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Abstract
A combined statistical analysis of the experimental results of the LSND and
KARMEN ν̄µ → ν̄e oscillation search is presented. LSND has evidence for
neutrino oscillations that is not confirmed by KARMEN. For both data sets,
the analyses are based on likelihood functions. A frequentist approach is ap-
plied to deduce confidence regions for each experiment individually and for a
combination of both. A detailed description of this work can be found in [1].

1. INTRODUCTION

The controversial results of the two experiments LSND (Liquid Scintillator Neutrino Detector [2] at
LANSCE, Los Alamos, USA) and KARMEN (KArlsruhe Rutherford Medium Energy Neutrino experi-
ment [3] at ISIS, Rutherford, UK) both searching for neutrino oscillationsν̄µ → ν̄e have led to intense
discussions. The two experiments are similar as they useν̄µ beams from theπ+−µ+ decay at rest (DAR)
chainπ+ → µ+ + νµ followed byµ+ → e+ + νe + ν̄µ with energies up to 52 MeV. Furthermore, both
experiments are looking for̄νe from ν̄µ → ν̄e oscillations via the reaction p(ν̄e, e+) providing a spatially
correlated delayed coincidence signature of a prompt e+ and a subsequent neutron capture signal. LSND
has observed a clear beam–on minus beam–off excess of events withν̄e signature, i.e. (e+,n) sequences.
These have been interpreted as evidence forν̄µ → ν̄e oscillations [4]. On the other hand, KARMEN has
found no excess events above the expected background.

The statistical analysis of the data has become a showcase of how to determine statistical signifi-
cance and upper limits. KARMEN with no apparentν̄µ] → ν̄e signal and very low background has the
problem of treating a result in a low statistics regime near the physical boundarysin2(2Θ) = 0. In LSND,
the maximum likelihood analysis of the data clearly indicates an oscillation signal. A problem arises
when determining a region of correct confidence, i.e. statistical significance, in the (sin2(2Θ),∆m2)
plane having a likelihood function in two parameters, which shows a pathological behavior, namely an
oscillatory dependence in∆m2 with numerous local maxima. In 1998, the discussion was intensified
by a paper of Feldman and Cousins [5], who described a method of dealing with the problems described
above.

This report describes the individual evaluation of both data sets with maximum likelihood meth-
ods. The statistical interpretation of the likelihood functions and confidence regions is based on a fre-
quentist approach and follows closely the analysis suggested by Feldman and Cousins. The main purpose
of such an approach is to determine correct regions of confidence in (sin2(2Θ),∆m2). A correct cov-
erage is defined in terms of frequency, i.e. fraction of occurrence for future experiments. Probability or
confidence in this context does not mean “degree of belief” as defined in a Bayesian statistics.

Although the central statements of LSND and KARMEN are contradicting there can be a region in
the (sin2(2Θ),∆m2) parameter space where the results are compatible. Combining the two experiments
is done in different ways of constructing statistical distributions, pointing out that there is no unique way
of determining regions of specific confidence. However, as we will see, the regions of compatibility in
(sin2(2Θ),∆m2) are very similar.

A statistical analysis combining two experimental results which apparently disagree is a delicate
and controversial approach. It is not the task nor the purpose of this analysis to overcome this disagree-
ment. However, assuming that there is no serious systematical error in either of the experiments and the
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interpretation of their results with respect to oscillationsν̄µ → ν̄e , the question of statistical compatibil-
ity of the individual results is well justified and should be addressed quantitatively. This is the objective
of the analysis presented in this paper.

2. DATA EVALUATION

2.1 KARMEN2 data

With an upgraded experimental configuration, KARMEN is running as KARMEN2 since February 1997.
Starting as a simple counting experiment [6], the evaluation method was changed to a more sophisticated
maximum likelihood analysis of the data set (Feb. 97 through Feb. 99), making use of detailed event
information in energy, time and spatial position. After all cuts, 8 sequences remain. In total, the back-
ground expectation amounts to7.8± 0.5 events. In order to extract more information from the 8 events
about any potentially small oscillation signal a detailed maximum likelihood analysis was performed.

The likelihood function analyses 5 event parameters: the energies of the prompt signal,Ep,
and the delayed event,Ed, the prompt timetp and the delayed coincidence∆t = td − tp as well
as the spatial correlation∆~x = ~xd − ~xp. The likelihood is calculated varying the oscillation signal
rosc as well as the background components relative to the overall data sample:rCC for charged cur-
rent events12C(νe, e−)12Ng.s., rcos for cosmic background,rran for random coincidences with aν–
induced prompt event andrcon for the intrinsicν̄e contamination. With the condition

∑5
j=1 rj = 1 and

ρ = (rosc, rCC , rcos, rran, rcon) the likelihood function for theM = 8 events can be written as

L(ρ) =
M∏
k=1

{
5∑
j=1

rj · fj1(Ekp ) · fj2(Ekd ) · fj3(tkp) · fj4(∆tk) · fj5(∆~xk)} ×
5∏
j=2

P (rj |rexpectedj ) (1)

The density functionsfji contain the spectral information of all components, and as the positron energy
spectrum depends on∆m2, the dependence ofL on ∆m2 enters via the density functionf11. The
parametersin2(2Θ) is determined by the ratio of oscillation eventsNosc = M · rosc divided by the
expected number of events for maximal mixingNexp(∆m2, sin2(2Θ) = 1): sin2(2Θ) = Nosc/Nexp.
The second line in (1) is the combined Poisson probability

∏
P for the background contributionsrj

calculated with the expectation valuesrexpectedj . For technical reasons, it is more convenient to optimize
the logarithmic likelihood functionlnL. Figure 1 showslnL where the maximum in the physically
allowed rangesin2(2Θ) ≥ 0 has been renormalized to a value oflnL(sin2(2Θ) = 0,∆m2) = 100.
From the likelihood function it is obvious that there is no oscillation signal in the data.
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Fig. 1: Logarithmic likelihood functionlnL(sin2(2Θ),∆m2) for the 8 events of KARMEN2. The maximum in the physically

allowed regionsin2(2Θ) ≥ 0 is set to a value of 100, the minimum of this plot is set to 90.
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2.2 LSND data

The LSND data analysed in this context have been reduced by requiring relatively loose criteria. Details
of the event reconstruction and the definition of R can be found in [2] and [7]. To determine the oscillation
parameterssin2(2Θ) and∆m2 , an event sample comprising 3049 beam-on events is used. Four variables
are used to categorize the events: The energy of the primary electron, its spatial distribution in the
detector expressed in distance L to the neutrino source and the anglecos θ between the direction of the
incident neutrino and the reconstructed electron path. The fourth variable is the likelihood ratio R for a
(e+,n) coincidence. The evaluation method uses these 4 correlated parameters to extract the oscillation
signal, i.e. sin2(2Θ) and ∆m2 , from beam related (BRB) and beam unrelated (BUB) background
sources.

The likelihood function is the product of allM individual event likelihoods to fit a combination of
4-dim density distributionsf(E,R,L, cos θ) where the relative strengthsr of the contributions are the
parameters to be optimized with the side condition

∑
rj = 1. The likelihood function is defined as

L(rosc, rbrb) =
M∏
k=1

{roscf∆m2(Ek, Rk, Lk, cos θk) + rbrbfbrb(Ek, Rk, Lk, cos θk)

+(1− rosc − rbrb)fbub(Ek, Rk, Lk, cos θk)} · e
− (rbrbM−Nbrb)

2

2σ2
brb · e

− (rbubM−Nbub)
2

2σ2
bub (2)

There are effectively three free parameters:rosc or sin2(2Θ), ∆m2 and rbrb. The Gaussian terms
account for the background expectation values and their systematic and statistical uncertainties. The
oscillation parametersin2(2Θ) is determined as a function of∆m2 according tosin2(2Θ) = rosc ·
M/N∆m2(sin2(2Θ) = 1) whereN∆m2(sin2(2Θ) = 1) indicates the number of oscillation events ex-
pected for a given∆m2 and full mixingsin2(2Θ) = 1 in the detector, taking all resolution functions and
cuts into account. In a next step, the original likelihood function (2) is then integrated along the axis of
the parameterrbrb which is of no further interest. The logarithmic likelihoodlnL is therefore a function
of the 2 free oscillation parameterslnL(sin2(2Θ),∆m2) which is shown in Fig. 2. The exact position of
the maximum in(sin2(2Θ),∆m2) is not significant due to the flatness of the likelihood function along
its ‘ridge’ for small values of∆m2.
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Fig. 2: Logarithmic likelihood functionlnL(sin2(2Θ),∆m2) for the LSND data 1993-1998 sample containg 3049 events.

The maximum in the physically allowed regionsin2(2Θ) ≤ 1 is set to a value oflnL(sin2(2Θ)m,∆m
2
m) = 100.

3. CONSTRUCTION OF CONFIDENCE REGIONS

The basic idea of getting correct confidence regions using the logarithmic likelihood functionlnL is
to create a statistic of an appropriate estimator based on a frequentist approach. A high number of
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event samples is created by Monte Carlo using all experimental information on the event parameters.
Different hypotheses are tested by including in the generated event samples oscillation events according
to the oscillation parameters (sin2(2Θ),∆m2). In these proceedings we will describe this method for the
LSND experiment only and then show the results for both KARMEN and LSND.

For a preselected̄ν → ν̄e oscillation hypothesisH with oscillation parameters(sin2(2Θ)H ,∆m2
H)

the creation of a LSND-like event sample is done in two steps. First, the number of oscillation events,
BRB and BUB are thrown on the basis of the corresponding expectation values. In a second step, for
each event, parameters (E,R,L,cos θ) are generated from the density functionsfj(E,R,L, cos θ). The
indexj stands for the 3 different contributions. After an event sample is generated, the sample is anal-
ysed in exactly the same way as the experimental sample, i.e. the logarithm of the likelihood function
(2) is calculated as a function of(sin2(2Θ),∆m2).

In the following we demonstrate such a procedure on a specific example of an oscillation hypoth-
esisH with parameters(sin2(2Θ)H ,∆m2

H) = (4.2 · 10−3,∆m2 = 1eV 2) for which 1000 samples
are generated by MC. To construct confidence regions, the distribution shown in Fig. 3 is the central
estimator distribution suggested by [5] and should be read in the following way: To include the oscil-
lation hypothesis(sin2(2Θ)H ,∆m2

H) with a probability (frequency of occurrence) of 90%, the area in
(sin2(2Θ),∆m2) has to be defined by cuttinglnL at a value of∆lnL(90%) = 3.25 below the maximum
for each individual likelihood function. This statistic as a function of∆lnL shows the spreading of the
maximal value oflnL compared to a given pair of oscillation parameters. If, for a given experiment, the
value∆lnLexp is smaller than∆lnL obtained for a specific hypothesis, such a parameter combination
(sin2(2Θ)H ,∆m2

H) would be included in the region of 90% confidence. For the LSND experimental
result, the difference of the logarithmic likelihood function is 1.4, clearly within the 90% confidence
region of the LSND experimental result.
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Fig. 3: Differences inlnL between the actual maxima and the values at the MC starting point. Also indicated is the difference

of the logarithmic likelihood function∆lnL = lnL(sin2(2Θ)m,∆m
2
m)−lnL(4.2·10−3, 1eV 2) = 1.4 for the LSND sample.

As ∆lnL(90%) is itself a function of the parameters(sin2(2Θ)H ,∆m2
H), the generation of MC

samples has to be repeated for a grid of possible parameter combinations (sin2(2Θ), ∆m2) under con-
sideration. The normalized distribution in Fig. 3 is namedC ′(∆lnL) and the variable

lnL(sin2(2Θ)m,∆m2
m)− lnL(sin2(2Θ)H ,∆m2

H) = ∆lnL ≡ ∆ . (3)

Plotting the normalized integration ofC ′ as function of∆ defined as

C(∆) =
∫∆

0 C ′(x)dx∫∞
0 C ′(x)dx

(4)
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allows an easy extraction of the 90% confidence value∆90 for whichC(∆90) = 0.9. Shown in Fig. 4
are some distributionsC(∆L) including the one for(sin2(2Θ)H = 4.2 · 10−3,∆m2

H = 1eV 2) for the
LSND analysis. Note that theseC distributions could be quite different.
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starting hypotheses. The intersection ofC with the dotted lines can be used to extract the∆90 and∆99 values.

On the basis of the distributionsC(∆) the values∆CL for a given confidence level CL are given
for the calculated(sin2(2Θ)H ,∆m2

H). The corresponding confidence regions for both experiments
were then obtained by cutting the logarithmic likelihood functionlnL(sin2(2Θ),∆m2) at values of
∆CL(sin2(2Θ),∆m2) below the absolute maximum oflnL. At 90% CL, each individual experimental
outcome was compared with other experiments. Figure 5 shows the oscillation parameters inside the
90% CL LSND region and the 90% CL limits from KARMEN2 and other experiments. Notice that the
limits of the Bugeyν̄e → ν̄x search [8], the CCFR combinedνµ → νe and ν̄µ → ν̄e search [9] and
the preliminary results from the NOMADνµ → νe search [10] are not based on this unified frequentist
approach by Feldman and Cousins.
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One of the most misleading but nevertheless very frequently used interpretation of the LSND
and KARMEN results is to take the LSND region left of the KARMEN exclusion curve as area of
(sin2(2Θ),∆m2) ‘left over’. Such an interpretation, though appealingly straight forward, completely ig-
nores the information of both likelihood functions and reduces them to two discrete levels of individual
90% confidence. To be able to combine the two experimental results and extract combined confidence re-
gions, we have to go some steps back to the original information of the distributionsC ′K(sin2(2Θ),∆m2)
for KARMEN andC ′L(sin2(2Θ),∆m2) for LSND.

4. COMBINING EXPERIMENTAL RESULTS

4.1 Likelihood functions

It is a well known procedure to multiply the likelihood functions of two independent experiments in order
to combine the experimental results. Instead of multiplying the likelihood functions, an equivalent way
is to add the logarithms. As already indicated in Figs. 1 and 2, there is some freedom in choosing the
absolute scale oflnL. A convenient presentation oflnL is to normalize the individual functionslnLK
and lnLL to a point in (sin2(2Θ),∆m2) where they are equally sensitive to a potential signal. In our
case of the oscillation search this corresponds to values ofsin2(2Θ) = 0. A stringent exclusion would
then lead to only negative values oflnL whereas a strong signal leads to a significant maximum with a
positive value oflnL. Hence, the combined logarithmic likelihood function can be expressed as

lnL(sin2(2Θ),∆m2) = {lnLK(sin2(2Θ),∆m2)− lnLK(sin2(2Θ) = 0)}
+ {lnLL(sin2(2Θ),∆m2)− lnLL(sin2(2Θ) = 0)} (5)

Figure 6 shows the combined functionlnL(sin2(2Θ),∆m2) with its maximum on a long flat ‘ridge’
of low ∆m2 values. Figure 7 shows slices for some values of∆m2 for the three normalized functions
lnLK (leftmost or green curves),lnLL (rightmost or blue curves) andlnL as defined in Eq. 5.
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Fig. 6: Combined logarithmic likelihood functionlnL(sin2(2Θ),∆m2) as defined in Eq. (5).

The functionlnL(sin2(2Θ),∆m2) allows a direct qualitative interpretation of the experiments: There
is a clear maximum of the combined likelihood function with a positive value oflnL favoring overall
the evidence for oscillations given by LSND. On the other hand, compared to the individual LSND
maximum,lnLL, the negative KARMEN result reduces the maximal value by 1.6 units (see Fig. 7 for
∆m2 = 0.1 eV2) which corresponds to a reduction to only 20% of the original maximal likelihood.
This reduction of the global maximum is a direct reflection of the general disagreement of the two
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experimental results. From Fig. 7 it is seen that for low∆m2 the position insin2(2Θ) of the maximum
is not substantially shifted. In contrast, for larger∆m2 the negative influence of the KARMEN result
clearly shifts the maximum insin2(2Θ) and strongly reduces the LSND likelihood value. It also increases
the difference∆lnL to the global maximum which is an important fact in terms of the statisticsC ′(∆)
and demonstrates that values of∆m2 > 2 eV2 have a much smaller likelihood than some combinations
(sin2(2Θ),∆m2) in the low∆m2 region. Although these observations help in assessing the combination
of the two experiments, probability statements in a frequentist manner cannot be deduced from the above
arguments. However, an evaluation of quantitative confidence regions can be based on the distributions
C ′(∆), which is shown below.
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blue) and the combination (middle or red). For definition oflnL see text.

4.2 Frequentist approach

In this section we describe 4 different methods to extract areas in (sin2(2Θ),∆m2) of a certain confidence
level CL. Though they can be derived analytically we follow a more phenomenological approach. The
methods are based on different ways of ordering in a two dimensional space created by the individual
statistics of the two experiments,C ′L andC ′K . The assumption that the two experiments LSND and
KARMEN are independent is well justified. Therefore, a two dimensional distributionC ′(∆L,∆K) can
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be constructed from the one dimensional normalized distributionsC ′(∆L) andC ′(∆K) by an inverse
projection. A box plot ofC ′(∆L,∆K) and its original functionsC ′ are shown in Fig. 8 for an example of
a chosen parameter combination of(sin2(2Θ) = 4 · 10−3,∆m2 = 2eV 2). The different lines in figure 8
correspond to the limits for 90% CL of the different methods described below.
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Method (a) combines LSND and KARMEN by integrating the distributions for both experiments
i = K,L individually. This corresponds to a rectangle in(∆L,∆K) defined by the side lengths∆CL

K and
∆CL
L . The combined confidence is thenCLcomb = (CL)2. To obtain a confidence level ofCLcomb = 0.9

we therefore have to determine∆95
i . The lines in Fig. 8 labeled (a) show these values∆95

i and the
resulting rectangle in(∆L,∆K). If the experimental value(∆exp

L ,∆exp
K ) lies within this rectangle the

parameter combination(4 · 10−3, 2eV 2) is included in the combined 90% CL region. This method can
be expressed also by taking the overlap of the

√
CL confidence regions of both experiments to deduce

the combinedCL confidence region.

Method (b) is based on the combined statisticC ′(∆) with ∆ = ∆L + ∆K defined as the convolu-
tion of the individual ones

C ′(∆) =
∫ ∆

0
C ′L(∆L) · C ′K(∆−∆L)d∆L . (6)
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The confidence value∆CL is then defined by integration ofC ′:∫ ∆CL

0
C ′(∆)d∆ = CL . (7)

For a givenCL, the limit corresponds to a diagonal line in Fig. 8, where (b) indicates∆90 for this specific
(sin2(2Θ),∆m2). The value∆exp = ∆exp

L + ∆exp
K is then compared with this∆90. If ∆exp ≤ ∆90 the

combination(4 · 10−3, 2eV 2) is accepted at a 90% confidence level. Such an approach in(∆L,∆K)
corresponds to an ordering along lines of constant combined likelihood,∆ below the two maxima of the
likelihood functions.

Method (c) is based on an ordering principle of the elementsC ′(∆L,∆K), i.e. the frequency or
probability of occurrence of(∆L,∆K). This differs to integrating starting at∆ = 0 as it is done in the
previously described approaches. For a given confidence levelCL, combinations(∆L,∆K) are added
up in descending order starting with the highest probability of occurrenceC ′ until a fraction ofCL of
the total

∫
C ′(∆L,∆K)d∆Ld∆K is reached. In Fig. 8 this subsetS of all (∆L,∆K) is shown in blue. If

(∆exp
L ,∆exp

K ) ∈ S, the combination (sin2(2Θ),∆m2) under consideration is included in the confidence
region.

Method (d) results in a confidence region dramatically different to those obtained by all other
methods. Instead of taking the overlap of two regions of

√
CL confidence, the individual regions of

1− (1−CL)2 confidence are added to form the combined region ofCL confidence. For a 90% CL this
means adding (mathematically building the .OR. of) the regions of 68.4% individual confidence. In a
graphical view, this is demonstrated by the line labelled (d) in Fig. 8.

It is instructive to discuss the differences of the methods by comparing the corresponding areas of
the(∆L,∆K) plane (see Fig. 8) by each method. The triangle defined by (b) and the rectangle defined by
(a) have almost the same area. In their corners with high values of∆i they allow experimental outcomes
which are very unlikely, at least for one experiment. This drawback is overcome by the method (c)
of ordering along probability of occurrence which has the disadvantage of principally disfavoring the
unlikely, but very best fits of very small∆i. On the other hand, the convolution method integrates along
contours of constant likelihood for the combined likelihood function which is a very plausible procedure.

The combined regions of 90% and 95% confidence are shown in Fig. 9 as green and yellow areas
in (sin2(2Θ),∆m2). The Figs. (a) through (d) correspond to the methods (a) through (d) described in
section 4.2. Also shown for comparison are the individual experimental results: The KARMEN 90% CL
exclusion curve (K) and the LSND 90% CL region (L) according to the frequentist approach (see Fig. 5)
as well as the exclusion curves of the two experiments Bugeyν̄e → νx (B) and NOMADνµ → νe (N).

Comparing the results of methods (a) to (c), the confidence regions have only minor differences.
High ∆m2 solutions are not excluded at 95% confidence, although the convolution and ordering methods
clearly favor∆m2 < 10 eV2. The confidence region for∆m2 < 2 eV2 is almost identical for all
combinations. At first sight, these regions are even similar to the 90% CL region of LSND only (see
lines indicated with L in Fig. 9), however the combined 90% CL region extends to smaller values of
sin2(2Θ) in the low∆m2 region. For large∆m2, the combined region is reduced and shifted to smaller
mixing values. Although there are regions at∆m2 > 2 eV2 within a 90% CL these solutions have
considerably smaller likelihood than along the ‘ridge’ at low∆m2, as was discussed in section 4.1. This
argument is underlined if regarding regions of combined confidence at an 80% confidence level. At such
a level, none of the methods (a) through (c) include solutions above∆m2 = 2 eV2. Figure 9(d) shows a
very distinct region of 90% confidence. It was chosen in this context only to demonstrate how regions of
correct statistical confidence might differ and will not be discussed further.
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Fig. 9: Regions of 90% and 95% confidence for KARMEN and LSND combined as well as individual results of different

experiments. See text for further explanations.

5. CONCLUSION AND OUTLOOK

The data sets of both the LSND and KARMEN experiment were analysed with a maximum likelihood
method. For the first time, a frequentist approach based on [5] was applied to determine confidence
regions of correct coverage for the LSND experiment. It is shown that in the case of a likelihood function
depending on the oscillation parameterssin2(2Θ) and∆m2, the approach assuming a two dimensional
Gaussian likelihood function is only a rough approximation and does not lead to correct coverage. As
both the KARMEN and LSND experimental data were analysed with a likelihood function and the
statistics to deduce confidence regions were built in the same manner, it is possible to combine the
likelihood functions and extract combined confidence regions based on a combination of the individual
statistics created by Monte Carlo procedures. These regions are regions of correct coverage in terms of a
frequentist approach.

This paper describes a statistical analysis combining both the LSND and KARMEN experimental
outcomes and shows the feasability and results of such a method. As there are other experiments like
NOMAD, CCFR and Bugey sensitive in part to the confidence region in (sin2(2Θ),∆m2), a complete
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analysis should also include these results on the basis of the same statistical analysis. This implies,
however, the detailed knowledge of experimental data of these experiments not accessible to the author.
In addition, the exclusion curve from the Bugey experiment is based on the disappearance searchν̄e →
ν̄x. Combining this experiment correctly with the appearance results ofν̄µ → ν̄e or νµ → νe in terms
of mixing angles would therefore also require a full three or four dimensional (with a sterile neutrino)
mixing scheme.
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Discussion after talk of Klaus Eitel. Chairman: Peter Igo-Kemenes.

R. Nolty

Was this work done in cooperation with LSND and how would you describe that cooperation?

K. Eitel

I spent a year at LSND so it was very nice, I really enjoyed it. You cannot do such an anlaysis if
you don’t have the full experimental information. Really you have to have all the information to create
these likelihood functions and the Feldman/Cousins estimator distributions, in particular.

Bill Murray

As you say, you have all the information to create the likelihood functions and their distributions.
I wasn’t sure why you didn’t do the full Cousins and Feldman analysis to the combined data set rather
than coming up with some other prescription to combine the likelihood functions.

K. Eitel

First of all, if you combine the likelihood functions in themselves it’s hard because you have to find
a good way to normalize the likelihood function in a way that you weight both experiments in the same
way. You see, the actual value of the likelihood function is completely different because you analyze
different parameters in both experiments, so you have to think up how you really want to combine them
at the likelihood level. In that plot where I showed the added likelihood function, it’s easy at that stage
because you just normalize it here [points to screen], both to zero so that you can combine them.

W. Murray

But in the Cousins/Feldman you normalize to the minimum so you have a defined normalization
point.

K. Eitel

I think it’s not so easy. Maybe we should really talk about that later in detail.

The technical problem is that the likelihood maximum of the combined likelihood function is
different from the maxima of both individual likelihood functions. Therefore, one has to store (for each of
thousands of MC samples!) the whole combined likelihood function, or do the Feldman/Cousins analysis
simultaneously. I admit I didn’t realize this in the beginning, and later the CPU time consumption didn’t
allow restarting the whole procedure. But for the final analysis of KARMEN2 and LSND, this will
definitely be done.

C. Giunti

In your final result you have this big allowed region at lowδm2, and then you have some islands
allowed at highδm2. Can you say something on the credibility of these islands? For example, if you
change the method, if you use B instead of A, what happens?

K. Eitel

If you really discuss these very small regions - I just want to show one point - this distribution (of
the number versus the change in log-likelihood) is based on priors and samples, and you can imagine the
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fluctuations here, so it’s very hard to make anything at a percent level in confidence - you better do this
at a level of at least 10 000 Monte Carlo samples, but that was actually too CPU time consuming. So, if
you go into discussing these little islands, the small differences of the methods (a) through (c) are also
due to statistical fluctuations of the samples. On the other hand, in terms of credibility, if you reduce
your confidence level (i.e. become more stringent), if you don’t look at 90% or 95% but let’s say 80% ,
then all these areas at highδm2 vanish.

G. D’Agostini

Just a comment. I have already discussed with the speaker about how misleading these kinds
of results can be. For example, if somebody doesn’t know the details of the analysis and looks only
at this final 2-D plot, he understands that there is a region and some disconnected islands where these
parameters could be, and the rest is excluded. If you see the 3-dimensional plots you understand much
better what is going on. The left side is not excluded because in these kinds of problems, in which we
are interested to give limits, the likelihood never goes to zero at the edge of the space of the parameters.
This is shown very clearly in a 3-dimensional plot like this [shows transparency]. So there is certainly
a strong region of evidence - you have very strong evidence - but obviously you cannot say that from a
logical point of view, (“mathematically”), this is incompatible with background. You know, in fact, the
likelihood never goes to zero.

K. Eitel

By construction I remained here in my normalization at zero, in yours this would be one. The only
thing is that of course I compare this maximum with that value here [Points to transparency]
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