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Abstract

A combined statistical analysis of the experimental results of the LSND and
KARMEN v, — v, oscillation search is presented. LSND has evidence for
neutrino oscillations that is not confirmed by KARMEN. For both data sets,
the analyses are based on likelihood functions. A fregquentist approach is ap-
plied to deduce confidence regions for each experiment individually and for a
combination of both. A detailed description of thiswork can be found in [1].

1. INTRODUCTION

The controversial results of the two experiments LSND (Liquid Scintillator Neutrino Detector [2] at
LANSCE, Los Alamos, USA) and KARMEN (KArlsruhe Rutherford Medium Energy Neutrino experi-
ment [3] at ISIS, Rutherford, UK) both searching for neutrino oscillations v, — v, have led to intense
discussions. Thetwo experiments are similar asthey use 7, beamsfromthen* — ;" decay at rest (DAR)
chain 7™ — p* + v, followed by ™ — et + v + v, with energies up to 52 MeV. Furthermore, both
experiments are looking for 7, from 7, — v, oscillations viathe reaction p(z., e*) providing a spatialy
correlated delayed coincidence signature of aprompt e* and a subsequent neutron capture signal. LSND
has observed a clear beam—on minus beam—off excess of events with 7, signature, i.e. (e™,n) sequences.
These have been interpreted as evidence for 7, — v, oscillations[4]. On the other hand, KARMEN has
found no excess events above the expected background.

The statistical analysis of the data has become a showcase of how to determine statistical signifi-
cance and upper limits. KARMEN with no apparent 7,] — 7, signal and very low background has the
problem of treating aresult in alow statistics regime near the physical boundary sin?(20) = 0. InLSND,
the maximum likelihood analysis of the data clearly indicates an oscillation signal. A problem arises
when determining a region of correct confidence, i.e. statistical significance, in the (sin?(20), Am?)
plane having a likelihood function in two parameters, which shows a pathological behavior, namely an
oscillatory dependence in Am? with numerous local maxima. In 1998, the discussion was intensified
by a paper of Feldman and Cousins [5], who described a method of dealing with the problems described
above.

This report describes the individual evaluation of both data sets with maximum likelihood meth-
ods. The statistical interpretation of the likelihood functions and confidence regions is based on a fre-
guentist approach and follows closely the analysis suggested by Feldman and Cousins. The main purpose
of such an approach is to determine correct regions of confidence in (sin?(20), Am?). A correct cov-
erage is defined in terms of frequency, i.e. fraction of occurrence for future experiments. Probability or
confidence in this context does not mean “degree of belief” as defined in a Bayesian statistics.

Although the central statements of LSND and KARMEN are contradicting there can bearegionin
the (sin?(20), Am?) parameter space where the results are compatible. Combining the two experiments
isdonein different ways of constructing statistical distributions, pointing out that there is no unique way
of determining regions of specific confidence. However, as we will see, the regions of compatibility in
(sin?(20), Am?) are very similar.

A dtatistical analysis combining two experimental results which apparently disagree is a delicate
and controversia approach. It is not the task nor the purpose of this analysis to overcome this disagree-
ment. However, assuming that there is no serious systematical error in either of the experiments and the
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interpretation of their results with respect to oscillations v, — 7. , the question of statistical compatibil-
ity of theindividual resultsis well justified and should be addressed quantitatively. Thisis the objective
of the analysis presented in this paper.

2. DATA EVALUATION
2.1 KARMEN2data

With an upgraded experimental configuration, KARMEN isrunning as KARMEN2 since February 1997.
Starting as asimple counting experiment [6], the eval uation method was changed to a more sophisticated
maximum likelihood analysis of the data set (Feb. 97 through Feb. 99), making use of detailed event
information in energy, time and spatial position. After all cuts, 8 sequences remain. In total, the back-
ground expectation amountsto 7.8 + 0.5 events. In order to extract more information from the 8 events
about any potentially small oscillation signal a detailed maximum likelihood analysis was performed.

The likelihood function analyses 5 event parameters. the energies of the prompt signal, E,,
and the delayed event, E;, the prompt time ¢, and the delayed coincidence At = t; — ¢, as well
as the spatial correlation Az = #; — z,. The likelihood is calculated varying the oscillation signal
Tosc @S Well as the background components relative to the overall data sasmple: r¢¢ for charged cur-
rent events 12° (v, e*)12Ng_s_, Teos TOF cosmic background, ., for random coincidences with a v—
induced prompt event and r,,, for the intrinsic o, contamination. With the condition 235'21 r; = 1 and
P = (Toses TCCs Teoss Tran, Teon ) the likelihood function for the M = 8 events can be written as

M 5
Lp) = [T i fn(EY) - fi2(ES) - fis(ty) - fia(ALF) - fis(AZ")} x HP _ ea:pected 1)

k=1 j=1

The density functions f;; contain the spectral information of all components, and as the positron energy
spectrum depends on Am?, the dependence of L on Am? enters via the density function fi;. The
parameter sin?(20) is determined by the ratio of oscillation events N,s. = M - 7. divided by the
expected number of events for maximal mixing N.,,(Am?2,sin?(20) = 1): sin?(20) = Nys¢/Newp-
The second line in (1) is the combined Poisson probability []  for the background contributions r;
calculated with the expectation values rjf”’“ted. For technical reasons, it is more convenient to optimize
the logarithmic likelihood function inL. Figure 1 shows Inl where the maximum in the physically
allowed range sin?(20) > 0 has been renormalized to a value of InL(sin?(20) = 0, Am?) = 100.
From the likelihood function it is obvious that there is no oscillation signal in the data.
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Fig. 1: Logarithmic likelihood function inL(sin?(20), Am?) for the 8 events of KARMEN2. The maximum in the physically
allowed region sin®(20) > 0 is set to avalue of 100, the minimum of this plot is set to 90.
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2.2 LSND data

The LSND data analysed in this context have been reduced by requiring relatively loose criteria. Details
of the event reconstruction and the definition of R can befoundin[2] and [7]. To determinethe oscillation
parameterssin?(20) and Am? , an event sample comprising 3049 beam-on eventsis used. Four variables
are used to categorize the events. The energy of the primary electron, its spatial distribution in the
detector expressed in distance L to the neutrino source and the angle cos 6 between the direction of the
incident neutrino and the reconstructed electron path. The fourth variable is the likelihood ratio R for a
(e*,n) coincidence. The evaluation method uses these 4 correlated parameters to extract the oscillation
signd, i.e. sin?(20) and Am? , from beam related (BRB) and beam unrelated (BUB) background
SOUrces.

Thelikelihood function isthe product of al M individual event likelihoods to fit a combination of
4-dim density distributions f(E. R, L, cos #) where the relative strengths r of the contributions are the
parameters to be optimized with the side condition }_ r; = 1. Thelikelihood function is defined as

M
L(rose;Tors) = | [ {Tosc.am2 (B, Rics Lic, €08 Ok) + Tyt fort (Egy Ry L, c0s 6,
k=1

2 2
_ (rppp M—Nppp) _ (TbubM;Nbub)

+(1 — 7osec — Torb) foub(Eks Rigy L, cos 0y) } - e 2hr e *bup 2

There are effectively three free parameters. r,,. or sin?(20), Am? and 7,,5. The Gaussian terms
account for the background expectation values and their systematic and statistical uncertainties. The
oscillation parameter sin®(20) is determined as a function of Am? according to sin?(20) = 7. -
M /N2 (sin?(20) = 1) where Na,,,2(sin?(20) = 1) indicates the number of oscillation events ex-
pected for agiven Am? and full mixing sin®(20) = 1 in the detector, taking all resolution functions and
cuts into account. In a next step, the original likelihood function (2) is then integrated aong the axis of
the parameter r,;, which is of no further interest. The logarithmic likelihood in L is therefore a function
of the 2 free oscillation parameters in L (sin?(20), Am?) which is shown in Fig. 2. The exact position of
the maximum in (sin?(20),Am?) is not significant due to the flatness of the likelihood function along
its ‘ridge’ for small values of Am?2.
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Fig. 2: Logarithmic likelihood function InL(sin?(20), Am?) for the LSND data 1993-1998 sample containg 3049 events.
The maximum in the physically allowed region sin®(20) < 1 isset to avalue of InL(sin*(20)m, AmZ,) = 100.

3. CONSTRUCTION OF CONFIDENCE REGIONS

The basic idea of getting correct confidence regions using the logarithmic likelihood function inL is
to create a statistic of an appropriate estimator based on a frequentist approach. A high number of
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event samples is created by Monte Carlo using all experimental information on the event parameters.
Different hypotheses are tested by including in the generated event samples oscillation events according
to the oscillation parameters (sin?(20),Am?). In these proceedings we will describe this method for the
LSND experiment only and then show the results for both KARMEN and LSND.

For apreselected v — v, oscillation hypothesis H with oscillation parameters (sin?(20) i, Am%)
the creation of a LSND-like event sample is done in two steps. First, the number of oscillation events,
BRB and BUB are thrown on the basis of the corresponding expectation values. In a second step, for
each event, parameters (E,R,L cos #) are generated from the density functions f;(E, R, L, cos ). The
index j stands for the 3 different contributions. After an event sample is generated, the sample is anal-
ysed in exactly the same way as the experimental sample, i.e. the logarithm of the likelihood function
(2) iscalculated as afunction of (sin?(20),Am?).

In the following we demonstrate such a procedure on a specific example of an oscillation hypoth-
esis H with parameters (sin?(20) g, Am?2) = (4.2 - 1073, Am? = 1eV?) for which 1000 samples
are generated by MC. To construct confidence regions, the distribution shown in Fig. 3 is the central
estimator distribution suggested by [5] and should be read in the following way: To include the oscil-
lation hypothesis (sin?(20) g, Am?;) with a probability (frequency of occurrence) of 90%, the areain
(sin?(20),Am?) hasto be defined by cutting inL at avalue of AlnL(90%) = 3.25 below the maximum
for each individua likelihood function. This statistic as afunction of Aln L shows the spreading of the
maximal value of InL compared to a given pair of oscillation parameters. If, for a given experiment, the
value AlnL®"P is smaller than AlnL obtained for a specific hypothesis, such a parameter combination
(sin?(20) i, Am%;) would be included in the region of 90% confidence. For the LSND experimental
result, the difference of the logarithmic likelihood function is 1.4, clearly within the 90% confidence
region of the LSND experimental result.
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Fig. 3: Differencesin In L between the actual maxima and the values at the MC starting point. Also indicated is the difference
of thelogarithmic likelihood function AlnL = InL(sin®(20)m, Am2,) —InL(4.2-1073,1eV?) = 1.4 for the LSND sample.

As AlnL(90%) isitself afunction of the parameters (sin?(20) i, Am%), the generation of MC
samples has to be repeated for a grid of possible parameter combinations (sin?(20), Am?) under con-
sideration. The normalized distribution in Fig. 3 isnamed C’(AlnL) and the variable

InL(sin?(20),,, Am?) — InL(sin?(20) g, Am?%) = AlnL = A . 3
Plotting the normalized integration of C” as function of A defined as

R C(z)da

CA) = ) de

(4)
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alows an easy extraction of the 90% confidence value A% for which C(A?’) = 0.9. Shown in Fig. 4
are some distributions C(A1) including the one for (sin?(20) g = 4.2 - 1073, Am?, = 1eV?) for the
LSND analysis. Note that these C' distributions could be quite different.
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Fig. 4: Cumulative distributions or confidence C'(AlnLy,) for various starting points (sin”(20) i, Am?3;). Theleft plot shows
the distributions C' for hypotheses with high likelihood for the LSND sample whereas the right figure is based on ‘unlikely’
starting hypotheses. The intersection of C' with the dotted lines can be used to extract the A% and A% values.

On the basis of the distributions C'(A) the values A®L for a given confidence level CL are given
for the calculated (sin?(20) g, Am?2,). The corresponding confidence regions for both experiments
were then obtained by cutting the logarithmic likelihood function inL(sin?(20), Am?) at values of
AL (5in%(20), Am?) below the absolute maximum of InL. At 90% CL, each individual experimental
outcome was compared with other experiments. Figure 5 shows the oscillation parameters inside the
90% CL LSND region and the 90% CL limits from KARMEN2 and other experiments. Notice that the
limits of the Bugey 7. — ©, search [8], the CCFR combined v, — v, and 7, — 7, search [9] and
the preliminary results from the NOMAD v, — v, search [10] are not based on this unified frequentist
approach by Feldman and Cousins.
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Fig. 5: LSND 90% CL region in comparison with other 90% CLexclusion curves in the corresponding (sin?(20),Am?) area.

The extraction of the 90% CL curves for NOMAD, CCFR and Bugey are not based on the frequentist approach used for
KARMEN and LSND.
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One of the most misleading but nevertheless very frequently used interpretation of the LSND
and KARMEN results is to take the LSND region left of the KARMEN exclusion curve as area of
(sin?(20),Am?) ‘Ieft over’. Such an interpretation, though appealingly straight forward, completely ig-
nores the information of both likelihood functions and reduces them to two discrete levels of individual
90% confidence. To be able to combine the two experimental results and extract combined confidence re-
gions, we have to go some steps back to the original information of the distributions C% (sin?(20), Am?)
for KARMEN and C/, (sin?(20), Am?) for LSND.

4., COMBINING EXPERIMENTAL RESULTS
4.1 Likeihood functions

Itisawell known procedure to multiply the likelihood functions of two independent experimentsin order
to combine the experimental results. Instead of multiplying the likelihood functions, an equivalent way
is to add the logarithms. As aready indicated in Figs. 1 and 2, there is some freedom in choosing the
absolute scale of InL. A convenient presentation of inL isto normalize the individua functions InL g
and InLy, to a point in (sin?(20),Am?) where they are equally sensitive to a potential signal. In our
case of the oscillation search this corresponds to values of sin?(20) = 0. A stringent exclusion would
then lead to only negative values of in I whereas a strong signal leads to a significant maximum with a
positive value of In L. Hence, the combined logarithmic likelihood function can be expressed as

InL(sin?(20), Am?) = {InLk(sin?(20), Am?) — InLk (sin?(20) = 0)}
+ {InL(sin?(20), Am?) — InL;(sin®(20) = 0)} (5)
Figure 6 shows the combined function InL(sin?(20), Am?) with its maximum on along flat ‘ridge

of low Am? values. Figure 7 shows slices for some values of Am? for the three normalized functions
InLy (leftmost or green curves), In Ly, (rightmost or blue curves) and In L as defined in Eq. 5.

InL [arbitrary unit$

51

Fig. 6: Combined logarithmic likelihood function InL(sin®(20), Am?) as defined in Eq. (5).

The function InL(sin?(20), Am?) alows a direct qualitative interpretation of the experiments: There
is a clear maximum of the combined likelihood function with a positive value of inL favoring overal
the evidence for oscillations given by LSND. On the other hand, compared to the individual LSND
maximum, In Ly, the negative KARMEN result reduces the maximal value by 1.6 units (see Fig. 7 for
Am? = 0.1eV?) which corresponds to a reduction to only 20% of the original maximal likelihood.
This reduction of the global maximum is a direct reflection of the general disagreement of the two
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experimental results. From Fig. 7 it is seen that for low Am? the position in sin?(20) of the maximum
is not substantially shifted. In contrast, for larger Am? the negative influence of the KARMEN result
clearly shiftsthe maximuminsin?(20) and strongly reducesthe LSND likelihood value. It alsoincreases
the difference AlnL to the global maximum which is an important fact in terms of the statistics C’(A)
and demonstrates that values of Am? > 2 eV? have amuch smaller likelihood than some combinations
(sin?(20),Am?) inthe low Am? region. Although these observations help in ng the combination
of the two experiments, probability statementsin afrequentist manner cannot be deduced from the above
arguments. However, an evaluation of quantitative confidence regions can be based on the distributions
C’(A), which is shown below.
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Fig. 7: Slices of constant Am? of the logarithmic likelihood functions for KARMEN (leftmost or green), LSND (rightmost or
blue) and the combination (middle or red). For definition of inL see text.

4.2 Frequentist approach

In this section we describe 4 different methods to extract areasin (sin?(20),Am?) of acertain confidence
level CL. Though they can be derived analytically we follow a more phenomenological approach. The
methods are based on different ways of ordering in a two dimensiona space created by the individual
statistics of the two experiments, C; and C'. The assumption that the two experiments LSND and
KARMEN areindependent iswell justified. Therefore, atwo dimensional distribution C'(A 1, Ak ) can
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be constructed from the one dimensional normalized distributions C’(A ) and C'(Ak) by an inverse
projection. A box plot of C'(Ap, Ak ) anditsoriginal functions C” are shown in Fig. 8 for an example of
achosen parameter combination of (sin?(20) = 4- 1073, Am? = 2¢V?). The different linesin figure 8
correspond to the limits for 90% CL of the different methods described bel ow.
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Fig. 8: Box plot of the two dimensional distribution C’ (A1, A ) for agiven oscillation parameter combination (sin?(20) =
4-1073, Am? = 2eV?) and its projections for the individual experiments. The different combining methods indicated (a)
through (d) are described in the text.

Method (a) combines LSND and KARMEN by integrating the distributions for both experiments
i = K, L individually. Thiscorrespondsto arectanglein (A, A ) defined by the sidelengths A%L and
AL, The combined confidenceisthen C L., = (CL)?. To obtain aconfidencelevel of C' Lo, = 0.9
we therefore have to determine A%°. The lines in Fig. 8 labeled (a) show these values AY® and the
resulting rectangle in (A, Ak ). If the experimental value (A7, A%”) lies within this rectangle the
parameter combination (4 - 1073, 2¢V?) isincluded in the combined 90% CL region. This method can
be expressed also by taking the overlap of the v/C'L confidence regions of both experiments to deduce
the combined C' L confidence region.

Method (b) is based on the combined statistic C’(A) with A = A, + Ak defined as the convolu-
tion of the individual ones

c'(A) = /OA CL(AL) - Cx(A—Ar)dAr . (6)
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The confidence value A°L is then defined by integration of C”:

ACL

/ C'(A)dA = CL . )
0

For agiven C'L, the limit correspondsto adiagonal linein Fig. 8, where (b) indicates A% for this specific
(5in?(20),Am?). Thevalue A®? = ATP + A%P isthen compared with this A%, If Ac? < A% the
combination (4 - 1073, 2eV?) is accepted at a 90% confidence level. Such an approach in (Ar, Ax)
corresponds to an ordering along lines of constant combined likelihood, A below the two maxima of the
likelihood functions.

Method (c) is based on an ordering principle of the elements C’(A L, Ak), i.e. the frequency or
probability of occurrence of (A, Ak ). Thisdiffersto integrating starting at A = 0 asit isdonein the
previously described approaches. For a given confidence level C'L, combinations (A, Ax) are added
up in descending order starting with the highest probability of occurrence C’ until a fraction of C'L of
thetotal [ C'(ArL, Ax)dArdAk isreached. InFig. 8 thissubset S of all (A, Ak ) isshowninblue. If
(AT, A%P) € S, the combination (sin?(20),Am?) under consideration is included in the confidence
region.

Method (d) results in a confidence region dramaticaly different to those obtained by all other
methods. Instead of taking the overlap of two regions of v/C'L confidence, the individual regions of
1 — (1 — CL)? confidence are added to form the combined region of C'L confidence. For a90% CL this
means adding (mathematically building the .OR. of) the regions of 68.4% individual confidence. In a
graphical view, thisis demonstrated by the line labelled (d) in Fig. 8.

It isinstructive to discuss the differences of the methods by comparing the corresponding areas of
the (A, Ak ) plane (see Fig. 8) by each method. Thetriangle defined by (b) and the rectangle defined by
(a) have dmost the same area. In their corners with high values of A; they allow experimenta outcomes
which are very unlikely, at least for one experiment. This drawback is overcome by the method (c)
of ordering along probability of occurrence which has the disadvantage of principally disfavoring the
unlikely, but very best fits of very small A;. On the other hand, the convolution method integrates along
contours of constant likelihood for the combined likelihood function which isavery plausible procedure.

The combined regions of 90% and 95% confidence are shown in Fig. 9 as green and yellow areas
in (sin?(20),Am?). The Figs. (a) through (d) correspond to the methods (a) through (d) described in
section 4.2. Also shown for comparison are the individual experimental results: The KARMEN 90% CL
exclusion curve (K) and the LSND 90% CL region (L) according to the frequentist approach (see Fig. 5)
aswell asthe exclusion curves of the two experiments Bugey 7. — v, (B) and NOMAD v, — v, (N).

Comparing the results of methods (a) to (c), the confidence regions have only minor differences.
High Am? solutions are not excluded at 95% confidence, although the convol ution and ordering methods
clearly favor Am? < 10eV2. The confidence region for Am? < 2eV? is aimost identical for all
combinations. At first sight, these regions are even similar to the 90% CL region of LSND only (see
lines indicated with L in Fig. 9), however the combined 90% CL region extends to smaller values of
sin?(20) in the low Am? region. For large Am?, the combined region is reduced and shifted to smaller
mixing values. Although there are regions at Am? > 2eV? within a 90% CL these solutions have
considerably smaller likelihood than along the ‘ridge’ at low Am?, aswas discussed in section 4.1. This
argument is underlined if regarding regions of combined confidence at an 80% confidence level. At such
alevel, none of the methods (&) through (c) include solutions above Am? = 2 eV2. Figure 9(d) shows a
very distinct region of 90% confidence. It was chosen in this context only to demonstrate how regions of
correct statistical confidence might differ and will not be discussed further.
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Fig. 9: Regions of 90% and 95% confidence for KARMEN and LSND combined as well as individual results of different
experiments. Seetext for further explanations.

5. CONCLUSION AND OUTLOOK

The data sets of both the LSND and KARMEN experiment were analysed with a maximum likelihood
method. For the first time, a frequentist approach based on [5] was applied to determine confidence
regions of correct coverage for the LSND experiment. It is shown that in the case of alikelihood function
depending on the oscillation parameters sin?(20) and Am?, the approach assuming a two dimensional
Gaussian likelihood function is only a rough approximation and does not lead to correct coverage. As
both the KARMEN and LSND experimental data were analysed with a likelihood function and the
statistics to deduce confidence regions were built in the same manner, it is possible to combine the
likelihood functions and extract combined confidence regions based on a combination of the individual
statistics created by Monte Carlo procedures. These regions are regions of correct coveragein termsof a
frequentist approach.

This paper describes a statistical analysis combining both the LSND and KARMEN experimental
outcomes and shows the feasability and results of such a method. As there are other experiments like
NOMAD, CCFR and Bugey sensitive in part to the confidence region in (sin?(20),Am?), a complete
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analysis should also include these results on the basis of the same statistical analysis. This implies,
however, the detailed knowledge of experimental data of these experiments not accessible to the author.
In addition, the exclusion curve from the Bugey experiment is based on the disappearance search 7, —
v,. Combining this experiment correctly with the appearance results of v, — v, or v, — v, interms
of mixing angles would therefore also require a full three or four dimensional (with a sterile neutrino)
mixing scheme.
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Discussion after talk of Klaus Eitel. Chairman: Peter go-Kemenes.

R. Nolty

Was thiswork done in cooperation with LSND and how would you describe that cooperation?

K. Eitel

| spent ayear at LSND so it was very nice, | really enjoyed it. You cannot do such an anlaysis if
you don’'t have the full experimental information. Really you have to have al the information to create
these likelihood functions and the Feldman/Cousins estimator distributions, in particular.

Bill Murray

Asyou say, you have al the information to create the likelihood functions and their distributions.
| wasn’t sure why you didn’t do the full Cousins and Feldman analysis to the combined data set rather
than coming up with some other prescription to combine the likelihood functions.

K. Eitel

First of al, if you combinethe likelihood functionsin themselvesit’s hard because you haveto find
a good way to normalize the likelihood function in away that you weight both experiments in the same
way. You see, the actua value of the likelihood function is completely different because you anayze
different parameters in both experiments, so you have to think up how you really want to combine them
at the likelihood level. In that plot where | showed the added likelihood function, it's easy at that stage
because you just normalize it here [points to screen], both to zero so that you can combine them.

W. Murray

But in the Cousins/Feldman you normalize to the minimum so you have a defined normalization
point.

K. Eitel

| think it’s not so easy. Maybe we should really talk about that |ater in detail.

The technical problem is that the likelihood maximum of the combined likelihood function is
different from the maximaof both individual likelihood functions. Therefore, one hasto store (for each of
thousands of M C samples!) the whole combined likelihood function, or do the Feldman/Cousinsanalysis
simultaneoudly. | admit | didn’t realize thisin the beginning, and later the CPU time consumption didn’t
alow restarting the whole procedure. But for the final analysis of KARMEN2 and LSND, this will
definitely be done.

C. Giunti

In your final result you have this big allowed region at low §m?, and then you have some islands
alowed at high §m?. Can you say something on the credibility of these isands? For example, if you
change the method, if you use B instead of A, what happens?

K. Eitel

If you really discuss these very small regions - | just want to show one point - this distribution (of
the number versus the change in log-likelihood) is based on priors and samples, and you can imagine the
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fluctuations here, so it's very hard to make anything at a percent level in confidence - you better do this
at alevel of at least 10 000 Monte Carlo samples, but that was actually too CPU time consuming. So, if
you go into discussing these little islands, the small differences of the methods (a) through (c) are also
due to statistical fluctuations of the samples. On the other hand, in terms of credibility, if you reduce
your confidence level (i.e. become more stringent), if you don’t look at 90% or 95% but let’s say 80% ,
then all these areas at high §m? vanish.

G. D’Agostini

Just a comment. | have already discussed with the speaker about how misleading these kinds
of results can be. For example, if somebody doesn’'t know the details of the analysis and looks only
at this final 2-D plot, he understands that there is a region and some disconnected islands where these
parameters could be, and the rest is excluded. If you see the 3-dimensional plots you understand much
better what is going on. The left side is not excluded because in these kinds of problems, in which we
are interested to give limits, the likelihood never goes to zero at the edge of the space of the parameters.
This is shown very clearly in a 3-dimensional plot like this [shows transparency]. So there is certainly
a strong region of evidence - you have very strong evidence - but obvioudly you cannot say that from a
logical point of view, (“mathematically”), this is incompatible with background. You know, in fact, the
likelihood never goesto zero.

K. Eitel

By construction | remained herein my normalization at zero, in yoursthiswould be one. The only
thing isthat of course | compare this maximum with that value here [Points to transparency]

185



