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Abstract

We analyze temporal and spatial meson correlators in quenched lattice QCD at T ≥ 0.
Below Tc we observe little change in the meson properties as compared with T = 0. Above
Tc we observe new features: chiral symmetry restoration and signals of plasma formation,
but also indication of persisting “mesonic” (metastable) states and different temporal and
spatial “masses” in the mesonic channels. This suggests a complex picture of QGP in the
region 1 − 1.5 Tc.
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1 Introduction

With increasing temperature, hadronic correlators are expected to change their nature dras-
tically (see, e.g., [1], [2]). At the critical temperature, the deconfinement of color degrees of
freedom and the restoration of the chiral symmetry are expected to occur simultaneously. Two
“extreme” pictures are frequently used to describe the low and the high T regimes, respectively:
the weakly interacting meson gas, where we expect the mesons to become effective resonance
modes with a small mass shift and width due to the interaction; and the perturbative quark
gluon plasma (QGP), where the mesons should eventually disappear and (at very high T )
perturbative effects should dominate.

Near to the critical temperature, however, the actual physical situation is more involved.
The interaction with a hot meson gas and with baryonic matter have been studied in various
phenomenological models which predict appreciable changes in the vector meson properties (see,
e. g., [3]). In a NJL model [4] the scalar and the pseudo-scalar modes are found to correlate
strongly, and to subsist even above the transition as so-called “soft modes”, corresponding to
narrow peaks in the spectral function and realized as the fluctuation of the order parameter of
the chiral symmetry restoration transition. On the other hand, at the short distance scale, the
fundamental excitation should be quarks and gluons. Lattice QCD results on the quark number
susceptibility support this view [5]. These pictures may not be contradicting each other: DeTar
conjectured the existence of excitations in the QGP phase corresponding to different distance
scales, and pointed out to the possibility of “confinement” still ruling the large distance scales
[6]. While with increasing temperature the physics should appear increasingly dominated by
quark and gluon degrees of freedom, in accordance to the perturbative high temperature picture,
the intermediate temperature range above Tc seems to be much more complex and dominated
by strongly interacting quarks (see also [7]), which, as we shall see below, even tend to stay
strongly spatially correlated and thus agree with a picture of effective, low energy modes in
the mesonic channels. Since these matters are related to questions about the evolution of the
early universe, on one hand, and to the interesting results from heavy ion collision experiments
[8], where QGP conditions are being realized [9], on the other hand, it is important to have
quantitative estimates in addition to qualitative understanding and we need model-independent
studies of the hadronic correlators at finite temperature.

Lattice simulations are the most powerful instrument at present to investigate such prob-
lems in the fundamental theoretical framework of quantum chromodynamics (QCD). Exten-
sive studies have been dedicated to the thermodynamics of the finite temperature transition
(see, e. g., [10],[11]). Concerning the hadronic sectors, numerical analysis of “screening” (spa-
tial) propagators indicate correlated (bound?) quarks while the mesonic “screening masses”
increase toward the 2-free quark threshold (2πT , induced by the anti-periodic boundary con-
ditions in the temporal direction) [12]. Since the spatial directions can (and must) be made
large, these propagators are unproblematic in principle and can be studied as well as for T = 0:
at any T > 0 the propagation in the space directions represents in fact a T = 0 problem (with
asymmetric finite size effects). The interpretation of the results from “screening” correlators
in terms of modes of the temporal dynamics is far from straightforward, however: since in the
Euclidean formulation the O(4) symmetry is broken at T > 0 (see, e.g., [14]), physics appears
different depending on whether we probe the space (“σ”: ~x) or time (“τ”: t) direction. The
static quark potential associated to propagation in a spatial direction, for example, is a very
anisotropic quantity which above Tc still grows linearly in two of the spatial directions (con-
fines), in contrast to the potential associated to the propagation in the t−direction which is
isotropic and not confining. Therefore we need to investigate hadronic correlators with full
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“space-time” structure, in particular the propagation in the Euclidean time.
Ideally, what we should like to do is to reconstruct the spectral function in the given channel.

Then we could directly compare with the results from heavy-ions experiments, see e. g., [8]. The
spectral function at finite temperature can be extracted from the correlators in the (Euclidean)
temporal direction whose extent lτ is related to the temperature as T = 1/lτ [14, 15]. These data
(after Fourier transforming the t-correlators) are given at discrete Matsubara frequencies on the
imaginary energy axis and are affected by errors. The extraction of the spectral function implies
(logically) an interpolation and an analytic continuation to the real energy axis. For a numerical
analysis, which produces a finite amount of information, this is an improperly posed problem.
Its solution is dependent on imposing supplementary conditions (“a priori information”) to
regularize the algorithms and to prevent the amplification of the errors. These conditions can
be either based on general, statistical arguments (e.g. variance limitation, Bayesian analysis,
maximal entropy method) or on particular, physical expectations (e.g., using an ansatz for the
spectral function which leads to an explicit analytic form for the correlator, to be fitted against
the data). We should, however, be aware of the fact that all regularization introduces a bias
and therefore this problem is fundamentally intricate.

The main difficulty in the numerical calculation at T > 0 originates in the short temporal
extent lτ = 1/T . Beyond the general necessity of producing enough and precise data the T > 0
problem is doubly complicated as compared to the T = 0 one: on one hand the structure
we may expect is more complex than just a pole, on the other hand the time extent of the
propagation cannot be made large to select the low energy contributions. We shall now briefly
discuss this questions and thereby also introduce our procedure to deal with them.

1) Lattice problems: Large T can be achieved using small Nτ = lτ/a (a: lattice spac-
ing), however this leads to systematic errors [16]. Moreover, having the t-propagators at only
a few (Nτ/2) points makes it difficult to characterize the unknown structure in the corre-
sponding channels: practically any ansatz can be fitted through 2-3 points! To obtain a fine
t-discretization and thus detailed t-correlators, while avoiding prohibitively large lattices (we
need large spatial size in order to avoid finite size effects, typically lσ ∼ 3lτ ), we proposed
[17, 18] to use different lattice spacings in space and in time, aσ/aτ = ξ > 1 [19]. The renor-
malization analysis of such lattices, however, is more involved, because of the supplementary
parameter ξ and this introduces also some uncertainties.

2) Physical problems: The low energy structure of the mesonic channels cannot be observed
directly, due to the inherently coarse resolution 2πT = 2π/lτ of the imaginary energy axis.
Refining the discretization of the time axis improves the fitting and analytic continuation
problem, but although we are following the question of the spectral analysis we do not have yet
reliable results at T > 0 for this challenging question. Our problem setting here is therefore
more limited: we shall try to recognize mesonic states and ask about their character and
properties at various temperatures.

In this paper, we investigate the full four-dimensional structure of the meson correlators
on an anisotropic lattice in the quenched approximation. Thus the phase transition is the
deconfining one, and the hadronic correlators are constructed with quark propagators on the
background gauge field.

Our strategy here is the following: we first select the mesonic ground states of the T = 0
problem (where the time direction can be made sufficiently large – about 3.2 fm in our case,
which, at the quark masses we work with, means about 8 pion correlation lengths) and charac-
terize their internal structure by measuring the (Coulomb gauge) wave functions. Then we ask
whether states characterized by similar internal structure can be retrieved at higher temper-
ature, try to reconstruct them with help of correspondingly smeared sources and investigate
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how they are affected by the temperature. If the changes in the correlators are small, which is
consistent with mesons interacting weakly with other hadron-like modes in the thermal bath,
this procedure allows us to define “effective modes”. Large changes will signal the breakdown
of this weakly interacting gas picture and there we must try to compare our observations with
other pictures, in particular the perturbative QGP.

The meson correlators in the temporal direction play a central role in this study, which
is therefore meant to supplement other approaches, including studies of screening propagators
[12], [13]. To understand the effect of fixing a mesonic source we employ three kind of meson
operator smearing. The propagators and the wave functions are also compared with those of
mesons composed of free quark propagators (“free” mesons) 1. Finally we attempt a chiral limit;
note, however, that even with anisotropic lattices the short physical extent in the temporal
direction makes the quantitative estimate of the (temporal) masses (if they exist) difficult.
Our program should not be understood as an alternative for a study of the spectral function
at T > 0, but as an attempt to answer some special questions about the phenomena in QGP.
In that sense our results only offer partial views.

To prevent a certain confusion we stress here that we do not look for the eigenstates of the
Hamiltonian (transfer matrix), which show up as asymptotic states for t → ∞ at T = 0. At
non-zero temperature the physical processes are essentially dependent on the mixtures induced
by the thermal bath. For the physical picture and for building models the question is whether
these phenomena can be described in terms of some effective excitations (quasi-particles [20]),
which “replace” thus the fundamental particle modes, or completely new states dominate the
physics above some T .

Our analysis proceeds in three steps:

1. Analysis of temporal propagators. Here we try to see what kind of excitations propagate
in the mesonic channels at T > 0 based on the t−dependence of these propagators
(“effective mass” m(t)).

2. Analysis of the “Coulomb gauge wave functions”. Here we study the behavior of the
temporal correlators with the distance between q and q̄ at the sink, which provides us
with information of the spatial correlation between the quarks at given t.

3. Analysis of the temperature dependence of the temporal and spatial masses of the putative
states which are compatible with the behavior observed at the previous steps.

Note that due to the quenched approximation the dynamics is incomplete. In a strong
sense the Hamiltonian does not posses true mesonic states and only provides the gluonic inter-
actions responsible for the forces binding the quarks. This is not a problem specific to nonzero
temperature but is the same already at T = 0. The success of the spectrum calculations at
T = 0 indicates, however, that one should not consider quenched QCD as a theory by itself but
as an approximation to the full theory (which posses genuine asymptotic mesonic states) and
the exclusion of q-q̄ pair creation as a reasonably small error at least concerning some of the
characteristics of the hadrons. In particular, we observe strong indication of chiral symmetry
restoration above the transition temperature.

The paper is organized as follows. In the next section we describe our analysis strategy
in some more detail. Section 3 describes the preparation of the lattice: the introduction of
anisotropic lattice actions and the simulation parameters (the “calibration”, i.e. the tuning
of the anisotropy parameters, is described in detail in the Appendix). The subsequent two

1These can be seen as quark-antiquark correlation functions in the corresponding meson channels in lowest
order perturbation theory.
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sections present the results of the simulation: In Section 4 we observe the correlators at zero
temperature and discuss the source smearing and the variational analysis. The results at finite
temperature are presented in Section 5. The last section is reserved for discussion and outlook.

2 Analysis strategy

2.1 Comments on the physical problems

We here should like to illustrate the problems raised by the finite temperature and the question
of the source in the frame of our approach. The reader who is familiar with these problems
may skip this section.

Let us consider that we use some meson operator Φ, then the propagator at β ≡ 1/T < ∞
in Euclidean time t > 0 is:

G
(Φ→Φ)
β (t) = 〈Φ(t)Φ(0)〉 =

1
Z

∫
(a)pbc

Φ(t)Φ(0)e−
∫ β

0
L (1)

=
1
Z

Tr
[
T Nτ−tΦT tΦ

]
= Tr

[
e−β Het HΦe−t HΦ

]
/Tr

[
e−β H

]
(2)

=
∑
n,k

e−(β−t) En−t Ek〈φn|Φ|φk〉〈φk|Φ|φn〉/
∑
n

e−β En (3)

=
∑
n,k

e−
β
2
(En+Ek)c2

nkcosh [(β/2 − t)(Ek − En)] /
∑
n

e−β En (4)

where φn are eigenstates of the Hamiltonian representing, say, (multi-)meson states and other
hadron-like modes and we have:

〈φn|Φ|φk〉 = cnk, ckn = c∗nk = cnk (5)

Here we expressed everything in units of aτ (a−1
τ ), hence β = Nτ ; T = exp(−H) is the transfer

matrix. For T = 0 only the vacuum n = 0 survives in the sum over n in (3). Assume each Φ
selects not only the mesonic ground state, say |φ1〉, but also some other, excited states, then

〈φk|Φ|φ0〉 ' c01δk,1 + c02δk,2 + . . . (6)

and the zero temperature propagator is (we put E0 = 0 for simplicity):

G(Φ→Φ)
∞ (t) ' c2

01e
−t E1 + c2

02e
−t E2 + . . . (7)

Hence the lightest state contribution will dominate at large t. Tuning a “perfect” source at
T = 0 we ideally achieve c0k = 0 for k 6= 1 and thus see only this contribution at all t. Suppose
that we have been able to construct in this way a “perfect” operator Φ1 ∼ a + a†, with a(a†)
the annihilation (creation) operator for a meson in the ground state. Then at T = 0 G reduces
to the first term, as desired

G(Φ1→Φ1)∞ (t) ' c2
01e

−t E1 (8)

(note that correlators with different operators at the source and the sink also project only on
the ground state if either the source or the sink is “perfect”). With increasing T , however,
further states beyond the vacuum survive in the sum over n and acting on each of them Φ1

“adds/subtracts” a meson to whatever is there, correspondingly selecting from the inner sum
the states k onto which this new state projects, 〈φn|Φ1|φk〉 6= 0, in a sloppy notation k ∈ {n±1}.
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Instead of (8) the correlator is now a sum of contributions and we ask whether this mixture
can be described by an effective mode |φ̃1〉 of energy Ẽ

(β)
1 such that we can write, similarly to

the T = 0 expression:

G
(Φ1→Φ1)
β (t) =

∑
n

∑
k∈{n±1}

e−
β
2
(En+Ek)c2

nk cosh
[(

β

2
− t

)
(Ek − En)

]
/

∑
n

e−β En

∼ cosh
[(

β

2
− t

)
Ẽ

(β)
1

]
. (9)

To fix the ideas let us consider an oscillator with frequency ω and a small anharmonic
perturbation:

H = H0 + εHI (10)

(this may be considered a caricature of a weakly interacting meson gas, say). To first order in
ε we can use the unperturbed basis to calculate the propagator G(t). Let Φ1 be the ground
state operator,

Φ1 = (a + a†)/
√

2ω , 〈φk|Φ†1|φn〉 =
1√
2ω

(√
n + 1δk,n+1 +

√
nδk,n−1

)
, (11)

then we have:

G
(Φ1→Φ1)
β (t) =

1
ω

∑
n≥1

ne−β (En− 1
2
∆n)cosh

[(
β

2
− t

)
∆n

]
/

∑
n≥0

e−β En (12)

For the unperturbed oscillator (ε = 0):

En =
(

n +
1
2

)
ω, ∆n ≡ En − En−1 = ω. (13)

Then the t−dependence factorizes in (12) and we have a trivial effect of the temperature:

G
(Φ1→Φ1)
osc., β (t) =

cosh
[(

β
2 − t

)
ω

]

2ω sinh
[

β
2 ω

] −→
β→∞

e−ω t. (14)

If we turn on the interaction the levels are no longer equidistant (the effect of adding one more
meson depends on the total number of mesons present in the state) and the t−dependence is
non-trivially affected by temperature. We write:

∆1 = ω̃, ∆n≥2 = ω̃ − ε λn, (15)

then to first order in ε (weakly interacting gas)

G
(Φ1→Φ1)
w.i.g., β (t) ∝ cosh

[(
β

2
− t

)
ω̃(β)

]
+O(ε2) (16)

with

ω̃(β) = ω̃ − ε

∑
n≥1 λn+1 (n + 1) e−β En∑

n≥0(n + 1) e−β En
−→

β→∞ or ε→0

ω̃ =
ε=0

ω. (17)

Notice that the above effects show up although we use the “perfect” source Φ1: they represent
the genuine temperature effects for an interacting system. From (16),(17) we see that as long
as the interaction between the modes (“the mesons”) is weak we expect small changes which
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may be simulated by a shift (and possibly a widening) of the peak in the spectral function,
defining in this way an effective mode (9). Large changes, on the other hand, will signal the
installation of a new regime. Then we must try to obtain additional information by other
tests. Essentially, this is our program. Of course in real life we shall not be able to obtain a
“perfect” source in the above sense. The various uncertainties inherent in our procedure will
be repeatedly discussed in the course of the paper.

If we use a “perfect” source but a different sink (with non-zero projection on the source) we
reach similar expressions. To the next order in ε, however, at T > 0 the temperature correction
to the mass will depend on the sink operator. Generally therefore at T > 0 we expect to find
sink dependence of propagators even for “perfect” source. This dependence can be seen as an
indication for the importance of temperature effects.

2.2 Mesonic correlators

A first attempt to optimize the mesonic operators, in the spirit described in the previous section,
is to introduce a smearing function ω(~y), such that the zero-momentum mesonic operator reads:

Φ(ω)
M (t) =

∑
~z

∑
~y

ω(~y) q̄(~z, t)γMq(~z + ~y, t). (18)

giving rise to smeared correlators (we shall omit the index “β” in the following):

G
(ω→ω′)
M (t) = 〈Tr

[
Φ(ω′)

M (t)Φ(ω)
M (0)

]
〉 (19)

=
∑

~z1, ~z2, ~y1, ~y2
ω′(~y1)ω(~y2) 〈Tr

[
S(~z2, 0; ~z1, t)γMγ5S

†(~z2 + ~y2, 0; ~z1 + ~y1, t)γ5γ
†
M

]
〉

Here 〈.〉 means summation over Yang-Mills configurations. S is the quark propagator and
γM = {γ5, γ1, 1, γ1γ5} for M={Ps,V,S,A} (pseudo-scalar, vector, scalar and axial-vector, re-
spectively). In the scalar sector, only the connected part of the correlator is evaluated. The
Coulomb gauge is used to produce the quark propagators S – this is of course irrelevant for
the ~y1 = ~y2 = 0 expectation values. Note that generally we keep different smearing functions
at the source and the sink. This will allow, given a certain basis of operators {Φa}, to perform
a variational analysis in order to attempt a further optimization of the mesonic operator - for
details see section 4.

As smearing functions we shall use two different kinds,

i) A “point” source (sink):
ω~x(~y) ∝ δ(~x− ~y). (20)

This will be mainly used to study the ~x dependence of the correlator

G
(ω)
M (~x, t) ≡ G

(ω→ω~x)
M (t) =

∑
~z

〈q̄(~z + ~x, t)γMq(~z, t)Φ(ω)
M (0)〉. (21)

at fixed t. G
(ω)
M (~x, t) can be interpreted as “Coulomb gauge wave-function”, it indicates

the spatial correlation between quark and anti-quark.

ii) The convolution:

ωab(~y) =
∑

~v ωa(~v)ωb(~v + ~y) (22)
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which is equivalent to using smeared quark and antiquark fields with smearing functions
ωb and ωa respectively. We use here three kinds of quark smearing functions:

ωp(~y) ∝ δ(~y) (“point”) (23)
ωe(~y) ∝ exp(− a |~y|p) (“exp.”) (24)
ωw(~y) ∝ 1 (“wall”) (25)

In tuning the exponential source exp in (24) we shall use the parameters a, p from the
observed dependence on ~x at large t of the temporal Ps wave function with point-point
source at T ' 0, G

(pp)
M (~x, t) - see 21. The mesonic operator “exponentially” smeared

both at the quark and the antiquark corresponds to a mesonic source in the relative q-q̄
distance given by the convolution (22). Therefore the exp-exp smearing with a, p from the
wave function implies a meson source typically wider than the measured wave function
G

(pp)
M (~x, t), t � 1.

The t dependence of the temporal propagators G
(ω→ω′)
M (t) depends on the spectral functions.

On a periodic lattice the contribution of a pole in the mesonic spectral function to the t-
propagator is ∝ cosh[M(t−Nτ/2)] (this M is therefore called “pole-mass”).2 A broad structure
or the admixture of excited states leads to a superposition of such terms. Fitting a given t-
propagator by cosh(m(t)(t −Nτ/2)) at pairs of points t, t + 1

G(t)
G(t + 1)

=
cosh

[
m

(τ)
eff (t) (Nτ/2− t)

]

cosh
[
m

(τ)
eff (t) (Nτ/2 − t− 1)

] (28)

defines an “effective mass” meff (t), which is a constant if the spectral function has only one,
narrow peak. The effective mass is a rather sensitive observable which shows effects of the
source dependence, widening of the spectral function or existence of excited states, without,
however, allowing to differentiate among them. To the extent that the effective mass reaches
a plateau and permits to define a “temporal mass” m(τ) at T > 0, the latter connects directly
to the (pole) mass of the mesons below Tc, while above Tc it will presumably help analyze
the dominant low energy structure in the frame of our strategy. By contrast, using spatial
propagators we shall extract the “screening mass” m(σ).

Errors are estimated by the single elimination Jackknife method, unless otherwise notified.
For details see section 4. For various comparisons we shall also use in (19), instead of the quark
propagators S measured in each MC configurations, free quark propagators, defining in this
way “free” mesons.

3 Lattice setup

In this section we describe the preparation of the lattice on which mesonic correlators at zero
and finite temperature are calculated.

2More precisely, the relation between the slope parameter in cosh, say M̃ and the position of the pole, M is

M = ξ

√
2(cosh

(
M̃/ξ)− 1

)
(26)

(and correspondingly
M = ln(M̃/ξ + 1) (27)

for fermionic propagators)[17]. In the following we shall neglect these corrections, since they remain below the
other uncertainties of our data.
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3.1 Anisotropic lattice

We use anisotropic lattices on which the spatial and the temporal lattice spacings are different:
aσ 6= aτ [19]. The simplest generalization of commonly used Wilson actions for gauge and
quark fields is obtained as follows.

For the gauge field action,

SG =
β

γG

∑
x,i<j≤3

(
1− 1

3
ReTr Uij(x)

)
+ β γG

∑
x,i≤3

(
1− 1

3
ReTr Ui4(x)

)
(29)

where
Uµν(x) = Uµ(x)Uν(x + µ̂)U †

µ(x + ν̂)U †
ν(x) (30)

The bare anisotropy parameter γG controls the ratio of spatial and temporal lattice spacings.
For the fermion,

SF =
1

2κσ

∑
x,y

q̄(x)K(x, y) q(y), (31)

K(x, y) = δx,y − κσ

3∑
i=1

[
(1− γi)Ui(x) δx+î,y + (1 + γi)Ui(x− î) δx−î,y

]

− κσ γF

[
(1− γ4)U4(x) δx+4̂,y + (1 + γ4)U4(x− 4̂) δx−4̂,y

]
, (32)

where κσ is the spatial hopping parameter and γF is the bare anisotropy for fermions.3 For
later convenience, we define κ as

1
κ
≡ 1

κ
− 2 (γF − 1) = 2 (m0 + 4), (33)

where m0 is the bare quark mass parameter in units of the spatial lattice spacing. At a later
stage, we shall carry out the chiral extrapolation in this 1/κ.

The actual anisotropy ξ is defined using certain correlators, F , containing gauge and fermion
fields. In general, γG and γF are different from ξ because of the interaction [19, 21]. To obtain
the desired value of ξ, one needs to tune the values of γG and γF by requiring the isotropy of
correlators in physical units:

Fσ(z) = Fτ (t = ξ z), (34)

where t and z are understood in the corresponding lattice units, aτ and aσ respectively. This
renormalization procedure is called “calibration”. Since we compare the temporal and the
screening masses, it is important to obtain ξ as precisely as possible, and verify that these two
kinds of mass coincide at T = 0.

In the case of dynamical quarks, a precise calibration requires a large effort, since we
generally have four bare parameters (β, γG, κσ and γF ) and only three physical parameters ξ,
aσ and mq which can be varied, therefore the condition of physical isotropy implies a non-trivial
constraint among the bare parameters [18]. In a quenched simulation, however, the situation
is much simpler. Here one generates gauge field configurations using certain values of β and
γG and reads ξ from gluonic quantities. Then the fermionic parameters are determined such
that they give the desired quark (or hadron) mass and the same ξ is obtained from hadronic
correlators.

3Note that the Wilson term corresponding to this ansatz has not a Lorentz invariant naive continuum limit.
Since this is an irrelevant operator this feature should not affect our results, in fact this ansatz is more efficient
in damping the additional fermionic modes. This may be different for quantities where the Wilson term acts
marginally.
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κσ γF Nconf κ mq mPs mV

0.081 4.05(2) 20 0.1601 0.0389 0.1777( 8) 0.1962(10)
0.084 3.89(2) 20 0.1633 0.0276 0.1493( 9) 0.1747(12)
0.086 3.78(2) 30 0.1648 0.0223 0.1341(10) 0.1644(13)

Table 1: Quark parameters. γF is determined by the calibration using first Nconf configurations.
The error of κ and mq is not estimated (γF is fixed in successive calculation). The tabulated
meson masses are the values obtained with smeared correlators described in the next section.
All masses are given in units of a−1

τ .

3.2 Lattice parameters

We use lattices of sizes 123 × Nτ , where Nτ = 72 (T = 0), 20 (below Tc), 16 and 12 (above
Tc), with couplings β = 5.68, γG = 4.0, in the quenched approximation. 4 Configurations
are generated with the pseudo-heat bath algorithm with 20000 thermalization sweeps, the
configurations being separated by 2000 sweeps. In most cases, 60 configurations are used,
except for the calibration. The gauge field is fixed to the Coulomb gauge. The calibration
is described in detail in the Appendix. From the calibration of the gauge configurations we
obtain a renormalized anisotropy ξ = 5.3(1). The lattice cutoffs determined from the heavy
quark potential are a−1

σ = 0.85(3) GeV (aσ ∼ 0.24 fm) and a−1
τ = 4.5(2) GeV (aτ ∼ 0.045 fm).

Table 1 summarizes the quark parameters and gives the meson masses as determined in
the next section. As a guide for the mass range we are concerned with, the quark mass
is estimated by a naive relation mq = (κ−1 − κ−1

c )/2 using the critical hopping parameter
κc = 0.17144(11). This simulation deals therefore with quarks in the strange quark mass region.
The boundary conditions for quark fields are set to periodic and anti-periodic in spatial and
temporal directions respectively, except for the calibration (at T = 0) where anti-periodic b.c.
in all four directions are used.

In the following we always display dimensionless quantities, that is, they are understood as
given in the corresponding lattice spacings or their inverses. Since we have two lattice spacings,
aσ and aτ , when we shall compare different quantities we shall use the translation aσ = ξaτ ,
i.e., the numbers featured can be understood as given in units of aτ (a−1

τ ).

3.3 Finite temperature

In [23] we have measured the Polyakov loop susceptibility as a function of γG for several values
of Nτ . At Nτ = 18, the peak was found between γ = 3.9 and 4.0, which means on our γ = 4
lattice that Nt = 18 is very close to and just above Tc. The estimated temperature for our
values of Nτ are therefore T ' 0, 0.93Tc, 1.15Tc and 1.5Tc for Nτ = 72, 20, 16 and 12
respectively.

We found that the configurations above Tc stay in a single Polyakov loop sector during
the whole updating history, and that the behavior of meson correlators strongly depends on
the sector. The hadronic correlators feel the deconfining transition if they are taken in the
real sector, but they appear not to “notice” it if they are taken on configurations in one of
the complex sectors [22]. With dynamical quarks, the Z3 center symmetry is explicitly broken
and the Polyakov loop prefers to stay on the real axis. Since we regard the quenched lattice

4The lattice described in this paper corresponds to Set-B data in our earlier reports [22].
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as an approximation to the dynamical lattice, we restrict our simulation to the case with real
Polyakov loop sector.

4 Zero temperature analysis.

In the context of our strategy the analysis of the zero temperature correlators serves as foun-
dation for the analysis at T > 0. This is also a good opportunity to describe in detail our
procedure. Here we obtain the meson masses and the wave function which is used to smear
the source and sink operators.

Smearing of mesonic operators

To fix the exponential smearing function we measure the wave function at zero temperature,
given by (21) with point smearing ωp(~y) = δ(~y) both for the quark and anti-quark at the source:
and define

ωe(~y) = G
(pp)
M (~y, t)/G

(pp)
M (~0, t)|t�1 = exp(− a yp), (35)

where a, p are fitting parameters. The fitted values of a and p of the Ps meson wave function
are listed in Table 2.

To extract the effective mass from the correlators following eq. (28) we have several possi-
bilities depending on the choice of mesonic operators Φ(ω)

M (t). We call m
(ω→ω′)
eff (t) the effective

mass extracted from correlators smeared with ω and ω′ at the source and the sink respec-
tively. In figure 1 we display the effective masses for κσ = 0.086. In all cases, the sink ω′ is a
point-point operator and we show three choices of ω at the source: point-point, point-exp and
exp-exp (pp, pe and ee respectively in what follows). For S and A channels, only the correlators
with exp-exp source are shown, since with other sources statistical fluctuations are so large that
no clear plateaus are found. It is clear from the figure that the effective masses from different
operators converge to the same value at large t, the worst behavior being observed for the non-
smeared pp-pp correlator. Considerable improvement is observed for the masses extracted from
smeared operators. Of them m

(ee→pp)
eff (t) is the one that converges most rapidly to a plateau,

though it increases slightly at early stages, which is due to the fact that the source is slightly
too wide, as discussed in section 2.2. The amount of optimization achieved by the exponentially
smeared operator has to be analyzed through the diagonal correlator 〈Φee

M (t)Φee
M (0)〉 which is

a sum of positive contributions from the different states – see (7), (8). In Fig. 2 we show, in
addition to the off-diagonal ee-pp effective mass, the masses extracted from diagonal ee-ee and
pe-pe correlators. They both show a very similar behavior and do not reach a plateau up to
t ∼ 10, where they merge with the ee-pp result. This is an indication that the “good” behavior
of m

(ee→pp)
eff (t) is partly due to an “accidental” cancellation of contributions from higher excited

states which in a non-diagonal correlator may have alternating signs. Therefore also the meff(t)
extracted from such correlators is no longer bounded from below by the meson mass.

We have tried to improve the mesonic operator by performing a variational analysis in the
basis of operators {Φpp,Φpe,Φee}. This amounts to a diagonalization providing the best ap-
proximation to the ground and two first excited states within the space of operators we have
used. The result of the diagonalization is also shown on Fig. 2 where the effective masses of
the “ground” and the “first excited” states are displayed (the “second excited” state suffers
from large fluctuations). As can be seen, within this basis of operators no improvement is
obtained. The ground state effective mass is very similar to the ee-ee and pe-pe ones, prob-
ably an indication that the basis of operators used is too correlated to provide any further
improvement.
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κs γF a p mPs mV mS mA

0.081 4.05 0.3785(33) 1.289(8) 0.1777( 8) 0.1962(10) 0.302(5) 0.314(5)
0.084 3.89 0.3797(31) 1.277(8) 0.1493( 9) 0.1747(12) 0.285(7) 0.300(6)
0.086 3.78 0.3800(25) 1.263(8) 0.1341(10) 0.1644(13) 0.280(9) 0.296(6)

κc - - - 0.1225(16) 0.248(13) 0.269(9)

Table 2: The meson masses at zero temperature in units a−1
τ . For the scalar channel, only

the connected part is evaluated. a and p are the fitted parameters of the observed Ps wave
function, and they are used to smear the quark source.

Summarizing the observations of the source dependence and the variational analysis at
T = 0, within the basis of three operators we have at present, the analysis does not achieve
further optimization of the correlators. Since the effective masses extracted from all sources
approach the ee-pp one and the latter reaches earlier a plateau we shall use the ee-pp correlator
for the coming discussion. One should however keep in mind that such correlator is not really
optimized in the sense of been constructed from a sufficiently optimized meson source at T = 0.
There is a priori no guarantee that the cancellation taking place at T = 0 will still remain at
T > 0. We will use the departure of m

(ee→pp)
eff from flatness as an indication that temperature

effects start to become relevant. To control the uncertainties introduced by this choice we keep
measuring correlators with the different types of operators, to investigate the effective masses
source dependence also at T > 0. As long as the effective masses extracted from different
sources converge to the same value, temperature effects will be small and the extraction of the
meson mass from the ee-pp correlator will be safe. When the source dependence starts to be
important we will rely in addition on other type of analysis, like the study of the wave function
and the comparison with the free quark case.

Spectroscopy at T=0

We briefly summarize here the meson spectroscopy. We extract the masses at T = 0 from the
ee-pp propagators for simplicity (see the discussion above). For the pseudo-scalar and vector
meson, the masses are extracted from a fit to a single exponential in the range t = 27 − 36
(where the three types of correlators coincide; although the ee-pp propagator reaches a plateau
much earlier, precision was not lost by this limitation). For the S and A channels, the statistical
errors are much larger than for Ps and V, therefore we adopted the fitting region t = 12 − 20
for the former. As was already mentioned, only the connected part of the scalar channel is
evaluated, hence the result is only useful for a comparison with the finite temperature results.
The values obtained are listed in Table 2. These values are consistent with the result of the
variational analysis, where we extract masses from the fitting region t = 12− 16.

Masses are extrapolated to the chiral limit with the definition of κ in eq. (33). First, the
pseudo-scalar meson mass squared is extrapolated linearly in 1/κ to determine 1/κc at which
the Ps meson mass vanishes. This gives κc = 0.17144(11). Then the other meson masses are
extrapolated linearly to 1/κc. The results of the extrapolation are also listed in Table 2.

Comparing with the physical value of the ρ meson mass, the vector meson mass at κc defines
the lattice cutoff as a−1

τ (mρ) ∼ 5.7 GeV. This value is about 27 % larger than a−1
τ = 4.5 GeV

from the string tension. The discrepancy is consistent with results on isotropic lattices, and is
mainly explained as an O(a) effect.
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Figure 1: The effective masses of correlators with various source smearing functions and the
point sink for κσ = 0.086, at Nτ = 72.
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Figure 2: Effective masses of Ps and V correlators for κσ = 0.086 at Nτ = 72. In the left plots
for each figure, propagators with various source and sink smearings are compared to observe
the dependence on smearing. The right plots show the result of the variational analysis: the
effective masses of the “ground” and the “first excited” states are displayed.

5 Non-zero temperature

In this section, we study how the temperature changes the meson correlators. First we shall
compare propagators with various source and sink operators. Then we shall discuss in more
detail what we can learn from the temperature behavior of the effective masses. For a further
insight in the temperature effects on the meson correlators we study the t-dependence of the
wave functions. As a result we find that the two quarks tend to stay together even in the
deconfining phase (at least for Euclidean time scales ∼ 1/T ). Finally we study the temperature
behavior of temporal (“pole”) and spatial (“screening”) masses which could be associated with
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the putative quasi-particle (resonance?) states suggested by the first steps of the analysis.
To disentangle perturbative from non-perturbative effects we shall repeatedly compare the

measured (“full”) meson correlators with “free” meson correlators made out of unbound quark
propagators. For the latter we just use a free quark ansatz and only allow the quark mass to vary
with the temperature. This means that we consider quark-antiquark correlation functions in the
corresponding mesonic channels in lowest order perturbation theory but with a temperature
dependent quark-mass. As has been shown by a more involved analysis, including further
thermal effects in the HTL approximation does not significantly change the result [24].

5.1 Source dependence of the propagators at non-zero temperature

Nτ = 20 (below Tc)

Let us start with Nτ = 20. The system is in the confining phase, hence we expect the hadronic
spectral function to still have narrow peaks corresponding to the bound states. Indeed the
situation is very similar to the T = 0 case. Fig. 3 compares the effective masses with several
choices of source and sink smearing functions (we have also measured here the effective mass
with wall source). For the Ps and V channels, the ee-pp correlator appears most flat showing,
as for T = 0, a rather clear plateau. The two diagonal correlators, smeared both at the source
and the sink, have strongest contributions from excited states but merge with the ee-pp result
at about t ∼ 7. (Since the smeared sink suffers from large fluctuations the discrepancy of the
effective masses at t = 9 of the sink smeared propagators and the propagators with point sink is
probably the result of insufficient statistics.) Here again a variational analysis does not provide
any improvement on the ee-ee and pe-pe results.

The convergence of the effective masses from non-diagonal correlators with point-point sink
has not taken place yet at t ∼ Nt/2. This could in principle be a first signal of temperature
effects but notice that the difference of effective masses at this value of t is of the same order
as that observed at T = 0 at the same t slice.

In the S and A channels the statistical fluctuation of the effective masses are much larger
than for Ps and V. In these channels, the effective masses from wall-pp and ee-pp correlators
coincide. Again we observed large fluctuations at large t for the sink smeared propagators.

Like for T = 0, at Nτ = 20 we conclude that the most reliable estimate of the meson
masses is again obtained from the ee-pp propagators. The extracted masses are discussed in
subsection 5.4.

Nτ = 16 and 12 (above Tc)

At Nτ = 16 and Nτ = 12, the propagators are very similar between the different channels
which is a clear indication of chiral symmetry restoration immediately above Tc (see section
5.4 for further discussion of this point). Figure 4 shows the effective mass dependence on the
mesonic operator at Nτ = 16 and Nτ = 12 for the Ps channel (the effective masses in the
other channels are similar). To see the quark mass dependence, results for two values of κσ are
shown. An interesting feature is that the κσ dependence is small.

Although above Tc the ee-pp effective masses show no longer such a clear plateau (further
discussion on this point will be done in section 5.2) they still seem to merge with those coming
from diagonal ee-ee and pe-pe correlators at about t ∼ 4 (statistical fluctuations do, however,
not allow a quantitative estimate). There is, however, a clear difference in the behavior of the
non-diagonal effective masses here, as compared to T < Tc. In particular the wall-pp mass
looks as flat as the ee-pp but seems to converge to a rather different value (the difference at

14



0 2 4 6 8
t

0.0

0.1

0.2

0.3

0.4

ef
fe

ct
iv

e 
m

as
s

  pe−pp
  pe−pe
  ee−pp
  ee−ee
  wall−pp

0 2 4 6 8 10
t

source−sink

κσ =

Nt=20

0.086

Ps V

0 2 4 6 8
t

0.2

0.3

0.4

0.5

0.6

ef
fe

ct
iv

e 
m

as
s

  pe−pp
  pe−pe
  ee−pp
  ee−ee
  wall−pp

0 2 4 6 8 10
t

source−sink

κσ =

Nt=20

0.086

S A

Figure 3: Source dependence of effective masses at Nτ = 20 for κσ = 0.086, all channels.
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Figure 4: Source dependence of Ps effective masses at Nτ = 16 and 12 for κσ = 0.081, 0.086.

t ∼ Nt/2 being here considerably larger that the corresponding one at the same time slice for
Nt = 20).

The observed stronger source dependence above Tc might just be an effect of periodicity or
contamination from excited states but it is peculiar that this behavior sets in precisely at Tc.
In view of the discussion of section 2.1, we consider this as indication that strong temperature
effects develop above Tc (further discussion on this point will follow later). We have also
performed at this Nt’s a variational analysis which again just reproduced the values of the
ee-ee and pe-pe correlators.

5.2 Effective mass of ee-pp propagators at nonzero T

We shall first discuss the T−dependence of propagators. Figure 5 shows the effective masses
of Ps and V meson correlators with ee-pp smearing at Nτ = 20, 16 and 12 for κσ = 0.086.
While at Nτ = 20 a plateau appears, at Nτ = 16 and 12 the effective masses are no longer
flat, their t-dependence increasing with the temperature. This holds already at t-values at

15



2 4 6 8
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

ef
fe

ct
iv

e 
m

as
s

 Ps
 V
 Ps(free)
 V (free)

2 4 6 2 4 6

Nt =20 Nt =16 Nt =12κσ =0.086

t

Figure 5: Effective masses of the correlators with exp-exp source and point sink at finite
temperature for κσ = 0.086. Shown are also the effective masses of the “free” mesons, composed
of the free quark propagators.

which the Nτ = 20 data have clearly reached a plateau (t ' 4) and indicates that we have
to do here with strong temperature effects. Due to the uncertainties related with the ee-pp
smearing it is not possible to say whether this behavior means that the mesonic state has
become metastable above Tc, or it has been replaced by a collective excitation of increasing
width, or that the effects of the contamination with other states from the insufficiently tuned
source have become very strong. Nevertheless it is remarkable that we find a clear change in
behavior setting in at Tc, although smoothly connecting to the behavior below Tc (at least for
the Ps and V propagators: the S and A correlators change more significantly, in accordance
with the chiral symmetry restoration). The same signal is provided by the observation of the
source dependence (see previous section). Notice that the contamination with other states
due to the imperfection of the source alone would be expected to produce a rather continuous
dependence on the temperature, and not the clear difference in behavior observed below and
above Tc.

Since above Tc we are in the QGP phase a first thing to test is to look for signals of
the perturbative, high T regime, that is for unbound quark - antiquark propagation in the
mesonic channels. On figure 5 we show effective masses calculated from “free” meson correlators
constructed out of free quark propagators where only the mass is assumed to vary with the
temperature (as already noticed, a consistent HTL calculation [24] does not significantly affect
the result). The free quark propagators are calculated with γF = 5.3 and using the same
exponential source as for the genuine mesons. The plotted results for the “free quark mesons”
correspond to the assumption of a thermal mass for the quarks:

mtherm
q ' g2

√
6
T ∼ 0.036

T

Tc
a−1

τ (36)

tuned such as to give a good agreement in the ρ channel above Tc with the measured (“full”)
effective masses. We observe that above the critical temperature the measured Ps and V effec-
tive masses change their order and increase ∝ T , feature shared with the “free” mesons. The
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inversion in the order of the masses essentially implies that the propagators are not dominated
by a narrow state (compare [25]), however not every wide spectral function leads to this inver-
sion, therefore this similarity may have significance. After we tuned the free quarks to simulate
the (full) data in the ρ channel, the pseudo-scalar remains, however, still well below the “free”
results (a similar observation has been made in [7]).

Also the stronger source dependence observed above Tc is a feature which the measured
(“full”) meson propagators share with the free ones – but for the latter this is much more
pronounced and for particular sources quite different from the full mesons. For instance, for
the wall source, the effective mass of “free” mesons is completely flat and its value is twice the
quark mass value, while the full meson effective masses are significantly larger and vary with t.

In the analysis of the propagators we observe therefore competing features, which hint to
some contributions from “unbound” quarks but cannot be explained only in terms of the latter.
To investigate further this problem we analyze the t-dependence of the wave function in the
next subsection.

5.3 Wave functions

We consider the normalized wave function at the spatial origin:

ϕ(ω)(~x, t) ≡ G
(ω)
M (~x, t)/G(ω)

M (~0, t). (37)

We recall that these correlators are obtained in the Coulomb gauge. If the correlator G
(ω)
M (~x, t)

is dominated by a bound state ϕ(~x, t) should stabilize with increasing t, approaching a certain
shape. If there is no spatial correlation among the quarks, in particular in the case of a “free”
correlator (constructed from free quarks), the corresponding ϕ(~x, t) should become broader in
~x with t (or at best reproduce the source, for mq → ∞) 5. We shall use different sources, ω,
and observe the evolution of ϕ(ω)(~x, t) with t.

Figure 6 shows the change with t of ϕ(ee)(~x, t) for the Ps correlator with exp-exp source at
Nτ = 20 and 12, and κσ = 0.086. The “free” meson “wave function” ϕ

(ee)
0 (~x, t) is shown for

comparison. We see now a very clear difference: The normalized wave function of the “free”
meson shows the expected behavior, becoming increasingly broad with t at all temperatures.
The measured wave function, on the other hand, shrinks very fast from the (wider) distribution
implied by the exp-exp source at t = 0 6 and stabilizes very early to a well defined shape with
increasing t. Remarkably enough, this behavior is not only seen at 0.93Tc (Nτ = 20) – where,
as expected, the wave function is similar to that at T = 0 –, but also at 1.5Tc (Nτ = 12): the
wave function above Tc is only slightly wider than below.

In Figure 7 we plot ϕ(ω)(~x, t) vs t for various sources, at distance ~x = (3, 0, 0) and ~x =
(5, 0, 0). Again we show both the measured correlators and the “free” ones. As noticed, a
genuine wave function would be represented by ratios ϕ(~x, t) independent on t for large enough
t, smaller than 1 and decreasing with r = |~x|.

5For a simple illustration consider two nonrelativistic quarks of mass ma, mb and individual initial Gaussian
distributions ψq(y, 0) ∝ exp(−y2/2a2) and ψq̄(y, 0) ∝ exp(−y2/2b2), respectively, then it is easy to see that the
width of the distribution in the relative distance x, ψ(x, t) =

∫
dy dz δ(z−y−x)ψq(y, t)ψq̄(z, t) (essentially, our

ϕ(x, t)) develops as Γ(t)2 = Γ(0)2 + (1/ma + 1/mb) t , with Γ(0)2 = a2 + b2. Nodes in the original distribution
may lead to occasional cancellations, but the general picture is the same. It would be physically quite unplausible
that uncorrelated propagating quarks would tend toward a distribution in the relative coordinate narrower than
the one they start with, whatever their spectral functions might be.

6The distance distribution of the quarks at t = 0 differs somewhat from the smearing function of the corre-
sponding source, this does not modify, however, the general features.

17



0 2 4 6
r

0.0

0.2

0.4

0.6

0.8

1.0

w
av

e 
fu

nc
tio

n

 source
 t=2
 t=4
 t=6
 t=2(free)
 t=4(free)
 t=6(free)

0 2 4 6
r

N_t=20 N_t=12

κσ =0.086, Ps

Figure 6: t-dependence of the wave function ϕ(ee)(~x, t) at Nτ = 20 and 12 for κσ = 0.086,
Ps channel. The “free” wave function is also displayed. Both measured (“full”) and “free”
correlators are smeared with exp-exp functions. We represent by crosses the convolution eq.
(22) which gives the separation distribution in the source.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

w
av

e 
fu

nc
tio

n

 e−e
 p−e
 wall

0 2 4 6

 free (e−e)
 free (p−e)

Nt =20 Nt =12

t

κσ =0.086, Ps

r=3

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

w
av

e 
fu

nc
tio

n

 e−e
 p−e
 wall

0 2 4 6

 free (e−e)
 free (p−e)

Nt =20 Nt =12

t

κσ =0.086, Ps

r=5
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and wall). The “free” wave function is also displayed (for wall this is simply 1, independently
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From the figures we see that at T = 0.93Tc the measured wave function approaches with
increasing t a unique shape, independently of the source. At T = 1.5Tc the exp-exp source
also appears to stabilize, while the point-exp and the wall sources, although indicating some
tendency towards the same shape, do not show clear stabilization. We see therefore here a
more pronounced source dependence, very similar to what happened with the effective masses
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above Tc. Although the tendency to an increased source dependence is a feature remembering
of the “wave function” of the free quark mesons, at all T the measured wave function is very
different from that given by free quarks. The latter, of course, have a broadening distribution
in all cases, the corresponding ratios ϕ0(~x, t) increasing steadily towards 1, and show an in-
comparably stronger source dependence.7 The difference in behavior is particularly pregnant
for the wall source, where the measured wave function shrinks strongly with t while the “free”
wave function is completely flat and independent on t: ϕ

(wall)
0 (~x, t) = 1 for any mq. These

features are observed in all four measured channels. This result is strongly indicative for the
existence of (metastable) bound states in the mesonic channels at temperatures as high as
1.5Tc, characterized by “wave functions” similar to those below Tc. From the comparison be-
tween the behavior at 0.93Tc and 1.5Tc we may conclude that: a) even at the highest T the
exp-exp source still projects on a state characterized by a strong spatial correlation between
the quarks, quite similar to the low T wave function, but b) with increasing T above Tc also
other contributions in the mesonic channels show up, without such strong spatial correlation
(this is tentatively indicated by the increased source dependence of the wave function).

As already remarked, the similarity of the stabilized exp-exp wave functions seen at all T
represents self-consistent support for our source strategy, since the latter selects a given state
on the basis of its spatial internal structure.

5.4 Temperature dependence of temporal and spatial masses in the mesonic
channels

The discussion of the previous sections has shown above Tc significant temperature effects
simultaneously with the persistence of strong binding forces between quarks. The tentative
interpretation of these results is that even above Tc (metastable) bound states are present in the
mesonic channels. In this section, assuming the existence of such states, we try to characterize
them by extracting from the propagators the temporal masses which would be associated with
them (would locate the corresponding peaks in the spectral functions: “pole” masses). They are
compared with the screening masses in the same channels and their temperature dependence
is studied.

Temporal masses

As discussed in sections 4-5, at Nτ = 20 we extract temporal masses from the correlator
G(ee→pp). We use for computing the mass the last three points near to Nτ/2. The fitted values
are listed in Table 3. Masses extracted from diagonal correlators obtained in the same fitting
region are consistent with these values within statistical error.

In the case of Nτ = 16 and 12, the situation is far less clear. Here no plateau is seen, neither
for the diagonal nor for the ee-pp correlators. We decide to extract masses from the latter,
again by using the last three points near to Nτ/2, but we should be aware that these masses
(if they do at all characterize some states) may be misestimated. The resulting values are also
found in Table 3. They are consistent with the result of the diagonal correlators, which suffer
from large statistical fluctuations. We note here that we quote statistical errors only, there are

7We use the same free quark masses (36) which were employed for the comparison of the effective masses.
The mass dependence is monotonous and heavy quarks just reproduce the initial distribution (e.g., the crosses
on Fig. 6 for the exp-exp source) at all t, as expected. Of course one can find some free mq and some source
to approach some of the data points, but not to reproduce the vast majority of the features, in particular the
shrinking of the measured (full) wave functions with t for wide initial distributions cannot be reproduced by any
free quark ansatz.
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Nτ κσ mPs mV mPs mV m
(σ)
Ps /ξ m

(σ)
V /ξ

20 0.081 0.1708(17) 0.1869(17) 0.292(12) 0.294(16) 0.1804(18) 0.2036(21)
0.084 0.1455(19) 0.1684(18) 0.277(10) 0.279(13) 0.1516(22) 0.1816(26)
0.086 0.1315(22) 0.1595(19) 0.271(10) 0.272(12) 0.1354(27) 0.1701(31)
κc 0.040(9) 0.1233(25) 0.243(11) 0.242(9) - 0.1267(48)

16 0.081 0.1835(14) 0.1757(14) 0.1877(13) 0.1839(26) 0.3169(34) 0.3364(27)
0.084 0.1751(15) 0.1690(14) 0.1885(13) 0.1731(13) 0.3085(48) 0.3329(31)
0.086 0.1723(15) 0.1678(14) 0.1888(13) 0.1747(13) 0.3036(61) 0.3312(32)
κc 0.1568(19) 0.1564(16) 0.1903(15) 0.1804(13) 0.2868(96) 0.3244(41)

12 0.081 0.2126(13) 0.1986(14) 0.2217(13) 0.1981(12) 0.4096(16) 0.4224(21)
0.084 0.2100(13) 0.1979(13) 0.2255(13) 0.2032(12) 0.4036(16) 0.4180(21)
0.086 0.2101(13) 0.1996(12) 0.2275(13) 0.2061(12) 0.3995(16) 0.4148(21)
κc 0.2062(14) 0.2001(12) 0.2352(13) 0.2164(13) 0.3868(16) 0.4053(21)

Table 3: The temporal masses and the screening masses divided by ξ = 5.3 at finite tempera-
ture.

large systematic uncertainties due, among others, to the smearing function dependence of the
correlators. Since we use a non-diagonal correlator (which does not provide an upper bound
for the mass) we cannot say in which direction this uncertainty goes.

In the next step the extracted masses are extrapolated to the chiral limit. At Nτ = 20,
in the confined phase, we extrapolate the Ps meson mass squared linearly in κ. For the other
mesons we use linear extrapolations. The extrapolations are shown in Fig. 8, they are similar
to those at Nτ = 72. Though the Ps meson mass at the critical hopping parameter does
not completely vanish, this can be explained as an O(a) error and by the uncertainty in the
extraction of the mass.

Above Tc also the Ps meson mass is extrapolated linearly. The κ dependence for all mesons
is very small. The resulting mass values at the chiral limit are listed in Table 3. Generally
above Tc the quark mass dependence of the meson masses is small.

Screening masses

Before discussing the temperature dependence of the “masses”, we briefly describe the extrac-
tion of the spatial (“screening”) masses. Since the spatial distance is large ( ∼ 3 fm) we use
for this the unsmeared pp-pp correlators and the same procedure as in the calibration (see
the Appendix). We have verified that these masses are consistent with those obtained from
propagators using gauge invariant smearing techniques [26].

We measure Ps and V meson masses at all T . At zero temperature we used a.p.b.c. in all
directions and required the masses in the space and time directions to represent the same phys-
ical masses. Thereafter we switched to periodic boundary conditions in the spatial directions,
but this did not induce seizable changes in the masses.

At Nτ = 20, the spatial propagators show almost the same behavior as at Nτ = 72. Above
Tc, the effective masses approach a plateau earlier than below Tc, the obtained values are
therefore more reliable than in the confining phase.

Masses are again extrapolated to the chiral limit. Also here, as for temporal masses, due to
uncertainties and partly to O(a) effects the naive extrapolation of the Ps meson mass squared
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Figure 8: The chiral extrapolation of the temporal masses at Nτ = 20.

does not vanish exactly at 1/κc.

Temperature dependence

The temperature dependence of temporal and screening masses is summarized in Fig. 9. The
values are given in units of a−1

τ . The horizontal axis is 1/Nτ and we have T = 1/Nτaτ with
a−1

τ = 4.5(2) GeV. The four points (Nτ = 72, 20, 16 and 12) correspond to the temperatures
T ' 0, 0.93Tc, 1.15Tc and 1.5Tc. The vertical gray line roughly corresponds to the critical
temperature.

In the confining phase, the temporal and screening (spatial) masses coincide, however above
Tc they become increasingly different. This is to be expected, since the former (whether they
represent bound states or not) are related to propagation in plasma with the transfer matrix
of the original problem, while the latter correspond to a T = 0 problem with asymmetric finite
size effects, strongly increasing with the temperature (one of the “spatial” direction becomes
squeezed as 1/T ). In agreement with other works [12], screening masses above Tc are ∝ T and
close to twice the lowest Matsubara frequency (the lowest quark momentum in the squeezed
direction with a.p.b.c.), although remaining below it for all T . On Fig. 10 we plot the ratios m/T
for the three non-zero temperatures together with twice the lowest Matsubara frequency for
comparison. The temporal masses above Tc are also proportional with T but with a significantly
smaller slope. The slight decrease of the Ps and V temporal masses (×1/T ) above Tc in the
upper plot of Fig. 10 is due to the large quark mass in the simulation, which produces a term
∝ 1/T in this plot. This decrease disappears in the chiral limit (lower plot).

As a phenomenological parameter to succinctly quantify this behavior we introduce:

R =
m(σ) −m(τ)

m(σ) + m(τ)
−→
P.Th.

1− 2mq

πT
+ ... , mq � T � a−1

τ . (38)
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Figure 9: Temperature dependence of masses (in a−1
τ ) at κσ = 0.086 (top) and in the chiral

limit (bottom). Full (open) symbols correspond to spatial (temporal) masses. The grey vertical
line roughly represents Tc.

Since at high T the quarks are expected to exhibit an effective (temporal) mass meff
q ∼ g2T/

√
6

[27], R ∼ 1 − 0.26 g2 for T � Tc. From Fig. 11 we see that our data tend toward this regime
but are still well below it even at T = 1.5Tc. Notice that because of large lattice artifacts in
our data mass ratios are more reliable than absolute values.

Let us note again that above Tc all four channels show almost the same masses. In the
present quenched calculation, the chiral symmetry is not involved in the dynamics and the phase
transition is the deconfining transition. Nevertheless, the chiral symmetry seems to be restored,
which indicates a close relation between the two viewpoints of the QCD phase transition. This
agrees with the old observation that the chiral condensate also feels the deconfining transition
of pure gauge theory – see, e.g., [28].
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Figure 10: m/T at T ' 0.93Tc, 1.15Tc and 1.5Tc for κσ = 0.086 (top) and in the chiral limit
(bottom). Full (open) symbols correspond to spatial (temporal) masses. The grey vertical line
roughly represents Tc. The dashed horizontal line corresponds to twice the lowest Matsubara
frequency.

6 Conclusions and outlook

In this quenched QCD analysis the changes of the meson properties with temperature appear
to be small below Tc. Above Tc we observe apparently opposing features: On the one hand, the
behavior of the t-propagators, in particular the change in the ordering of the mass splittings
could be accounted for by contributions from free quark propagation in the mesonic channels,
which would also explain the variation of m

(τ)
eff (t) both with t and with the source. On the other

hand, the behavior of the wave functions obtained from the 4-point correlators suggests that
there can be low energy excitations in the mesonic channels above Tc appearing as metastable
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Figure 11: The phenomenological parameter R eq. (38) as function of T . The grey vertical
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bound states which replace the low temperature mesons. They would be characterized by a
mass giving the location of the corresponding bump in the spectral function. In this case the
variation of m

(τ)
eff (t) with t and with the source would indicate a resonance width for these

states, increasing with T . Our treatment of the low energy states using the exp-exp source
introduces, however, uncertainties which do not allow for quantitative conclusions. As we have
seen this source is indeed slightly too wide and includes some contributions from excited states
compensating each other in the ee-pp correlator at T < Tc. At high T the “effective” mass
becomes therefore increasingly ambiguous. Remember, however, that our source is not chosen
arbitrarily but selects a state according to the internal structure of the latter on the basis of
the similarity with the wave function of the T = 0 mesonic ground state. What we find is that
at all temperatures there is a tendency for stable spatial correlation between quarks with a
shape similar to the T = 0 wave function. It seems therefore reasonable to hypothesize that
at all temperatures this source finds a low energy mode characterized by strong, stable spatial
correlations between the quarks, and that the properties of the propagators taken with this
source will reflect within some uncertainties the properties of this mode.

We see clear signal for chiral symmetry restoration starting early above Tc. Since this is
a quenched calculation, this effect is completely due to the gluonic dynamics. Above Tc the
screening masses increase faster than the (temporal) masses, remaining however clearly below
the free gas limit. The exact amount of splitting among the channels and the precise ratio
between m(τ) and m(σ) may, however, be affected also by uncertainties in our ξ calibration, in
the definition of the source etc: Especially the temporal masses might be misestimated (if they
are at all well defined). But the semi-quantitative picture of much (and, with T , increasingly)
steeper “screening” propagators (as compared with temporal ones) is undoubtful.

A possible physical picture is this: Mesonic excitations are present above Tc (up to at least
1.5Tc) as unstable modes (resonances), in interaction with unbound quarks and gluons. They
may be realized as collective states, by the interaction of the original mesons with new effective
degrees of freedom in the thermal bath, or as metastable bound states (of thermal quarks?).
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To the extent that our results can be interpreted as supporting this picture, we should note
that:

- the “temporal masses” of these putative states in the pseudo-scalar and vector channels
connect smoothly to the “pole” masses of the mesons below Tc (the S and A correlators change
more significantly, in accordance with the chiral symmetry restoration),

- the increase of the temporal meson masses with T is to a certain extent similar to that of
the quark thermal mass if we assume g2 ∼ 1 (while the spatial masses increase much faster),

- the wave functions characterizing these states are very similar to those of the genuine
mesons below Tc,

- since there is no pair creation (no dynamical quarks) a “decay channel” for these putative
resonances may be meson → qth + q̄th where by qth + q̄th we indicate some strongly interacting
but unbound quark states,

- the incomplete (quenched) dynamics of this simulation seems to already provide enough
interaction to account (besides for mesonic states below Tc) for chiral symmetry restoration
and binding forces above Tc; nevertheless effects of dynamical quarks of small enough masses
may add further features to this picture.

Although our results are consistent with the above picture, there may be also other possi-
bilities (cf [6, 7], cf [1] and references therein). We also see agreement with the earlier study of
meson propagators including dynamical quarks (but without wave function information) [7],
which finds masses and (spatial) screening masses ∝ T above Tc and indication for QGP with
“deconfined, but strongly interacting quarks and gluons”. Investigations of mesonic correlation
functions in HTL approximation [24] show that the observed effects cannot be reproduced from
perturbative thermal physics. The wave function analysis in our work indicates in fact that the
strong interactions between the thermal gluons and quarks may even provide binding forces
which partially correlate the latter in space.

The complex, non-perturbative structure of QGP (already indicated by equation of state
studies up to far above Tc [10], see also [29]) is thus also confirmed by our analysis of general
mesonic correlators. From our more extended study however, especially from the, here for
the first time investigated, spatial correlations between quarks propagating in the temporal
direction at T > Tc (wave functions), the detailed low energy structure of the mesonic channels
appears to present further interesting, yet unsolved aspects and therefore provide an exciting
and far from trivial picture of QGP in the region up to (at least) 1.5Tc. Further work is
needed to remove the uncertainties still affecting our analysis. This concerns particularly the
ξ calibration and the question of the definition of hadron operators at high T , which appear to
have been the major deficiencies, besides the smaller lattices, affecting earlier results [17]. We
are also trying to extract information directly about the spectral functions [30]. Finally we are
aiming at performing a full QCD analysis in the near future.

Acknowledgments: We thank JSPS, DFG and the European Network “Finite Temperature
Phase Transitions in Particle Physics” for support. H.M. thanks T. Kunihiro and H. Suganuma
and I.O.S. thanks F. Karsch and J. Stachel for interesting discussions. H.M. also thank the
Japan Society for the Promotion of Science for Young Scientists for financial support. O.M.
and A.N. were supported by the Grant-in-Aide for Scientific Research by the Ministry of
Education and Culture, Japan (No.80029511) and A.N. was also supported by the Grant-
in-Aide (No.10640272). M.G.P. was supported by CICYT under grant AEN97-1678. The
calculations have been done on the AP1000 at Fujitsu Parallel Comp. Res. Facilities and
the Intel Paragon at the Institute for Nonlinear Science and Applied Mathematics, Hiroshima
University.

25



Appendix: Calibration of anisotropy parameters

To determine the gauge field anisotropy ξ, we use the ratios of the spatial-spatial and spatial-
temporal Wilson loops [31, 32, 33]:

Rσ(r, x) = Wσσ(r + 1, x)/Wσσ(r, x),
Rτ (r, t) = Wστ (r + 1, t)/Wστ (r, t). (39)

Then the matching condition (34) is

Rσ(r, x) = Rτ (r, t = ξ x). (40)

80 configurations are used for this analysis.
In the determination of ξ, we vary the minimum value of r×x (with corresponding choice of

t), where r ≤ 5 (r = 1 and x = 1 are not used to avoid short distance effects). The largest value
of x for each r is chosen with consideration to the statistical errors. We obtain ξ = 5.397(22)
(r × x ≥ 4), 5.340(40) (r × x ≥ 6), 5.248(101) (r × x ≥ 8) and take therefore ξ = 5.3(1) in the
following.

To determine the lattice spacings, the heavy quark potential is measured. The extracted
value of the string tension

√
σ = 0.480(23) together with physical value √σphys = 427 MeV

gives the cutoffs a−1
σ = 0.85(3) GeV and a−1

τ = 4.5(2) GeV. The spatial extent of the lattice of
about 3 fm (∼ 4 times 1/Tc) is considered sufficiently large to treat hadronic correlators.

We then proceed to the fermionic calibration. We fix the value of κσ and vary γF to find
out the value which gives the same anisotropy ξ as for the gauge field. We define the fermionic
anisotropy using correlators in temporal and spatial directions, expected to behave at large
distances like

G
(pp→pp)
τ,M (t) = 〈Φ(pp)

M (t)Φ(pp)
M (0)†〉 −→

t→∞
C(τ)

γ exp(−m
(τ)
M t) (41)

and the same expression with time replaced by one of the spatial directions z, behaving as
C

(σ)
γ exp(−m

(σ)
M z) for large z.

In the calibration, we measure the pseudo-scalar (γM = γ5) and the vector (γ1, γ2) meson
correlators. Here we adopt anti-periodic boundary conditions in all four directions, hence the
expected behavior is a hyperbolic cosine. The physical isotropy condition (34) is then applied to
the effective masses. Figure 12 shows m

(τ)
eff (t) obtained by solving (28) and the corresponding

m
(σ)
eff (z) for κs = 0.081 and with two values of γF . On the figure m

(σ)
eff (z) is divided by ξ = 5.3

to be compared with m
(τ)
eff (t) (i.e., it is given in units a−1

τ ).
For γF = 4.05, the spatial effective mass divided by ξ = 5.3 coincides with the temporal

one. Although the former shows no plateau because of the small number of spatial sites, the
temporal effective mass, which is finer spaced, does reach a plateau in the large t region. It
is consistent to expect that if both masses agree (after ξ−rescaling) in the region where the
temporal mass shows a plateau, the spatial mass is also dominated by the ground state. We
therefore determine ξF , the fermionic anisotropy, as the ratio of the spatial effective mass at
z = 5 and the fitted value of the temporal mass in the interval t = 27-36. The value of ξF

and the extracted masses are confirmed by studying correlators with smeared operators which
do reach plateaus much earlier. The smearing procedure of the correlators in the temporal
direction is described in detail in the next section. For the correlators in spatial directions,
we apply the gauge invariant smearing technique [26] (since the configurations are fixed to the
Coulomb gauge).
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with two values of γF , 4.02 and 4.05.

Though these calculations are carried out with periodic boundary conditions in spatial
directions, the dependence of masses on the kind of boundary conditions is sufficiently small
on the present lattice.

Figure 13 shows the dependence of ξF on γF . The values of ξF from Ps and V mesons are
slightly different, but consistent within the present accuracy. We adopt the averaged value of
Ps and V channels and estimate the error as their difference.

We use three sets of (κσ , γF ): (0.081, 4.05), (0.084, 3.89) and (0.086, 3.78). In Table 1,
these values are listed together with the number of configurations used for calibration. For the
second set, two values of γF are tried. The meson masses quoted in the table are determined
in section 4 using smeared correlators.

Another procedure to calibrate the fermionic action using the dispersion relation is proposed
in [34]. In the present case, however, the procedure used above seems more appropriate, since
comparison of pole and screening masses at finite temperature is one of the important goals of
this work.
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