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Abstract
A combined statistical analysis of the experimental results of the LSND and
KARMEN ��	��
 ��	� oscillation search is presented. LSND has evidence for
neutrino oscillations that is not confirmed by KARMEN. For both data sets,
the analyses are based on likelihood functions. A frequentist approach is ap-
plied to deduce confidence regions for each experiment individually and for a
combination of both. A detailed description of this work can be found in [1].

1. INTRODUCTION

The controversial results of the two experiments LSND (Liquid Scintillator Neutrino Detector [2] at
LANSCE, Los Alamos, USA) and KARMEN (KArlsruhe Rutherford Medium Energy Neutrino experi-
ment [3] at ISIS, Rutherford, UK) both searching for neutrino oscillations �� � 
 �� � have led to intense
discussions. Thetwo experimentsaresimilar asthey use ��	� beamsfrom the 
 ������� decay at rest (DAR)
chain 
 � 
 � ��� � � followed by

� � 
�� ��� ��� � �� � with energies up to 52MeV. Furthermore, both
experimentsare looking for ���� from ��	��
 ��	� oscillationsvia thereaction p����	����� �! providing aspatially
correlated delayed coincidencesignatureof aprompt e

�
and asubsequent neutron capturesignal. LSND

hasobserved aclear beam–on minusbeam–off excessof eventswith ��	� signature, i.e. (e
�

,n) sequences.
Thesehavebeen interpreted asevidence for �� � 
 �� � oscillations [4]. On theother hand, KARMEN has
found no excess events above theexpected background.

The statistical analysis of the data has become a showcase of how to determine statistical signifi-
cance and upper limits. KARMEN with no apparent ��	�#"$
 ��	� signal and very low background has the
problem of treating aresult in alow statisticsregimenear thephysical boundary %'& (*)+�-,+.  0/21

. In LSND,
the maximum likelihood analysis of the data clearly indicates an oscillation signal. A problem arises
when determining a region of correct confidence, i.e. statistical significance, in the (%'& (�)#�3,#.  �	4�5 ) )
plane having a likelihood function in two parameters, which shows a pathological behavior, namely an
oscillatory dependence in 4�5 ) with numerous local maxima. In 1998, the discussion was intensified
by apaper of Feldman and Cousins [5], who described amethod of dealing with theproblemsdescribed
above.

This report describes the individual evaluation of both data sets with maximum likelihood meth-
ods. The statistical interpretation of the likelihood functions and confidence regions is based on a fre-
quentist approach and followsclosely theanalysissuggested by Feldman and Cousins. Themain purpose
of such an approach is to determine correct regions of confidence in (%'& (*)+�-,+.  �	4�5 ) ). A correct cov-
erage is defined in terms of frequency, i.e. fraction of occurrence for future experiments. Probability or
confidence in this context does not mean “degreeof belief ” as defined in aBayesian statistics.

Although thecentral statementsof LSND and KARMEN arecontradicting therecan bearegion in
the(%'& ( ) �3,#.  �	4�5 ) ) parameter spacewhere theresultsarecompatible. Combining the two experiments
isdone in different waysof constructing statistical distributions, pointing out that there isno uniqueway
of determining regions of specific confidence. However, as we will see, the regions of compatibility in
(%'& ( ) �-,+.  �	4�5 ) ) arevery similar.

A statistical analysis combining two experimental results which apparently disagree is a delicate
and controversial approach. It is not the task nor the purpose of this analysis to overcome this disagree-
ment. However, assuming that there is no serious systematical error in either of the experiments and the
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interpretation of their resultswith respect to oscillations �� � 
 �� � , thequestion of statistical compatibil-
ity of the individual results is well justified and should be addressed quantitatively. This is the objective
of theanalysis presented in thispaper.

2. DATA EVALUATION

2.1 KARMEN2 data

With an upgraded experimental configuration, KARMEN isrunning asKARMEN2 sinceFebruary 1997.
Starting asasimplecounting experiment [6], theevaluation method waschanged to amoresophisticated
maximum likelihood analysis of the data set (Feb. 97 through Feb. 99), making use of detailed event
information in energy, time and spatial position. After all cuts, 8 sequences remain. In total, the back-
ground expectation amounts to 6#798;: 1 7=< events. In order to extract more information from the 8 events
about any potentially small oscillation signal adetailed maximum likelihood analysis was performed.

The likelihood function analyses 5 event parameters: the energies of the prompt signal, >�? ,
and the delayed event, >$@ , the prompt time A ? and the delayed coincidence 4 A / A�@ � A ? as well
as the spatial correlation 4�BC / BC @ � BC ? . The likelihood is calculated varying the oscillation signalD'E�FHG as well as the background components relative to the overall data sample: D'IJI for charged cur-
rent events K+,+LJ� � � ���NM  3O )#P�QSR T-R , D GUE�F for cosmic background, D'VXWZY for random coincidences with a � –
induced prompt event and DSG[E Y for the intrinsic ��	� contamination. With the condition \ ]_^ O D ] / K and` / � D E�FXG ��D'IJI��XD G[E�F ��D'V�WZY��XD G[E Y  the likelihood function for the a / 8 events can bewritten as

b � `  0/dc
e ^ O

fg\
]_^ O

D ]$h#i	] O �-> e?  h+i�] ) �3>
e@  h+i�]kj �lA e?  h+i�]km � 4 A e  h#i	] \ � 4nBC e  -oqp \

]_^ )
r � D ]ts D �Xu ? �HGUv9� @]  

(1)

The density functions i ]Hw contain the spectral information of all components, and as the positron energy
spectrum depends on 4�5 ) , the dependence of

b
on 4�5 ) enters via the density function i O-O . The

parameter %'& ( ) �-,+.  is determined by the ratio of oscillation events x E�FHG / a h D E�FHG divided by the
expected number of events for maximal mixing x �Xu ?#� 4�5 ) � %'& (�)#�-,+.  q/ K  : %'& (�)#�3,#.  q/ x E�FHG�y x �Hu ? .
The second line in (1) is the combined Poisson probability

r
for the background contributions D ]

calculated with theexpectation values D �Hu ? �HG[v9� @] . For technical reasons, it is moreconvenient to optimize
the logarithmic likelihood function z|{ b . Figure 1 shows z|{ b where the maximum in the physically
allowed range %'& ( ) �-,+.  ~}�1

has been renormalized to a value of z|{ b ��%'& ( ) �3,#.  ~/�1 ��4�5 )  �/ K 1+1 .
From the likelihood function it is obvious that there is no oscillation signal in thedata.

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0
�

-2
-1

0
�

1
2

90
�92
�94
�96
�98
�100

log[
�
sin

2(2
� θ)
� ]� log[� ∆� m� 2]�

ln
L 

[a
rb

itr
ar

y 
un

its
]

Fig. 1: Logarithmic likelihood function ���+�!���[�������l�����U�X�!����� for the8 eventsof KARMEN2. Themaximum in thephysically

allowed region �U�������[�_���¡ £¢ is set to avalueof 100, theminimum of this plot is set to 90.
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2.2 LSND data

TheLSND dataanalysed in thiscontext havebeen reduced by requiring relatively loosecriteria. Details
of theevent reconstructionand thedefinitionof Rcanbefound in [2] and [7]. Todeterminetheoscillation
parameters %'& ( ) �-,+.  and 4�5 ) , anevent samplecomprising3049beam-oneventsisused. Four variables
are used to categorize the events: The energy of the primary electron, its spatial distribution in the
detector expressed in distance L to the neutrino source and the angle ¤X¥+%§¦ between the direction of the
incident neutrino and the reconstructed electron path. The fourth variable is the likelihood ratio R for a
(� � ,n) coincidence. The evaluation method uses these 4 correlated parameters to extract the oscillation
signal, i.e. %'& ( ) �3,#.  and 4�5 ) , from beam related (BRB) and beam unrelated (BUB) background
sources.

The likelihood function is theproduct of all a individual event likelihoods to fit acombination of
4-dim density distributions i �3> �	¨©� b � ¤X¥+%§¦  where the relative strengths D of the contributions are the
parameters to beoptimized with thesidecondition D ] / K . The likelihood function is defined as

b � D E�FHG ��D'ª V ª  0/«c
e ^ O

f D E�FHG i_¬®­ � �3> e ��¨ e � b e � ¤�¥#%!¦ e
 � D'ª V ª i ª V ª �3> e ��¨ e � b e � ¤�¥#%!¦ e  

� �-K � D'E�FHG � DSª V ª  i ªU¯�ª �-> e ��¨ e � b e � ¤�¥#%§¦ e  -o h#° M²±´³Uµ ³ µk¶�·¹¸tµ ³ µkº
��[» �µ ³ µ h+° M¼±´³Uµ9½_µU¶¾·¹¸tµ=½�µUº ��l» �µ9½_µ (2)

There are effectively three free parameters: D E�FXG or %'& (�)#�3,#.  , 4�5 ) and D ª V ª . The Gaussian terms
account for the background expectation values and their systematic and statistical uncertainties. The
oscillation parameter %'& ( ) �3,#.  is determined as a function of 4�5 ) according to %'& ( ) �3,#.  ¿/ D'E�FHG h
a y x ¬�­ � ��%'& ( ) �3,#.

 À/ K  where x ¬�­ � ��%'& ( ) �3,#.
 Á/ K  indicates the number of oscillation events ex-

pected for agiven 4Â5 ) and full mixing %'& ( ) �3,#.  0/ K in thedetector, taking all resolution functionsand
cuts into account. In a next step, the original likelihood function (2) is then integrated along the axis of
the parameter D'ª V ª which is of no further interest. The logarithmic likelihood z|{ b is therefore a function
of the2 freeoscillation parameters z|{ b ��%'& ( ) �3,#.  �	4�5 )  which isshown in Fig. 2. Theexact position of
the maximum in ��%'& ( ) �-,+.  , 4�5 )  is not significant due to the flatness of the likelihood function along
its ‘ ridge’ for small values of 4�5 ) .
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Fig. 2: Logarithmic likelihood function ���+�!���[�������l�����U�X�!���X� for the LSND data 1993-1998 sample containg 3049 events.

Themaximum in thephysically allowed region �[�������l�_�®�¡ÍÏÎ is set to avalueof ���¹�!���[�����X�[�_�®�lÐ®�X�!���Ð ��ÑÒÎk¢_¢ .

3. CONSTRUCTION OF CONFIDENCE REGIONS

The basic idea of getting correct confidence regions using the logarithmic likelihood function z|{ b is
to create a statistic of an appropriate estimator based on a frequentist approach. A high number of

175



  

event samples is created by Monte Carlo using all experimental information on the event parameters.
Different hypotheses are tested by including in the generated event samples oscillation events according
to theoscillation parameters (%'& (�)#�3,#.  , 4�5 ) ). In theseproceedingswewill describe thismethod for the
LSND experiment only and then show the results for both KARMEN and LSND.

For apreselected ��~
 �� � oscillationhypothesis Ó withoscillationparameters ��%'& (*)#�3,#.  UÔ ��4�5 )Ô  
the creation of a LSND-like event sample is done in two steps. First, the number of oscillation events,
BRB and BUB are thrown on the basis of the corresponding expectation values. In a second step, for
each event, parameters (E,R,L, ¤�¥#%!¦ ) are generated from the density functions i	] �3> �	¨©� b � ¤X¥+%§¦  . The
index Õ stands for the 3 different contributions. After an event sample is generated, the sample is anal-
ysed in exactly the same way as the experimental sample, i.e. the logarithm of the likelihood function
(2) is calculated as a function of ��%'& (*)+�-,+.  , 4�5 ) ).

In the following we demonstrate such a procedure on a specific example of an oscillation hypoth-
esis Ó with parameters �l%'& ( ) �-,+.  Ô �	4�5 )Ô  Ö/ ��×¡7=, h K 1 M j ��4�5 ) / K °'Ø )  for which 1000 samples
are generated by MC. To construct confidence regions, the distribution shown in Fig. 3 is the central
estimator distribution suggested by [5] and should be read in the following way: To include the oscil-
lation hypothesis ��%'& ( ) �-,#.  Ô ��4�5 )Ô  with a probability (frequency of occurrence) of 90%, the area in
(%'& ( ) �-,+.  , 4�5 ) ) has to bedefined by cutting z�{ b at avalueof 4 z|{ b �-Ù 1#Ú~ 0/2Û 7=,#< below themaximum
for each individual likelihood function. This statistic as a function of 4 z�{ b shows the spreading of the
maximal valueof z|{ b compared to agiven pair of oscillation parameters. If, for agiven experiment, the
value 4 z|{ b �Hu ? is smaller than 4 z|{ b obtained for a specific hypothesis, such a parameter combination
��%'& ( ) �-,+.  Ô �	4�5 )Ô  would be included in the region of 90% confidence. For the LSND experimental
result, the difference of the logarithmic likelihood function is 1.4, clearly within the 90% confidence
region of theLSND experimental result.
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Fig. 3: Differences in ���¹� between the actual maxima and the values at the MC starting point. Also indicated is the difference

of thelogarithmic likelihood function �!���+��Ñ~���+�!���[�������l�_�®�lÐ®�X�!���Ð �-ã!���+�!��ä+å��çæ=Îk¢ ·+è �XÎHé'ê$���*ÑëÎ�å ä for theLSND sample.

As 4 z�{ b �3Ù 1+Ú~ is itself a function of the parameters �l%'& ( ) �-,+.  Ô �	4�5 )Ô  , the generation of MC
samples has to be repeated for a grid of possible parameter combinations (%'& ( ) �3,#. ), 4�5 ) ) under con-
sideration. Thenormalized distribution in Fig. 3 is named ì¾íl� 4 z�{ b  and thevariable

z|{ b ��%'& ( ) �3,#.  ­ ��4�5 )­  J� z|{ b ��%'& ( ) �3,#.  UÔ ��4�5 )Ô  0/ 4 z|{ b�î 4 7 (3)

Plotting thenormalized integration of ì í as function of 4 defined as

ìÀ� 4  0/
¬ï ì;íl� C  -ð Cñï ì í � C  -ð C (4)
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allows an easy extraction of the 90% confidence value 4©ò ï for which ìÀ� 4©ò ï  ²/ó1 7=Ù . Shown in Fig. 4
are some distributions ìÀ� 4Áô  including the one for �l%'& ( ) �-,+.  Ô / ×¡7=, h K 1 M j ��4�5 )Ô / K °'Ø )  for the
LSND analysis. Note that these ì distributions could bequitedifferent.
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On the basis of the distributions ìÀ� 4  the values 4 IJô for a given confidence level CL are given
for the calculated ��%'& ( ) �3,#.  Ô ��4�5 )Ô  . The corresponding confidence regions for both experiments
were then obtained by cutting the logarithmic likelihood function z|{ b �l%'& (�)#�3,#.  ��4�5 )  at values of4 IJô �l%'& ( ) �3,#.  ��4�5 )  below the absolute maximum of z|{ b . At 90% CL, each individual experimental
outcome was compared with other experiments. Figure 5 shows the oscillation parameters inside the
90% CL LSND region and the 90% CL limits from KARMEN2 and other experiments. Notice that the
limits of the Bugey �� � 
 �� u search [8], the CCFR combined � � 
 � � and �� � 
 �� � search [9] and
the preliminary results from the NOMAD � � 
ü� � search [10] are not based on this unified frequentist
approach by Feldman and Cousins.
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The extraction of the 90% CL curves for NOMAD, CCFR and Bugey are not based on the frequentist approach used for

KARMEN and LSND.
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One of the most misleading but nevertheless very frequently used interpretation of the LSND
and KARMEN results is to take the LSND region left of the KARMEN exclusion curve as area of
(%'& (*)+�-,+.  , 4�5 ) ) ‘ left over’ . Such an interpretation, though appealingly straight forward, completely ig-
nores the information of both likelihood functions and reduces them to two discrete levels of individual
90% confidence. To beableto combinethetwo experimental resultsand extract combined confidencere-
gions, wehaveto go somestepsback to theoriginal information of thedistributions ì¾í� ��%'& ( ) �3,#.  �	4�5 )  
for KARMEN and ì íô ��%'& (*)#�3,#.  �	4�5 )  for LSND.

4. COMBINING EXPERIMENTAL RESULTS

4.1 Likelihood functions

It isawell known procedureto multiply thelikelihood functionsof two independent experimentsin order
to combine the experimental results. Instead of multiplying the likelihood functions, an equivalent way
is to add the logarithms. As already indicated in Figs. 1 and 2, there is some freedom in choosing the
absolute scale of z|{ b . A convenient presentation of z|{ b is to normalize the individual functions z|{ b �
and z|{ b ô to a point in (%'& ( ) �3,#. ), 4�5 ) ) where they are equally sensitive to a potential signal. In our
case of the oscillation search this corresponds to values of %'& ( ) �3,#.  ²/ó1

. A stringent exclusion would
then lead to only negative values of z|{ b whereas a strong signal leads to a significant maximum with a
positivevalueof z|{ b . Hence, thecombined logarithmic likelihood function can beexpressed as

z�{ b �l%'& ( ) �-,+.  ��4�5 )  d/ f z�{ b � �l%'& ( ) �-,+.  ��4Â5 )  J� z|{ b � ��%'& ( ) �3,#.  0/21+ -o
� f z�{ b ô ��%'& ( ) �3,#.  �	4�5 )  � z|{ b ô ��%'& ( ) �-,+.  0/21+ -o

(5)

Figure 6 shows the combined function z|{ b ��%'& ( ) �3,#.  �	4�5 )  with its maximum on a long flat ‘ ridge’
of low 4�5 ) values. Figure 7 shows slices for some values of 4�5 ) for the three normalized functions
z|{ b � (leftmost or green curves), z�{ b ô (rightmost or bluecurves) and z|{ b as defined in Eq. 5.
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Fig. 6: Combined logarithmic likelihood function ���¹�§���U�������[�_�®�[�X�!����� as defined in Eq. (5).

The function z|{ b �l%'& ( ) �-,+.  ��4�5 )  allows a direct qualitative interpretation of the experiments: There
is a clear maximum of the combined likelihood function with a positive value of z|{ b favoring overall
the evidence for oscillations given by LSND. On the other hand, compared to the individual LSND
maximum, z|{ b ô , the negative KARMEN result reduces the maximal value by 1.6 units (see Fig. 7 for4�5 ) / 1 7=K eV ) ) which corresponds to a reduction to only 20% of the original maximal likelihood.
This reduction of the global maximum is a direct reflection of the general disagreement of the two
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experimental results. From Fig. 7 it is seen that for low 4�5 ) the position in %'& (�)#�-,+.  of the maximum
is not substantially shifted. In contrast, for larger 4�5 ) the negative influence of the KARMEN result
clearly shiftsthemaximumin %'& (�)#�-,+.  andstrongly reducestheLSND likelihoodvalue. It also increases
the difference 4 z�{ b to the global maximum which is an important fact in terms of the statistics ì;íl� 4  
and demonstrates that values of 4�5 )�� , eV ) have a much smaller likelihood than some combinations
(%'& ( ) �-,+.  , 4�5 ) ) in the low 4�5 ) region. Although theseobservationshelp in assessing thecombination
of thetwo experiments, probability statements in afrequentist manner cannot bededuced from theabove
arguments. However, an evaluation of quantitative confidence regions can be based on the distributions
ì í � 4  , which is shown below.
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Fig. 7: Slices of constant �§��� of the logarithmic likelihood functions for KARMEN (leftmost or green), LSND (rightmost or

blue) and thecombination (middleor red). For definition of ���¹� see text.

4.2 Frequentist approach

In thissection wedescribe4 different methodsto extract areasin (%'& ( ) �-,+.  , 4�5 ) ) of acertain confidence
level CL. Though they can be derived analytically we follow a more phenomenological approach. The
methods are based on different ways of ordering in a two dimensional space created by the individual
statistics of the two experiments, ì íô and ì í� . The assumption that the two experiments LSND and
KARMEN are independent iswell justified. Therefore, a two dimensional distribution ì¾íl� 4Áô ��4 �  can
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be constructed from the one dimensional normalized distributions ì í � 4Áô  and ì í � 4 �  by an inverse
projection. A box plot of ì¾íl� 4Áô ��4 �  and itsoriginal functions ì;í areshown in Fig. 8 for an exampleof
achosen parameter combination of �l%'& (�)#�-,+.  ®/ × h K 1 M j �	4�5 ) / , °'Ø )  . Thedifferent lines in figure8
correspond to the limits for 90% CL of thedifferent methods described below.
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Method (a) combines LSND and KARMEN by integrating the distributions for both experiments# /%$ � b individually. Thiscorrespondsto arectanglein � 4Áô ��4 �  defined by thesidelengths 4 IJô� and4 IJôô . Thecombinedconfidenceisthen ì b GUE ­ ª / �3ì b  ) . Toobtainaconfidencelevel of ì b GUE ­ ª /21 7=Ù
we therefore have to determine 4©ò \w . The lines in Fig. 8 labeled (a) show these values 4©ò \w and the
resulting rectangle in � 4Áô§�	4 �  . If the experimental value � 4 �Hu ?ô �	4 �Hu ?�  

lies within this rectangle the
parameter combination �l× h K 1 M j � , °'Ø )  is included in the combined 90% CL region. This method can
be expressed also by taking the overlap of the & ì b confidence regions of both experiments to deduce
thecombined ì b confidence region.

Method (b) isbased on thecombined statistic ì;íl� 4  with 4 / 4Áô � 4 � defined as theconvolu-
tion of the individual ones

ì í � 4  ®/
¬
ï ì íô � 4Áô  h ì í� � 4 � 4Áô  -ð 4Áô 7 (6)
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Theconfidencevalue 4 IJô is then defined by integration of ì í :
¬(' ø
ï ì í � 4  -ð 4 / ì b 7 (7)

For agiven ì b , thelimit correspondsto adiagonal linein Fig. 8, where(b) indicates 4 ò ï for thisspecific
(%'& (*)+�-,+.  , 4�5 ) ). The value 4 �Hu ? / 4 �Hu ?ô � 4 �Xu ?� is then compared with this 4©ò ï . If 4 �Xu ?*) 4©ò ï the
combination �l× h K 1 M j � , °�Ø )  is accepted at a 90% confidence level. Such an approach in � 4Áô§�	4 �  
corresponds to an ordering along linesof constant combined likelihood, 4 below the two maximaof the
likelihood functions.

Method (c) is based on an ordering principle of the elements ì í � 4 ô �	4 �  , i.e. the frequency or
probability of occurrence of � 4Áô§�	4 �  . This differs to integrating starting at 4 / 1

as it is done in the
previously described approaches. For a given confidence level ì b , combinations � 4 ô �	4 �  are added
up in descending order starting with the highest probability of occurrence ì í until a fraction of ì b of
thetotal ì í � 4 ô �	4 �  3ð 4 ô ð 4 � is reached. In Fig. 8 thissubset + of all � 4 ô ��4 �  isshown in blue. If
� 4 �Xu ?ô �	4 �Xu ?�  (, + , the combination (%'& ( ) �-,+.  , 4�5 ) ) under consideration is included in the confidence
region.

Method (d) results in a confidence region dramatically different to those obtained by all other
methods. Instead of taking the overlap of two regions of & ì b confidence, the individual regions of
K � �-K � ì b  ) confidenceareadded to form thecombined region of ì b confidence. For a90% CL this
means adding (mathematically building the .OR. of) the regions of 68.4% individual confidence. In a
graphical view, this is demonstrated by the line labelled (d) in Fig. 8.

It is instructive to discuss thedifferencesof themethodsby comparing thecorresponding areasof
the � 4Áô ��4 �  plane(seeFig. 8) by each method. Thetriangledefined by (b) and therectangledefined by
(a) havealmost thesamearea. In their cornerswith high valuesof 4 w they allow experimental outcomes
which are very unlikely, at least for one experiment. This drawback is overcome by the method (c)
of ordering along probability of occurrence which has the disadvantage of principally disfavoring the
unlikely, but very best fits of very small 4 w . On the other hand, the convolution method integrates along
contoursof constant likelihood for thecombined likelihood function which isavery plausibleprocedure.

The combined regions of 90% and 95% confidence are shown in Fig. 9 as green and yellow areas
in (%'& ( ) �3,#.  , 4�5 ) ). The Figs. (a) through (d) correspond to the methods (a) through (d) described in
section 4.2. Also shown for comparison are the individual experimental results: TheKARMEN 90% CL
exclusion curve(K) and theLSND 90% CL region (L) according to the frequentist approach (seeFig. 5)
as well as theexclusion curves of the two experiments Bugey �� � 
 � u (B) and NOMAD � � 
 � � (N).

Comparing the results of methods (a) to (c), the confidence regions have only minor differences.
High 4�5 ) solutionsarenot excluded at 95% confidence, although theconvolution and ordering methods
clearly favor 4�5 ).- K 1 eV ) . The confidence region for 4�5 )/- , eV ) is almost identical for all
combinations. At first sight, these regions are even similar to the 90% CL region of LSND only (see
lines indicated with L in Fig. 9), however the combined 90% CL region extends to smaller values of
%'& ( ) �3,#.  in the low 4�5 ) region. For large 4�5 ) , thecombined region is reduced and shifted to smaller
mixing values. Although there are regions at 4�5 )0� , eV ) within a 90% CL these solutions have
considerably smaller likelihood than along the ‘ ridge’ at low 4�5 ) , aswasdiscussed in section 4.1. This
argument isunderlined if regarding regionsof combined confidenceat an 80% confidence level. At such
a level, none of the methods (a) through (c) include solutions above 4�5 ) / , eV ) . Figure 9(d) shows a
very distinct region of 90% confidence. It waschosen in thiscontext only to demonstratehow regionsof
correct statistical confidencemight differ and will not bediscussed further.
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Fig. 9: Regions of 90% and 95% confidence for KARMEN and LSND combined as well as individual results of different

experiments. See text for further explanations.

5. CONCLUSION AND OUTLOOK

The data sets of both the LSND and KARMEN experiment were analysed with a maximum likelihood
method. For the first time, a frequentist approach based on [5] was applied to determine confidence
regionsof correct coveragefor theLSND experiment. It isshown that in thecaseof alikelihood function
depending on the oscillation parameters %'& ( ) �-,+.  and 4�5 ) , the approach assuming a two dimensional
Gaussian likelihood function is only a rough approximation and does not lead to correct coverage. As
both the KARMEN and LSND experimental data were analysed with a likelihood function and the
statistics to deduce confidence regions were built in the same manner, it is possible to combine the
likelihood functions and extract combined confidence regions based on a combination of the individual
statisticscreated by MonteCarlo procedures. Theseregionsareregionsof correct coverage in termsof a
frequentist approach.

Thispaper describesastatistical analysiscombining both theLSND and KARMEN experimental
outcomes and shows the feasability and results of such a method. As there are other experiments like
NOMAD, CCFR and Bugey sensitive in part to the confidence region in (%'& ( ) �3,#.  , 4�5 ) ), a complete
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analysis should also include these results on the basis of the same statistical analysis. This implies,
however, the detailed knowledge of experimental data of these experiments not accessible to the author.
In addition, the exclusion curve from the Bugey experiment is based on the disappearance search �� � 

��	u . Combining this experiment correctly with the appearance results of ��	� 
 ��	� or ��� 
 �	� in terms
of mixing angles would therefore also require a full three or four dimensional (with a sterile neutrino)
mixing scheme.
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Discussion after talk of Klaus Eitel. Chairman: Peter Igo-Kemenes.

R. Nolty

Was this work done in cooperation with LSND and how would you describe that cooperation?

K. Eitel

I spent a year at LSND so it was very nice, I really enjoyed it. You cannot do such an anlaysis if
you don’t have the full experimental information. Really you have to have all the information to create
these likelihood functions and theFeldman/Cousins estimator distributions, in particular.

Bill Murray

As you say, you have all the information to create the likelihood functions and their distributions.
I wasn’t sure why you didn’t do the full Cousins and Feldman analysis to the combined data set rather
than coming up with someother prescription to combine the likelihood functions.

K. Eitel

First of all, if you combinethelikelihood functionsin themselvesit’shard becauseyou haveto find
a good way to normalize the likelihood function in a way that you weight both experiments in the same
way. You see, the actual value of the likelihood function is completely different because you analyze
different parameters in both experiments, so you have to think up how you really want to combine them
at the likelihood level. In that plot where I showed the added likelihood function, it’s easy at that stage
becauseyou just normalize it here [points to screen], both to zero so that you can combine them.

W. Murray

But in the Cousins/Feldman you normalize to the minimum so you have a defined normalization
point.

K. Eitel

I think it’s not so easy. Maybeweshould really talk about that later in detail.

The technical problem is that the likelihood maximum of the combined likelihood function is
different from themaximaof both individual likelihood functions. Therefore, onehasto store(for each of
thousandsof MC samples!) thewholecombined likelihood function, or do theFeldman/Cousinsanalysis
simultaneously. I admit I didn’t realize this in thebeginning, and later theCPU timeconsumption didn’t
allow restarting the whole procedure. But for the final analysis of KARMEN2 and LSND, this will
definitely bedone.

C. Giunti

In your final result you have this big allowed region at low 7 5 ) , and then you have some islands
allowed at high 7 5 ) . Can you say something on the credibility of these islands? For example, if you
change themethod, if you useB instead of A, what happens?

K. Eitel

If you really discuss these very small regions - I just want to show one point - this distribution (of
thenumber versus thechange in log-likelihood) isbased on priorsand samples, and you can imagine the
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fluctuations here, so it’s very hard to make anything at a percent level in confidence - you better do this
at a level of at least 10 000 Monte Carlo samples, but that was actually too CPU time consuming. So, if
you go into discussing these little islands, the small differences of the methods (a) through (c) are also
due to statistical fluctuations of the samples. On the other hand, in terms of credibility, if you reduce
your confidence level (i.e. become more stringent), if you don’t look at 90% or 95% but let’s say 80% ,
then all theseareas at high 7 5 ) vanish.

G. D’Agostini

Just a comment. I have already discussed with the speaker about how misleading these kinds
of results can be. For example, if somebody doesn’t know the details of the analysis and looks only
at this final 2-D plot, he understands that there is a region and some disconnected islands where these
parameters could be, and the rest is excluded. If you see the 3-dimensional plots you understand much
better what is going on. The left side is not excluded because in these kinds of problems, in which we
are interested to give limits, the likelihood never goes to zero at the edge of the space of the parameters.
This is shown very clearly in a 3-dimensional plot like this [shows transparency]. So there is certainly
a strong region of evidence - you have very strong evidence - but obviously you cannot say that from a
logical point of view, (“mathematically” ), this is incompatible with background. You know, in fact, the
likelihood never goes to zero.

K. Eitel

By construction I remained here in my normalization at zero, in yours thiswould beone. Theonly
thing is that of course I compare this maximum with that valuehere [Points to transparency]
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