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ABSTRACT

We prove a general theorem about equal CP rate differences within pairs
of U-spin related charmless B and Bs decays. Six pairs of decays into two
pseudoscalar mesons are identified where such relations hold. Ratios of corre-
sponding rate differences and certain ratios of rates measure U-spin breaking.
These processes provide useful information on the weak phase γ = ArgV ∗

ub.
Applications of U-spin symmetry to other decays are discussed.

Applying flavor symmetries of strong interactions to B decays into two light pseu-
doscalar mesons (B → PP ) may provide useful information about phases of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. Using isospin symmetry, the three B → ππ decays,
B0 → π+π−, π0π0 and B+ → π+π0, were shown [1] to determine quite precisely the weak
phase α = Arg(−V ∗

tbVtd/V
∗
ubVud) (at least in principle, albeit a potential difficulty in mea-

suring B0 → π0π0). Within the approximation of flavor SU(3) symmetry, various aspects
of B → Kπ decays were studied [2] to learn the weak phase γ = Arg(−V ∗

ubVud/V
∗
cbVcd).

An accurate determination of γ requires the knowledge of SU(3) breaking and rescatter-
ing effects which modify some of the amplitudes. Recently the important role of two Bs

decay processes, Bs → K+K− and Bs → K−π+, was demonstarted in this framework
[3, 4]. Here one makes explicit use only of a discrete U-spin symmetry transformation
interchanging d and s quarks [6].

The purpose of this Letter is to reconsider more generally the implications of U-
spin symmetry in charmless B decays [7]. First, we will look at a very general case of
charmless B and Bs decays, comparing decays from and into any U-spin related states.
We will prove as a general theorem that pairs of U-spin related processes involve CP
rate differences which are equal in magnitude and are oppoisite in sign. This property
applies not only to two-body and quasi-two-body decays, but in fact to any pair of U-
spin related processes. Then, by focusing on B → PP , we will find altogether twelve
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processes, arranged in six pairs, where in each pair the decay amplitude of one process
is related to that of the other by U-spin symmetry, such that the CP rate differences in
the two processes are equal in magnitude. Several processes lead to useful information
on rescattering effects. A systematic study of U-spin breaking, achieved by comparing
some of these processes to others, can lead to an accurate determination of γ.

The implications of U-spin symmetry in all charmless B decays follow from the
following general considerations. The low energy effective weak Hamiltonian describing
∆S = 1 B decays is [5]

Heff =
GF√

2

[
V ∗

ubVus

(
2∑
1

ciQ
us
i +

10∑
3

ciQ
s
i

)
+ V ∗

cbVcs

(
2∑
1

ciQ
cs
i +

10∑
3

ciQ
s
i

)]
, (1)

where ci are scale-dependent Wilson coefficients and the flavor structure of the various
four-quark operators is Qqs

1,2 ∼ b̄qq̄s, Qs
3,..,6 ∼ b̄s

∑
q̄′q′, Qs

7,..,10 ∼ b̄s
∑

eq′ q̄′q′ (q′ =
u, d, s, c). Each of these operators represents an s component (“down”) of a U-spin
doublet, so that one can write in short

Heff = V ∗
ubVusU

s + V ∗
cbVcsC

s , (2)

where U and C are U-spin doublet operators. Similarly, the effective Hamiltonian re-
sponsible for ∆S = 0 decays involves d components (“up” in U-spin) of corresponding
operators multiplying CKM factors V ∗

ubVud and V ∗
cbVcd,

Heff = V ∗
ubVudU

d + V ∗
cbVcdC

d . (3)

Now, assume for simplicity [8] that one compares two decay processes, ∆S = 1 and
∆S = 0, in which the initial and final states are obtained from each other by a U-spin
transformation, U : d ↔ s. Eqs. (2) and (3) then imply that if the ∆S = 1 amplitude
(for the process B → f) is written as

A(B → f, ∆S = 1) = V ∗
ubVusAu + V ∗

cbVcsAc , (4)

where Au and Ac are complex amplitudes (involving CP-conserving phases), then the
corresponding ∆S = 0 amplitude (for UB → Uf) is given by

A(UB → Uf, ∆S = 0) = V ∗
ubVudAu + V ∗

cbVcdAc . (5)

The amplitudes of the corresponding charge-conjugate processes are

A(B̄ → f̄ , ∆S = −1) = VubV
∗
usAu + VcbV

∗
csAc , (6)

and
A(UB̄ → Uf̄ , ∆S = 0) = VubV

∗
udAu + VcbV

∗
cdAc . (7)

To appreciate the powerful implication of U-spin symmetry in B and Bs decays, we
note the following. The rates of the four processes (4)−(7) depend on four quantities,
|V ∗

ubVusAu|, |V ∗
cbVcsAc|, δ ≡ Arg(AuA

∗
c) and γ ≡ Arg(−V ∗

ubVudVcbV
∗
cd). Naively it may

seem possible to use the corresponding four rates for a determination of these four
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quantities including the weak phase γ. However, there exists a general U-spin relation
between corresponding CP rate differences

|A(B → f)|2 − |A(B̄ → f̄)|2 = −[|A(UB → Uf)|2 − |A(UB̄ → Uf̄ )|2] . (8)

This equality, which follows from the CKM unitarity relation [9]

Im(V ∗
ubVusVcbV

∗
cs) = −Im(V ∗

ubVudVcbV
∗
cd) , (9)

prohibits a determination of γ from the four rates alone. Towards the end of this Letter
we will return to the question of determining γ by using another input measurement.

Eq. (8), our general theorem for equal CP rate asymmetries, can be used to test the
validity and accuracy of U-spin symmetry in all types of B decays. These include decays
into two pseudoscalars (such as the pair B0 → K+π− and Bs → π+K−), decays into
a pseudoscalar and a vector meson (e.g. B0 → K∗+π− and Bs → ρ+K−), decays into
two vector mesons (e.g. B0 → K∗+ρ− and Bs → ρ+K∗−) and decays into multibody
states (e.g. B+ → K+π+π− and B+ → π+K+K−). U-spin symmetry implies equal
and opposite sign CP rate differences within every pair of U-spin related processes.
Consequently, in each pair the process with the smaller rate is expected to have a larger
CP asymmetry. For instance, the CP asymmetry in B+ → K̄0K+ is expected to be
much larger than in B+ → K0π+ (see discussion below). Of course, U-spin is only an
approximate symmetry. The magnitudes of U-spin breaking are expected to be different
in these various decays, as can be demonstrated by the measured rates.

In order to illustrate the consequences of this very general feature in particular cases,
we proceed to study in detail the overall implications of U-spin symmetry in decays to
two light pseudoscalar mesons. Among all sixteen measurable B meson decays [10] of the
form B, Bs → ππ, Kπ, KK̄ one can identify a dozen processes which can be arranged
in six U-spin related pairs:

1. B0 → K+π− vs. Bs → π+K− ,

2. Bs → K+K− vs. B0 → π+π− ,

3. B0 → K0π0 vs. Bs → K̄0π0 ,

4. B+ → K0π+ vs. B+ → K̄0K+ ,

5. Bs → K0K̄0 vs. B0 → K̄0K0 ,

6. Bs → π+π− vs. B0 → K+K− .

In case 3 the ∆U = 1/2 transition operators lead to U = 1 states to which only the
U = 0 component of the π0 contributes. (The two pseudoscalar mesons are in an S-wave
implying that they are in a symmetric U-spin state).

Including Bs → π0π0, which is related by isospin to Bs → π+π−, this consists of all
but the following three B → PP (P = π, K) decays: B+ → K+π0, B+ → π+π0 and
B0 → π0π0. As our theorem Eq. (8) states, in the U-spin symmetry limit the two CP
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rate differences within each of the above six pairs of processes are equal in magnitude
and have opposite signs. Deviations from equal asymmetries measure U-spin breaking.

For a more detailed study of these processes it is convenient to apply a diagramatic
approach to SU(3), describing amplitudes in terms of SU(3) flavor flow topologies [10].
In this description, the two amplitudes of a pair of U-spin related processes have similar
expressions, differing only by being strangeness changing in one case (denoted by primes)
and strangeness conserving in the other (involving no primes)which proves the equality
of corresponding CP rate differences. For instance,

A(B0 → K+π−) = −P ′ − T ′ − 2

3
P ′c

EW ,

A(Bs → π+K−) = −P − T − 2

3
P c

EW . (10)

Thus, we write only expressions for ∆S = 1 processes [10]:

A(B0 → K+π−) = −P ′ − T ′ − 2

3
P ′c

EW ,

A(Bs → K+K−) = −P ′ − T ′ − 2

3
P ′c

EW − PA′ − E ′ ,
√

2A(B0 → K0π0) = P ′ − 1

3
P ′c

EW − P ′
EW − C ′ ,

A(B+ → K0π+) = P ′ − 1

3
P ′c

EW + A′ ,

A(Bs → K0K̄0) = P ′ − 1

3
P ′c

EW + PA′ ,

A(Bs → π+π−) = −PA′ −E ′ . (11)

In the convention of Eqs. (1)−(7) the above amplitudes are decomposed into two
sets of terms containing V ∗

cbVcs and V ∗
ubVus. (Correspondingly, amplitudes in the second

Eq. (10) involve V ∗
cbVcd and V ∗

ubVud). The first set consists of a QCD penguin P ′, an
electroweak penguin P ′

EW , a color-suppressed electroweak penguin P ′c
EW and a penguin

annihilation term PA′, while the second set contains a tree T ′, color-suppressed C ′,
annihilation A′ and exchange E ′ amplitude. Amplitudes in the first set carry each a
weak phase Arg(V ∗

cbVcs) = 0, while the other four terms have a phase γ.
Let us discuss briefly the magnitudes of various terms. The amplitudes obey the

following hierarchy relations

|P ′| � |T ′| ∼ |P ′
EW | � |C ′| ∼ |P ′c

EW | , (12)

where a hierarchy factor of about 0.2 or 0.3 describes the ratio of sequential amplitudes.
This hierarchy was anticipated [10, 11] from the corresponding CKM factors, a color
factor, QCD and electroweak loop factors. It is supported both by relating B → Kπ
and B → ππ data [12] using flavor SU(3) [13] and by recent QCD calculations [14, 15].
The other three amplitudes, PA′, A′ and E ′, in which the spectator quark participates
in the interaction, are usually assumed to be small [10] (see also [14, 15]), unless strongly
amplified by rescattering [16].

The dominant term in the amplitudes (11) is P ′ [13], occuring in the first five pro-
cesses. These decays are expected to have comparable branching ratios of order 10−5, as
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measured for B0 → K+π−, B0 → K0π0 and B+ → K0π+ [12]. The decay Bs → π+π−

and the U-spin related process B0 → K+K− involve only the much smaller combination
PA′ + E ′, and are anticipated to have much lower rates. Neglecting rescattering, one
estimates for B0 → K+K− a branching ratio of order 10−8 [14]. The present experi-
mental upper limit [12] is two orders of magnitude higher. Lowering this limit by one
or two orders of magnitude would settle the question of little rescattering. A way of
bounding the rescattering amplitude A′ in B+ → K0π+ (or, similarly, of bounding PA′

in Bs → K0K̄0) was discussed in [17].
Assuming in the following that PA′ + E ′ can indeed be neglected, one has

A(B0 → K+π−) ≈ A(Bs → K+K−)
A(Bs → π+K−) ≈ A(B0 → π+π−) . (13)

Once one obtains stringent limits on PA′ + E ′ through B0 → K+K− and Bs → π+π−,
these two relations provide tests for U-spin symmetry acting on the spectator quarks.
They imply, of course, that the CP rate differences of all four processes are equal. Equal
CP rate differences in B0 → π+π− and B0 → K+π− (assuming PA′ + E ′ = 0) were
discussed in [18].

Deviations from equalities in (13) (once PA′ + E ′ is sufficiently bounded) measure
U-spin symmetry breaking. In the approximation of factorized hadronic amplitudes
[14, 15], U-spin breaking is introduced through the ratio of products of corresponding
form factors and decay constants, f = FBsK(m2

K)/FBπ(m2
K) ≈ FBsK(m2

π)/FBπ(m2
π),

A(Bs → K+K−) = fA(B0 → K+π−) ,

A(Bs → K−π+) = fA(B0 → π+π−) . (14)

The rates of these four processes can be used not only to determine the U-spin break-
ing factor f , but also to check the factorization assumption by finding equal ratios of
amplitudes in the two cases.

A similar U-spin equality in the absence of large rescattering effects (i.e., neglecting
PA′−A′) holds between the amplitudes of B+ → K0π+ and Bs → K0K̄0, and between
the corresponding U-spin related processes, B+ → K̄0K+ and B0 → K̄0K0. Again, the
rates of these four processes can be used to test U-spin symmetry and to measure U-spin
symmetry breaking.

A method of determining the weak phase γ, using B+ → K0π+ and the U-spin
related processes B0 → K+π− and Bs → π+K−, was discussed in [4]. Here we reiterate
the most important features of this suggestion, which can be explained simply in terms of
our general U-spin considerations leading to Eqs. (4)−(7). As noted, the rates of the four
processes, in our case B0 → K+π−, Bs → π+K− and their charge-conjugates, depend on
the magnitudes of two hadronic amplitudes, P ′+(2/3)P ′c

EW and T ′, and on their relative
strong phase and weak phase γ. (Note that |P + (2/3)P c

EW | = tan θc|P ′ + (2/3)P ′c
EW |

while |T | = tan−1 θc|T ′|). The four rates obey a U-spin equality (8) between the two
rate asymmetries in B0 → K±π∓ and Bs → π±K∓. Thus, to solve for γ one needs
one more input. This input is provided by the charge-averaged rate of B± → K0π±,
where neglecting rescattering can be justified by improving bounds on B0 → K+K−

and Bs → π+π−.
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This method can be generalized to other pairs of U-spin related decays. For instance,
one may use B0 → K∗+π−, Bs → ρ+K− and their charge-conjugates, complemented by
information on the charge-averaged rate of B± → K∗0π±. As we have shown, U-spin
breaking effects can be measured by comparing rates and asymmetries of corresponding
processes. Including such effects in the analysis would result in a more precise determi-
nation of γ.

Another suggested method [3], based on comparing time-dependent CP asymmetries
in B0 → π+π− and in Bs → K+K− (for which one must tag the flavor of the neutral
mesons at time of production), can also be generalized to other U-spin related decays.
This includes comparing B0 → KSπ0 with Bs → KSπ0 and comparing B0 → KSKS

with Bs → KSKS. One measures for both channels a cos ∆mt and a sin ∆mt term, or
alternatively an oscillation amplitude and an oscillation phase. These four quantities
determine four unknowns: the ratio of two hadronic amplitudes involving V ∗

ubVus and
V ∗

cbVcs, a strong final-state phase between the two amplitudes, and two weak phases β
and γ. U-spin breaking effects, represented in the factorization approximation by certain
ratios of form factors and decay constants, cancel one another in the asymmetries.
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