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1 Introduction

There are two major problems in the QCD analysis of polarized inclusive deep

inelastic scattering (DIS): i) the absence of neutrino data makes it impossible, in

principle, to determine the non-strange polarized sea-quark densities ∆ū(x, Q2) and

∆d̄(x, Q2), ii) the separate determination of the polarized strange quark density

∆s(x, Q2) and the polarized gluon density ∆G(x, Q2) relies heavily on the QCD

evolution in Q2 and use of the flavour SU(3)F -invariance relation∫ 1

0

dx
[
∆u + ∆ū + ∆d + ∆d̄ − 2∆s− 2∆s̄

]
= 3F −D. (1)

The absence of a long lever arm in Q2, in the polarized case, and doubt concerning

the reliability of SU(3)F -invariance for hyperon β-decay means that ∆s and ∆G

are still rather poorly known [1], despite the dramatic improvement in the quality

of the data in the past few years.

The direct resolution of these problems must await a series of new machine

development projects, based on very high intensity neutrino beams, which are most

unlikely to come into operation before the year 2015.

In the meantime there is currently a major experimental effort at CERN [2],

HERA [3] and Jefferson Lab. to study semi-inclusive polarized DIS reactions

−→e +
−→
N → e + h + X, (2)

involving the detection of the produced hadron h.

The theoretical structure for the analysis of such reactions, in both leading order

QCD (LO) and next-to-leading order (NLO), exists [7]. However we are critical of

the type of LO analysis carried out thus far by the experimental groups.

The analysis of semi-inclusive DIS [2, 3] involves both parton densities and

fragmentation functions. The LO treatments referred to above, are based upon the

use of a tool, an auxiliary function called purity [4], constructed from unpolarized

parton densities and several fragmentation functions. The purity is treated as a

known function, thus giving to the fragmentation functions an absolute status which

they simply do not deserve. Indeed one detailed study of fragmentation functions

[5] based upon e+e− → hadrons, makes a 31 parameter fit to the data, and no

errors are quoted. And, in a more recent study [6], the fragmentation functions

differ significantly from those in [5], by 40% or more in some regions of z. Given

1



the complexity of the parameter space, and the undifferentiated mixture of the

flavor contributions in the reaction, it is hard to see how one can pretend to have

an absolute knowledge of the fragmentation functions.

To the best of our knowledge only two NLO analysis has been attempted [8, 9],

both based upon a global analysis of the inclusive and semi-inclusive data. In the

more recent analysis [9] the obtained polarized densities seem rather reasonable.

Moreover this study does not insist on the equality of ∆ū(x) and ∆d̄(x) and finds a

preference for a positive ∆ū(x), but effectively no constraint on the sign of ∆d̄(x).

But in both these analysis it is again assumed that the fragmentation functions are

known exactly: those of [5] being used in [8], and those of [6] in [9].

However, from experience gained in the analysis of inclusive polarized DIS, it

appears that the parameter space is sufficiently complicated to be able to produce

biases in the χ2 analysis, which can lead to unphysical results. We thus believe

it to be dangerous in either LO or NLO QCD, to put together all inclusive and

semi-inclusive data in one global analysis. Rather, what is required, is a working

strategy, making optimal use of selected parts of the data.

In addition, in the above mentioned analysis, some simplifying assumptions are

made about relations between various polarized parton densities. In the following,

except where expressly indicated, we make no assumptions at all concerning the

polarized or unpolarized parton densities. Indeed there are persuasive arguments

from the large-Nc limit of QCD that a significant difference should exist between

∆ū(x) and ∆d̄(x) [10] with |∆ū−∆d̄| > |ū− d̄|, and it has been argued that such

a situation is compatible with all present day data [11]. Further, bearing in mind

recent arguments [12] that s(x) 6= s̄(x) and ∆s(x) 6= ∆s̄(x), we even refrain from

the very common assumption of the equality of these densities.

The aim of this paper is precisely to provide a strategy, in both LO and NLO

QCD, for the analysis of the semi-inclusive data. We suggest, for example, that one

should use as input not just a knowledge of the unpolarized parton densities and

their errors, but also the polarized isotopic combination

∆q3(x, Q2) = (∆u + ∆ū)− (∆d + ∆d̄) (3)

which is by now very well determined from polarized inclusive data, and which is free

from any influence of ∆s and ∆G. In this paper we do not consider production of

charm and beauty particles. The treatment of these require a different theoretical

approach and has been dealt with in some detail [13]. Charm production is, of
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course, by far the most reliable way to learn about the polarized gluon density ∆G,

which otherwise, as we shall see, is likely to be poorly determined.

In order to minimise systematic errors experimentalists prefer to consider asym-

metries or ratios of cross sections where the detection efficiencies should roughly

cancel out, e.g. ratios of polarized to unpolarized DIS or ratios of polarized to

unpolarized semi-inclusive for a given detected hadron. We appreciate that this

is a fact of experimental life. However we wish to stress that a large amount of

information is lost in restricting oneself to only these ratios. It is vitally important

to gain control of the systematic errors in detection efficiencies, and although we

try as far as possible to deal with the favoured kind of ratios we will be forced also

to consider other types of cross-section ratios.

Throughout the rest of this paper we assume that a kinematic separation is

possible between hadrons produced in the current fragmentation region and those

produced from the target remnants. We consider only the current fragmentation

region so that our formulae apply only to this region and fracture functions [14]

play no role in our discussion.

It has to be stressed that there is a huge difference in complexity between the

LO and NLO treatments. Thus it makes sense to utilise the LO approach, provided

the appropriate checks, (which we suggest) are carried out. However it should be

realized that no matter how well the LO description of semi-inclusive seems to

work, it simply cannot provide reliable information on ∆ū(x, Q2), ∆d̄(x, Q2) and

∆s(x, Q2). For these it seems essential to work in NLO and moreover to assume

that ∆G(x, Q2) has been separately determined from cc̄ production.

It will be seen that we often consider linear combinations of experimental quan-

tities in order to single out the theoretical functions we are seeking, and it will be

objected that thereby we are dealing with experimental observables with possibly

large errors. It has to be understood that that is a reflection of the true situation

and not an artifact of our approach. To take an absolutely trivial example, suppose

E1 and E2 are two experimentally measured functions used in an attempt to deter-

mine the theoretical functions T1 and T2, where E1 = T1 + T2 and E2 = T1 − T2.

Now, if it happens that E1 ∼ E2 and if we write T1,2 = (1/2)(E1±E2) then T2 will

be very poorly determined. This is unavoidable. It does not help to do a best fit

to E1 and E2 with some parametrisations of T1 and T2. Inherently the result for T2

will have a large relative error.

Thus we believe that any relatively large errors occurring in our manipulation
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of the experimental quantities reflects a genuine and unavoidable imprecision in the

determination of certain theoretical quantities.

Our analysis proceeds in a step-by-step fashion. Firstly we describe a generic

test for the reliability of a LO treatment. Assuming this to be successful we obtain

information on the polarized valence quark densities ∆uV and ∆dV in LO. Then

using ∆q3 as input we get an expression for the non-strange sea quark density

combination (∆ū − ∆d̄), but this result has to be viewed with caution, since it is

likely that the errors made in the LO analysis are comparable with the magnitude of

(∆ū−∆d̄). We next proceed to determine the fragmentation function combinations

Dπ+

u + Dπ−
u and Dπ+

s + Dπ−
s . Using these we obtain expressions for (∆u + ∆ū +

∆d + ∆d̄) and (∆s + ∆s̄). The latter, however, can only be trusted to within a

factor of two or so, because of the errors in the LO approach. Finally we consider

the experimentally difficult case of φ production, which seems to be the best way to

get an accurate determination of ∆s+∆s̄ in LO. We discuss also how. in principle,

one can test whether s(x) = s̄(x) and/or ∆s(x) = ∆s̄(x).

In the NLO treatment we show how information on e+e− → h+X and inclusive

DIS can be incorporated directly so as to simplify the NLO expressions for semi-

inclusive cross sections. Next we discuss the fragmentation combination Dπ+

u −
Dπ−

u and use it to evaluate ∆uV and ∆dV in NLO. Then we obtain expressions

for Dπ+

u + Dπ−
u , for Dπ+

G and for Dπ+

s + Dπ−
s . With these we are able to obtain

(∆ū − ∆d̄) in NLO. Finally we have a set of 2 equations involving 3 unknown

functions, (∆u + ∆ū + ∆d + ∆d̄), (∆s + ∆s̄) and ∆G. An accurate determination

of all three functions would require data over a presently impossibly wide range of

Q2. We thus suggest using here for ∆G its determination from charm production.

It should then finally be possible to get an accurate assessment of ∆s+∆s̄ in NLO.

Lastly we consider the evaluation of s(x)− s̄(x) and ∆s(x)−∆s̄(x).

2 Inclusive Polarized DIS

In order to set the scene we establish first what can be extracted from inclusive DIS

and point out that even in this case a global numerical analysis can be misleading.

At NLO the spin dependent structure functions for protons and neutrons are

given by:
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gp
1(x, Q2) =

1

2

∑
q=u,d,s

e2
q

[
(∆q + ∆q̄)⊗

(
1 +

αs(Q
2)

2π
δCq

)
+

+
αs(Q

2)

2π
∆G⊗ δCG

]
(4)

involving a convolution of polarized parton densities with known Wilson coefficients.

For the neutron, gn
1 is obtained by the replacement

∆u ⇐⇒ ∆d (5)

in gp
1.

Now it is clear that one can only obtain information on the combinations:

∆u + ∆ū, ∆d + ∆d̄, ∆s + ∆s̄, ∆G. (6)

Moreover, despite the fact that one measures only two functions of x and Q2, i.e.

gp
1 and gn

1 , it can be shown [15] that, as a consequence of the evolution equations,

perfect data would allow the separate determination of each of the combinations in

(6).

It is also clear from (6), upon writing ∆q + ∆q̄ as ∆qV + 2∆q̄, that it is im-

possible to obtain separate information on the valence and non-strange sea quark

polarizations from inclusive, neutral current, polarized DIS. However for various

reasons, it is sometimes convenient to parametrise separately the valence and sea

quarks and to assume, for example, ∆ū = ∆d̄ = λ∆s, where λ is a free parameter,

so as to diminish the total number of parameters in the χ2 minimisation. From the

above discussion it should be obvious that any claim that the χ2 analysis favours

some particular value of λ must be fictitious and a consequence of some hidden bias

in the minimization procedure. Yet such claims have been made.

The point we wish to make is that already in the inclusive case the parameter

space is sufficiently complicated that there is a danger of biases and they are best

controlled by a careful consideration of the analytic structure of the expressions

for the observables. In the semi-inclusive case these expressions require in addition

knowledge of a host of fragmentation functions, yet we have little or no idea of

the errors on these functions. For example, the set of fragmentation functions

obtained by Binnewies, Kniehl and Kramer [5], and used in the NLO analysis of

semi-inclusive DIS by de Florian, Sampayo and Sassot [8], is obtained from a study
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of hadron production in e+e− collisions, which, as mentioned, involved a search on

31 free parameters! Not surprisingly no errors or error matrix is given. In addition

a new analysis by Kretzer [6] finds fragmentation functions which differ significantly

from those obtained in [5].

Given that the principle aim is to obtain precise information on the polarized

parton densities we strongly suggest a strategic approach to the inclusive and semi-

inclusive data, rather than a sledge hammer global analysis attack. We describe

such a strategy in the following.

3 A strategy for semi-inclusive DIS

In NLO QCD, the expressions for semi-inclusive cross sections involve convolutions

of parton densities with (known) Wilson coefficients and fragmentation functions.

Our lack of knowledge of the errors on the latter will make it difficult to assess

the accuracy of the parton densities which we are trying to determine. In the

LO QCD approximation, on the other hand there are no convolutions, and only

simple products (independent fragmentation), and it becomes possible to construct

measurable combinations of cross sections in which the fragmentation functions

completely cancel out [16, 17]. However it is not clear how reliable the LO is.

We believe it is quite safe when determining the large ∆u and ∆d densities, but

could be quite misleading for ∆ū, ∆d̄ and ∆s. In any event it is absolutely essential

to test independent fragmentation in order to have a feeling for the errors on parton

densities obtained via the LO formalism.

We wish to stress that the approach adopted by the experimental groups in the

LO analysis of their data, in which the concept of purity is utilised, is dangerous

since it fails totally to address the question of the reliability of the leading order

treatment. Moreover it gives an unjustified absolute status to the fragmentation

functions.

In the following Section we summarise the key results obtained [17] in the LO

treatment and the crucial tests for the reliability of the LO approximation i.e. of

independent fragmentation.

If the leading order tests are not accurately satisfied we suggest how their fail-

ure could be used to introduce an estimated theoretical error into what is being

determined.
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Thus, in LO, the structure of the expressions is generally of the form

parton density ∆q(x, Q2) = experimental observable E(x, z, Q2) (7)

or

fragmentation function D(z, Q2) = experimental observable E(x, z, Q2). (8)

In both cases the characteristic feature of the LO treatment is that the RH sides,

which can in principle depend on (x, z, Q2), should only depend on two of these,

either (x, Q2) or (z, Q2) respectively, so that there is an independence of the third

variable, which we shall call the passive variable.

Every expression of the form (7) or (8) should be tested for dependence on

the passive variable. If a significant dependence is found it does not mean that

the LO analysis must be abandoned, but it suggests that the variation with the

passive variable be used as an estimate of the theoretical errors, δTH [∆q(x, Q2)],

δTH [D(z, Q2)] on the sought for quantities.

In Section 7 we discuss a strategy for the analysis in NLO.

4 Parton densities in LO QCD

It is useful to introduce the following notation for semi-inclusive processes:

σ̃h ≡ x(P + l)2

4πα2

(
2y2

1 + (1− y)2

)
d3σh

dx dy dz
(9)

and

∆σ̃h ≡ x(P + l)2

4πα2

(
y

2− y

)[
d3σh

++

dx dy dz
− d3σh

+−
dx dy dz

]
(10)

where P µ and lµ are the nucleon and lepton four momenta, and σλµ refer to a lepton

of helicity λ and a nucleon of helicity µ. The variables x, y, z are the usual DIS

kinematic variables.

In LO the cross sections for the semi-inclusive production of a hadron h then

have the simple form

∆σ̃h(x, z, Q2) =
∑
q,q̄

e2
q ∆qi(x, Q2) Dh

i (z, Q2) (11)

σ̃h(x, z, Q2) =
∑
q,q̄

e2
q qi(x, Q2) Dh

i (z, Q2), (12)
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where the sum is over quarks and aniquarks, and where Dh
i is the fragmentation

function for quark or antiquark i to produce h.

We consider sum and difference cross sections for producing h and its charge

conjugate h̄ on both protons and neutrons, and define

∆Ah±h̄
p,n (x, z, Q2) =

∆σ̃h
p,n ±∆σ̃h̄

p,n

σ̃h
p,n ± σ̃h̄

p,n

≡ ∆σ̃h±h̄
p,n

σ̃h±h̄
p,n

, (13)

∆Ah±h̄
p±n(x, z, Q2) =

∆σ̃h±h̄
p ±∆σ̃h±h̄

n

σ̃h±h̄
p ± σ̃h±h̄

n

. (14)

For inclusive unpolarized and polarized DIS cross sections we use the notation:

σ̃DIS ≡ x(P + l)2

4πα2

(
2y2

1 + (1− y)2

)
d2σDIS

dx dy
(15)

and

∆σ̃DIS ≡ x(P + l)2

4πα2

(
y

2− y

)[
d3σDIS

++

dx dy
− d3σDIS

+−
dx dy

]
(16)

In LO we have

σ̃DIS(x, Q2) = 2F N
1 (x, Q2) =

∑
q,q̄

e2
q qi(x, Q2) (17)

∆σ̃DIS(x, Q2) = 2gN
1 (x, Q2) =

∑
q,q̄

e2
q ∆qi(x, Q2) (18)

In addition to (13) and (14) we consider the ratios of sum and difference hadron

yields for the unpolarized semi-inclusive and inclusive processes:

Rh±h̄
p,n (x, z, Q2) =

σ̃h
p,n ± σ̃h̄

p,n

σ̃DIS
p,n

, Rh±h̄
p±n(x, z, Q2) =

σ̃h±h̄
p ± σ̃h±h̄

n

σ̃DIS
p ± σ̃DIS

n

. (19)

(It is equally good to use a sum over any set of hadrons h and their charge conjugate

h̄.)

4.1 Testing LO QCD

Using only charge conjugation invariance it is easy to show that [17]

∆Ah+h̄
p−n(x, z, Q2) =

gp
1 − gn

1

F p
1 − F n

1

(x, Q2). (20)

8



This is a key relation for testing the reliability of the LO. The RHS is completely

known from inclusive DIS and moreover depends only on x and Q2. The LHS, in

principle, depends also upon z and upon the hadron h. Only in LO (or in the simple

parton model) should it be independent of z and of h. It is thus crucial to test this

feature.

To help with statistics it is also possible to formulate an integrated version of

(20). This is given in [17]. For the rest of this section we assume that the test (20)

has been successful and proceed with the analysis in LO.

4.2 The valence quark densities in LO

The polarized valence quark densities can be obtained for π± production, assuming

only isospin invariance

∆uV =
1

15

{
4(4uV − dV )∆Aπ+−π−

p + (4dV − uV )∆Aπ+−π−
n

}
∆dV =

1

15

{
4(4dV − uV )∆Aπ+−π−

n + (4uV − dV )∆Aπ+−π−
p

}
. (21)

For the case of K± or Λ, Λ̄ production, if one makes also the conventional as-

sumption that s = s̄ and ∆s = ∆s̄ one has in addition

∆uV =
1

2

{
(uV + dV )∆AK+−K−

p+n + (uV − dV )∆AK+−K−
p−n

}
∆dV =

1

2

{
(uV + dV )∆AK+−K−

p+n − (uV − dV )∆AK+−K−
p−n

}
. (22)

Note that we have not assumed DK+

d = DK−
d , although that is suggested by the

absence of a d quark in the leading Fock state of K±. Indeed the above equality

can be tested (see Section 5.2).

For isoscalar hadrons like Λ, Λ̄ again assuming s = s̄ and ∆s = ∆s̄, one finds

∆uV =
1

15

{
4(4uV + dV )∆AΛ−Λ̄

p − (4dV + uV )∆AΛ−Λ̄
n

}
∆dV =

1

15

{
4(4dV + uV )∆AΛ−Λ̄

n − (4uV + dV )∆AΛ−Λ̄
p

}
. (23)

We shall comment in Section 5.5 on the situation if one does not assume s = s̄

and ∆s = ∆s̄, where we suggest a method for estimating if the failure of these

equalities is serious or not. In any event, the safe way to obtain ∆uV and ∆dV is

via π± production, eq. (21).
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Once again the reliability of these LO equations can be tested by checking that

the RH sides of (21), (22) and (23) do not depend on z. If it is found that for a

given x-bin the RH sides vary with z by some amount δTH [∆uV ], δTH [∆dV ], then

these could be regarded as an estimate of the theoretical error at this x value.

5 Use of ∆q3(x, Q2) from inclusive DIS

The isospin combination of polarized parton densities ∆q3, eq.(3), is very well con-

strained by the inclusive data now that there is such an improvement in the quality

of the neutron data. For one has, from (4)

gp
1(x, Q2)− gn

1 (x, Q2) =
1

6
∆q3 ⊗

(
1 +

αs(Q
2)

2π
δCq

)
(24)

and ∆q3(x, Q2) is determined without any influence from the less well known quan-

tities ∆s and ∆G, either in LO or in NLO. We thus believe it should be used as a

known quantity in the semi-inclusive analysis. Of course if the semi-inclusive anal-

ysis is done in LO one must use ∆q3(x, Q2)|LO. On the other hand we do not use

information on (∆u+∆ū) or (∆d+∆d̄) from inclusive DIS, since these are subject

to strange quark and gluon effects.

5.1 SU(2) symmetry of the sea quark densities in LO

One has

[∆ū(x, Q2)−∆d̄(x, Q2)]LO =
1

2

[
∆q3(x, Q2) + ∆dV (x, Q2)−∆uV (x, Q2)

]
LO

. (25)

Eq. (25) determines the SU(2) symmetry breaking of the polarized sea without

requiring any knowledge of the unknown ∆q̄ and ∆G. However, although each

term on the RHS of (25) should be well determined in LO, the linear combination

is expected to be small and may thus be very sensitive to NLO corrections. An

indication of the sensitivity may be inferred from the fact that in inclusive polarized

DIS, ∆s(x, Q2) changes by roughly a factor of 2 in going from LO to NLO or when

one changes factorisation schemes from MS to AB or JET . A possible test for

SU(2) breaking for the polarized sea densities that does not require any knowledge

of the polarized densities was given in [17].
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In order to determine the polarized sea quark densities separately we need one

more relation, namely the value of

∆q+(x, Q2) ≡ ∆u + ∆ū + ∆d + ∆d̄. (26)

For then

(∆ū + ∆d̄)LO =
1

2
(∆q+ −∆uV −∆dV )LO (27)

which combined with (25) yields ∆ū and ∆d̄ separately.

Note that determining, say, ∆ū via ∆ū = 1
2
[(∆u + ∆ū) − ∆uV ] is unreliable

since determination of (∆u + ∆ū) from inclusive DIS requires a knowledge of ∆s.

In order to determine ∆q+(x, Q2) it will first be necessary to extract some in-

formation on the fragmentation functions.

5.2 Fragmentation functions in LO

1. From measurements of the ratios Rh+h̄
p−n of the semi-inclusive to inclusive DIS

cross sections on protons and neutrons for any given hadron h, it is feasible in LO

to learn a great deal about the fragmentation functions Dh
q + Dh̄

q ≡ Dh+h̄
q . This in

turn can be used to get further information about polarized parton densities.

Analogous to the polarized case, we define

q3(x, Q2) = u(x, Q2) + ū(x, Q2)− d(x, Q2)− d̄(x, Q2) (28)

q+(x, Q2) = u(x, Q2) + ū(x, Q2) + d(x, Q2) + d̄(x, Q2). (29)

which are well determined from inclusive DIS data and which thus can be taken as

known quantities in the semi-inclusive analysis.

• Using data on unpolarized semi-inclusive DIS we have, in LO,

Rh+h̄
p−n =

2

3

[
4Dh+h̄

u (z, Q2)−Dh+h̄
d (z, Q2)

]
. (30)

• For the case of pions, kaons and Λ, when SU(2) invariance can be used this

simplifies to

Rπ++π−
p−n = 2Dπ++π−

u (z, Q2) = 2Dπ++π−
d (z, Q2). (31)
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• For K mesons and Λ hyperons,

RK,Λ+Λ̄
p−n = 2DK,Λ+Λ̄

u (z, Q2) = 2DK,Λ+Λ̄
d (z, Q2). (32)

where the superscript K stands for the sum over all produced kaons:

K ≡ K+ + K− + K0 + K̄0. (33)

A comparison of the fragmentation functions obtained by these two different

methods would be a further test of the reliability of the LO treatment.

It will also be of great interest to compare these fragmentation functions with

those obtained from e+e− → hadrons [5, 6] and those used in Monte Carlo models.

2. Given that uV (x, Q2) and dV (x, Q2) are well determined from inclusive DIS

one can proceed further to obtain the other combinations of fragmentation functions

Dh
q −Dh̄

q ≡ Dh−h̄
q .

• One finds for π±

Dπ+−π−
u =

9 (F p
1 )LO Rπ+−π−

p

4uV − dV
=

9σ̃π+−π−
p

4uV − dV

Dπ+−π−
d =

9 (F n
1 )LO Rπ+−π−

n

4uV − dV

=
9σ̃π+−π−

n

4dV − uV

(34)

Using SU(2) invariance for π± we have also

Dπ+−π−
u = −Dπ+−π−

d =
q3

2(uV − dV )
Rπ+−π−

p−n . (35)

Combined with (31) we have expressions for Dπ+

u and Dπ−
u separately.

• For K± one obtains

4DK+−K−
u −DK+−K−

d =
3

2

q3

uV − dV
RK+−K−

p−n

=
9
{
σ̃K+−K−

p − σ̃K+−K−
n

}
uV − dV

(36)

It is usually assumed, and this is presumably a very good approximation, that

DK+

d = DK−
d (37)
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in which case (36) can be read as an expression for DK+−K−
u . It is not possible

to test relation (37) without taking s = s̄ and/or ∆s = ∆s̄, but such an

approach is hard to justify given that any failure of (37) is presumably very

small.

• For isoscalar hadrons like Λ, Λ̄

DΛ−Λ̄
u = DΛ−Λ̄

d =
q3

2(uV − dV )
RΛ−Λ̄

p−n =
3
{
σ̃Λ−Λ̄

p − σ̃Λ−Λ̄
n

}
uV − dV

. (38)

Given that ∆uV and ∆dV are determined via (21) we can write analogous expres-

sion for the above Dh
q functions using the polarized data, by simply making the

replacements

σ̃ =⇒ ∆σ̃, uV =⇒ ∆uV , dV =⇒ ∆dV (39)

in the RH sides of (34), (36) and (38).

Of course all the expressions (30), (31), (32), (34), (36) and (38), being LO

results, must be tested by demonstrating that the RH sides are essentially indepen-

dent of the passive variable x.

Now that we have determined Dπ++π−
u we can determine Dπ++π−

s in LO via

Dπ++π−
s =

9 (F p
1 + F n

1 )LO Rπ++π−
p+n − 5q+Dπ++π−

u

2 (s + s̄)
(40)

Similarly, since DΛ+Λ̄
u is determined via (32), we can find DΛ+Λ̄

s from

DΛ+Λ̄
s =

9 (F p
1 + F n

1 )LO RΛ+Λ̄
p+n − 5q+DΛ+Λ̄

u

2 (s + s̄)
(41)

5.3 The non-strange sea quark densities revisited, in LO

Now that we have determined Dπ++π−
u and Dπ++π−

s in LO we can, in principle, de-

termine ∆q+(x, Q2) and ∆s(x, Q2)+∆s̄(x, Q2) from the semi-inclusive and inclusive

relations, in LO,

gp
1 + gn

1 = 5∆q+ + 2(∆s + ∆̄s) (42)

∆Aπ++π−
p+n =

5∆q+Dπ++π−
u + 2(∆s + ∆̄s)Dπ++π−

s

5q+Dπ++π−
u + 2 (s + s̄)Dπ++π−

s

. (43)
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Such a determination of ∆q+ in LO is likely to be reliable, but ∆s + ∆̄s and

the individual ∆ū and ∆d̄ obtained in LO via (27) may be subject to significant

uncertainty.

We note that there is an alternative way to determine ∆q+, but it requires the

ability to detect K0. In that case one has, in LO,

∆q+ = q+
∆σ̃

K++K−−(K0+K̄0)
p + ∆σ̃

K++K−−(K0+K̄0)
n

σ̃
K++K−−(K0+K̄0)
p + σ̃

K++K−−(K0+K̄0)
n

. (44)

5.4 The strange quark density ∆s + ∆̄s in LO

The approach to ∆s + ∆̄s in Section 5.3 and the approach discussed in [17] are

unlikely to be reliable. The problem is that for production of pions the strange quark

contribution is ”doubly small”, since e.g. one must compare ∆uDπ
u with ∆sDπ

s in

which both |∆s + ∆̄s| � |∆u| and |Dπ
s | � |Dπ

u|. For kaons and Λ hyperons it is

somewhat better in that |DK
u | ≈ |DK

s | and |DΛ+Λ̄
u | = |DΛ+Λ̄

d | ≈ |DΛ+Λ̄
s |, but this is

similar to the situation in inclusive DIS where we know that the LO determination

of ∆s + ∆̄s is quite unreliable.

The only possibility we can see for a reasonable determination of ∆s in LO is

via φ production. For in this case one has, |∆s + ∆̄s| � |∆u| but presumably

|Dφ
s | � |Dφ

u| so that the strange and non-strange quarks are on equal footing.

One has, by charge conjugation invariance Dφ
s = Dφ

s̄ , and it should be quite safe

to take Dφ
u = Dφ

ū = Dφ
d = Dφ

d̄
. One then obtains in LO

∆s + ∆̄s

s + s̄
=

3∆σ̃φ
p+n − 5

(
∆q+

∆q3

)
∆σ̃φ

p−n

3σ̃φ
p+n − 5

(
q+

q3

)
σ̃φ

p−n

. (45)

Moreover one has expressions for the fragmentation functions as well:

Dφ
s =

3

2(s + s̄)

{
3σ̃φ

p+n − 5

(
q+

q3

)
σ̃φ

p−n

}
(46)

Dφ
u =

3σ̃φ
p−n

q3
. (47)

As always expressions (45) - (47) must be tested for non-dependence on the relevant

passive variable.

Finally we note that the same eqs. (45) - (47) hold for K, Λ+Λ̄ and π-production

if the superscript φ is replaced by K, Λ+ Λ̄ and π+ +π−, respectively. And though
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the production rates are higher, the sensitivity to the strange quarks in the K, Λ+Λ̄

and π-productions is lower.

5.5 Concerning s = s̄ and ∆s = ∆s̄ in LO†

In the analysis of DIS it is conventional to assume s = s̄ and ∆s = ∆̄s. However

there are models and arguments [12] which suggest that these equalities might not

hold.

Within the limitations of the LO we can test these relationships via (K+, K−)

and (Λ, Λ̄) production. One has for the unpolarized case, assuming DK+−K−
d = 0

several different possibilities:

(s− s̄)DK+−K−
s = 9 (F p

1 )LO RK+−K−
p − 4uV DK+−K−

u

= 9 (F n
1 )LO RK+−K−

n − 4dV DK+−K−
u

=
9
{
uV σ̃K+−K−

n − dV σ̃K+−K−
p

}
uV − dV

. (48)

Then for the polarized case, given that ∆uV and ∆dV are known from (21) and

(s − s̄)DK+−K−
s is determined, we can proceed to determine (∆s − ∆s̄)DK+−K−

s

from ∆AK+−K−
p or ∆AK+−K−

n :

∆AK+−K−
p =

4∆uV DK+−K−
u + (∆s−∆s̄)DK+−K−

s

4uV DK+−K−
u + (s− s̄)DK+−K−

s

∆AK+−K−
n =

4∆dV DK+−K−
u + (∆s−∆s̄)DK+−K−

s

4dV DK+−K−
u + (s− s̄)DK+−K−

s

, (49)

DK+−K−
u is assumed to be known through (36).

For isoscalar hadrons like Λ, Λ̄ we have the possiblities

(s− s̄)DΛ−Λ̄
s = 9 (F p

1 )LO RΛ−Λ̄
p − (4uV + dV )DΛ−Λ̄

u

= 9 (F n
1 )LO RΛ−Λ̄

n − (4dV + uV )DΛ−Λ̄
u

=
3

uV − dV

{
(4uV + dV ) σ̃Λ−Λ̄

n − (4dV + uV ) σ̃Λ−Λ̄
p

}
, (50)

where DΛ−Λ̄
u is assumed to be determined in (38). Then (∆s−∆s̄)DΛ−Λ̄

s can be

——————————–
† We are grateful to M. Anselmino, M. Boglione and U.D’Alesio for drawing our

attention to this issue
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determined via ∆AΛ−Λ̄
p or ∆AΛ−Λ̄

n :

∆AΛ−Λ̄
p =

(4∆uV + ∆dV )DΛ−Λ̄
u + (∆s−∆s̄)DΛ−Λ̄

s

(4uV + dV )DΛ−Λ̄
u + (s− s̄)DΛ−Λ̄

s

∆AΛ−Λ̄
n =

(4∆dV + ∆uV )DΛ−Λ̄
u + (∆s−∆s̄)DΛ−Λ̄

s

(4dV + uV )DΛ−Λ̄
u + (s− s̄)DΛ−Λ̄

s

(51)

Although (48), (49), (50) and (51), being LO expressions, cannot be expected

to yield accurate values for s− s̄ and ∆s−∆s̄, they should nonetheless enable one

to say whether they are compatible with zero since DΛ−Λ̄
s should be relatively large.

Note that s− s̄ and/or ∆s−∆s̄ different from zero would break the independence

of the RH sides of (49) and (51) on the passive variable z. Of particular interest is

the speculation that ∆s ≈ −∆̄s but s ≈ s̄, the consistency of which could perhaps

be tested from (48), (49), (50) and (51).

6 Semi-inclusive analysis in NLO QCD

The situation in NLO [7, 18] is much more complicated than in LO, since factori-

sation is replaced by convolution, and it is also more complicated than inclusive

DIS in NLO since here one has to contend with double convolutions of the form

q ⊗C ⊗D and ∆q ⊗∆C ⊗D for the unpolarized and polarized cases respectively,

where C and ∆C are Wilson coefficients first derived in [18] and [7].

The double convolution is defined as

q ⊗ C ⊗D =

∫
dx′

x′

∫
dz′

z′
q
( x

x′

)
C(x′, z′)D

( z

z′

)
(52)

where the range of integration is given as follows:

• I1 : If x + (1− x)z ≥ 1 the range is

x

x + (1− x)z
≤ x′ ≤ 1 with z ≤ z′ ≤ 1 (53)

• I2 : If x + (1− x)z ≤ 1 there is, in addition to (53), the range

x ≤ x′ ≤ x

x + (1− x)z
with

x(1− x′)
x′(1− x)

≤ z′ ≤ 1. (54)
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Note, that contrary to the case of the usual DIS convolution, the double convolution

q ⊗ C ⊗D is not commutative.

We shall frequently encounter expressions of the form

qD +
αs

2π
q ⊗ C ⊗D (55)

corresponding to the LO plus NLO corrections.

The flavour structure of the results becomes much more transparent if we adopt

the following symbolic notation for such expressions:

qD +
αs

2π
q ⊗ C ⊗D = q

[
1 +⊗αs

2π
C⊗
]
D. (56)

Then the semi-inclusive polarized cross section ∆σ̃h
p defined in (10) is given by

∆σ̃h
p =

∑
i

e2
i ∆qi

[
1 +⊗αs

2π
∆Cqq⊗

]
Dh

qi
+

+

(∑
i

e2
i ∆qi

)
⊗ αs

2π
∆Cqg ⊗Dh

G + ∆G⊗ αs

2π
∆Cgq ⊗

(∑
i

e2
i D

h
qi

)
(57)

where the sum is over quarks and antiquarks of flavour i and parton densities and

fragmentation functions are to be taken in NLO.

For the unpolarized semi-inclusive cross section in NLO it is not possible to

completely factor out the y-dependence. Consequently σ̃h defined in (9) will depend

upon y in NLO, in contrast to the LO situation in (12).

In the notation of the seminal paper of Graudenz [18] the cross section is a sum

of what he refers to as “metric” (M) and “longitudinal” (L) terms, with corre-

sponding Wilson coefficients CM and CL. A further complication is that the wilson

coefficients are different in the two regions of integration I1 and I2. Thus we have

coefficients CjM , CjL with j = 1, 2.

We then define the y-dependent combinations of Wilson coefficients:

C
j
qq = CjM

qq + [1 + 4γ(y)]CjL
qq (58)

C
j
qg = CjM

qg + [1 + 4γ(y)]CjL
qg (59)

C
j
gq = CjM

gq + [1 + 4γ(y)]CjL
gq (60)

where

γ(y) =
1− y

1 + (1− y)2
. (61)
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Then the unpolarized semi-inclusive cross section can be written in a form anal-

ogous to the polarized one:

σ̃h
p =

∑
i

e2
i qi

[
1 +⊗αs

2π
Cqq⊗

]
Dh

qi
+

+

(∑
i

e2
i qi

)
⊗ αs

2π
Cqg ⊗Dh

G + G⊗ αs

2π
Cgq ⊗

(∑
i

e2
i D

h
qi

)
. (62)

In (62) we have used the symbolic notation:

qi ⊗ αs

2π
Cqq ⊗Dh

qi
=

∫
I1

qi ⊗ αs

2π
C

1
qq ⊗Dh

qi
+

∫
I2

qi ⊗ αs

2π
C

2
qq ⊗Dh

qi
, (63)

and analogously for Cqg and Cgq.

Note that in NLO the unpolarized inclusive cross section, σ̃DIS (15) is given by

σ̃DIS = 2F1 [1 + 2γ(y)R] , (64)

where R is the usual DIS ratio of longitudinal to transverse cross sections.

As in the LO discussion we doubt the reliability of a global NLO analysis of

inclusive and semi-inclusive data, and we suggest that one should feed into the

semi-inclusive analysis as much reliable information as one can from other sources.

As we shall see there is the oft found opposition between what is simple the-

oretically and what is simple experimentally. However, if the systematic errors in

detection efficiencies can be brought under control then we can make remarkable

theoretical simplifications and we can then extract a vast amount of information

from the semi-inclusive data. This is an important experimental challenge as will

be seen from the power of the results given below.

6.1 Simplification of the semi-inclusive NLO results

Bearing in mind the NLO result (4) for gp
1 for polarized DIS and the analogous

result for F1 in unpolarized DIS, we see that in the second term of (62) we may

make the replacement, correct to NLO,∑
i

e2
i qi −→ 2F p

1 (65)

and similarly, in the analogous eq. for ∆σ̃p in (57):∑
i

e2
i ∆qi −→ 2gp

1. (66)
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Further in the reaction e+(p+) + e−(p−) → h + X in the kinematic region when

we can neglect Z0-exchange effects, we have

σh(z, cos θ, Q2) =
3

8
(1 + cos2 θ)σh

T (z, Q2) +
3

4
(1− cos2 θ)σh

L(z, Q2) (67)

where Q2 = (p+ + p−)2.

In NLO QCD one has

σh
T (z, Q2) = 3σ0

{∑
i

e2
i D

h
qi
⊗
(
1 +

αs

2π
CT

q

)
+

+
∑

i

e2
i D

h
G ⊗

αs

2π
CT

G

}
(68)

where the sum is over quarks and antiquarks, the CT ’s are Wilson coefficients, and

σ0 =
4πα2

3Q2
. (69)

Then, correct to the required NLO accuracy, in the third term in (62), and in

its polarized analogue (57), we may make the replacement

∑
i

e2
i D

h
qi

=
σh

T (z, Q2)

3σ0

. (70)

Hence, for the unpolarized and polarized semi-inclusive cross sections, in NLO

accuracy, we have

σ̃h
p =

∑
i

e2
i qi

[
1 +⊗αs

2π
Cqq⊗

]
Dh

qi
+

+2F p
1 ⊗

αs

2π
Cqg ⊗Dh

G +
1

3σ0

G⊗ αs

2π
Cgq ⊗ σh

T (71)

∆σ̃h
p =

∑
i

e2
i ∆qi

[
1 +⊗αs

2π
∆Cqq⊗

]
Dh

qi
+

+2gp
1 ⊗

αs

2π
∆Cqg ⊗Dh

G +
1

3σ0
∆G⊗ αs

2π
∆Cgq ⊗ σh

T . (72)

Given that the unpolarized gluon density is reasonably well known, the last term

in (71) can be considered as a known quantity. In the following we take as known

quantities the NLO values for q+(x, Q2), q3(x, Q2), uV (x, Q2), dV (x, Q2), G(x, Q2)

and ∆q3(x, Q2).
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6.2 The polarized valence densities in NLO

Using charge conjugation invariance one obtains, for semi-inclusive pion production

σ̃π+−π−
p

σ̃π+−π−
n

=
[4uV − dV ][1 +⊗(αs/2π)Cqq⊗]Dπ+−π−

u

[4dV − uV ][1 +⊗(αs/2π)Cqq⊗]Dπ+−π−
u

. (73)

The only unknown function in this expression in Dπ+−π−
u (z, Q2), which evolves as

a non-singlet and does not mix with other fragmentation functions. A χ2 analysis

of (73) should thus determine Dπ+−π−
u in NLO without serious ambiguity.

Assuming Dπ+−π−
u is now known, one can then determine ∆uV and ∆dV in NLO

via the equations

∆Aπ+−π−
p =

(4∆uV −∆dV )[1 +⊗(αs/2π)∆Cqq⊗]Dπ+−π−
u

(4uV − dV )[1 +⊗(αs/2π)Cqq⊗]Dπ+−π−
u

(74)

∆Aπ+−π−
n =

(4∆dV −∆uV )[1 +⊗(αs/2π)∆Cqq⊗]Dπ+−π−
u

(4dV − uV )[1 +⊗(αs/2π)Cqq⊗]Dπ+−π−
u

(75)

where, of course, ∆uV and ∆dV evolve as non-singlets and do not mix with other

densities. Eqs. (74) and (75) determine the densities ∆uV and ∆dV in NLO without

any assumptions about the less known polarized gluon and sea densities.

6.3 SU(2) symmetry of the sea quark densities in NLO

Once ∆uV and ∆dV are known in NLO we can calculate

[∆ū(x, Q2)−∆d̄(x, Q2)]NLO =
1

2
[∆q3(x, Q2) + ∆dV (x, Q2)−∆uV (x, Q2)]NLO,(76)

Eq. (76) determines the breaking of SU(2) symmetry for the polarized sea densities

in NLO without requiring any knowledge of ∆q̄ and ∆G. It will be interesting to

compare the values obtained from (76) with information on ∆ū(x) and ∆d̄(x) which

will emerge from Drell-Yan and W± production experiments at RHIC [19].

The separate determination of ∆ū and ∆d̄ requires knowledge of ∆q+, defined

in (26), in NLO.

Note that determining, say, ∆ū via ∆ū = 1
2
[(∆u + ∆ū) − ∆uV ] is unreliable,

since the determination of (∆u + ∆ū) from inclusive DIS involves knowledge of

gluon and strange quark densities.

As in the LO case we can only determine ∆q+ after obtaining some information

about the fragmentation functions.
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6.4 Fragmentation functions in NLO

We consider the sum for the unpolarized production of π+ and π−. We have

Rπ++π−
p−n =

q3

{[
1 +⊗αs

2π
Cqq⊗

]
Dπ++π−

u +⊗αs

2π
Cqg ⊗Dπ++π−

G

}
6 [F p

1 (1 + 2γ(y)Rp)− F n
1 (1 + 2γ(y)Rn)]

(77)

∆Aπ++π−
p−n =

∆q3

{[
1 +⊗αs

2π
∆Cqq⊗

]
Dπ++π−

u +⊗αs

2π
∆Cqg ⊗Dπ++π−

G

}
q3

{[
1 +⊗αs

2π
Cqq⊗

]
Dπ++π−

u +⊗αs

2π
Cqg ⊗Dπ++π−

G

} · (78)

The only unknown functions in these relations are Dπ++π−
u and Dπ++π−

G , which will

mix with each other under evolution. Thus it should be possible to obtain them

from a χ2 analysis of (77) and (78).

Once we know Dπ++π−
u and utilise Dπ+−π−

u from Section 6.2 we clearly have

access to both Dπ+

u and Dπ−
u .

Note that if K0 can be detected one can obtain information on DK
u and DK

G ,

where K = K+ + K− + K0 + K̄0. One simply replaces the labels π+ + π− by K

everywhere in (77) and (78). Analogous equations hold also if π+ + π− is replaced

by Λ + Λ̄, if Λ is detected.

Returning to the case of π+ + π−, the ratio Rπ++π−
p+n allows the determination of

the only unknown function Dπ++π−
s . We have

Rπ++π−
p+n =

=
{(

5q+

[
1 +⊗αs

2π
Cqq⊗

]
Dπ++π−

u + 2(s + s̄)
[
1 +⊗αs

2π
Cqq⊗

]
Dπ++π−

s

)
+

+18(F p
1 + F n

1 )⊗ αs

2π
Cgq ⊗Dπ++π−

G + 6G
σ0
⊗ αs

2π
Cgq ⊗ σπ++π−

T

}
/

/6 [F p
1 (1 + 2γ(y)Rp) + F n

1 (1 + 2γ(y)Rn)] (79)

Under evolution Dπ++π−
u and Dπ++π−

s mix with Dπ++π−
G , but this is not a problem

since the latter is supposed to be known.

Again analogous sets of equations holds for kaon and Λ, Λ̄ production. One

simply replaces π+ + π− by K or Λ + Λ̄ and this allows the determination of the

only unknown function DK
s or DΛ+Λ̄

s , respectively.

6.5 The sea-quark densities in NLO

With our NLO knowledge of Dπ++π−
u , Dπ++π−

s and Dπ++π−
G we are now in a position

to try to determine ∆q+(x, Q2), ∆s(x, Q2) + ∆s̄(x, Q2) and ∆G(x, Q2). We have,
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in NLO,

gp
1 + gn

1 =
1

18

[
5∆q+ + 2(∆s + ∆̄s)

]⊗ (1 +
αs(Q

2)

2π
δCq

)
+

αs(Q
2)

2π
∆G⊗ δCG,(80)

and

∆Aπ++π−
p+n =

∆σ̃π++π−
p + ∆σ̃π++π−

n

σ̃π++π−
p + σ̃π++π−

n

(81)

where

∆σ̃π++π−
p + ∆σ̃π++π−

n =

=
(
5∆q+

[
1 +⊗αs

2π
∆Cqq⊗

]
Dπ++π−

u + 2(∆s + ∆̄s)
[
1 +⊗αs

2π
∆Cqq⊗

]
Dπ++π−

s

)
+

+18 (gp
1 + gn

1 )⊗ αs(Q2)
2π

∆Cqg ⊗Dπ++π−
G + 6

σ0
∆G⊗ αs(Q2)

2π
∆Cgq ⊗ σπ++π−

T (82)

and

σ̃π++π−
p + σ̃π++π−

n =

=
(
5q+

[
1 +⊗αs

2π
Cqq⊗

]
Dπ++π−

u + 2(s + s̄)
[
1 +⊗αs

2π
Cqq⊗

]
Dπ++π−

s

)
+

+18 (F p
1 + F n

1 )⊗ αs(Q2)
2π

Cqg ⊗Dπ++π−
G + 6

σ0
G⊗ αs(Q2)

2π
Cgq ⊗ σπ++π−

T . (83)

Note that an analogous set of equations hold for π+ + π− replaced by K or Λ + Λ̄.

Eqs. (80) to (83) contain three unknown functions ∆q+, ∆s+∆s̄ and ∆G, which

nonetheless can all be determined in principle because of their different evolution

in Q2. However, to be at all efficacious such a determination would require a huge

range of Q2, far larger than is available in present day polarised DIS.

On the other hand there is a direct and superior method for obtaining ∆G,

namely via cc̄ production. This is one of the major goals of the COMPASS exper-

iment at CERN. We shall thus assume that ∆G has been determined, so that the

last term on the RHS of (72) may be taken to be known.

It should be then straightforward to determine ∆q+ and ∆s + ∆s̄ in NLO from

a χ2 analysis of (80) to (83) in which the evolution of ∆q+ and ∆s + ∆s̄ would

involve mixing with the supposed known ∆G.

An independent determination of ∆q+ and ∆s + ∆̄s could be obtained by com-

bining (80) with ∆AK
p+n for kaons and ∆AΛ+Λ̄

p+n for Λ, Λ̄ production.

Once ∆q+ is known in NLO, we can obtain the individual ∆ū and ∆d̄ from (76).
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6.6 Concerning s = s̄ and ∆s = ∆s̄ in NLO

It is possible to get some information on s− s̄ and ∆s− ∆̄s in NLO.

We have, assuming DK+

d = DK−
d ,

RK+−K−
p =

=
{

4uV

[
1 +⊗αs

2π
Cqq⊗

]
DK+−K−

u + (s− s̄)
[
1 +⊗αs

2π
Cqq⊗

]
DK+−K−

s

}
/

/18F p
1 [1 + 2γ(y)Rp] (84)

RK+−K−
n =

=
{

4dV

[
1 +⊗αs

2π
Cqq⊗

]
DK+−K−

u + (s− s̄)
[
1 +⊗αs

2π
Cqq⊗

]
DK+−K−

s

}
/

/18F n
1 [1 + 2γ(y)Rn] (85)

These two equations, taken together with those for ∆AK+−K−
p and ∆AK+−K−

n :

∆AK+−K−
p =

=
(
4∆uV

[
1 +⊗αs

2π
∆Cqq⊗

]
DK+−K−

u + (∆s− ∆̄s)
[
1 +⊗αs

2π
∆Cqq⊗

]
DK+−K−

s

)
/

/
(
4uV

[
1 +⊗αs

2π
Cqq⊗

]
DK+−K−

u + (s− s̄)
[
1 +⊗αs

2π
Cqq⊗

]
DK+−K−

s

)
(86)

∆AK+−K−
n =

=
(
4∆dV

[
1 +⊗αs

2π
∆Cqq⊗

]
DK+−K−

u + (∆s− ∆̄s)
[
1 +⊗αs

2π
∆Cqq⊗

]
DK+−K−

s

)
/

/
(
4dV

[
1 +⊗αs

2π
Cqq⊗

]
DK+−K−

u + (s− s̄)
[
1 +⊗αs

2π
Cqq⊗

]
DK+−K−

s

)
(87)

provide four equations for the three unknown functions (s − s̄)⊗DK+−K−
s , (∆s −

∆̄s)⊗DK+−K−
s and DK+−K−

u , so that, in principle, all can be determined via a χ2

analysis.

In addition one has

RΛ−Λ̄
p =

=
{
(4uV + dV )

[
1 +⊗αs

2π
Cqq⊗

]
DΛ−Λ̄

u + (s− s̄)
[
1 +⊗αs

2π
Cqq⊗

]
DΛ−Λ̄

s

}
/

/18F p
1 [1 + 2γ(y)Rp] (88)

and

RΛ−Λ̄
n =

=
{
(4dV + uV )

[
1 +⊗αs

2π
Cqq⊗

]
DΛ−Λ̄

u + (s− s̄)
[
1 +⊗αs

2π
Cqq⊗

]
DΛ−Λ̄

s

}
/

/18F n
1 [1 + 2γ(y)Rn] (89)
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together with ∆AΛ−Λ̄
p and ∆AΛ−Λ̄

n :

∆AΛ−Λ̄
p =

=
(
(4∆uV + ∆dV )

[
1 +⊗αs

2π
∆Cqq⊗

]
DΛ−Λ̄

u + (∆s− ∆̄s)
[
1 +⊗αs

2π
∆Cqq⊗

]
DΛ−Λ̄

s

)
/

/
(
(4uV + dV )

[
1 +⊗αs

2π
Cqq⊗

]
DΛ−Λ̄

u + (s− s̄)
[
1 +⊗αs

2π
Cqq⊗

]
DΛ−Λ̄

s

)
(90)

∆AΛ−Λ̄
n =

=
(
(4∆dV + ∆dV )

[
1 +⊗αs

2π
∆Cqq⊗

]
DΛ−Λ̄

u + (∆s− ∆̄s)
[
1 +⊗αs

2π
∆Cqq⊗

]
DΛ−Λ̄

s

)
/

/
(
(4dV + dV )

[
1 +⊗αs

2π
Cqq⊗

]
DΛ−Λ̄

u + (s− s̄)
[
1 +⊗αs

2π
Cqq⊗

]
DΛ−Λ̄

s

)
.(91)

These provide four more equations but only two new unknown functions DΛ−Λ̄
u

and DΛ−Λ̄
s . The system of eight equations (84) - (91) therefore over-constrains

the unknown functions and might, hopefully, allow a reasonable determination of

the relation between s − s̄ and ∆s − ∆s̄ and whether or not s(x) = s̄(x) and/or

∆s(x) = ∆s̄(x). The actual determination of s− s̄ or ∆s−∆s̄ requires knowledge

of either DΛ−Λ̄
s or DK+−K−

s . These could be taken from the study of e+e− → hX.

This completes the determination of all the polarized densities in NLO.

7 Conclusions

We have argued that the present LO QCD method of analysing polarized semi-

inclusive DIS, using the concept of purity, is quite unjustified. We have also argued

against attempts at a global analysis, either in LO or in NLO QCD, based on the

combined data on polarized inclusive and semi-inclusive DIS and taking as known

exactly the relevant fragmentation functions.

Instead, we have presented a strategy for a step by step evaluation of the po-

larized parton densities and fragmentation functions from semi-inclusive data using

selectively chosen information from inclusive DIS reactions.

In our approach the usually made simplifying assumptions about relations be-

tween ∆ū and ∆d̄, and between the strange and non-strange polarized sea densities

are unnecessary and we have even considered the possibility that s(x) 6= s̄(x) and

∆s(x) 6= ∆̄s(x).

Given the simplicity of the LO QCD analysis, we discuss where and when it is

likely to be reliable, and stress the need to test the consistency of the LO treatment

at each step. In this connection we have introduced the concept of a passive variable
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in the experimentally measured observables. We have also suggested how one might

estimate the errors induced in doing the LO analysis.

In the NLO treatment we have shown how the expressions for the experimen-

tal observables can be simplified by incorporating information from the reaction

e+e− → hX. Determination of the polarized valence quark densities ∆uV and ∆dV

is shown to be relatively straight forward, as is the difference ∆ū − ∆d̄. However

we argue that the determination of ∆ū, ∆d̄, ∆s + ∆s̄ and ∆G separately, from

semi-inclusive DIS involving production of π, K, Λ is unlikely to be successful, be-

cause of the limited range of Q2 available now and in the foreseeable future. It is

suggested that the independent determination of ∆G from charm production is thus

an essential element if ∆ū, ∆d̄, ∆s + ∆s̄ are to be determined accurately. Finally,

motivated by the arguments that possibly s(x) 6= s̄(x) and ∆s(x) 6= ∆̄s(x), we have

demonstrated how, in principle, one can learn about s(x)− s̄(x) and ∆s(x)−∆̄s(x).

The procedure we have advocated poses a real challenge to the experimentalists,

since it requires a control over the systematic errors involved in hadron detection

efficiencies. The price paid in the current practice of considering certain ratios of

cross sections in order to limit systematic errors, is enormous, and vast amounts of

interesting and theoretically valuable information are thereby lost. We hope this

paper will encourage efforts to proceed further.
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