliary integrals are simple to calculate. Moreover, the following identities are very useful to
exhibit and disentengle the infrared behaviour of the scalar functions D0:

D0

(
−m2

e,−m2
e,−m2

f ,−m2
f , Q2, P 2; 0, me, 0, mf

)
=

1
Q2

[
−J̄γγ

(
Q2, P 2;me, mf

)
+C0

(
−m2

e,−m2
f , P 2;me, 0, mf

)
+ C0

(
−m2

f ,−m2
e, P

2;mf , 0, me

)]
,

D0

(
−m2

e,−m2
e,−m2

f ,−m2
f , Q2, P 2; 0, me, MZ , mf

)
=

1
Q2 + M2

Z

[
−J̄γZ

(
Q2, P 2;me, mf

)
−C0

(
−m2

e,−m2
f , P 2;me, MZ , mf

)
+ C0

(
−m2

f ,−m2
e, P

2;mf , 0, me

)]
,

D0

(
−m2

e,−m2
e,−m2

f ,−m2
f , Q2, P 2;MZ , me, 0, mf

)
=

1
Q2 + M2

Z

[
J̄Zγ

(
Q2, P 2;me, mf

)
+C0

(
−m2

e,−m2
f , P 2;me, 0, mf

)
− C0

(
−m2

f ,−m2
e, P

2;mf , MZ , me

)]
. (230)

Here we present the answers for the auxiliary integrals, in terms of one-fold integrals:

J̄γγ

(
Q2, P 2;me, mf

)
=

∫ 1

0
dx

1
χ (P 2;me, mf )

ln
χ
(
P 2;me, mf

)
Q2

, (231)

J̄γZ

(
Q2, P 2;me, mf

)
= −J̄Zγ

(
Q2, P 2;me, mf

)
= ln

M2
Z

+ Q2

M2
Z

∫ 1

0
dx

1
χ (P 2;me, mf )

,

where χ
(
P 2;me, mf

)
= P 2x (1− x) + m2

e (1− x) + m2
fx is the usual quadratic form. The explicit

answers for J̄γ{γ,Z}
(
Q2, P 2;me, mf

)
may be be found in Section 5.1.5.3 of Ref. [1].

3.8 Special PV functions: a, b, c(j), d(j)

The standard Passarino–Veltman (PV) functions, A, B, C, D, considered in this lecture, are sufficient to
calculate one-loop corrections in ξ = 1 and U gauges. In the Rξ-gauge additional complications arise. Let
us consider a diagram with internal photonic lines, with photon propagators, which contain an additional
term (ξ2

A
− 1)qµqν/q2, Fig. 3. This leads to a special class of two- (three-, four-) point functions.

W

W

γ

Fig. 3: An example of Feynman diagram leading to special PV functions.

3.8.1 The scalar b0 function

It is defined by the integral:

iπ2 b0

(
p2;m

)
= µ4−n

∫
dnq

1

(q2)2
(
(q + p)2 + m2

) . (232)

This integral is a badly divergent object in the infrared regime. Using the standard infrared regularization:
n = 4 + ε′, ε′ > 0, and introducing a dimensionless χ = 1 + (1− x)p2/m2, we have

b0

(
p2;m

)
= πε′/2Γ

(
1− ε′

2

)(
m2

µ2

)ε′/2 ∫ 1

0
dx x−1+ε′/2 (1− x)χ−1+ε′/2

m2
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≈ πε′/2Γ
(

1− ε′

2

)(
m2

µ2

)ε′/2 ∫ 1

0
dx x−1+ε′/2 h(x),

h(x) =
1− x

m2χ

(
1 +

ε′

2
lnχ

)
. (233)

By adding and subtracting h(0) and by noticing that x−1 [h(x)− h(0)] is finite for ε′ → 0, we obtain

b0

(
p2;m

)
=

1
p2 + m2

[
1
ε̂

+ ln
m2

µ2
+

(
1− m2

p2

)
ln

(
1 +

p2

m2

)]
. (234)

This integral is defined in the whole n-plane for p2 6= −m2 and it shows an infrared pole at n = 4.

3.8.2 Vector b1 function

This is defined by

iπ2b1

(
p2;m

)
pµ = µ4−n

∫
dnq

qµ

(q2)2
(
(q + p)2 + m2

)
= −iπn/2pµΓ

(
3− n

2

) ∫ 1

0
dx

xn/2−2 (1− x)

(m2χ)3−n/2
. (235)

This function is free of singularities if p2 6= −m2, where it could be computed at n = 4. We have

b1

(
p2;m

)
= −

∫ 1

0
dx

x

m2 + p2x
= − 1

p2

[
1− m2

p2
ln

(
1 +

p2

m2

)]
. (236)

There is an alternative way of evaluating b1
(
p2;m

)
. With d = (q + p)2 + m2, we derive

iπ2p2b1

(
p2;m

)
=

1
2

∫
dnq

[
1

(q2)2 −
1

q2d
− p2 + m2

(q2)2 d

]
,

p2b1

(
p2;m

)
=

1
2

[
a0 −B0

(
p2; 0, m

)
−
(
p2 + m2

)
b0

(
p2;m

)]
. (237)

In the previous derivation we have introduced a new integral,

iπ2 a0 =
∫

dnq
1

(q2)2 . (238)

Since we have,

B0

(
p2; 0, m

)
=

1
ε̄

+ 2− ln
m2

µ2
−
(

1 +
m2

p2

)
ln

(
1 +

p2

m2

)
, (239)

then from Eqs. (234) and (236), which are valid for any n, we obtain the proper definition of this integral

a0 =
1
ε̂

+
1
ε̄

= 0 , (240)

fully consistent with our previous findings, cf. Eq. (158). In this way we derive a typical relation between
special and standard PV functions

p2b1

(
p2;m

)
= −1

2

[
B0

(
p2; 0, m

)
+
(
p2 + m2

)
b0

(
p2;m

)]
. (241)
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3.8.3 The rank two tensor integral

The tensor is defined by

iπ2 (b21pµpν + b22δµν) = µ4−n
∫

dnq
qµqν

(q2)2
(
(q + p)2 + m2

) . (242)

Using Feynman parametrization (the second Eq. (149), and Eq. (155)), we derive

b22

(
p2;m

)
=

1
2
πn/2−2µ4−nΓ

(
2− n

2

) ∫ 1

0
dx x (1− x)n/2−2

(
m2 + p2x

)n/2−2
. (243)

From which it is easy to obtain the singular part of b22
(
p2;m

)
and the rule of multiplication by n:

n b22

(
p2;m

)
= 4 b22

(
p2;m

)
− 1

2
. (244)

By applying of the usual method one obtains the system:

p2b21

(
p2;m

)
+ nb22

(
p2;m

)
= B0

(
p2; 0, m

)
,

p2b21

(
p2;m

)
+ b22

(
p2;m

)
=

1
2

[
B1

(
p2; 0, m

)
+
(
p2 + m2

)
.b1

(
p2;m

)]
, (245)

and its solution

b22

(
p2;m

)
=

1
3

B0

(
p2; 0, m

)
+

1
6

[
B1

(
p2; 0, m

)
+
(
p2 + m2

)
b1

(
p2;m

)
+ 1

]
,

b21

(
p2;m

)
= −4 b22

(
p2;m

)
+ B0

(
p2; 0, m

)
+

1
2

. (246)

After the identification 1/ε̂ = −1/ε̄ the following identities may be established:(
p2 + m2

)2
b0

(
p2;m

)
= 2A0 (m) + 2 p2 −

(
p2 −m2

)
B0

(
p2; 0, m

)
,(

p2 + m2
)

b1

(
p2;m

)
= −1− 1

p2

[
A0 (m) + m2 B0

(
p2; 0, m

)]
, (247)

which give more relations between special and standard PV functions:

b22

(
p2; m

)
=

1
3

B0

(
p2; 0, m

)
+

1
6

{
B1

(
p2; 0, m

)
− 1

p2

[
A0 (m) + m2B0

(
p2; 0, m

)]}
,

b21

(
p2; m

)
=

1
p2

{
−1

3
B0

(
p2; 0, m

)
−2

3

(
B1

(
p2; 0, m

)
− 1

p2

[
A0 (m) + m2B0

(
p2; 0, m

)])
+

1
2

}
. (248)

3.8.4 One more special series

One more class of functions, b̂, are met when calculating γγ boxes in the Rξ gauge. The scalar function
b̂0 is defined by:

iπ2b̂0

(
Q2
)

= µ4−n
∫

dnq
1

(q2)2
(
(q + Q)2

)2 . (249)
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With infrared regularization, n = 4 + ε′, a straightforward calculation leads to

b̂0

(
Q2
)

=
1

(Q2)
πε′/2Γ

(
2− ε′

2

)(
Q2

µ2

)ε′/2 ∫ 1

0
dx [x (1− x)]−1+ε′/2

=
2

(Q2)2 πε′/2Γ
(

2− ε′

2

)(
Q2

µ2

)ε′/2

B
(

ε′

2
, 1 +

ε′

2

)

=
2

(Q2)2

(
1
ε̂

+ ln
m2

µ2
− 1

)
≡ 2

Q2

[
b0

(
Q2; 0

)
− 1

Q2

]
. (250)

3.8.5 Vector and tensor b̂ integrals

We present only definitions:

iπ2b̂1

(
Q2
)

Qµ = µ4−n
∫

dnq
qµ

(q2)2
(
(q + Q)2

)2 ,

iπ2
[
b̂21

(
Q2
)

QµQν + b̂22

(
Q2
)

δµν

]
= µ4−n

∫
dnq

qµqν

(q2)2
(
(q + Q)2

)2 , (251)

and answers:

b̂1

(
Q2
)

= −1
2
b̂0

(
Q2
)

, b̂21

(
Q2
)

=
1

Q2

[
b0

(
Q2; 0

)
− 2

Q2

]
, b̂22

(
Q2
)

=
1

2Q2
. (252)

Actually only infrared finite objects will appear in the calculation, such as, for instance:∫
dnq

qµ (q + Q)ν

(q2)2
(
(q + Q)2

)2 =
1

2Q2
δµν −

1
(Q2)2 QµQν . (253)

The full collection of scalar, vectors and tensors is, nevertheless, needed if we wish to develop an auto-
matic computer program for the generation and calculation of all possible one-loop diagrams in the Rξ

gauge.

3.8.6 c
(j)
i functions

When considering arbitrary four-fermion processes one encounters additional functions. An example is
given by four classes of special functions, called c

(j)
i functions, j = 0, 1, 2, 02. The function with j = 02

is a pinch of the γγ-box diagram. Here we give only defining equations for the scalar functions, referring
to Section 5.1.6.2 of Ref. [1] for more details and the reduction:

iπ2c
(0)
{1,µ,µν}

(
p2

1, p
2
2, Q

2; 0, m2, m3

)
= µ4−n

∫
dnq
{1, qµ, qµqν}

d2
0d1d2

,

iπ2c
(1)
{1,µ,µν}

(
p2

1, p
2
2, Q

2;m1, 0, m3

)
= µ4−n

∫
dnq
{1, qµ, qµqν}

d0d2
1d2

,

iπ2c
(2)
{1,µ,µν}

(
p2

1, p
2
2, Q

2;m1, m2, 0
)

= µ4−n
∫

dnq
{1, qµ, qµqν}

d0d1d2
2

,

iπ2c
(02)
{1,µ,µν}

(
p2

1, p
2
2, Q

2; 0, m2, 0
)

= µ4−n
∫

dnq
{1, qµ, qµqν}

d2
0d1d2

2

. (254)
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3.8.7 d
(j)
i functions

Finally, there are special functions associated with four-point integrals. The class of the d
(j)
i functions

is richer than that of the c
(j)
i functions. As usual, we limit ourself to the functions which appear when

considering of 2f → 2f processes. This is why only definitions of three classes of d
(j)
i functions with

j = 0, 2, 02 are given:

iπ2d
(0)
{1,µ,µν}

(
p2

1, p
2
2, p

2
3, p

2
4, Q

2, P 2; 0, m2, m3, m4

)
= µ4−n

∫
dnq
{1, qµ, qµqν}

d2
0d1d2d3

,

iπ2d
(2)
{1,µ,µν}

(
p2

1, p
2
2, p

2
3, p

2
4, Q

2, P 2;m1, m2, 0, m4

)
= µ4−n

∫
dnq
{1, qµ, qµqν}

d0d1d2
2d3

,

iπ2d
(02)
{1,µ,µν}

(
p2

1, p
2
2, p

2
3, p

2
4, Q

2, P 2; 0, m2, 0, m4

)
= µ4−n

∫
dnq
{1, qµ, qµqν}

d2
0d1d2

2d3
. (255)

Their reduction may be found in Section 5.1.6.3 of Ref. [1].

3.9 Summary of the three Lectures

In lectures 1–3 we studied:

• Basics of present QFT
– Standard Model, its fields, and Lagrangian;

– Different gauges: Rξ, ξ = 1, U ;

– Gauge invariance;

– Feynman rules, and building of diagrams.

• Dimension regularization and N -point functions;

• Calculation of loop integrals:
– standard PV functions: A, B, C, D;

– special PV functions: a, b, c, d ;

It is time to calculate diagrams.

We emphasize that there are Ultraviolet and Infrared dimensional regularizations:

Ultraviolet: n = 4− ε → 1
ε̄

= − 2
n− 4

− γ − lnπ ,

Infrared: n = 4 + ε′ → 1
ε̂

= +
2

n− 4
+ γ + lnπ , (256)

which could be identified with the aid of identity:
1
ε̄

+
1
ε̂

= 0 . (257)

4. TOWARDS PRECISION PREDICTIONS FOR EXPERIMENTAL OBSERVABLES

In this lecture we will exploit the knowledge mastered in the previous lectures for calculating the simplest
QED diagrams. The second half of the lecture will be devoted to a complete calculation of QED radiative
corrections for the Z decay for final-state massless fermions using a technique specific to the massless
case.
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4.1 Calculation of simplest QED diagrams

4.1.1 Photonic self-energy diagram

Photonic self-energy is described by a tensor, Πµν :

p γ γ

f

f

−(p + q)

q

Applying the Feynman rules for vertices and propagators, we construct an initial expression to be inte-
grated over an internal momentum q:

Πµν = e2Q2
e

∫
dnq

Tr
[
(i/q + mf ) γµ (i/p + i/q + mf ) γν

]
(
q2 + m2

f

) [
(q + p)2 + m2

f

]
= 4e2Q2

e

∫
dnq

δµν(q2 + m2
f + qp)− (qµpν + qνpµ)− 2qµqν(

q2 + m2
f

) [
(q + p)2 + m2

f

] . (258)

Using the definitions of the A0 function, Eq. (161), and of the vector and tensor B functions, Eqs. (176)
and (180), we immediately get the answer:

Πµν = iπ2 4e2Q2
e

{
δµν

[
A0

(
m2

f

)
+ p2B1

(
p2;mf , mf

)]
− 2pµpνB1

(
p2;mf , mf

)
−2
[
B22

(
p2;mf , mf

)
δµν + B21

(
p2;mf , mf

)
pµpν

]}
= iπ2 4e2Q2

e

{
δµν

[
A0 (mf ) + p2B1

(
p2;mf , mf

)
− 2B22

(
p2;mf , mf

)]
−2pµpν

[
B1

(
p2;mf , mf

)
+ B21

(
p2;mf , mf

)]}
. (259)

It must be transverse as a consequence of QED U(1) gauge invariance:

Πµν = iπ2 4e2Q2
e

(
p2δµν − pµpν

)
Πf

(
p2
)

. (260)

This property will be satisfied if

A0 (mf ) + p2B1

(
p2;mf , mf

)
− 2B22

(
p2;mf , mf

)
= 2p2

[
B1

(
p2;mf , mf

)
+ B21

(
p2;mf , mf

)]
. (261)

The four functions, A0, B1, B21, B22, may be reduced to only two scalar integrals: A0, B0. Therefore,
relations among the four are possible. Indeed, from the general result, Eq. (188), in the case of equal
masses one has:

B1

(
p2;m, m

)
= −1

2
B0

(
p2;m, m

)
,

B21

(
p2;m, m

)
=

6m2 + p2

18p2
+

1
3p2

A0 (m) +
p2 + m2

3p2
B0

(
p2;m, m

)
,

B22

(
p2;m, m

)
= −6m2 + p2

18
+

1
6
A0 (m)− p2 + 4m2

6
B0

(
p2;m, m

)
. (262)
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and the desired equality is immediately verified.

The final result for Πf

(
p2
)

deserves careful examination. We give three representations for it:

1) in terms of higher rank functions, B21,1;

2) in terms of scalar functions, A0, B0;

3) explicitly, in terms of the separated out UV-pole and a finite logarithm.

All expressions are equally compact:

Πf

(
p2
)

= 2
[
B21

(
p2;mf , mf

)
+ B1

(
p2;mf , mf

)]
=

6m2
f + p2

9p2
+

2
3p2

A0 (mf )−
p2 − 2m2

f

3p2
B0

(
p2;mf , mf

)
= −1

3

(
1
ε̄
− ln

m2
f

µ2

)
+

1
9

+
1
3

(
1− 2

m2
f

p2

)(
βf ln

βf + 1
βf − 1

− 2
)

, (263)

where
βf =

√
1 + 4

m2
f

p2
. (264)

Two limiting cases are of practical interest:

for p2 À m2
f , Πf

(
p2
)

= −1
3

(
1
ε̄
− ln

m2
f

µ2

)
− 5

9
+

1
3

ln
p2

m2
f

,

for p2 ¿ m2
f , Πf

(
p2
)

= −1
3

(
1
ε̄
− ln

m2
f

µ2

)
+

p2

15m2
f

+ · · · (265)

The finite (i.e. free of UV divergence) difference,

Πf (p2)−Πf (0) = −5
9

+
4m2

f

3p2
+

1
3

(
1− 2

m2
f

p2

)
βf ln

βf + 1
βf − 1

, (266)

is the renormalized photonic self-energy, as will be proved later.

4.1.2 Fermionic self-energy

Fermionic self-energy is a 4× 4 matrix, described by the diagram:

Applying the Feynman rules, we derive an initial expression, which again may be immediately written in
terms of B functions:

Σ (/p) = −e2Q2
e

∫
dnq

γµ ( i /q + mf ) γµ(
q2 + m2

f − iε
) [

(q + p)2 − iε
]

= iπ2
(
−e2Q2

e

) [
(2− n)B1

(
p2;mf , 0

)
i/p + nmfB0

(
p2;mf , 0

)]
. (267)

Furthermore,

1
ε̄

=
2

4− n
+ finite terms → n

ε̄
=

2n

4− n
=

4
ε̄
− 2 . (268)

53



Therefore, remembering Eq. (182), we derive multiplication by n rules

nB0 = 4B0 − 2 , nB1 = 4B1 + 1 , (269)

and the final result for the fermionic self-energy becomes

Σ (/p) = iπ2 e2Q2
e

{[
2B1

(
p2;mf , 0

)
+ 1

]
i/p−mf

[
4B0

(
p2;mf , 0

)
− 2

]}
. (270)

The fermionic self-energy on the fermion mass shell is ultraviolet divergent but finite in the infrared regime,
whilst its derivative, ∂Σ (/p) /∂p2|p2=−m2

f
, develops a singularity due to the zero mass of the photon,

which is of infrared origin. We recall, that

∂

∂p2
B0

(
p2;m, 0

) ∣∣∣∣
p2=−m2

= − 1
2m2

(
1
ε̂
− 2 + ln

m2

µ2

)
,

∂

∂p2
B1

(
p2;m, 0

) ∣∣∣∣
p2=−m2

=
1

2m2

(
1
ε̂
− 3 + ln

m2

µ2

)
, (271)

from which we derive

∂Σ (/p)
∂/p

∣∣∣∣
p2=−m2

= −π2 e2Q2
e

[
2B1

(
p2;m, 0

)
+ 1

−4m2 ∂

∂p2
B1

(
p2;m, 0

) ∣∣∣∣
p2=−m2

− 8m2 ∂

∂p2
B0

(
p2;m, 0

) ∣∣∣∣
p2=−m2

]

= −π2 e2Q2
e

(
−1

ε̄
+

2
ε̂

+ 3 ln
m2

µ2
− 4

)
. (272)

4.1.3 QED vertex

The one-loop QED ffγ vertex corresponds to the diagram:

µ

p2

p1

q

Q

For on-mass-shell fermions the most general structure, compatible with both Lorenz and gauge invari-
ances, reads:

Λµ = (2π)4 i ieQe
e2

16π2

[
γµF1

(
Q2, m

)
+ σµν (p1 + p2)ν mF2

(
Q2, m

)]
. (273)

We note that:

1. The QED vertex dresses the Born expression as
(2π)4 i ieQeγµ → (2π)4 i ieQeγµ + Λµ , Qe = −1;

2. F1 is the Dirac electric form factor, it is ultraviolet and infrared divergent;

3. F2 is the anomalous magnetic moment of the electron, it is finite.
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Using Dirac equations for on-shell fermions, v̄ (p2) /p2 = −i mv̄ (p2) , /p1 u (p1) = i mu (p1) , and
p2

1 = p2
2 = −m2 , Q2 = (p1 + p2)

2 = −2m2 + 2p1 · p2, we arrive at

Λµ = i (eQe)
3 µ4−n

∫
dnq

1

q2
[
(q + p1)

2 + m2
] [

(q − p2)
2 + m2

] Nµ ,

Nµ = −4p1 · p2γµ + 2 (/p1γαγµ − γµγα/p2) qα + (2− n) γαγµγβqαqβ . (274)

With the standard Feynman parametrization, and notations: kx = xp2 − (1− x) p1 and χ
(
Q2, x

)
=

Q2x (1− x) + m2, we derive further on:

Λµ = i (eQe)
3 Γ (3)

∫ 1

0
dx

∫ 1

0
dyy µ4−n

∫
dnq

1
(q2 − 2 y q · kx)3 Nµ

= iπ2i (eQe)
3
[
−
(
Q2 + 2m2

)
γµS + 2 (/p1γαγµ − γµγα/p2) Vα + γαγµγβTαβ

]
. (275)

For the scalar integral we use the infrared regulator ε′:

S = 2Γ (3)
µ−ε′

iπ2

∫ 1

0
dx

∫ 1

0
dyy

∫
dnq

(q2 − 2yq · kx)3

= 2πε′/2Γ
(

1− ε′

2

)∫ 1

0
dx

∫ 1

0
dyy−1+ε′ 1

χ (Q2, x)

[
χ
(
Q2, x

)
µ2

]ε′/2

. (276)

After y-integration, which can be performed for any value of ε∫ 1

0
dyy−k−ε =

1
1− k − ε

, k = −1, 0, 1... (277)

we get an expression in terms of a one-fold integral:

S = 2
πε′/2

ε′
Γ
(

1− ε′

2

)∫ 1

0
dx

1
χ (Q2, x)

[
χ
(
Q2, x

)
µ2

]ε′/2

. (278)

Finally, expanding around ε′ = 0, we have:

S =
∫ 1

0
dx

1
χ (Q2, x)

[
1
ε̂

+ ln
χ
(
Q2, x

)
µ2

]
. (279)

For the vector and tensor, we use the ultraviolet regulator ε. For the vector, we proceed as follows:

Vα = Γ (3)
µε

iπ2

∫ 1

0
dx

∫ 1

0
dyy

∫
dnqqα

(q2 − 2yq · kx)3

= π−ε/2Γ
(

1 +
ε

2

)∫ 1

0
dxkx,α

∫ 1

0
dyy−ε 1

χ (Q2, x)

[
χ
(
Q2, x

)
µ2

]−ε/2

=
(p2 − p1)α

2
π−ε/2 Γ (1 + ε/2)

1− ε

∫ 1

0
dx

1
χ (Q2, x)

[
χ
(
Q2, x

)
µ2

]−ε/2

. (280)

We see that the vector is finite, and we may set ε = 0, yielding

Vα =
(p2 − p1)α

2
F2

(
Q2, m

)
, F2

(
Q2, m

)
=
∫ 1

0
dx

1
χ (Q2, x)

. (281)
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Then, we have to perform a Dirac algebra for the vector

2 (/p1γαγµ − γµγα/p2)
(p2 − p1)α

2
= 2

[(
Q2 + 4m2

)
γµ + im (p1 − p2)µ

]
. (282)

For the tensor integral we have to consider the full contraction:

γαγµγβTαβ = Γ (3) (2− n) γαγµγβ
µε

iπ2

∫ 1

0
dx

∫ 1

0
dyy

∫
dnqqαqβ

(q2 − 2yq · kx)3

=
∫ 1

0
dx

∫ 1

0
dy
[
(2− ε)2 γµχ

(
Q2, x

)
− (2− ε) ε /kxγµ /kx

]
×π−ε/2 1

2
Γ
(

ε

2

)
y1−ε 1

χ (Q2, x)

[
χ
(
Q2, x

)
µ2

]−ε/2

. (283)

After applying y-integration and Dirac algebra

/kxγµ /kx = γµχ
(
Q2, x

)
− 2imkx,µ , (284)

we get

γαγµγβTαβ = γµ (1− ε) π−ε/2Γ
(

ε

2

)∫ 1

0
dx

[
χ
(
Q2, x

)
µ2

]−ε/2

−im (p1 − p2)µ π−ε/2Γ
(

1 +
ε

2

)∫ 1

0
dx

1
χ (Q2, x)

[
χ
(
Q2, x

)
µ2

]−ε/2

. (285)

Therefore, the tensor reduces to the one-fold integral:

γαγµγβTαβ = γµ

(
1
ε̄
−
∫ 1

0
dx ln

χ
(
Q2, x

)
µ2

− 2

)
− im (p1 − p2)µ F2

(
Q2, m

)
. (286)

Now we are ready to collect the scalar, vector, and tensor together. Moreover, we use the Gordon identity

i (p1 − p2)µ v̄u = −2m v̄γµu + v̄σµν (p1 + p2)ν u , (287)

in order to arrive at the standard parametrization of the QED vertex, Eq. (273), with F1
(
Q2, m

)
and

F2
(
Q2, m

)
. The latter is given by Eq. (281), whilst the former is

F1

(
Q2, m

)
= −

(
Q2 + 2m2

) ∫ 1

0
dx

1
χ (Q2, x)

[
1
ε̂

+ ln
χ
(
Q2, x

)
µ2

]

+
1
ε̄
−
∫ 1

0
dx ln

χ
(
Q2, x

)
µ2

− 2 + 2
(
Q2 + 3m2

) ∫ 1

0
dx

1
χ (Q2, x)

. (288)

In the derivation presented above we intentionally did not use the formalism of PV functions in order to
show that in some cases a direct application of the formulae of Section 3.2 may be profitable. Of course,
all the integrals of Eqs. (281) and (288) may be given in terms of PV functions. We have,∫ 1

0
dx

1
χ (Q2, x)

[
1
ε̂

+ ln
χ
(
Q2, x

)
µ2

]
=

1
2
C0

(
−m2,−m2, Q2;m, 0, m

)
,

1
ε̄
−
∫ 1

0
dx ln

χ
(
Q2, x

)
µ2

= B0

(
Q2;m, m

)
,(

Q2 + 4m2
) ∫ 1

0
dx

1
χ (Q2, x)

= −2
[
B0

(
Q2;m, m

)
−B0

(
−m2;m, 0

)]
.

Two limiting cases deserve our attention:
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1. s = −Q2 À m2,

F1 (−s, m) =
1
ε̄
− ln

m2

µ2
− 2

(
1
ε̂

+ ln
m2

µ2

)
ln
−s− iε

m2

− ln2 −s− iε

m2
+

1
3
π2 + 3 ln

−s− iε

m2
, (289)

2. Q2 = 0,
F1 (0, m) =

1
ε̄
− 2

ε̂
− 3 ln

m2

µ2
+ 4 . (290)

The quantity of physical interest is F1 subtracted at zero momentum. From Eqs. (289)–(290), we derive
its high-energy limit, sÀ m2:

F sub
1 = F1 (−s, m)− F1 (0, m) =

−2

(
1
ε̂

+ ln
m2

µ2

)(
ln
−s− iε

m2
− 1

)
− ln2 −s− iε

m2
+

1
3
π2 + 3 ln

−s− iε

m2
− 4 . (291)

Note that the subtracted vertex is UV-finite but IR-divergent. The latter divergence cancels with the in-
frared divergence originating from the soft bremsstrahlung contribution.

4.1.4 QED box diagrams

For the annihilation e+e− → ff there are two QED box diagrams: the direct (a) and the crossed (b):

(a) (b)

The integration of box diagrams over internal momentum q is rather involved and we will not present
it here. However, for completeness, we will give answers since boxes are the last QED one-loop dia-
grams. In the one-loop approximation, the boxes contribute via interference with the lowest order (Born)
γ-exchange diagram. For this reason we give, first of all, the Born amplitude squared, summed over final
spins and averaged over initial spins:

A0 =
1
4

∑
spins

| M0 |2= 2 e4Q2
e Q2

f

t2 + u2

s2
. (292)

The corresponding contribution from the interference of the direct box diagram with the Born one reads

Adr
int =

1
4

∑
spins

2 ReM∗
0
Bdr = − e6

2 π2
Q3

eQ
3
f

1
s
δbox
γγ (s, t, u) , (293)

where

δbox
γγ (s, t, u) = u2D+

γγ (s, t, u) + t2D−γγ (s, t, u) . (294)

Similarly, the contribution of the crossed box is obtained with the replacement t↔ u and the change of
overall sign

Acr
int =

1
4

∑
spins

2 ReM∗
0
Bcr =

e6

2 π2
Q3

eQ
3
f

1
s
δbox
γγ (s, u, t) . (295)
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Only two functions D±γγ (s, t, u) are needed to describe boxes

t2D−γγ (s, t, u) =
t2

s

[
d0 (s, t) + c0 (s; 0, me, 0) + c0 (s; 0, mf , 0)

]
,

u2D+
γγ (s, t, u) =

t2 + u2

2 s

[
d0 (s, t) + c0 (s; 0, me, 0) + c0 (s; 0, mf , 0)

]
+ (u− t) c0 (t;me, 0, mf ) + u

[
B0 (−s; 0, 0)−B0 (−t;me, mf )

]
, (296)

where the following scaled functions with a reduced list of arguments are introduced:

d0 (s, t) = st D0

(
−m2

e,−m2
e,−m2

f ,−m2
f ,−s,−t; 0, me, 0, mf

)
,

c0 (s; 0, me, 0) = s C0

(
−m2

e,−m2
e,−s; 0, me, 0

)
,

c0 (t;me, 0, mf ) = t C0

(
−m2

e,−m2
f ,−t;me, 0, mf

)
. (297)

The function d0 may be split into an infrared divergent function c0 plus a finite remainder:

d0 (s, t) = t J̄γγ (−s,−t;me, mf )− 2 c0 (t;me, 0, mf ) . (298)

With the aid of this expression we prove that the infrared divergences in the boxes factorize into the lowest
order

u2

s
D+

γγ (s, t, u) +
t2

s
D−γγ (s, t, u)

∣∣∣∣
IR

= −2
t2 + u2

s2
c0 (t;me, 0, mf ) . (299)

The box ingredients are simple in practical cases when external fermion masses are small: m2
e, m2

f ¿ −t

and m2
e ¿ s,

J̄γγ (−s,−t;me, mf ) =
1
t

[
ln

m2
em

2
f

t2
ln
−t

s
+

1
2

ln2 m2
e

−t
+

1
2

ln2
m2

f

−t
+

1
3
π2

]
,

C0

(
−m2

e,−m2
e,−s; 0, me, 0

)
= −1

s

(
1
2

ln2 m2
e

s
+

1
6
π2 + i π ln

m2
e

s

)
,

C0

(
−m2

e,−m2
f ,−t;me, 0, mf

)
=

1
2t

[
ln

m2
em

2
f

t2

(
1
ε̂

+ ln
−t

µ2

)
+

1
2

ln2 m2
e

−t
+

1
2

ln2
m2

f

−t
+

1
3
π2

]
,

B0 (−s; 0, 0)−B0 (−t;me, mf ) = − ln
s

−t
+ i π. (300)

For the total interference terms, the lowest order × box diagrams we have

Abox
int = − e6

2 π2
Q3

eQ
3
f fbox

γγ (s, t, u) ,

fbox
γγ (s, t, u) =

1
s

[
δbox
γγ (s, t, u)− δbox

γγ (s, u, t)
]
, (301)

where

Re fbox
γγ (s, t, u) = 2

t2 + u2

s2

(
1
ε̂

+ ln
s

µ2

)
ln

t

u

+
t

s
ln
(
− s

u

)
− u

s
ln
(
−s

t

)
+

t− u

s

[
ln2
(
−s

t

)
+ ln2

(
− s

u

)]
. (302)

Note, that contrary to the vertices, the box diagrams show no mass singularities (lnm is not present). This
is an exhibition of a general property of absence of collinear divergences in interference-like contributions
(boxes behave similarly to the initial–final bremsstrahlung interference).
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4.2 Massless World

In this section we present an alternative derivation of QED corrections for a simple case of the decay
of a neutral heavy particle into massless fermions, avoiding PV functions. We will present a formalism
originally proposed in QCD for massless quarks and gluons. It could be applied to QED too. Within this
formalism, all the calculations, including kinematics, must be consistently done in n-dimensions. For this
reason we begin with a derivation of the two-body phase space in n-dimensions. We will then discuss the
calculation of the vertex function for massless fermions, and finally present the three-body phase space
in n-dimensions, a calculation of the bremsstrahlung contribution, and of the total correction.

4.2.1 Two-body phase space in n-dimensions

We use the phase space definition:

Φ2 = (2π)n µ4−n
∫

dn−1p

(2π)n−1 2p0

∫
dn−1q

(2π)n−1 2q0

δ(n) (Q− p− q) , (303)

which differs from a convention of the Particle Data Group (PDG) [6]. In Eq. (303) all the 4-momenta
are assumed to be in n-dimensions, and the final state particles — on-shell, i.e. p2 = 0, q2 = 0. We then
derive:

Φ2 = (2π)2−n µ4−n
∫

dnp δ+(p2)
∫

dnq δ+(q2)δ(n) (Q− p− q)

= (2π)2−n µ4−n
∫

dnp δ+(p2) δ+((Q− p)2) , (304)

where Q2 = −M2 and where δ+(p2) = θ (p0) δ
(
p2
)
. Furthermore,

dnp = dn−1p dp0 , p2 =| ~p |2 −p2
0 , | ~p |2=

n−1∑
i=1

pi · pi . (305)

Now we go from n− 1 rectangular coordinates to spherical coordinates involving | ~p | and n− 2 angular
variables:

p1 = | ~p | cos θ1 ,

p2 = | ~p | sin θ1 cos θ2 ,

p3 = | ~p | sin θ1 sin θ2 cos θ3 ,

· · · = · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

pn−2 = | ~p | sin θ1 sin θ2 sin θ3 · · · sin θn−3 cos θn−2 ,

pn−1 = | ~p | sin θ1 sin θ2 sin θ3 · · · sin θn−3 sin θn−2 , (306)

with limits

0 ≤ θi ≤ π for i = 1, 2, · · · , n− 3 ; 0 ≤ θn−2 ≤ 2π . (307)

Calculating the Jacobian of the transformation Eq. (306),

dn−1p = | ~p |n−2 d | ~p | sinn−3 θ1dθ1 sinn−4 θ2dθ2 · · ·
· · · sin2 θn−4dθn−4 sin θn−3dθn−3dθn−2 , (308)

and using

∫ π

0
sinm θdθ =

√
π

Γ
(

1
2(m + 1)

)
Γ
(

1
2(m + 2)

) , (309)
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one has

Φ2 = (2π)2−n µ4−n
∫
| ~p |n−3 1

2
d | ~p |2 dp0π

n/2−2
Γ
(

1
2(n− 3)

)
Γ
(

1
2(n− 2)

) Γ
(

1
2(n− 4)

)
Γ
(

1
2(n− 3)

)
· · ·

Γ
(

3
2

)
Γ (2)

Γ (1)

Γ
(

3
2

)2πδ+(| ~p |2 −p2
0) δ+(−M2 + 2Mp0) sinn−3 θ1dθ1 . (310)

After simplification of Eq. (310) we reach an important intermediate result:

Φ2 = (2π)4−n πn/2−2

8π

| ~p |
M

( | ~p |
µ

)n−4 1

Γ
(

1
2n− 1

) ∫ π

0
sinn−4 θ1d cos θ1 . (311)

For infrared regularization n = 4 + ε′, with the variable cos θ1 = y, and taking into account that | ~p |=
p0 = M/2, we continue:

Φ2 = (2π)−ε′ π
ε′/2

16π

(
M

2µ

)ε′ 1
Γ (1 + ε′/2)

∫ 1

−1

(
1− y2

)ε′/2
dy . (312)

Furthermore, introducing one more variable, z = 1+y
2 , we integrate over it,∫ 1

−1

(
1− y2

)ε′/2
dy = 21+ε′

∫ 1

0
[z (1− z)]ε

′/2 dz

= 21+ε′B
(

1 +
1
2
ε′, 1 +

1
2
ε′
)

= 21+ε′ Γ (1 + ε′/2)2

Γ (2 + ε′)
, (313)

and get a representation convenient for expansions in ε′:

Φ2 =
1
8π

(
M2

µ2

)ε′/2
(2π)−ε′ πε′/2Γ (1 + ε′/2)

(1 + ε′) Γ (1 + ε′)
. (314)

For fun of it, using the so-called duplication Legendre formula:

√
πΓ (2z) = 22z−1Γ (z) Γ

(
z +

1
2

)
, (315)

it can be reduced even further

Φ2 =
1

16π

(
M2

µ2

)ε′/2
2−2ε′π1/2−ε′/2

Γ (3/2 + ε′/2)
, (316)

to a representation containing only one Γ function. It is not convenient for expansions, however.

4.2.2 Calculation of Z decay width with QED radiative corrections

In order to calculate O (α) QED radiative corrections for Z decay, one has to consider virtual and real
corrections. The former originate from all possible insertions of a virtual photon line into the tree-level
(Born) diagram and, as will be shown below, only the vertex diagram contributes. The latter are described
by two usual bremsstrahlung diagrams. Therefore, in total we have to consider only three diagrams:

V

f

f

=

f

f

f

f

γ +

f

f

f

γ

+

f

f

f

γ
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4.2.3 QED vertex

I recommend that the same line of calculations for the vertex, as presented in Section 4.1.3 be followed.
For on-shell massless fermions and on-shell vector boson, we have: p2

1 = p2
2 = 0, v̄ (p2) /p2 = 0,

/p1 u (p1) = 0, Q2 = 2p1 · p2 = −M2
V

and the expression, with which one has to start, becomes

Λµ = i (eQe)
3 µ4−n

∫
dnq

1
q2 (q + p1)

2 (q − p2)
2 Nµ ,

Nµ = −4p1 · p2γµ + 2 (/p1γαγµ − γµγα/p2) qα + (2− n) γαγµγβqαqβ . (317)

In the massless case: kx = xp2 − (1− x) p1 , χ
(
Q2, x

)
= Q2x (1− x), and the decomposition into

scalar, vector and tensor simplifies to:

Λµ = i (eQe)
3
[
−Q2Sγµ + 2 (/p1γαγµ − γµγα/p2) Vα + γαγµγβTαβ

]
. (318)

For the scalar we now continue the integration in n dimensions, using, as before, the infrared reg-
ulator ε′:

−Q2S = −2
πε′/2

ε′
Γ
(

1− ε′

2

)(
Q2

µ2

)ε′/2 ∫ 1

0
dxxε′/2−1 (1− x)ε′/2−1

= −2
πε′/2

ε′
Γ
(

1− ε′

2

)(
Q2

µ2

)ε′/2

B
(

ε′

2
,
ε′

2

)

= −2
πε′/2

ε′
Γ
(

1− ε′

2

)(
Q2

µ2

)ε′/2
Γ2 (ε′/2)

Γ (ε′)
. (319)

Similarly for the vector we also use the infrared regulator and derive:

2 (/p1γαγµ − γµγα/p2)Vα = γµ 2
πε′/2

1 + ε′
Γ
(

1− ε′

2

)(
Q2

µ2

)ε′/2
Γ2 (ε′/2)

Γ (ε′)
. (320)

Note that contrary to the massive case, the massless vector is not finite and we may not set ε′ = 0. In the
massive case we had mass singularities which exhibited themselves as lnm, and now we have, instead,
collinear divergences (CD), which develop poles in the infrared regulator 1/ε′.

For the tensor we may also use the infrared regulator, in spite of the fact that it has an UV diver-
gence. It also has CD, and we may use the same infrared regulator for both, remembering the existence
of an identification of two types of divergences, Eq. (257). For the tensor, we have:

γαγµγβTαβ = γµ
(
1 + ε′

)
πε′/2Γ

(
−ε′

2

)(
Q2

µ2

)ε′/2 ∫ 1

0
dxxε′/2 (1− x)ε′/2

= γµ
(
1 + ε′

)
πε′/2Γ

(
−ε′

2

)(
Q2

µ2

)ε′/2
Γ2 (1 + ε′/2)

Γ (2 + ε′)
. (321)

Because of the presence of double poles all the expansions should be performed up to ε′2. They are
achieved by means of equations:

Γ (1 + x) = 1− γ x +
1
2

[
ζ(2) + γ2

]
x2 +O

(
x3
)

, ζ(2) =
π2

6
,

ax = 1 + (ln a) x +
1
2

(ln a)2 x2 +O
(
x3
)

. (322)
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Hewe we introduce some new notations and recall some old ones:

1
ε̂

=
2
ε′

+ γ + lnπ , γ = γ + lnπ , ζ(2) =
π2

6
,

zV = ln
−M2

V
− i ε

µ2
= ln

M2
V

µ2
− i π . (323)

In the massless case, only F1 remains:

Λµ = (2π)4 i ieQe
e2

16π2
γµF1 , (324)

with the ingredients

Scalar = − 2
ε̂2

+
2
ε̂

(γ − zV )− γ2 − z2
V + ζ(2) ,

Vector =
4
ε̂
− 8 + 4zV ,

Tensor = −1
ε̂
− zV . (325)

The complete F1 reads:

F1 = −2
1
ε̂2

+
2
ε̂

(
γ − zV +

3
2

)
− γ2 − z2

V + ζ(2) + 3zV − 8 . (326)

To summarize our study of the massless QED vertex we note:

1. F1 at zero momentum is zero, this is because
(

Q2=0
µ2

)ε′/2
= 0 , for ε′ > 0; a property of infrared

regularization;

2. In the tensor integral we faced a migration of the ultraviolet pole into an infrared one;

3. The physical origin of double poles is the product: infrared×collinear divergences.

4.2.4 Fermionic self-energy in the massless world

The massive expression for the fermionic self-energy, Eq. (267), in the massless world reduces to:

Σ (/p) = −e2Q2
e

∫
dnq

γµi /q γµ

(q2 − iε)
[
(q + p)2 − iε

]
= iπ2

(
−e2Q2

e

)
(2− n)πn/2−2Γ

(
n

2
− 2

)∫ 1

0
dxx

[
p2x (1− x)

µ2

]ε′/2

i /p

= iπ2
(
e2Q2

e

)
πε′/2 (2 + ε′

)
Γ
(
−ε′

2

)
B
(

2 +
ε′

2
, 1 +

ε′

2

) (
p2

µ2

)ε′/2

i /p . (327)

We see that the fermionic self-energy in the massless world vanishes on the fermion mass-shell, i.e. at
p2 = 0 (for the same reason as F1(0) = 0, see item 1, above).

4.2.5 Virtual correction in n-dimensions

Virtual corrections contribute via their interference with the Born amplitude. Recalling Eq. (24),

Virtual =
1

n− 1
1

2 MV

∑
spins

2 Re
(
ABornA1L

)
. (328)
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The factor 1/(n− 1) follows from averaging over the V polarizations.

For a correct treatment of the factors 2 π, we must not forget to replace

d4q → (2π)4

(2π)n dnq = (2π)−ε′ dnq , (329)

remembering the integration over an internal momentum q.

Furthermore, it is easy to verify that

A1L =
e2

16π2
ABornF1 , (330)

therefore,

Virtual =
∣∣∣ABorn

∣∣∣2 α

π
δV . (331)

Finally, one has to properly account for n dimensions in the square of the Born amplitude:

∑
spins

∣∣∣ABorn
∣∣∣2 ∝ (1 +

ε′

2

)
, (332)

(this is achieved by means of the trace calculation in n dimensions).

After expanding all the ingredients, we obtain the final expression for the virtual correction

δV = − 1
ε̂2
− 2

ε̂

(
LV −

19
12

)
− 2L2

V − 2γLV + 5ζ(2)− γ2 +
19
3

LV +
19
6

γ − 173
18

, (333)

with

LV = ln
M2

V

(2πµ)2
. (334)

4.2.6 Three-body phase space

For the study of bremsstrahlung in n dimensions, one has to consider the three-body phase space in n-
dimensions. We define,

dΦ3 = (2π)n µ8−2n dn−1p

(2π)n−1 2p0

dn−1q

(2π)n−1 2q0

dn−1k

(2π)n−1 2k0

δ(n) (Q− p− q − k)

= M2
V

(2π)3−2n µ8−2ndnp δ+(p2)dnq δ+(q2)dnk δ+(k2)

×δ(n) (Q− p− q − k) dnPδ(n) (P − p− k) d
(
−P 2

)
δ+
(
−P 2 + (p + k)2

)
. (335)

This parametrization of the phase space corresponds to the kinematical cascade (shown in Fig. 4) of the
two two-body decays where one of the particles of the first decay is a compound with the invariant mass
−P 2.

After reordering the terms in Eq. (335), we can use the intermediate result for the two-body phase
space directly, Eq. (311):

dΦ3 =
1
2π

d
(
−P 2

)
× (2π)2−n µ4−ndnq δ+(q2)dnP δ+

(
−P 2 + (Q− q)2

)
δ(n) (Q− P − q)

× (2π)2−n µ4−ndnp δ+(p2)dnk δ+(k2)δ(n) (P − p− k)

=
1
2π

d
(
−P 2

)
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q M P

p

k

√
−P 2

Fig. 4: Kinematical cascade for the 1→ 3 decay.

× (2π)−ε′ π
ε′/2

8π

(
M2 + P 2

2M2

)(
M2 + P 2

2Mµ

)ε′
1

Γ (1 + ε′/2)
sinε′ θd cos θ

× (2π)−ε′ π
ε′/2

16π

(√
−P 2

2µ

)ε′
1

Γ (1 + ε′/2)
sinε′ θ1d cos θ1 . (336)

The two remaining angular integrations in Eq. (336) should be treated differently. The first one may be
taken, since the matrix element squared is independent of the angle of rotation of the whole picture of the
cascade in Fig. 4. Therefore,∫ π

0
sinε′ θd cos θ =

∫ 1

−1

(
1− y2

)ε′/2
dy = 21+ε′ Γ (1 + ε′/2)2

Γ (2 + ε′)
. (337)

For the second one we substitute z =
1 + y

2∫ π

0
sin θε′

1 d cos θ1 =
∫ 1

−1

(
1− y2

)ε′/2
dy = 21+ε′ [z (1− z)]ε

′/2dz , (338)

and keep the integral untaken, since the matrix element squared may depend on it. Substituting two an-
gular integrals, we have

dΦ3 =
1

27π3

(2π)−2ε′ πε′

Γ (2 + ε′)
d
(
−P 2

) M2 + P 2

M2

(
M2 + P 2

Mµ

)ε′ (√−P 2

µ

)ε′

[z (1− z)]ε
′/2dz . (339)

Introducing −P 2 = xM2, we finally get

Φ3 =
M2

27π3

(
M2

µ2

)ε′
(2π)−2ε′ πε′

Γ (2 + ε′)

∫ 1

0
dxxε′/2 (1− x)1+ε′

∫ 1

0
dz[z (1− z)]ε

′/2 . (340)

4.2.7 The radiative decay V → ffγ

For the radiative process, we define 4-momenta, V (Q) → f(p) + f(q) + γ(k). Its kinematics may
be specified in terms of two invariants, for which it is convenient to choose two dimensionless invariant
masses, x and y:

xM2
V

= −(p + k)2, (y + 1)M2
V

= − (Q + k)2 . (341)

All the scalar products may be expressed in terms of x and y:

−2 p · k = xM2
V
, −2 q · k = (y − x)M2

V
,

−2 Q · k = yM2
V
, −2 p · q = (1− y)M2

V
,

−2 Q · q = (1− x)M2
V
, −2 Q · p = (1− y + x)M2

V
.
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The bremsstrahlung amplitude has the standard form,

Mbrem = −i e2 ū (p)

[
/e

(/q + /k)
(q + k)2 /ε− /ε

(/p + /k)
(p + k)2 /e

]
v (q) , (342)

where e(Q) and ε(k) are the V and photon polarization vectors.

The amplitude squared in terms of the invariants x, z reads:

∑
spins

∣∣∣Mbrem
∣∣∣2 = e4 ε∗

{
2
(

1
zx
− 1

x
− 1

)
+

ε∗

8

[
1
z

x

1− x
+ 2 + z

(
1
x
− 1

)]}
. (343)

Here, ε∗ = 8 + 4 ε′ and y = (1− x) z + x.

One should also include an extra factor,

1
n− 1

1
2 MV

, (344)

from averaging over the V boson spin.

The complete bremsstrahlung contribution is the product of the amplitude squared × the phase-
space factor integrated over the x, z. All the bremsstrahlung integrals can easily be performed in n di-
mensions and at the very end of calculations one expands around ε′ = 0:∫ 1

0
dx

∫ 1

0
dz xε′/2 (1− x)1+ε′ [z (1− z)]ε

′/2Abrem = e4

[(
8
ε′

)2

− 16
ε′

+ 52− 48ζ(2)

]
. (345)

If one include phase space and all the relevant factors, one finally gets:

δR =
1
ε̂2

+
2
ε̂

(
LV −

19
12

)
+ 2L2

V + 2γLV − 5ζ(2) + γ2 − 19
3

LV −
19
6

γ +
373
36

. (346)

4.2.8 Total QED correction

The complete expression is the sum of the virtual and real contributions. We define:

ΓQED = ΓBorn
(

1 +
α

π
δQED

)
. (347)

Summing up Eqs. (333) and (346), we obtain the total QED correction:

δQED = δR + δV =
373
36
− 173

18
=

3
4

. (348)

To summarize our exercises of massless calculations, we conclude:

1. All the double and single poles (infrared and collinear) and all the unphysical terms, like logarithms
of the t’Hooft scale and the Euler constant, cancel in the combined expression;

2. The cancellation of the infrared divergences is the consequence of the Blokh–Nordsiek theorem,
whilst the cancellation of the collinear divergences — of Kinoshita–Lee–Nauenberg (KLN) theo-
rem for the inclusive set-up (i.e. integrated over the full photonic phase space);

3. No renormalization was needed in this example; we simply computed all the diagrams, summed
them up, and got the finite answer. As we will see below, when we study renormalization, this is
a property of the massless theory only, where the fermionic self-energy diagrams vanish on-mass-
shell. The relevant counter-terms, involving the derivative of the self-energy and the F1(0) also
vanish, and renormalization is effectively not needed.
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4.3 Summary of the four lectures

As usual, we summarize what we have learned so far:

• Standard Model, its fields and Lagrangian;
Feynman rules→ building of diagrams;

• Regularization, N -point functions, PV functions: A, B, C, D functions→ calculation of diagrams.

• QED one-loop diagrams, building blocks:

– photonic and fermionic self energies;

– vertices and boxes;

• First feeling of renormalization – subtraction at zero momentum;

• Example of calculation of RC’s for the decay V → ff in massless QED:

– well-known correction
3α

4π
was recovered;

– first feeling of divergence cancellation;

– Why renormalization is needed? Not clear yet...

5. ONE-LOOP DIAGRAMS AND THEIR PROPERTIES

In this lecture we continue our study of one-loop approximation in the SM. We present an overview of
the one-loop diagrams and of some simple physics related with them.

Remember that in QED we had only one bosonic self-energy diagram, one fermionic self-energy
diagram, one QED vertex and a couple of boxes. In the SM model in the arbitrary gauge the number of
diagrams grows drastically. In next two figures we give only two examples of bosonic self-energies; the
Z self-energy described by 14 diagrams, see Fig. 5, and W self-energy — by 17 diagrams, Fig. 6. A full
collection of all self-energies and transitions occupies many pages, see Chapter 5 of Ref. [1]. The typical
number of vertices and boxes in the SM is also of the order of tens instead of 1-2 in case of QED.

5.1 Bosonic self-energy diagrams

Any vector boson self-energy diagram and, therefore the sum too, look like a tensor

SV V (p2)δµν + TV V (p2)pµpµ . (349)

At the one-loop level the second term does not contribute (see Section 6.5 of Ref. [1]). We will denote
by Σξ

AB(p2) the δµν part of the total V boson self-energy (or transition) related to SAB(p2):

Sγγ(p2) =
g2s2

θ

16π2
Σξ

γγ(p2) , SγZ(p2) =
g2sθ

16π2cθ
Σξ

γZ(p2) ,

SZZ(p2) =
g2

16π2c2
θ

Σξ
ZZ(p2) , SWW (p2) =

g2

16π2
Σξ
WW (p2) . (350)

Furthermore, Σξ
γγ(0) = 0 as dictated by QED U(1)-invariance. Therefore, one may introduce Πξ

γγ(p2)
defined by:

Σξ
γγ(p2) = p2Πξ

γγ(p2) . (351)

Every Σξ
AB

(p2) could be represented as a sum of two terms,

Σξ
AB

(p2) = Σ(1)
AB

(p2) + Σadd
AB

(p2) , (352)

the first of which corresponds to the ξ = 1 gauge and the second contains all ξ dependence and vanishes
for ξ = 1.

66



5.1.1 Bosonic component of bosonic self-energies

By bosonic component we will understand the sum of all but the first [marked by (1) in both figures]
diagrams of Figs. 5–6. It is a gauge-dependent quantity and we will look at Σ

WW
, as a typical example,

in two types of gauges.

Z, A

µ

Z, A

ν
=

u, d

u, d

(1)

+

W−

W +

(2)

+

H

Z

(3)

+

φ−

W +

(4)

+

W−

φ+

(5)

+

H

φ0

(6)

+

φ−

φ+

(7)

+

X−

X−

(8)

+

X+

X+

(9)

+

W(10)

+

H(11)

+

φ+(12)

+

φ0(13)

+
β′t(14) (Z)

Fig. 5: (Z,A)-boson self-energy; Z −A transition.
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p

W +

µ

W−

ν
=

d

u

(1)

+

Z

W +

(2)

+

A

W +

(3)

+

H

W +

(4)

+

Z

φ+

(5)

+

A

φ+

(6)

+

H

φ+

(7)

+

φ0

φ+

(8)

+

X−

YZ,A

(9)

+

YZ,A

X+

(10)

+

W(11)

+

Z(12)

+

A(13)

+

H(14)

+

φ+(15)

+

φ0(16)

+
β′t(17)

Fig. 6: W -boson self-energy.
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Rξ gauge.
Its ξ = 1 part is rather short

Σ(1)
WW

=
M2

12

{
−
[
s4
θ

c4
θ

(
1 + 8c2

θ

) M2

p2
− 10

c2
θ

+ 54 + 16c2
θ +

(
1− 40c2

θ

) p2

M2

]
B0

(
p2;M, M0

)
−
[(

1− M2
H

M2

)2 M2

p2
− 10 + 2

M2
H

M2
+

p2

M2

]
B0

(
p2;MH , M

)
−8s2

θ

(
M2

p2
+ 2− 5

p2

M2

)
B0

(
p2; 0, M

)

+

[(
1
c2
θ

− 2 +
M2

H

M2

)
M2

p2
− 14 + 36

M2

M2
H

]
A0 (M)

M2

−
[
s2
θ

c2
θ

(
1 + 8c2

θ

) M2

p2
− 1− 18

M2
0

M2
H

+ 16c2
θ

]
A0 (M0)

M2
+

(
M2 −M2

H

p2
+ 7

)
A0 (MH )

M2

+12

(
1
c4
θ

+ 2

)
M2

M2
H

− 2

(
1
c2
θ

+ 18 +
M2

H

M2
− 2

3
p2

M2

)}
, (353)

whilst the additional part is extremely cumbersome and hardly fits on one page.

Σadd
WW

=
M2 + p2

12

{[
s4
θ

M2

p2
− 1 + 4c2

θ + c4
θ − c2

θ

(
2 + c2

θ

) p2

M2
− c4

θ

p4

M4

]
×
[
B0

(
p2; ξM, ξZM0

)
−B0

(
p2;M0 , ξM

)]
+2

(
s4
θ

c2
θ

M2

p2
− 10 + 8c2

θ − 5c2
θ

p2

M2

)[
B0

(
p2;M0 , ξM

)
−B0

(
p2;M0 , M

)]
+

[
s4
θ

M2

p2
+ 1− 9c4

θ + c2
θ

(
2− 9c2

θ

) p2

M2
+ c4

θ

p4

M4

]
×
[
B0

(
p2;M, ξZM0

)
−B0

(
p2;M0 , M

)]
+2s2

θ

(
M2

p2
+ 8− 5

p2

M2

)[
B0

(
p2; 0, ξM

)
−B0

(
p2; 0, M

)]
+

[(
ξ2
Z
− 1

)(
ξ2
Z

+ 1 + 2c2
θ

p2

M2

)
+ c4

θ

(
ξ2 − 1

)(
ξ2 + 1 + 2

p2

M2

)

−2c2
θ

(
ξ2
Z
ξ2 − 1

)](M2

p2
− 1

)
B0

(
p2; ξM, ξZM0

)
+
(
ξ2
Z
− 1

) [(
ξ2
Z

+ 1− 2c2
θ

) M2

p2
+ 2c2

θ

](
1 +

p2

M2

)
B0

(
p2;M, ξZM0

)
+
(
ξ2 − 1

) [
c2
θξ

2

((
2− c2

θ

) M2

p2
+ c2

θ

)
−
(
2− c2

θ

)2 M2

p2

+c2
θ

(
2− c2

θ

)
+ 2c4

θ

p2

M2

]
B0

(
p2;M0 , ξM

)
+2s2

θ

(
ξ2 − 1

) [(
ξ2 + 1

) M2

p2
+ 2

]
B0

(
p2; 0, ξM

)
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+3s2
θ

(
ξ2
A
− 1

) [(
1− ξ2 M2

p2

)(
1− p2

M2

)
B0

(
p2; 0, ξM

)
−
(

M2

p2
+ 4− p2

M2

)
B0

(
p2; 0, M

)]

+2c2
θ

(
s2
θ

M2

p2
+ 5c2

θ

)
A0 (ξZM0)−A0 (M0)

M2
+ 10

A0 (ξM)−A0 (M)
M2

+

[
2
(
ξ2 − 1

) M2

p2
− c2

θ

(
ξ2
Z
− 1

)(M2

p2
− 1

)]
A0 (ξM)

M2

−c2
θ

[
c2
θ

(
ξ2 − 1

)(M2

p2
− 1

)
− 2

(
ξ2
Z
− 1

) M2

p2

]
A0 (ξZM0)

M2

−c2
θ

(
ξ2 − 1

) [(
2− c2

θ

) M2

p2
+ c2

θ

]
A0 (M0)

M2
− c2

θ

(
ξ2
Z
− 1

)(M2

p2
+ 1

)
A0 (M)

M2

−3s2
θ

ξ2
A
− 1

p2

[
A0 (ξM) + A0 (M)− p2

M2

(
A0 (ξM)−A0 (M)

)]
+4c2

θ

(
ξ2
Z
− 1

)
+ 4

(
ξ2 − 1

)
+ 24s2

θ

(
ξ2
A
− 1

)}
+2s2

θ

(
ξ2
A
− 1

) [
M2B0

(
p2; 0, M

)
+ A0 (M)−M2

]
. (354)

As seen, the additional part vanishes not only at ξ = 1, but also at p2 = −M2, i.e. at the W mass
shell. This is a property of the Rξ gauge and is due to a proper treatment of the tadpoles (see discussion
in Section 2.6). This ξ-dependent part is bound to cancel with the other ξ-dependent parts coming from
the vertices and boxes for each physical amplitude it contributes to. This example teaches us that working
in the Rξ gauge, we mostly produce unphysical terms. This is the price being paid for an explicit control
of gauge invariance.

Actually, there is another approach to the calculation of the one-loop amplutudes, which is orga-
nized in such a way that all ξ-dependences cancel before calculation of integrals over Feynman parame-
ters.

U gauge. The number of diagrams contributing to the total self-energies, as well as the number of total
self-energies themselves in the U gauge, is very limited. Below the whole list is presented, where the
following short-hand notations are used:

w =
p2

M2
W

, z =
p2

M2
Z

, h =
p2

M2
H

, wh =
M2

H

M2
W

, h(i)
W

= (1− wh)i ; (355)

ΣU
WW

(p2)
M2

W

=
[
−
(

1
12c4

W

+
2
3

1
c2
W

− 3
2

+
2
3
c2
W

+
1
12

c4
W

)
1
w

+
2
3

(
1

c2
W

− 4− 4c2
W

+ c4
W

)
+
(

3
2

+
8
3
c2
W

+
3
2
c4
W

)
w +

2
3
c2
W

(
1 + c2

W

)
w2 − 1

12
c4
W

w3
]
B0

(
p2;MZ , MW

)
−s2

W

6

(
5
w

+ 17− 17w − 5w2
)

B0

(
p2; 0, MW

)
− 1

12

(
w

(2)
h

w
− 10 + 2 wh + w

)
B0

(
p2;MH , MW

)
+
[

1
12

(
1

c2
W

− 2 + c2
W
− c4

W
+ wh

)
1
w
− 2 +

1
6
c2
W
− 1

12
c4
W

+
1
12

(
−10 + c2

W
+ c4

W

)
w +

1
12

c4
W

w2
]
A0 (MW )

M2
W
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+
[
− 1

12

(
1

c2
W

+ 9− 9c2
W
− c4

W

)
1
w
− 1

12
− 7

6
c2
W
− 3

4
c4
W

+
1
12

(
c2
W
− 9c4

W

)
w +

1
12

c4
W

w2
]
A0 (MZ )

M2
W

+
1
12

(
1
w
− 1

h
− 2

)
A0 (MH )

M2
W

−1
6

(
1

c2
W

+ 22 + c2
W

+ c4
W

+ wh

)
− 1

9

(
2 + 3c2

W
+

7
2
c4
W

)
w

−1
9

(
1 +

3
2
c2
W

+
5
2
c4
W

)
w2 − 1

18
c4
W

w3 ; (356)

ΣU
ZZ

(p2)
M2

W

= c4
W

(
−4 +

17
3

w +
4
3
w2 − w3

12

)
B0

(
p2;MW , MW

)
− c2

W

(
4 +

4
3
w − w2

6

)
A0 (MW )

M2
Z

+
1
12

[
−
(

1
c4
W

− 2
wh

c2
W

+ w2
h

)
1
w

+
10
c2
W

− 2wh − w

]
B0

(
p2;MH , MZ

)
+

1
12c2

W

(
1
h
− 1

z
+ 1

)
A0 (MZ )

M2
Z

− 1
12c2

W

(
1
h
− 1

z
+ 2

)
A0 (MH )

M2
Z

−
[

1
6c2

W

+ 4c4
W

+
wh

6
+
(

1
18

+
4
3
c4
W

)
w +

5
9
c4
W

w2 +
1
18

c4
W

w3
]
;

ΣU
AA

(p2) = p2ΠU
γγ(p2) , ΣU

ZA
(p2) = c2

W
p2ΠU

γγ(p2) ,

ΠU
γγ(p2) =

1
w

[(
−4 +

17
3

w +
4
3
w2 − w3

12

)
B0

(
p2;MW , MW

)
+
(
−4− 4

3
w +

w2

6

)
A0 (MW )

M2
W

− 4− 4
3
w − 5

9
w2 − w3

18

]
,

ΣU
HH

(p2)
M2

W

=
(

3 + w +
w2

4

)
B0

(
p2;MW , MW

)
+

9
8
w2

hB0

(
p2;MH , MH

)
+

1
2c4

W

(
3 + z +

z2

4

)
B0

(
p2;MZ , MZ

)
+
(

3− w

2

)
A0 (MW )

M2
W

+
(

3
2c2

θ

− w

4

)
A0 (MZ )

M2
W

+
3
4
wh

A0 (MH )
M2

W

. (357)

Note, that the mixing, ΣU
ZA

(p2) ∝ p2ΠU
γγ(p2). Therefore, ΣU

ZA
(0) = 0 which provides far reaching sim-

plifications for a renormalization procedure. This is a property of the U gauge only. In the unitary gauge,
we note the appearance of the so-called non-unitary terms, growing with w = p2/M2

W
as powers of w2,3,

thereby violating the unitary limit. These terms must also cancel in the sum of all one-loop diagrams con-
tributing to a physical amplitude. (Similar terms cancel in Eq. (354), although it is not as easy to see this
property.)

5.1.2 Fermionic components of bosonic self-energies

By fermionic component of a bosonic self-energy we understand the contribution of the first diagrams in
Figs. 5–6. They are gauge-independent contributions and an interesting physics is confined in them. This
is why we give all self-energy and transitions for physical fields:

Πfer
γγ(p2) = 4

∑
f

cfQ2
fBf

(
p2;mf , mf

)
,

Σfer
ZA

(p2) = 2
∑
f

cfQfvfp2Bf

(
p2;mf , mf

)
,
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Σfer
ZZ

(p2) =
∑
f

cf

[(
v2
f + a2

f

)
p2Bf

(
p2;mf , mf

)
− 2a2

fm2
fB0

(
p2;mf , mf

)]
,

Σfer
WW

(p2) =
∑
f=d

cfp2Bf

(
p2;mf ′ , mf

)
+
∑
f

cfm2
fB1

(
p2;mf ′ , mf

)
,

Σfer
HH

(p2) =
∑
f

cf

m2
f

M2
W

[
A0 (mf )−

p2 + 4m2
f

2
B0

(
p2;mf , mf

)]
, (358)

where cf denotes the color factor, equal to 1 for leptons and to 3 for quarks.

The fermionic component of the H − V transition vanishes, since it is proportional to

∝
[
B0

(
p2;mf , mf

)
+ 2B1

(
p2;mf , mf

)]
pµ , (359)

see Eq. (179). In Eq. (358) we have introduced an auxiliary function Bf :

Bf

(
p2;mf ′ , mf

)
= 2

[
B21

(
p2;mf ′ , mf

)
+ B1

(
p2;mf ′ , mf

)]
, (360)

and mf ′ stands for the mass of the weak isospin partner of the fermion f .

Then, we will need the pole and finite parts of the Bij functions:

Bij

(
p2;m1, m2

)
= cij

(
1
ε̄
− ln

M2
W

µ2

)
+ BF

ij

(
p2;m1, m2

)
, (361)

with

c0 = 1 , c1 = −1
2

, c21 =
1
3

. (362)

For equal masses m1 = m2 = mf , one has:

p2BF
f

(
p2;mf , mf

)
=

p2

9
+

2m2
f

3
ln

m2
f

M2
W

+
1
3

(
2m2

f − p2
)

BF
0

(
p2;mf , mf

)
, (363)

and

B1

(
p2;mf , mf

)
= −1

2
B0

(
p2;mf , mf

)
,

BF
0

(
p2;mf , mf

)
= 2− ln

m2
f

M2
W

− βf ln
βf + 1
βf − 1

,

B0p

(
p2;mf , mf

)
= − 1

p2
+

2m2
f

p4

1
βf

ln
βf + 1
βf − 1

, with βf =

√
1 + 4

m2
f

p2
. (364)

5.2 Heavy top asymptotic behaviour of self-energies; parameter ∆ρ

Here we discuss one example of asymptotic behaviour of fermionic components of some bosonic self-
energies. In realistic calculations, say for LEP1/SLC, one may ignore all fermion masses but top quark.
Here we will use one more approximation:

|p2| ¿ m2
t , (365)

although it is not so good at LEP1/SLC energies and is absolutely untrue at LEP2 energies. We need it
for an academic study of asymptotic behaviour when mt is the largest parameter and is the only scale of
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the problem. Consider three cases in the asymptotic regime of Eq. (365):

1) 2) 3)
mf ′ = mt , mf ′ = 0 , mf ′ = mt ,
mf = mt , mf = mt , mf = 0 ,

BF
0

(
p2;mf ′ , mf

)
→ − ln

m2
t

µ2
, 1− ln

m2
t

µ2
, the same ,

BF
1

(
p2;mf ′ , mf

)
→ 1

2
ln

m2
t

µ2
,

1
2

ln
m2

t

µ2
− 1

4
,

1
2

ln
m2

t

µ2
− 3

4
,

BF
f

(
p2;mf ′ , mf

)
→ 1

2
ln

m2
t

µ2
,

1
3

ln
m2

t

µ2
− 5

18
, the same .

(366)

Using this table, one easily derives the heavy top asymptotic for ZZ and WW self-energies:

Σfer
ZZ

(0) =
3
2
m2

t ln
m2

t

µ2
,

Σfer
WW

(0) =
3
2
m2

t

(
ln

m2
t

µ2
− 1

2

)
. (367)

Consider now the so-called Veltman’s ∆ρ parameter, which was originally defined as 1

∆ρ0 =
1

M2
W

[ΣWW (0)− ΣZZ (0)] . (368)

Using Eq. (367), we find the asymptotic behaviour of Veltman’s ∆ρ parameter:

∆ρfer
0 ≈ −

3
4

m2
t

M2
W

. (369)

A supscript ‘fer’ reminds that only fermionic components of the bosonic self-energies contribute in the
considered asymptotic regime.

Note, that the higher term m2
t ln m2

t
µ2 cancelled and therefore the asymptotic is quadratic in the t quark

mass. This is why one sometimes says that the ∆ρ0 is quadratically enhanced by the top quark mass.

Consider now another definition of a ∆ρ parameter, which, as will be seen below, is a very relevant
quantity for all electroweak radiative corrections. It is made of complete self-energies:

∆ρ =
1

M2
W

[
ΣWW (M2

W
)− ΣZZ (M2

Z
)
]
. (370)

This quantity is gauge-invariant, as is clear from the discussion in the previous section. For this reason
it is used for the re-summation of large corrections, see below. If one ignores all masses but top quark
mass, for its asymptotic we will have the same answer as for ∆ρ0:

∆ρfer ≈ −3
4

m2
t

M2
W

. (371)

It is very important to emphasize that ∆ρ is the gauge-invariant but ultraviolet-divergent object.
By the way, the quantity ∆ρ0, defined by Eq. (368), is neither gauge-invariant nor finite. In the literature,
a lot of other ρ’s definitions are met. This creates a mess and a Babylon situation. One should always
bear in mind which definition of ρ is meant, before making any controversial conclusion.

1We do not discuss here the so-called ρ parameter, defined as the ratio of NC/CC effective Fermi couplings, and its relation
to parameter ∆ρ. For more detail, see Section 6.11.3 of Ref. [1].
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5.3 Ultraviolet behaviour of fermionic components of bosonic self-energies

Other interesting physics is related to the ultraviolet behaviour of fermionic components of bosonic self-
energies. Consider two fermionic self-energy diagrams for a vector and a scalar field:

V V

u, d

u, d

H H

f

f

We begin with a common initial expression, valid for both cases:

Σ ∝
Tr
[(

i/q + mf ′
)
Γ1 (i/p + i/q + mf ) Γ2

]
(
q2 + m2

f ′

) [
(q + p)2 + m2

f

] . (372)

For the vector case, e.g. Γ1 = γµ, Γ2 = γν , one has:

(ΣV )µν ∝ 4
δµν

[
q (p + q) + m2

f

]
− (qµpν + qνpµ)− 2qµqν(

q2 + m2
f

) [
(q + p)2 + m2

f

] . (373)

For the scalar case, Γ1 = Γ2 = 1, and we get instead:

ΣS ∝ 4
q2 − p · q −m2

f(
q2 + m2

f

) [
(q + p)2 + m2

f

] . (374)

Let us examine the leading UV divergences in both cases:

(ΣV )µν ∝ 4
δµνq

2 − 2qµqν(
q2 + m2

f

) [
(q + p)2 + m2

f

]
= δµνiπ

n
2

1
Γ (α)

Γ
(

1− n

2

)(
m2 − p2

)n
2
−1 1

2
(n− 2)→ Γ

(
2− n

2

)
,

ΣS ∝ 4
q2(

q2 + m2
f

) [
(q + p)2 + m2

f

]
= iπ

n
2

1
Γ (α)

Γ
(

1− n

2

)(
m2 − p2

)n
2
−1 n

2
→ Γ

(
1− n

2

)
. (375)

As seen, the UV-behaviour is quite different. From Eq. (372), by counting of powers of q, one could
expect quadratic divergences (or poles at n = 2) in both cases. However, in the vector case quadratic
divergences from the scalar and tensor parts of the diagram cancel, yielding residual logarithmic diver-
gence. In the scalar case the quadratic divergence survives.

This observation is traded as an exhibition of a non-naturalness of the radiative corrections to the
mass of a scalar field and is being used as one of the motivations for SUSY, where the quadratic diver-
gences cancel if one adds the contribution from sfermions.

In the framework of the SM, however, this does not represent any problem since the SM needs
renormalization anyway, and after renormalization all the divergences, both quadratic and logarithmic,
cancel identically. (See the discussion on renormalization below in the next lecture.)
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5.4 Calculation of decay rates in the Born approximation

5.4.1 Calculation via tree diagrams

In order to exhibit another interesting property of self-energy diagrams, we have to understand the Born
expressions for the partial width of a boson decay into a fermion–antifermion pair. The Born diagram
looks like:

f

B

f

Q

p

q

where we have indicated all the particles’ momenta.

In our convention for phase space, the differential probability is given by (cf. Eq. (24)):

dΓ =
1

2M

∑
spins

| M |2 dΦ2 , (376)

with the two-body massive phase space:

Φ2 = (2π)4
∫

d3p

(2π)3 2p0

∫
d3q

(2π)3 2q0

δ (Q− p− q) . (377)

Below we sketch the calculation of Φ2 for the case where the final-state fermion masses are not ignored.
The calculation proceeds as follows:

Φ2 =
1

(2π)2

∫
d3p

2p0

∫
d4q δ+

(
q2 + m2

f

)
δ (Q− p− q)

[
with δ+

(
p2 + m2

f

)
= θ (p0) δ

(
p2 + m2

f

)]
=

1
(2π)2

∫ | ~p |2 d | ~p |
2p0

dΩp δ+
[
(Q− p)2 + m2

f

]
[
using | ~p | d | ~p |= p0dp0 and dΩp → 4π

]

=
1
2π

∫
| ~p | dp0 δ

(
−M2 + 2Mp0

)
=

1
2π

| ~p |
2M

. (378)

Using further on: p0 =
M

2
, | ~p |=

√
M2

4
−m2

f , and βf (M) =
| ~p |
p0

=

√
1−

4m2
f

M2
, we finally

get

Φ2 =
1
8π

βf (M) . (379)

Next, we calculate of
∑
spins

| M |2 for three decays: V, Z, H .

For the vector and axial–vector cases, we derive:∑
spins

| M |2 =
1
3

(
δµν +

QµQν

M2

)∑
spins

MBorn
µ

(
MBorn

ν

)+
,

MBorn
µ = if ū (q) γµ (vf + afγ5) v (p) ,(

MBorn
µ

)+
= if v̄ (p) γν (vf + afγ5) u (q) , (380)
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where the coupling constants for two cases are

f =


e , for V = heavy photon,

g

2cθ
, for V = Z.

(381)

For non-polarized fermions the summation over the final spins gives∑
spins

u (q) ū (q) = −i/q + mf ,
∑
spins

v (p) v̄ (p) = −i/p−mf , (382)

and we obtain

∑
spins

| M |2=



4
3
e2M2

V

(
1 + 2

m2
f

M2
V

)
, for V = heavy photon,

1
3

g2

c2
θ

M2
Z

[(
v2
f + a2

f

)(
1 + 2

m2
f

M2
Z

)
− 6a2

f

m2
f

M2
Z

]
, for V = Z .

(383)

Similarly, for the scalar case, we derive∑
spins

| M |2 =
∑
spins

MBorn
(
MBorn

)+
,

MBorn
µ = − mf

2MW

ū (q) v (p) ,
(
MBorn

)+
= − mf

2MW

v̄ (p)u (q) , (384)

and ∑
spins

| M |2=
g2m2

fM2
H

2M2
W

β2
f (MH ) . (385)

We conclude our exercise with a list of answers for partial widths:

Γ
(
V → ff

)
=

e2MV

12π
βf (MV )

(
1 + 2

m2
f

M2
V

)
,

Γ
(
Z → ff

)
= 4Γ0 βf (MZ )

[(
v2
f + a2

f

)(
1 + 2

m2
f

M2
Z

)
− 6a2

f

m2
f

M2
Z

]
,

Γ
(
H → ff

)
=

GFm2
fMH

4
√

2π
β3

f (MH ) . (386)

Here we used the notation:

GF√
2

=
g2

8M2
W

, c2
W

=
M2

W

M2
Z

, Γ0 =
GFM3

Z

24
√

2π
. (387)

5.4.2 Calculation through self-energy functions

Now we are ready to present another calculation of partial widths and to compare it with what we got in
the previous section. From Eq. (358) at the bosonic mass shell, p2 = −M2, one gets:

Sγγ =
e2

16π2

[
−M2

V
4Bf

(
−M2

V
;mf , mf

)]
,

SZZ =
g2

16π2c2
θ

[
−
(
v2
f + a2

f

)
M2

Z
Bf

(
−M2

Z
;mf , mf

)
− 2a2

fm2
fB0

(
−M2

Z
;mf , mf

)]
,

SHH =
g2

16π2

[
m2

f

M2
W

(
A0 (mf )−

−M2
H

+ 4m2
f

2
B0

(
−M2

H
;mf , mf

))]
. (388)
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Let us recall the definition of the Bf

(
−M2;mf , mf

)
function, Eq. (360) and take imaginary parts:

Im A0 (mf ) = 0 ,

Im B1

(
−M2;mf , mf

)
= −1

2
Im B0

(
−M2;mf , mf

)
,

Im B21

(
−M2;mf , mf

)
=

1
3

(
1−

m2
f

M2
Z

)
Im B0

(
−M2;mf , mf

)
,

Im B0

(
−M2;mf , mf

)
= πβf (M) . (389)

Substituting the imaginary parts into Eq. (388) and comparing the results with Eq. (386), we immediately
verify the validity of identity:

Im SBB = MBΓ
(
B → ff

)
, (390)

i.e. the imaginary part of the fermionic component of the bosonic self-energy on the bosonic mass shell
is equal to the boson mass times the partial bosonic decay width into this fermionic pair. A similar prop-
erty takes place for the fermionic component of the WW self-energy and for the bosonic component of
bosonic self-energies.

5.5 Dispersion relation for Π
(
p2
)

As the last application of bosonic self-energies, we will consider the dispersion relation for Π
(
p2
)
. It is

being used for the calculation of the hadronic contribution to the running electromagnetic coupling α(s).
We begin with a partial contribution to Π

(
p2
)

due to a fermion pair ff , see the second row of Eq. (263):

Πf

(
p2
)

=
6m2

f + p2

9p2
+

2
3p2

A0 (mf )−
p2 − 2m2

f

3p2
B0

(
p2;mf , mf

)
. (391)

Let us recall its ingredients

B0

(
p2;mf , mf

)
=

1
ε̄
− ln

m2
f

µ2
+ BF

0

(
p2;mf , mf

)
,

BF
0

(
p2;mf , mf

)
= 2− βf ln

βf + 1
βf − 1

,

β2
f = 1 + 4

m2
f

p2 − iε
. (392)

From it we construct the renormalized vacuum polarization (p2 = −s):

Πren
f (s) = Πf (s)−Πf (0) =

1
9
− 1

3

(
1 + 2

m2
f

s

)
BF

0 (−s;mf , mf ) , (393)

and take its imaginary part:

Im Πren
f (s) = −1

3

(
1 + 2

m2
f

s

)
Im BF

0 (−s;mf , mf ) = −1
3

(
1 + 2

m2
f

s

)
πβf . (394)

Now compute the dispersion integral:

s

π

∫ ∞
4m2

f

dτ
Im Πren

f (τ)
τ (τ − s− iε)

= −1
3

∫ ∞
4m2

f

sdτ

τ (τ − s− iε)

(
1 + 2

m2
f

τ

)√
1−

4m2
f

τ

= −1
3

(
1 + 2

m2
f

s

)∫ ∞
4m2

f

sdτ

τ (τ − s− iε)

√
1−

4m2
f

τ
+

2m2
f

3

∫ ∞
4m2

f

dτ

τ2

√
1−

4m2
f

τ
. (395)
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The above two integrals could easily be taken:

∫ ∞
4m2

f

sdτ

τ (τ − s− iε)

√
1−

4m2
f

τ
= β ln

β + 1
β − 1

− 2 ,

∫ ∞
4m2

f

dτ

τ2

√
1−

4m2
f

τ
=

1
6m2

f

. (396)

Substituting these two integrals, we verify the identity

Πren(s) =
s

π

∫ ∞
4m2

f

dτ
Im Πren(τ)

τ (τ − s− iε)
. (397)

The result for the hadronic contribution to the running electromagnetic coupling, ∆α
(5)
h (s), is ob-

tained in the literature by making use of a similar dispersion relation:

∆α
(5)
h (s) = − α

3π
sRe

∫ ∞
4m2

π

ds′
Rγ (s′)

s′ (s′ − s− iε)
, (398)

with the ratio

Rγ(s) =
σ (e+e− → γ∗ → hadrons)
σ (e+e− → γ∗ → µ+µ−)

, (399)

as an experimental input.

For the hadronic contribution at MZ it gives:

∆α
(5)
h (M2

Z
) = 0.0280398 . (400)

For more details about this subject see Section 1.5 of Ref. [1].

5.6 Fermion self-energies in the Standard Model

In the Rξ gauge there are six fermion self-energy diagrams, shown in Fig. 7.

f f
=

f f
f

A(1)

+
f f

f

Z(2)

+
f f

f ′

W(3)

+
f f

f

H(4)

+
f f

f

φ0(5)

+
f f

f ′

φ(6)

Fig. 7: Fermionic self-energy diagrams

where f ′ is the weak isospin partner of the f -fermion, and the couplings to the Z boson are

vf = I
(3)
f − 2s2

θQf , af = I
(3)
f , (401)

We will also use combinations of couplings:

σf = vf + af , σ
(2)
f = v2

f + a2
f , σi

f =
(
vf + af

)i
,

δf = vf − af , δ
(2)
f = v2

f − a2
f , δi

f =
(
vf − af

)i
. (402)
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Each self-energy diagram containing a boson B-line is denoted by ΣB (/p) and has the structure:

ΣB (/p) = (2π)4 i
g2

16 π2
AB , /p = pαγα . (403)

There are six AB functions in the Rξ gauge, and only four [from (1) to (4) in Fig. 7] in the U gauge. As
an example we give QED contribution in the Rξ gauge:

Aξ
A

= s2
θ Q2

f

{
i/p
[
2B1

(
p2;mf , 0

)
+ 1

]
− 2mf

[
2B0

(
p2;mf , 0

)
− 1

]
− (i/p + mf )

(
ξ2
A
− 1

) [
B0

(
p2;mf , 0

)
+ mf (i/p−mf ) b1

(
p2;mf

)]}
, (404)

where one sees the presence of the special PV function b1
(
p2;mf

)
.

In the U gauge, the two diagrams with heavy vector bosons may be expressed as

AU
Z = − 1

4c2
θ

{
i/p
(
σ

(2)
f + 2vfafγ5

) [p2 + m2
f

M2
0

B1

(
p2;M0 , mf

)
+ AU

w

(
p2;M0 , mf

)]
+mfδ

(2)
f

[
3B0

(
p2;M0 , mf

)
+

1
M2

0

A0 (mf )− 2
]}

,

AU
W = −1

4
i/p (1 + γ5)

[p2 + m2
f ′

M2
B1

(
p2;M, mf

)
+ AU

w

(
p2;M, mf

)]
, (405)

i.e. by means of a common auxiliary function:

AU
w

(
p2;M, m

)
= 2B1

(
p2;M, m

)
+ B0

(
p2;M, m

)
+

1
M2

A0 (m)− 1 . (406)

Self-energy diagrams, both bosonic and fermionic, are universal in the sense that they depend only on the
type of propagating particle. On the contrary, vertices and boxes depend on the process, and in this sense
are termed to be non-universal.

5.7 The Standard Model vertices

I will limit myself to only one example of a vertex shown in Fig. 8. The following classification is useful:

• (1) is the QED diagram;

• (2) and (12) form the Z Abelian cluster;

• (3) and (8) are similarly the W Abelian cluster;

• (4) and (9)–(11) form the W non-Abelian cluster;

• remaining (5)–(7) and (13)–(14) form the H cluster.

Only diagrams (1)–(7) remain in the unitary gauge; Only diagrams (1)–(4) contribute in the case of mass-
less fermions.

As an example, consider the W Abelian cluster with virtual (W, φ) exchange for the case of the V bb
vertex. Even for the massless b-quark, the diagrams 8.(8-11) will contribute, since in this case f ′ = t and
mt cannot be neglected.

The vertex is a vector, V Wn
µ

(
Q2
)
, which, in turn, is different for two cases:

1) γff vertex, V Wn
µ

(
Q2
)

= (2π)4 i
ig3

16π2

sθ

2

(
−I

(3)
f

)
γµ (1 + γ5)Gg

Wn
(Q2) , (407)

2) Zff vertex, V Wn
µ

(
Q2
)

= (2π)4 i
ig3

16π2

cθ

2

(
−I

(3)
f

)
γµ (1 + γ5)Zg

Wn
(Q2) . (408)
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Z, A

f

f

=

f

f

A
f

f(1)

+

f

f

Z
f

f(2)

+

f

f
′

W
f ′

f(3)

+

f

W
f ′

W

f(4)

+

f

f

H
f

f(5)

+

f

(Z)Z
f

H

f(6)

+

f

(Z)H
f

Z

f(7)

+

f

f
′

φ

f ′

f(8)

+

f

W
f ′

φ

f(9)

+

f

φ

f ′

W

f(10)

+

f

φ

f ′

φ

f(11)

+

f

f

φ0

f

f(12)

+

f

(Z)H
f

φ0

f(13)

+

f

(Z)φ0

f

H

f(14)

Fig. 8: (Z,A)→ ff vertices. The symbol (Z) in some graphs indicates that it contributes only to the Z vertex.

The Gg
Wn

(Q2) and Zg
Wn

(Q2) are scalar form factors, bearing the sup-index g = gauge. In general, they
are different for γff and Zff vertices. In the U gauge, however, one has:

GU
Wn

(Q2) = ZU
Wn

(Q2) = FU
Wn

(Q2) , (409)

with

FU
Wn

(Q2) =

−(1−
m2

f ′

M2

)2(
2 +

m2
f ′

M2

)
M2

Q2
+ 4− 5

2
m2

f ′

M2
+ 2

m4
f ′

M4
−

m6
f ′

2M6

−
m2

f ′

M2

(
2−

m2
f ′

2M2

)
Q2

M2

]
M2C0

(
0, 0, Q2;M, mf ′ , M

)
−
[
2
3
−

m2
f ′

2M2
−
(

3
2
−

m2
f ′

4M2

)
Q2

M2
+

Q4

12M4

]
B0

(
Q2;M, M

)
−
[(

1−
m2

f ′

M2

)(
2 +

m2
f ′

M2

)
M2

Q2
− 3 +

3
2

m2
f ′

M2
−

m4
f ′

2M4

] [
B0

(
Q2;M, M

)
−B0

(
0;mf ′ , M

)]
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−
(

2
3
− Q2

6M2

)
1

M2
A0 (M)− 1

M2
A0
(
mf ′

)
− 2

3
−

m2
f ′

2M2
−
(

4
9
−

m2
f ′

4M2

)
Q2

M2
− Q4

18M4
. (410)

This vertex, as well as the Abelian diagrams of Fig. 8.(3,8) with virtual (W, φ) exchange, are one more
source of m2

t /M
2
W

enhanced terms. These terms are also called non-universal.

The world of vertices and boxes is much more rich than that of self-energies. Many more examples
may be be found in Sections 5.9–5.12 and 14.13–14.14 of Ref. [1]. We also would like to emphasize that
nowadays, one-loop diagrams are usually calculated using the methods of computer algebra. For instance,
all calculations in Ref. [1] are achieved by a set of codes written in form. These codes automatically
generate all the possible on-loop diagrams, substitute the Feynman rules and make the tensorial reduction
up to the scalar PV functions. In principle, they are accessible from the authors upon request.

5.8 Summary of five Lectures

Let us briefly summarize what we have studied and learned in the five lectures:

• Standard Model, its fields and Lagrangian;
Feynman rules→ building of diagrams;

• Regularization, N -point functions;
PV functions→ calculation of diagrams;

• Groups of diagrams, building blocks:

– Tadpoles reduce to one-point functions;

– Self-energies reduce to two- and one-point functions;
while studying them, we discussed:
∗ ρ-parameter;

∗ m2
t -enhanced terms;

∗ problem of quadratic divergences;

– Vertices reduce to 3,2,1 point functions;

– Boxes (direct/crossed) reduce to 4,3,2,1 functions.

We are approaching:

• Calculation of amplitudes for physical observables;

• Understanding the inevitability of renormalization.

6. RENORMALIZATION, ONE-LOOP AMPLITUDES, PRECISION TESTS OF THE SM

In the five previous lectures, our presentation was rather complete and consequent. Approaching the most
interesting subject, we face a lack of time and impossibility to continue with the same degree of compre-
hension. This is why the following presentation will be unavoidably brief and fragmentary.

6.1 Renormalization for pedestrians

We begin with an explanation of the main principles of renormalization. However, first of all, we have to
devote some time to the Dyson re-summation.
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6.1.1 Dyson re-summation

Consider a bare propagator. Turning to the dressed one, we have to sum up all the one-loop insertions.
This may be schematically depicted in the following figure:

=
1

(2π)4 i

1
(p2 + M2)

,

p p
= +

+

+ + · · ·

=
1

(2π)4 i

1[
p2 + M2 − 1

(2π)4 i

] .

This procedure is known as the Dyson re-summation.

In the case of conventional QED, we have the well-known result:

Sµν =
1

(2π)4 i
iπ2e2

(
p2δµν − pµpν

)
4Π(p2). (411)

The pµpν part does not contribute whenever one considers Sµν as being coupled to a conserved fermionic
currents. Therefore, Dyson re-summation results in the substitution:

1
(2π)4 i

δµν

p2
→ 1

(2π)4 i

δµν

p2

1

1− e2

4π2
Π
(
p2
) , (412)

with Π(p2) given by Eq. (263). This equation describes the running electromagnetic coupling.

Similarly, for the Z boson propagator in the ξ = 1 gauge we obtain:

Sµν =
1

(2π)4 i
iπ2 g2

c2
W

(
δµνΣZZ (p2) + pµpνTZZ(p2)

)
, (413)

1
(2π)4 i

δµν

p2 + M2
Z

→ 1
(2π)4 i

δµν

p2 + M2
Z
− g2

16π2c2
W

ΣZZ

(
p2
) . (414)

There is a big difference between Eqs. (412) and (414). The former does not change the position of the
pole of the photon propagator, which was at p2 = 0 before summation (bare propagator) and remained
at p2 = 0 after. We must emphasize however that it does change the residue of the photon propagator,
which was equal to one before summation. On the contrary, Eq. (414) drastically changes the position
of the pole of the Z propagator. The bare propagator had the pole at p2 = −M2

Z
. Let us recall now

Eqs. (388) and (390). We see that the pole of the re-summed propagator shifts into the complex plane
because ΣZZ (p2) has an imaginary part. Therefore, the Dyson re-summation results in the Breit–Wigner
form of the propagator of an unstable particle. However, it is not a full story. The quantity ΣZZ (p2) also
possesses a divergent real part and the re-summed expression is meaningless. To continue, we must learn
more about renormalization procedure.
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6.1.2 Renormalization in QED

We come back to QED describing the interaction of spin-1
2 particles with photons. We recall the QED

Lagrangian in the Feynman gauge:

LQED = −1
4

FµνFµν −
1
2

(CA)2 −
∑
f

ψf (/∂ − ieQf/A + mf )ψf , (415)

where
Fµν = ∂µAν − ∂νAµ , CA = −∂µAµ , (416)

and the sum runs over the fermion fields f (with charge eQf , and mass mf ). We also recall the Feynman
rules of QED:

p→
1

(2π)4 i

−i/p + mf

p2 + m2
f − iε

,

µ ν 1
(2π)4 i

1
p2 − iε

δµν ,

µ (2π)4 i ieQf γµ .

There are many alternative ways to describe renormalization. Here we use the language of the so-
called on-mass-shell renormalization (OMS).

The QED Lagrangian is unambiguous at tree level. Moving to higher orders, we face problems
because both the individual diagrams and their sum contain UV and IR divergences, and one has to modify
something in the procedure of the calculations in order to get a meaningful answer.

A natural question might be raised: Which are the fields and parameters that the Lagrangian of
Eq. (415) is made of? We assume that it is made of some bare fields and parameters labelled with indices
0, and specify the renormalization constants for both fields — Aµ and ψ — and parameters — the mass
m and the charge e — as follows:

A0µ = Z
1/2
A Aµ , ψ0 = Z

1/2
ψ ψ ,

e0 = Ze e , m0 = Zm m = m + e2δm +O
(
e4
)

. (417)

The renormalization constants, as everything else within a perturbative approach, are assumed to be rep-
resentable as Taylor expansions in the coupling constant e2, i.e.

Zi = 1 + e2δZi +O
(
e4
)

. (418)

The Lagrangian can now be re-written, up to terms O
(
e2
)

LQED → LR

QED
= LQED + Lct , (419)

with a counter-term Lagrangian

Lct = e2 L(2)
ct +O

(
e4
)

,

L(2)
ct = −1

4
δZA FµνFµν −

1
2

δZA (∂µAµ)2 − δZψ ψ /∂ ψ

− (δZψm + δm) ψψ − i

(
δZe + δZψ +

1
2
δZA

)
eAµψγµψ . (420)
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The first part of the Lagrangian, LQED , generates the standard set of diagrams and Feynman rules which
were shown in the previous figure. The counter-term Lagrangian generates a new set of diagrams with
Feynman rules:

A → e2δZA ,

e → −e2 (δZψi/p + δZψm + δm) ,

A

µ

e+

e−

→ −ieγµe3
(

δZe + δZψ +
1
2
δZA

)
,

and we have to take into account contributions generated by both parts.

The crucial moment in the above modification is an assumption that we have two kind of fields
and parameters, bare and physical ones, and that they are related by the simplest kind of transformation,
a multiplicative scale transformation Eq. (417) with some yet unknown renormalization constants. In this
way, we introduced into the theory a set of new parameters (degrees of freedom) which should somehow
be fixed. We will see that there is a very physical way of their fixation, after which all UV-divergences do
automatically cancel. In order to understand better the meaning of the fixation procedure, we will consider
once again diagrams of a different kind.

The photon propagator.
With the new Lagrangian Eq. (419) after Dyson re-summation, instead of Eq. (412), we will have:

1
(2π)4 i

δµν

p2

1

1 + e2δZA −
e2

4π2
Π
(
p2
) . (421)

The essence of the on-mass-shell renormalization scheme is to preserve the meaning of the original
parameters of the Lagrangian. For the dressed photonic propagator, we require that its residue should be
unchanged at the photonic mass shell, p2 = 0, i.e.

1

1 + e2δZA −
e2

4π2
Π (0)

= 1 . (422)

This requirement guarantees that the wave function for external photonic lines does not change due to
one-loop radiative corrections (for the proof see Section 1.4 of Ref. [1]) and simultaneously fixes e2δZA:

e2δZA =
e2

4π2
Π (0) . (423)

Recalling Eq. (265), we substitute Π (0) and obtain an explicit answer for one of the counter-terms:

δZA =
1

12π2

(
−1

ε̄
+ ln

m2

µ2

)
. (424)

In other words, one can say that we used the first fixation condition and fixed the counter-term δZA.

The electron propagator.
With the Lagrangian Eq. (419), we have

S =
1

(2π)4 i

[(
1 + e2δZψ

)
(i/p + m) + e2δm− 1

(2π)4 i
Σ (/p)

]−1

. (425)
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The second fixation condition. For the dressed electron propagator we also require residue = 1 (residue
one) at the electron mass shell, i/p = −m, i.e. the on-shell propagator should be equal to

S =
1

(2π)4 i (i/p + m)
. (426)

In order to exploit this fixation condition, we have to expand Σ (/p) around the physical electron mass
i/p = −m (this point is sometimes called the subtraction point). It is sufficient to take into account only
the first two terms in the Taylor expansion

Σ (/p) = Σ (im) + (i/p + m) ΣWF +O
(
(i/p + m)2

)
, (427)

where the coefficient of the linear term is called the wave function renormalization factor

ΣWF =
∂Σ (/p)
∂ (i/p)

∣∣∣∣∣
i/p=−m

. (428)

For the re-summed propagator we derive

S =
1

(2π)4 i

{(
1 + e2δZψ

)
(i/p + m) + e2δm

− 1
(2π)4 i

[
Σ (im) + (i/p + m) ΣWF +O

(
(i/p + m)2

)]}−1

. (429)

the residue one requirement will be fulfilled if

e2δm =
Σ (im)
(2π)4 i

, e2δZψ =
ΣWF

(2π)4 i
. (430)

The first equation is mass renormalization, whilst the second is wave function renormalization. the residue
one requirement preserves the external line electron wave function from being renormalized by the one-
loop radiative corrections and simultaneously fixes two more counter-terms.

By straightforward calculations in dimensional regularization, we derive

Σ (im) = iπ2e2m

(
−3

ε̄
+ 3 ln

m2

µ2
− 4

)
,

ΣWF = iπ2e2
{

2B1

(
−m2;m, 0

)
+ 1− 4 m2

[
B1p

(
−m2;m, 0

)
+ 2 B0p

(
−m2;m, 0

)]}
= iπ2e2

(
−1

ε̄
+

2
ε̂

+ 3 ln
m2

µ2
− 4

)
. (431)

Substituting these results into Eq. (430), we obtain explicit answers for two more counter-terms:

δm =
m

16π2

(
−3

ε̄
+ 3 ln

m2

µ2
− 4

)
, δZψ =

1
16π2

(
−1

ε̄
+

2
ε̂

+ 3 ln
m2

µ2
− 4

)
. (432)

The γe+e− vertex. Consider the γe+e− vertex with both fermions on mass shell. Collect again all con-
tributions to the γµ-part of the γe+e− vertex in the one-loop approximation. In terms of F1

(
Q2, m

)
,

introduced in Subsection 4.1.3, we have

− (2π)4 i ie

{
1 + e2

[
δZe +

1
2
δZA + δZψ +

1
16π2

F1

(
Q2, m

)]}
γµ . (433)
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Third fixation condition.
In the spirit of on-mass-shell renormalization we have to preserve the meaning of the parameters of the
original Lagrangian. For the one-loop corrected vertex we require it to be

− (2π)4 i ieγµ , (434)

at Q2 = 0, which preserves the Thompson limit of the electric charge from being renormalized by one-
loop radiative corrections, i.e.

δZe +
1
2
δZA + δZψ +

1
16π2

F1 (0, m) = 0 . (435)

Substituting the already fixed counter-term δZψ, and the derived expression for F1 (0, m), we observe
the famous QED Ward identity

δZψ +
1

16π2
F1 (0, m) ≡ 0 , (436)

that fixes the last counter-term

δZe ≡ −
1
2
δZA . (437)

So, all the counter-terms in the Lagrangian are fixed and one may calculate any QED process at the one-
loop level.

Let us summarize our findings:

• The one-loop and the counter-term contributions for any external on-shell line compensate each
other identically; this is known as the principle of non-renormalizability for external lines;

• For any 2→ 2 fermion process, at the one-loop level, we encounter only two building blocks:
1) The effective (running) electric charge, e2

(
p2
)
, entering the photonic propagator,

e2Dµν =
e2
(
p2
)

(2π)4 i

δµν

p2
, e2

(
p2
)

=
e2

1− e2

4π2
Πren

(
p2
) , (438)

the evolution of which is governed by the renormalized quantity

Πren
(
p2
)

= Π
(
p2
)
−Π (0) ; (439)

2) The renormalized vertex, F ren
1

(
Q2, m

)
, entering the complete γe+e− vertex,

Λµ = (2π)4 i
ie3

16π2

[
γµF ren

1

(
Q2, m

)
+ σµν (p1 + p2)ν mF2

(
Q2, m

)]
. (440)

The renormalized vertex is again the difference

F ren
1

(
Q2, m

)
= F1

(
Q2, m

)
− F1 (0, m) . (441)

Integral representations, limiting cases.
At the end of our study of renormalization in QED, we present the integral representation of two renor-
malized quantities and discuss some of their properties.

We recall the expression for Πren
(
p2
)
:

Πren
(
p2
)

=
1
9

+
1
3

(
1− 2

m2

p2

) ∫ 1

0
dx ln

χ
(
p2, x

)
m2

, (442)
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with
χ
(
p2, x

)
= p2x (1− x) + m2. (443)

For very low p2, one has

Πren
(
p2
)

=
p2

15 m2
, for p2 → 0 , (444)

which is the well-known contribution to the Uehling effect, i.e. the modification of Coulomb law due to
vacuum polarization.
Alternatively for large s = −p2, we have

Πren
(
p2
)

=
1
3

(
ln

s

m2
− i π

)
, for s = −p2 →∞. (445)

The F ren
1

(
Q2, m

)
in an integral form reads:

F ren
1

(
Q2, m

)
= 2

(
1
ε̂

+ ln
m2

µ2

)[
1− Q2 + 2m2

2

∫ 1

0
dx

1
χ (Q2, x)

]

−
(
Q2 + 2m2

) ∫ 1

0
dx

1
χ (Q2, x)

ln
χ
(
Q2, x

)
m2

−
∫ 1

0
dx ln

χ
(
Q2, x

)
m2

+ 2
(
Q2 + 3m2

) ∫ 1

0
dx

1
χ (Q2, x)

− 6 . (446)

The last expression still contains a pole and a scale-dependent logarithm,

1
ε̂

+ ln
m2

µ2
, (447)

which has an infrared origin and which will be compensated in any realistic calculation by the contribution
of the real soft photons emission and also by the box diagrams which are ultraviolet finite by themselves.

6.2 Non-minimal OMS renormalization scheme in the U gauge

Now we briefly discuss the on-mass-shell renormalization in the SM. In the spirit, it is absolutely anal-
ogous to that we have considered in QED. Moreover, in the U gauge, we are dealing only with physical
fields, and the renormalization procedure is particularly simple.

6.2.1 Multiplicative renormalization in the SM

In the SM, the independent quantities of the scheme are: the electric charge, the masses of all particles
and all fields. They undergo a multiplicative renormalization.
For fields:

ψi
0L

=
(
Z

1/2
L

)
ij

ψj
L
, ψi

0R
=

(
Z

1/2
R

)
ij

ψj
R
,

W0µ = Z
1/2
W Wµ , Z0µ = Z

1/2
Z Zµ ,

H0 = Z
1/2
H H , A0µ = Z

1/2
A Aµ + Z1/2

M
Zµ .

(448)

For bosonic masses:

M2 = ZM
W

Z−1
W M2

W
, M2

0
= ZM

Z
Z−1
Z M2

Z
, M2

0H
= ZM

H
Z−1
H M2

H
. (449)

Fermionic mass renormalization is more involved, due to the mixing. We introduce the matrices of the
renormalization constants Zmf

and Z+
mf

:

Lct ∼ −
(
ψ
L
Zmf

ψR + ψ
R
Z+

mf
ψL − ψmfψ

)
. (450)
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All but one of the renormalization constants are fixed by requiring that the residue of all the propagators are
1. This remaining renormalization constant is associated with the renormalization of the electric charge

e0 = ZeZ
−1/2
A e . (451)

Alternatively, one may use an additive renormalization of the electric charge

e2
0

= e2 + δe2,

δe2

e2
= 2 (Ze − 1)− (ZA − 1) . (452)

If the electric charge renormalization is defined by Eq. (451), then the relevant Ward identity implies

Ze ≡ 1 . (453)

Within the OMS renormalization scheme, one has to adopt two definitions, valid to all orders in
the perturbation theory.

1. The OMS weak mixing angle, θW ( cW = cos θW ):

M2
Z
c2
W

= M2
W

; (454)

2. The OMS weak charge, g:

g2 =
e2

s2
W

,

(
s2
W

= 1− c2
W

= 1− M2
W

M2
Z

)
. (455)

The necessity to adopt them as definitions follows from the fact that sW and g are not independent quan-
tities in this framework.

6.2.2 Counter-term Lagrangian

With the aid of the same procedure used in the case of QED, it is rather easy to derive the counter-terms
Lagrangian from an original one, using multiplicative renormalization Eqs. (448)–(451). Here we present
only the final result.

The kinetic and mass terms for bosonic fields are

Lkin,A
ct = −1

4
(ZA − 1) (Aµν)

2 ,

Lkin,Z
ct = −1

4
(ZZ + ZM − 1) (Zµν)

2 − 1
2

(
ZM

Z
− 1

)
M2

Z
(Zµ)2 − 1

2
Z

1/2
A Z1/2

M
AµνZµν ,

Lkin,W
ct = −1

2
(ZW − 1) |Wµν |2 −

(
ZM

Z
− 1

)
M2

W
|Wµ|2,

Lkin,H
ct = −1

2
(ZH − 1) (∂µH)2 − 1

2

(
ZM

H
− 1

)
M2

H
H2, (456)

with

Vµν = ∂µVν − ∂νVµ . (457)

The fermionic kinetic term reads,

Lkin,f
ct = −1

2
ψ/∂
[(√

ZL

†√
ZL − I

)
γ+ +

(√
ZR

†√
ZR − I

)
γ−
]
ψ. (458)

Here we introduced:
γ± = 1± γ5 . (459)
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Since
√

ZL and
√

ZR are understood to be the matrices acting in the full fermionic-flavour space, the
equation, ∣∣∣√ZL

∣∣∣2 =
√

ZL

†√
ZL , (460)

should be understood as a notation. In general, these matrices are non-diagonal and even non-Hermitian,
due to the mixing induced by loop corrections. The renormalization requirement fixes the combinations,

∣∣∣√ZL

∣∣∣2 − I ,
∣∣∣√ZR

∣∣∣2 − I , (461)

which directly enter the kinetic term.

In the one-loop approximation we may consistently accept that
√

ZL,R are Hermitian matrices,
then √

ZL,R − I =
1
2

(∣∣∣√ZL,R

∣∣∣2 − I

)
, (462)

and all the combinations entering the interaction Lagrangian become known.

For the V (H)ff interaction parts of the Lagrangian one obtains:

Lγff
ct =

i

2
eQfψγµ

[(∣∣∣√ZL

∣∣∣2 − I

)
γ+ +

(∣∣∣√ZR

∣∣∣2 − I

)
γ− + 2 (Ze − 1)

]
ψAµ ,

LZff
ct =

i

2
e

sW cW
ψγµ

{[∣∣∣√ZL

∣∣∣2( ZM
Z

ZW

ZAZM
W

Zc

)1/2

− I

]
I

(3)
f γ+

−2Qfs2
W

[
1
2

(∣∣∣√ZL

∣∣∣2γ+ +
∣∣∣√ZR

∣∣∣2γ−)
(

ZM
Z

ZW

ZAZM
W

Zc

)1/2

− I

]

−2QfsW cW

(
1
2

∣∣∣√ZL

∣∣∣2γ+ +
1
2

∣∣∣√ZR

∣∣∣2γ−)(ZM

ZA

)1/2
}

ψZµ ,

LWff
′

ct =
i

2
√

2
e

sW
ψ

u
γµγ+

[√
ZuL

†
C
√

ZdL

(
ZW

ZAZc

)1/2

− C

]
ψd + h.c.

LHff
ct = − e

2MW sW
ψ

[
1
2

(
Zmf

γ− + Z+
mf

γ+

)( ZHZW

ZAZM
W

Zc

)1/2

−mf

]
ψ, (463)

where

Zc = 1− δc2
W

s2
W

, s2
W

= 1− M2
W

M2
Z

,
δc2

W

c2
W

=
δM2

W

M2
W

− δM2
Z

M2
Z

, (464)

with MW and MZ being the physical masses of the vector bosons, and C being the CKM mixing matrix.

The full list of bosonic renormalization constants, which is derived after their fixation by residue
one requirements, looks as follows: (we note that an unnatural looking of the first three rows is an artifact
of the definition Eq. (449)):

ZM
W
− ZW =

δM2
W

M2
W

=
g2

16π2M2
W

ΣWW

(
M2

W

)
,

ZM
Z
− ZZ =

δM2
Z

M2
Z

=
g2

16π2c2
θM

2
Z

ΣZZ

(
M2

Z

)
,

ZM
H
− ZH =

δM2
H

M2
H

=
g2

16π2M2
H

ΣHH

(
M2

H

)
,
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Z1/2
M

=
g2sW

16π2cWM2
Z

ΣZA

(
M2

Z

)
,

ZA − 1 =
e2

16π2
Πγγ (0) ,

ZZ − 1 =
g2

16π2c2
θ

∂ΣZZ

(
p2
)

∂p2

∣∣∣∣∣
p2=−M2

Z

,

ZW − 1 =
g2

16π2

∂ΣWW

(
p2
)

∂p2

∣∣∣∣∣
p2=−M2

W

,

ZH − 1 =
g2

16π2

∂ΣHH

(
p2
)

∂p2

∣∣∣∣∣
p2=−M2

H

. (465)

It should be noted that we use a convention for arguments. For every self-energy function: ΣV V , Πγγ ,...
if p2 = −s or p2 = −M2, we will omit the minus sign, i.e. we will write ΣV V (s)... On the contrary, in
the argument list of every Bk, Ck... function, we will explicitly maintain the sign.

6.2.3 Linearized form of the counter-term Lagrangian

Since we are working within the perturbation theory, where all renormalization constants are a power
series in the coupling constant e2 (cf. Eq. (418)), we may simplify a little the counter-term interaction
Lagrangian Eq. (464) and rewrite it as

LZff
ct =

i

2
e

sW cW
ψγµ

{[∣∣∣∣√ZL

∣∣∣∣2 − I +
1
2

(
(ZZ − 1)− (ZA − 1) +

c2
W
− s2

W

s2
W

δc2
W

c2
W

)]
I

(3)
f γ+

−2Qfs2
W

[
1
2

(∣∣∣∣√ZL

∣∣∣∣2 − I

)
γ+ +

1
2

(∣∣∣∣√ZR

∣∣∣∣2 − I

)
γ−

+
1
2

(
(ZZ − 1)− (ZA − 1)− 1

s2
W

δc2
W

c2
W

)
+

cW
sW

Z1/2
M

]}
ψZµ ,

LWff
′

ct =
i

2
√

2
e

sW
ψ

u
γµγ+

{(√
ZuL − I

)
C + C

(√
ZdL − I

)
+C

[
1
2

(ZW − 1)− 1
2

(ZA − 1) +
δc2

W

2s2
W

]}
ψd + h.c.,

LHff
ct = − e

2MW sW
ψ

{(
Zmf

−mf

)
+ mf

[
1
2

(ZH − 1)− 1
2

(
ZM

W
− 1

)
+

1
2

(ZW − 1)− 1
2

(ZA − 1) +
1
2

δc2
W

s2
W

]}
ψ. (466)

This is the so-called linearized form of the counter-term Lagrangian from which one easily derives addi-
tional Feynman rules for vertices involving renormalization constants.

6.2.4 Fermionic renormalization constants

In previous sections we calculated all the renormalization constants associated with bosonic fields and
masses. We still need to fix fermionic renormalization constants, Eq. (461), and fermionic mass renor-
malization, Zmf

, Eq. (450).

The procedure of fixation is very similar to that of QED, although it has some peculiar features due
to the presence of γ5. Below we briefly sketch the procedure.
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Consider a fermionic self-energy diagram:

f f

f

B

The most general expression for such a diagram looks like:

Σ(i/p) = (2π)4 i
[
a1(p2) + a2(p2)γ5 +

(
a3(p2)− a4(p2)γ5

)
i/p
]
. (467)

However, in the Standard Model we have always a2(p2) ≡ 0 (see the proof in Section 6.6 of Ref. [1]).
Therefore, it reduces to

Σ(i/p) = (2π)4 i
[
a1(p2) + a3(p2)i/p + a4(p2)i/pγ5

]
. (468)

The kinetic and mass terms of the counter-term Lagrangian may be symbolically depicted as:

f f

and their contribution, derived from Eqs. (450) and (458), as:

−1
2
i/p

[(∣∣∣√ZL

∣∣∣2 − I

)
γ+ +

(∣∣∣√ZR

∣∣∣2 − I

)
γ−

]
−
(
Zmf

−mf

)
. (469)

From the requirement that the sum vanishes on the fermion mass shell, one derives all the fermionic renor-
malization constants:∣∣∣√ZL

∣∣∣2 − I = a3(m2)− 2m2a′3(m
2) + 2ma′1(m

2) + a4(m2) ,∣∣∣√ZR

∣∣∣2 − I = a3(m2)− 2m2a′3(m
2) + 2ma′1(m

2)− a4(m2) ,

Zmf
= m + a1(m2) + 2m2a′1(m

2)− 2m3a′3(m
2) , (470)

where a′i denotes the derivatives, a′i(m
2) = ∂ai(p2)/∂p2|p2=−m2 and where we have used the expansion:

ai(p2) = ai(m2) + 2m(i/p + m)a′i(m
2) , (471)

assuming that from the left side of Eq. (468) the Dirac equation holds, i.e. i/p = −m. Equation (470) is

obtained by means of re-shuffling the terms as follows, A + B(i/p + m) +O
(
(i/p + m)2

)
, and requiring

A = 0, B = 0. Higher-order terms O ((i/p + m))2 may be neglected on the mass shell.

To summarize our study of the renormalization procedure, we recall the important steps:

• Dyson re-summation;

• Invention of the renormalization constants;

• Construction of the counter-term Lagrangian;

• Fixation of the renormalization constants in the spirit of the OMS scheme;

• Physical meaning of the residue one requirement.

We recall that the residue one requirement means that we preserve the physical meaning of the parameters
of the original Lagrangian. This means in turn, that renormalization has nothing to do with the cancella-
tion of divergences. We obtain the cancellation of UV-divergences for free as a byproduct of a procedure
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aimed at preserving the physical meaning of the parameters from being changed by radiative corrections.
This means in turn, that within a renormalizable theory, the problem of UV-divergences simply does not
present. We need, of course, to exploit a well-defined regularization, nowadays dimensional regulariza-
tion, in order to parametrize the divergences of individual terms. However, after proper treatment of the
Lagrangian parameters, all the UV-divergences cancel identically, in other words the theory becomes UV-
finite.

It is necessary to understand, however, one important difference of the SM from usual QED. In
QED we were able to introduce the notion of the renormalized diagram for every individual diagram,
see Eqs. (442) and (446). In the SM it is, in general, impossible. As an example, consider Z self-energy
(Fig. 5) in general Rξ gauge. It could be subdivided into a fermionic component, Fig. 5.(1), and bosonic
one, Fig. 5.(2-14).

Define the renormalized self-energy by means of the expression:

Σren
ZZ (p2) = ΣZZ(p2)− ΣZZ(M2

Z
)− (p2 + M2

Z
)
∂ΣZZ(p2)

∂p2

∣∣∣∣
p2=−M2

Z

. (472)

It is easy to verify that the fermionic component of Σren
ZZ (p2), which is known to be gauge-invariant, is free

of UV-pole, and therefore, full analogy with QED holds. However, the bosonic component of Eq. (472),
although also UV-free, does depend on ξ, and therefore the notion of the renormalized self-energy diagram
is meaningless. In the unitary gauge, the quantity Σren

ZZ (p2) even contains UV-divergences. The gauge-
dependent terms cancel in the sum of self-energy, vertex and box diagrams for a physical amplitude. The
same is true for UV-poles in the unitary gauge.

With this minimal knowledge about the renormalization procedure, we are ready to discuss the
amplitudes for some physical processes.

6.3 One-loop amplitudes

6.3.1 The Born amplitude and diagrams

To approach the discussion of the amplitudes and to introduce more notions, we begin with the Born ap-
proximation of the amplitude of the process e+e− → ff . It is described by the two tree-level diagrams
with γ and Z exchanges:

e+ f

A

e− f

+

e+ f

Z

e− f

The photon exchange amplitude has a unique vector⊗ vector structure, whilst the Z exchange amplitude
may be written in two basises, VA or LQ:

ABorn
γ

=
e2QeQf

s
γµ ⊗ γµ ,

ABorn
Z

=
e2

4s2
W

c2
W

χZ(s) γµ(ve + aeγ5)⊗ γµ(vf + afγ5) − VA-basis,

ABorn
Z

=
e2

4s2
W

c2
W

χZ(s) γµ

[
I(3)
e γ+ − 2Qes

2
W

]
⊗ γµ

[
I

(3)
f γ+ − 2Qfs2

W

]
− LQ-basis. (473)
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Here γ± = 1± γ5 and the symbol ⊗ is used in the following short-hand notation:

γµ (v1 + a1γ5)⊗ γν (v2 + a2γ5) = ū (p+) γµ (v1 + a1γ5) v (p−) v̄ (q−) γν (v2 + a2γ5)u (q+) . (474)

Furthermore, the χZ(s) denotes the Z boson propagator:

χZ(s) =
1

s−M2
Z

+ isΓZ/MZ

. (475)

From the basic relations between the parameters,

g2

8M2
W

=
GF√

2
, s2

W
=

e2

g2
, c2

W
= 1− s2

W
=

M2
W

M2
Z

, (476)

one easily derives

e2

4s2
W

c2
W

=
√

2GFM2
Z

, (477)

or, using e2 = 4πα, we define the conversion factor:

f =

√
2GFM2

Z
s2
W

c2
W

πα
, (478)

which is equal to one in the lowest order. Of course, it may differ from one due to radiative corrections.
This will be the subject of next section.

6.4 Muon decay, Sirlin’s parameter ∆r

As already mentioned in the first lecture, one has to exploit somehow the precise measurement of the muon
lifetime, since in terms of the Fermi coupling constant, GF = 1.16639(2) × 10−5 GeV−2, the relevant
accuracy isO

(
10−5

)
. In this section we briefly discuss the relevant issues. For a complete presentation,

see Chapter 4 and Section 7.13 of Ref. [1].

6.4.1 Muon lifetime

The process being considered is

µ→ e + νµ + νe . (479)

If one includes lowest-order QED corrections and W boson propagator effects, then for the inverse muon
life-time one obtains, (cf. with the standard presentation in Ref. [6]):

1
τµ

=
G2
Fm5

µ

192 π3
F

(
m2

e

m2
µ

) (
1 +

3
5

m2
µ

M2
W

)1 +
α
(
m2

µ

)
2 π

(
25
4
− π2

) , (480)

where
F (r) = 1− 8 r + 8 r3 − r4 − 12 r2 ln r (481)

is the phase space factor, and α−1
(
m2

µ

)
≈ 136 is the QED running coupling constant at the scale mµ.

This low-energy decay process may be described with the effective four-fermion Fermi Lagrangian

LF =
GF√

2
ψeγµγ+ψµψνµγµγ+ψνe + h.c. (482)
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One usually calculates the observable distribution, dI0(x), in terms of a kinematical variable x = 2Ee
mµ

,
where Ee is the electron energy in the muon rest frame.

If the electron mass is neglected, x varies from 0 to 1. Then, in the lowest order (tree level), one
has

dI0(x) =
G2
Fm5

µ

96 π3
x2 (3− 2 x)dx → 1

τµ
=

G2
Fm5

µ

192 π3
. (483)

Since the electron mass me is very small, it is sufficient to calculate the real and virtual QED radiative
corrections ignoring the electron mass.

6.4.2 Real corrections in µ-decay

The bremsstrahlung, or real photon emission, in µ-decay, i.e. the process

µ→ e + νµ + νe + γ , (484)

is described in Fermi theory by two Feynman diagrams:

µ

e

νe

νµ

µ

e

νe

νµ

The quantity of experimental interest is the transition probability summed over the full photonic phase
space. After lengthy calculations of the decay probability of the bremsstrahlung process, one derives:

dIr(x) =
G2
Fm5

µ

96 π3

α

2 π
I(x)dx,

I(x) = 2x2 (3− 2x)

{[
1
ε̂

+ ln
mµme

µ2
+ ln

(1− x)2

x

]
(L− 1) + Li2 (x)− Li2 (1)

}

−x (3− 2x) (1− x) ln (1− x) +
1
3

(1− x)
[(

5 + 17x− 34x2
)

L− 22x + 34x2
]
,

where L = ln
(

x
mµ

me

)
. (485)

Note the appearance of the IR-pole term, which is due to the soft photon emission.

6.4.3 Virtual QED corrections for µ-decay

There are three diagrams that contribute to theO (α) QED corrections in the Fermi theory, which are due
to the virtual photon exchange (actually only the third one, see Section 6.1):

µ

e

νe

νµ
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The effect of the virtual diagrams may be seen as dressing the lowest-order interaction ūeγαγ+uµ with
QED corrections, resulting in the appearance of a more complicated structure:

− α

4 π

(
F1γαγ+ +

i

mµ
F2 qµ,αγ− +

i

mµ
F3 qe,αγ−

)
. (486)

Note that only the first term has the Born-like structure, the second and third ones are new and this is why
we use the notion of induced structures for them. The result of calculating the diagrams reads:

F1 = 2
[(

1
ε̂

+ ln
mµme

µ2

)
(L− 1) + Li2 (1)− Li2 (x)

]
+
[
2L− 2 ln (1− x) +

1
1− x

]
lnx− 3L + 4 ,

F2 =
2

(1− x)2

[
x lnx + 1− x

]
,

F3 =
2

(1− x)2

[
(1− 2 x) lnx− 1 + x

]
. (487)

The virtual corrections contribute via interference of the amplitude Eq. (486) with the Born ampli-
tude. After calculating the traces one derives:

dI0+v(x) =
(

1− α

2 π
F1

)
dI(0)(x) +

G2
Fm5

µ

96 π3

α

4 π
x3 (F2 + F3) dx . (488)

The lowest-order result is multiplied by a correction factor, F1, which is ultraviolet finite (after renorma-
lization), but infrared divergent; the induced form factors, F2 and F3, are finite. The latter should be the
case, since there are no other sources to compensate any divergence of induced form factors. The infrared
divergence must cancel when we combine the contribution of the virtual photons, Eq. (488), with real
photons contribution, dIr(x), Eq. (485).

6.4.4 Total QED corrections for µ-decay

The experimentally observable quantity is the sum of the two transition probabilities for real and virtual
processes, which is free of infrared divergences. For the sum, we obtain:

dI(x) =
G2
Fm5

µ

96 π3

[
x2 (3− 2 x) +

α

2 π
∆I(x)

]
dx ,

∆I(x) = 2x2 (3− 2 x)
[(

2 ln
1− x

x
+

3
2

)
(L− 1) + 2 Li2 (x)− 2 Li2 (1) + ln (1− x) lnx− 1

2

−1− x

x
ln (1− x)

]
− 3x2 lnx +

1− x

3

[(
5 + 17 x− 34 x2

)
L− 22 x + 34 x2

]
. (489)

The total QED correction is derived by integrating dI(x) over x from 0 to 1, yielding

1
τµ

=
G2
Fm5

µ

192 π3

[
1 +

α

2 π

(
25
4
− π2

)]
. (490)

Let us emphasize again that this result was calculated within QED ⊗ effective 4-fermion Fermi theory.
Of course, the calculation could be performed exclusively within the Standard Model framework. This
would give something like

1
τµ

=
m5

µ

192π3

g4

32 M4
W

(
1 +

α

2π
δµ

)
. (491)

However, the Fermi constant was historically defined by Eq. (490). This is why we sketched, first of all,
a derivation within the Fermi theory. Now we turn to a complete calculation within the SM.
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6.4.5 EW corrections for muon decay, Sirlin’s parameter ∆r

Turning to the discussion of complete one-loop corrections to µ decay, we note first of all that the QED
corrections, discussed in the previous section, form a gauge-invariant result. Moreover, both the QED
and remaining EW corrections are infrared- and ultraviolet-finite and gauge-invariant, therefore they can
be treated separately and we may write:

δµ = δem
µ + δew

µ . (492)

or, equalizing Eqs. (490) and (491), we obtain

GF√
2

=
g2

8M2
W

[
1 +

α

4π

(
δµ − δem

µ

)]
=

g2

8M2
W

(
1 +

α

4π
δew
µ

)
. (493)

Recalling the basic definitions of the OMS scheme

M2
Z
c2
W

= M2
W

, g2 =
e2

s2
W

, (494)

and using them, we derive

s2
W

c2
W

=
πα√

2GFM2
Z

(1 + ∆r) , with ∆r =
α

4π
δew
µ . (495)

Alberto Sirlin (1980) suggested that the last equation be rewritten as

s2
W

c2
W

=
πα√

2GFM2
Z

1
1−∆r

, (496)

as if it could be re-summed to all orders (similar to the Dyson re-summation) as would be true for ∆α
(see Eq. (502) below).

After lengthy calculations (see Section 7.13 of Ref. [1]), one derives the finite result for ∆r in the
one-loop approximation

∆r =
α

4π

1
s2
W

{
s2
W

[
−2

3
−Πfer,F

γγ (0)
]

+
c2
W

s2
W

∆ρF + ∆ρFW +
11
2
− 5

8
c2
W

(
1 + c2

W

)
+

9c2
W

4s2
W

ln c2
W

}
,

(497)
where finite parts of the ∆ρF factors defined by,

∆ρF = ∆ρbos,F + ∆ρfer,F , ∆ρFW = ∆ρbos,F
W + ∆ρfer,F

W , (498)

have fermionic and bosonic contributions

∆ρbos(fer),F =
1

M2
W

[
Σbos(fer),F
WW

(
M2

W

)
− Σbos(fer),F

ZZ

(
M2

Z

)]
,

∆ρ
bos(fer),F
W =

1
M2

W

[
Σbos(fer),F
WW

(0)− Σbos(fer),F
WW

(
M2

W

)]
. (499)

The bosonic contributions, written down explicitly, are

∆ρbos,F
W = −

(
1

12c4
W

+
4

3c2
W

− 17
3
− 4c2

W

)
BF

0

(
−M2

W
;MZ , MW

)
−
(

1− 1
3
wh +

1
12

w2
h

)
BF

0

(
−M2

W
;MH , MW

)
+
[

3
4 (1− wh)

+
1
4
− 1

12
wh

]
wh lnwh +

(
1

12c4
W

+
17

12c2
W

− 3
s2
W

+
1
4

)
ln c2

W
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+
1

12c4
W

+
11

8c2
W

+
139
36
− 177

24
c2
W

+
5
8
c4
W
− 1

12
wh

(
7
2
− wh

)
,

∆ρbos,F = −
(

1
12c2

W

+
4
3
− 17

3
c2
W
− 4c4

W

)[
BF

0

(
−M2

Z
;MW , MW

)
− 1

c2
W

BF
0

(
−M2

W
;MZ , MW

)]
+
(

1− 1
3
wh +

1
12

w2
h

)
BF

0

(
−M2

W
;MH , MW

)
−
(

1− 1
3
zh +

1
12

z2
h

)
1

c2
W

BF
0

(
−M2

Z
;MH , MZ

)
+

1
12

s2
W

w2
h(lnwh − 1)−

(
1

12c4
W

+
1

2c2
W

− 2 +
1
12

wh

)
ln c2

W

− 1
12c4

W

− 19
36c2

W

− 133
18

+ 8c2
W

, (500)

where we introduced two ratios

wh =
M2

H

M2
W

, zh =
M2

H

M2
Z

, (501)

and the finite parts of the B0 function as in Eqs. (361)–(362).

6.4.6 Re-summation of large corrections

In order to reach a high precision of theoretical predictions, one has to improve upon the one-loop expres-
sion. We begin with the extraction of ∆αfer

(
M2

Z

)
from ∆r. From the definition of ∆αfer

(
M2

Z

)
,

αfer
(
M2

Z

)
=

α

1−∆αfer
(
M2

Z

) , (502)

and the definition of the e.m. running coupling

α(s) =
α

1− α

4π
ΠF (s)

, with ΠF (s) = Πren(s) = Πγγ(s)−Πγγ(0), (503)

we derive the following representation for ∆r

∆r = ∆αfer
(
M2

Z

)
+

α

4πs2
W

{
s2
W

[
−2

3
−Πt,F

γγ (0)−Πl+5q,F
γγ

(
M2

Z

)]

+
c2
W

s2
W

∆ρF + ∆ρFW +
11
2
− 5

8
c2
W

(
1 + c2

W

)
+

9c2
W

4s2
W

ln c2
W

}
, (504)

where the superscript l + 5q stands for a summation over leptons and five light quarks.

Note, that the running QED coupling, ∆αfer
(
M2

Z

)
, is defined at the scale µ = MZ . The two

quantities in Eq. (499) are defined at the scale µ = MW as an artifact of the definition in Eq. (361).
It is reasonable to re-scale all the relevant quantities to the natural value of the scale µ = MZ . The
quantity ∆ρF , evaluated at µ = MZ , is a gauge-invariant object, and therefore a good candidate for a
re-summation. Define the leading and remainder contributions to ∆r:

∆rL = − α

4π

c2
W

s4
W

∆ρF
∣∣∣∣
µ=M

Z

,

∆rrem =
α

4πs2
W

{
s2
W

[
−2

3
−Πt,F

γγ (0)−Πl+5q,F
γγ

(
M2

Z

)]
+
(

1
6
Nf −

1
6
− 7c2

W

)
ln c2

W

+∆ρFW +
11
2
− 5

8
c2
W

(
1 + c2

W

)
+

9c2
W

4s2
W

ln c2
W

}∣∣∣∣
µ=M

Z

. (505)
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The re-summed one-loop representation reads
√

2GFM2
Z
s2
W

c2
W

πα
=

1(
1−∆αfer

(
M2

Z

)
−∆rrem

)(
1 +

√
2GFM2

Z
s2
W

c2
W

πα
∆rL

) . (506)

The re-summation of ∆αfer
(
M2

Z

)
is dictated by renormalization group arguments. The re-summation

of terms containing ∆ρfer,F (∆rL) finds its roots in the two-loop EW calculations (G. Degrassi et al.
1996–1999). The Eq. (506) is therefore an improved version of the one-loop result Eq. (496).

Higher orders, in particular QCD corrections of O (ααS ) and second-order electroweak correc-

tionsO
(
G2
Fm4

t

)
andO

(
G2
Fm2

t M
2
Z

)
, are applied by means of modifications of the leading and remainder

terms:

∆rL → ∆rL + ∆rho
L , ∆rrem → ∆rrem + ∆rho

rem . (507)

Equation (506) formally looks like an equation for conversion factor f , cf. Eq. (478). If all radiative
corrections are switched off, f = 1, and f differs from 1 due to non-zero radiative corrections. We may
consider the Eq. (506) as an equation with respect to MW . The results of an iterative solution of this
equation for the MW which incorporate second-order electroweak corrections, without and with QCD
correction O (ααS ), are shown in the Tab. 1. This Table is shown not only to give some taste of the

Table 1: The W -boson mass, MW [GeV] in OMS scheme, αS = 0 — first entry, αS = 0.120 — second entry.

mt [GeV] MH [GeV]
65 300 1000

170.1 80.445 80.349 80.256
80.375 80.279 80.186

175.6 80.482 80.386 80.291
80.409 80.312 80.219

181.1 80.521 80.423 80.329
80.444 80.346 80.252

numbers. It shows that the two-loop corrections of O (ααS ) shift the predicted mass of the MW boson
by about 80 MeV, which is bigger than the present experimental error of direct measurements of MW !
It is a nice illustration of the importance of precision calculations.

6.5 Z resonance observables at one loop

Before discussing Z resonance observables, we have to give two definitions in order to understand the
terminology that has arisen in the depths of the LEP community.

Definition 1 Realistic Observables. They are the cross-sections σf (s) and asymmetries Af (s) of the
reactions,

e+e− → (γ, Z)→ ff(nγ) , (508)

calculated for a given value of s = 4E2 with all available higher-order corrections (QCD, EW), including
real and virtual QED photonic corrections, possibly accounting for kinematical cuts.

Definition 2 Pseudo-Observables. They are related to measured cross-sections and asymmetries by a
de-convolution or unfolding procedure (i.e. undressing of QED corrections). The concept of the pseudo-
observability itself is rather difficult to define. One way to introduce it is to say that the experiments mea-
sure some primordial (basically cross-sections and thereby also asymmetries) quantities which are then
reduced to secondary quantities under a set of specific assumptions. Within these assumptions, the sec-
ondary quantities, the pseudo-observables, also deserve the label of observability.
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6.5.1 The Z partial widths

The Z partial widths represent a typical example of pseudo-observables, i.e. they have to be defined. At
the Born level, we define the partial width of the Z → ff decay as a quantity described by the square of
one diagram:

f

Z

f

Fig. 9: Process Z → ff ; Born approximation.

Its amplitude is written by the direct application of the Feynman rules of Section 2.11. Like Eq. (473),
the amplitude of the process Z → ff decay amplitude may be written in two basises:
V A-basis,

V Zff
µ = (2π)4 i

ig3

16 π2cW
γµ

[
vf + af γ5

]
, (509)

LQ-basis,

V Zff
µ = (2π)4 i

ig3

16 π2cW
γµ

[
I

(3)
f γ+ − 2Qfs2

W

]
. (510)

Both expressions are identical and we write both for didactic reasons only. The partial width of the Z →
ff decay in the Born approximation is given by Eq. (386) which we recall here:

Γ
(
Z → ff

)
=

GFM3
Z

6
√

2π
βf (MZ )

[(
v2
f + a2

f

)(
1 + 2

m2
f

M2
Z

)
− 6a2

f

m2
f

M2
Z

]
. (511)

Here the Z–fermion couplings are defined by Eq. (401).

6.5.2 QED diagrams and corrections

QED corrections in the massless approximation are described by three diagrams in Fig. 10.

f

Z

f

γ +

f

Z

f

γ
+

f

Z

f

γ

Fig. 10: Process Z → ff ; QED corrections.

QED diagrams are separately gauge-invariant and finite. Their contribution integrated over the full bremsstrahlung
photon phase space is (see derivation in Section 4.2)

ΓQED

f = Γ(0)
f

(
1 +

3
4

α

π
Q2

f

)
. (512)
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6.5.3 The Z → ff decay amplitude

All remaining one-loop diagrams refer to EW corrections. They form another gauge-invariant subset
of diagrams. Recall that all the counter-terms were fixed in such a way that all external lines remain
unchanged by radiative corrections, therefore only vertex diagrams and vertex-type counter-terms con-
tribute:

f

Z

f

+

f

Z

f

Fig. 11: Process Z → ff ; fermion vertex and its counter-terms.

The effect of radiative corrections may be parametrized in terms of amplitude form factors. In the mass-
less approximation, the amplitude has a Born-like structure with only two form factors and again two
basises might be used:
V A-basis,

V Zff
µ = (2π)4 i

ig3

16 π2cW
γµ

[
FV (M2

Z
) + FA(M2

Z
) γ5

]
, (513)

LQ-basis,

V Zff
µ = (2π)4 i

ig3

16 π2cW
γµ

[
I

(3)
f FL

(
M2

Z

)
γ+ − 2Qfs2

W
FQ

(
M2

Z

)]
. (514)

We see that the only difference from the Born case is the replacement 1 → FL,Q

(
M2

Z

)
. With the aid

of this amplitude one constructs the Z partial widths, Γf , which can be compared, in principle, with the
experimental data.

6.5.4 The Z width in the one-loop approximation

Consider the sum of the Born and of the one-loop corrected amplitudes for the Z boson decay

V cor
µ

(
M2

Z

)
∝ ie

2sW cW
γµ

[
I

(3)
f fZ,Lγ+ − 2Qfs2

W
fZ,Q

]
=

iefZ,L

2sW cW
γµ

[
I

(3)
f γ+ − 2Qfs2

W

(
1 + fZ,Q − fZ,L

)]
, (515)

where
fZ,L(Q) = 1 +

α

4πs2
W

F
Z,L(Q)

(
M2

Z

)
. (516)

Using the definition of ∆r, Eq. (496), rewritten as follows,

e

sW cW
= 2

√√
2GFM2

Z

(
1− 1

2
∆r

)
, (517)

we eliminate the ratio e/(sW cW ) in favour of the Fermi constant GF , and FZ,L

(
M2

Z

)
receive shifts of

−∆r/2. This procedure eliminates running QED coupling ∆α(M2
Z
) from FZ,L

(
M2

Z

)
and to an extent

minimizes the radiative correction, since ∆α(M2
Z
) contains big logs. Define the two effective couplings
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ρf
Z

(one more ρ!, this time finite and gauge-invariant, see comments below) and κf
Z

,

ρf
Z

= 1 +
α

4πs2
W

[
2FZ,L

(
M2

Z

)
− s2

W
δew
µ

]
,

κf
Z

= 1 +
α

4πs2
W

[
FZ,Q

(
M2

Z

)
− FZ,L

(
M2

Z

)]
, (518)

where δew
µ was discussed in Section 6.4.5. In terms of these effective couplings the one-loop improved

expression for the partial width of Z → ff decay becomes

Γf =
GFM3

Z

6
√

2π
cfρf

Z

[(
vf

eff

)2
Rf
V +

(
I

(3)
f

)2
Rf
A

]
, (519)

where

vf
eff = I

(3)
f − 2Qf sin2 θf

eff ,

sin2 θf
eff = κf

Z
s2
W

. (520)

In Eq. (519), we included factors Rf
V and Rf

A, which accumulate final state (FSR) QED and QCD correc-
tions. The lowest-order QED⊗QCD result may be obtained from Eq. (512) if one remembers the colour
trace QCD factor 4/3:

Rf
V = Rf

A = 1 +
3α

4π
Q2

f +
αS
π

. (521)

Now many more terms have been are computed and really needed to match the high precision of the ex-
periment. The factors Rf

V ,A look like a series in α(M2
Z
) and αS (M2

Z
):

Rf
V = 1 +

3α(M2
Z
)

4π
Q2

f +
αS (M2

Z
)

π
− α(M2

Z
)

4π

αS (M2
Z
)

π
Q2

f + C
(2)
V

(
αS (M2

Z
)

π

)2

+ . . .

Rf
A = 1 +

3α(M2
Z
)

4π
Q2

f +
αS (M2

Z
)

π
− α(M2

Z
)

4π

αS (M2
Z
)

π
Q2

f + C
(2)
A

(
αS (M2

Z
)

π

)2

+ . . . (522)

The discussion of FSR QED ⊗ QCD corrections deserves a separate lecture.

At the end of this section I would like to emphasize:

1. We met an important notion of the amplitude form factors. Since they describe a physical ampli-
tude (or another physical quantity, like the anomalous magnetic moment), they are gauge-invariant
and divergence-free functions (or constants). Moreover, we may rephrase slightly the definition of
pseudo-observables given above, as follows:

2. Definition: In a very general sense, the pseudo-observable is a construction made of gauge-invariant
form factors of an amplitude of a process.
Therefore, Sirlin’s parameter ∆r or the ρ-parameter of Eq. (518), ρf

Z
, are typical pseudo-observab-

les, whilst Veltman’s parameter ∆ρ is not.

6.5.5 Re-summation of large corrections

In a similar way to what has been done for ∆r, one has to improve upon the one-loop approximation for
ρf
Z

and κf
Z

. Define the leading (enhanced) and remainder contributions to ρf
Z

and κf
Z

:

ρf
Z

= 1 + ρf
L

+ ρf
rem ,

κf
Z

= 1 + κf
L

+ κf
rem . (523)
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When we eliminate ∆r and normalize amplitudes to the Fermi constant GF , all large corrections
containing αfer

(
M2

Z

)
are automatically accounted for.

Therefore, in contrast to what happened in the re-summation of ∆r, here one has to re-sum only
the m2

t -enhanced terms. As for ∆r, one derives:

ρf
Z

=
1 + ρf

rem

1 +

√
2GFM2

Z
s2
W

c2
W

πα
ρf
L

. (524)

For κ one has to follow a slightly different procedure,

κf
Z

=
(
1 + κf

rem

)(
1 +

√
2GFM2

Z
s2
W

c2
W

πα
κf
L

)
+

1
s2
W

Im-parts , (525)

where some Im-parts are added (see Section 6.11.6.3 of Ref. [1]). These are second-order terms, enhanced
by π2Nf (where Nf is the total number of fermions in the SM) which have to be taken into account as
soon as the leading two-loop corrections are added.

The leading contributions are made of the gauge-invariant quantity ∆ρF as follows

ρf
L

= − α

4π

1
s2
W

∆ρF , κf
L

= − α

4π

c2
W

s4
W

∆ρF = ∆rL . (526)

The inclusion of higher-order irreducible effects, is achieved by means of the modification of the leading
and of the reminder terms. As for ∆r, we have:

∆rL → ∆rL + ∆rho
L ,

ρf
rem → ρf

rem + ρf,ho
rem ,

κf
rem → κf

rem + κf,ho
rem . (527)

The numerical results for sin2 θe
eff , derived including the re-summation of the leading corrections and the

leading and sub-leading two-loop irreducible electroweak corrections O
(
G2
Fm4

t

)
and O

(
G2
Fm2

t M
2
Z

)
,

are shown in Tab. 2.

Table 2: The OMS sin2 θeeff .

mt [GeV] MH [GeV]
65 300 1000

170.1 0.23109 0.23187 0.23253
175.6 0.23090 0.23168 0.23234
181.1 0.23070 0.23149 0.23215

This table illustrates that the sin2 θe
eff is quite sensitive to variations of both mt and MH . It is in-

structive to compare a typical variation due to Higgs mass ∼ 0.00045 with the present combined exper-
imental error ∼ 0.00026. This illustrates why the present precision already ensures a sensitivity to the
mass of the Higgs boson.
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6.6 Realistic observables in the process e+e− → ff

For this process we may also consider a gauge-invariant subset of QED diagrams: QED vertices, γγ and
Zγ boxes. It has to be considered together with four QED bremsstrahlung diagrams, Fig. 12. The sum
of all the QED diagrams is free of infrared divergences.

e+ f

γ

γ
e− f

+

e+ fγ

γ

e− f

e+ f

γ
γ

e− f

+

e+ f

γ
γ

e− f

Fig. 12: Bremsstrahlung process e+e− → ffγ.

6.6.1 One-loop diagrams and corrections for e+e− → ff

The remaining one-loop diagrams form the non-QED or weak corrections. The total weak amplitude may
be represented as the sum of dressed γ and Z exchange amplitudes plus the contribution from weak box
diagrams, i.e. ZZ and WW boxes. The ZZ boxes are separately gauge-invariant.

Fermionic loops are also separately gauge-invariant and may be re-summed. Bosonic loops have
to be expanded to the first order. Dressed γ and Z exchanges may be symbolically depicted as:

e+ f

(Z, A)

e− f

+

e+ f

(Z, A)

e− f

Fig. 13: Process e+e− → (Z,A)→ ff ; final fermion vertex and its counter-terms.

e+ f

(Z, A)

e− f

+

e+ f

(Z, A)

e− f

Fig. 14: Process e+e− → (Z,A)→ ff ; electron vertex and its counter-terms.
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e+ f

(Z, A) (Z, A)

e− f

+

e+ f

(Z, A) (Z, A)

e− f

Fig. 15: Process e+e− → (Z,A)→ ff ; self energies and kinetic counter-terms.

If external fermion masses are neglected, then the complete one-loop amplitude (OLA) can be described
by only four scalar functions and by the running electromagnetic constant αfer(s).

There are two ways of representing the dressed amplitude:

1) In terms of four scalar form factors, Fij (s, t),

AOLA

Z+A
=

e2I
(3)
e I

(3)
f

4s2
W

c2
W

χZ (s)
{

γµγ+ ⊗ γµγ+FLL (s, t)− 4|Qe|s2
W

γµ ⊗ γµγ+FQL (s, t)

−4|Qf |s2
W

γµγ+ ⊗ γµFLQ (s, t) + 16|QeQf |s4
W

γµ ⊗ γµFQQ (s, t)
}

; (528)

2) In terms of the effective couplings ρef (s, t) and κij(s, t), which in this case are s, t-dependent,

contrary to the Z decay where they were constants. (The t-dependence is due to the weak boxes.)

AOLA

Z+A
=
√

2GF I(3)
e I

(3)
f M2

Z
χZ (s)ρef (s, t)

{
γµγ+ ⊗ γµγ+ − 4|Qe|s2

W
κe(s, t)γµ ⊗ γµγ+

−4|Qf |s2
W

κf (s, t)γµγ+ ⊗ γµ + 16|QeQf |s4
W

κef (s, t)γµ ⊗ γµ

}
. (529)

On top of the AOLA

Z+A
there is the corrected γ-exchange amplitude, which contains, by construction, only

the QED running coupling αfer(s):

AOLA

A
=

4παfer(s)
s

γµ ⊗ γµ . (530)

There are residual corrections to the photon exchange diagram but it is always possible to assign them to
the Z exchange amplitude, since both contain the same Dirac structure γµ ⊗ γµ.

The effective couplings ρ and κ’s are related to the form factors Fij (s, t) and to the quantity ∆r
(or δew

µ , see Section 6.4.5) by the following equations:

ρef (s, t) = 1 +
α

4πs2
W

[
FLL (s, t)− s2

W
δew
µ

]
,

κe(s, t) = 1 +
α

4πs2
W

[
FQL (s, t)− FLL (s, t)

]
,

κf (s, t) = 1 +
α

4πs2
W

[
FLQ (s, t)− FLL (s, t)

]
,

κef (s, t) = 1 +
α

4πs2
W

[
FQQ (s, t)− FLL (s, t)

]
. (531)

Here 1 is due to the Born amplitude which has also been included.
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6.6.2 Convolution with QED radiation

Here we briefly discuss the subsequent chain of calculations. Having constructed OLA amplitudes,
Eqs. (529)–(531), which may also be called the Improved Born Approximation (or IBA) amplitudes, we
may calculate the corresponding IBA cross-section. The latter may also be called doubly de-convoluted
cross-section, i.e. prior to subsequent convolution with Initial State (ISR) and Final State (FSR) radia-
tions. It is convenient to introduce the notion of a singly de-convoluted cross-section, i.e. with FSR and
without ISR; the latter being a function of the reduced c.m.s. energy s′ and possible kinematical cuts in
the final state.
So, the natural next step would be: From IBA→ IBA⊕ FSR cross-section. This would give us a kernel
cross-section for a subsequent convolution with the ISR.

σdec = σ̂(s′, cuts). (532)

The final step would be: From IBA ⊕ FSR cross-section→ complete QED convoluted cross-section,
which would account for multiple real bremsstrahlung in the ISR, virtual ISR corrections and corrections
due to the emission of real and virtual unobserved pairs, shown symbolically in Fig. 16.

e

e

f

γ, Z

f

Fig. 16: ISR⊕FSR QED corrections for ee→ (Z, γ)→ ff .

The ISR corrections are accounted for by means of the structure functions (SF), D (z; s), or the flux
function (FF), H (x; s). The QED convoluted cross-section σ (s) is related to the kernel cross-section by
the convolution integral,

σ (s) =
∫ 1−s0/s

0
dxH (x; s) σ̂

(
(1− x) s

)
, (533)

where the flux function H is related to the structure functions by:

H (x; s) =
∫ 1

1−x

dz

z
D (z; s)D

(
1− x

z
; s
)

. (534)

The FF may be presented as a sum of virtual + soft photon (V+S) and hard photon (H) contributions:

H (x; s) = β xβ−1 δV+S + δH,

β =
2 α

π

(
ln

s

m2
e

− 1
)

, (535)

with the virtual + soft photon part being exponentiated.

The flux function is known up to O
(
α2
)

completely, and up to O
(
α3L3

)
in the leading log ap-

proximation (LLA). These issues deserve, indeed, a separate lecture.
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6.7 Experimental status of the SM

I shall present only two plots taken from Ref. [7], courtesy of M. Grünewald, referring for a comprehen-
sive experimental review of this field to Ref. [7] and to his work Ref. [8].

The overall status of the SM might be well illustrated by the so-called pulls, Fig. 17. Although
there are several points where deviations between the theory and experiment approach two standards, the
average situation should be ranked as extremely good. We note that the level of precision reached is of the
order of∼ 10−3, and that it is extremely non-trivial to control all the experimental systematics at this level.
In the second figure, Fig. 18, we present the famous blue-band showing the ∆χ2

min(M2
H

) distribution
derived from a combined fit of all the world experimental data to the SM exploiting the best knowledge of
precision theoretical calculations which is realized in computer codes ZFITTER and TOPAZ0. It illustrates
what we call an indirect discovery of the Higgs boson made via the study of constraints, provided by
PHEP, as discussed in the first lecture.

Measurement Pull Pull
-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

mZ [GeV]mZ [GeV] 91.1871 ± 0.0021    .08

ΓZ [GeV]ΓZ [GeV] 2.4944 ± 0.0024   -.56

σhadr [nb]σ0 41.544 ± 0.037   1.75

ReRe 20.768 ± 0.024   1.16

AfbA0,e 0.01701 ± 0.00095    .80

AeAe 0.1483 ± 0.0051    .21

AτAτ 0.1425 ± 0.0044  -1.07

sin2θeffsin2θlept 0.2321 ± 0.0010    .60

mW [GeV]mW [GeV] 80.350 ± 0.056   -.62

RbRb 0.21642 ± 0.00073    .81

RcRc 0.1674 ± 0.0038  -1.27

AfbA0,b 0.0988 ± 0.0020  -2.20

AfbA0,c 0.0692 ± 0.0037  -1.23

AbAb 0.911 ± 0.025   -.95

AcAc 0.630 ± 0.026  -1.46

sin2θeffsin2θlept 0.23099 ± 0.00026  -1.95

sin2θWsin2θW 0.2255 ± 0.0021   1.13

mW [GeV]mW [GeV] 80.448 ± 0.062   1.02

mt [GeV]mt [GeV] 174.3 ± 5.1    .22

∆αhad(mZ)∆α(5) 0.02804 ± 0.00065   -.05

Stanford 1999

Fig. 17: Pulls for pseudo-observables. The pull is defined as the difference between the measurement and the SM prediction cal-

culated for the central values of the fitted SM IPS [α(M2
Z

) = 1/128.878, αS (M2
Z

) = 0.1194, MZ = 91.1865 GeV, mt =

171.1 GeV] divided by the experimental error.

106



0

2

4

6

10 10
2

10
3

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02804±0.00065
0.02784±0.00026

theory uncertainty

Fig. 18: The Blue-Band. Curve showing ∆χ2
min(M2

H
) = χ2

min(M2
H

) − χ2
min as a function of MH . The width of the shaded

band around the curve shows the theoretical uncertainty. The two lines correspond to different calculations of ∆α(5)(M2
Z

),

namely ∆α(5)(M2
Z

) = 0.02804 ± 0.00065 (Eidelman, Jegerlehner) and ∆α(5)(M2
Z

) = 0.02784 ± 0.00026 (theory-driven

analyses). Also shown is the region excluded at 95% CL by the negative direct search for the Higgs boson at LEP2,∼ 100 GeV.

These figures, as well as many more proofs of the correctness of the SM collected in recent exper-
iments, convinces us to conclude these lectures with:

7. CONCLUSION

• The Standard Model has been completed theoretically and must be ranked as The Standard Theory,
which should completely replace QED.

• The Standard Theory has not been completed experimentally.
The Higgs boson is the only ingredient still waiting to be discovered, and it will inevitably be dis-
covered. However, it is very difficult to predict where and when?

ACKNOWLEDGEMENTS

Since these lectures are heavily based on the book [1], written together with Giampiero Passarino, my
first and pleasant duty is to thank him for several years of fruitful scientific collaboration, both within the
book project and on the theoretical support of precision measurements in HEP.

I am very much obliged to Penka Christova, Lida Kalinovskaya, Gizo Nanava, and Maxim Nekra-
sov for many useful discussions whilst preparating the transparencies for these lectures and this written
contribution. These discussions influenced considerably the content of the lectures.
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