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Abstract

The initial gluon multiplicity per unit area per unit rapidity, dN/L2/dη, in high
energy nuclear collisions, is equal to fN(g2µL)(g2µ)2/g2, with µ2 proportional to
the gluon density per unit area of the colliding nuclei. For an SU(2) gauge theory,
we compute fN (g2µL) = 0.14 ± 0.01 for a wide range in g2µL. Extrapolating
to SU(3), we predict dN/L2/dη for values of g2µL in the range relevant to the
Relativistic Heavy Ion Collider and the Large Hadron Collider. We compute the
initial gluon transverse momentum distribution, dN/L2/d2k⊥, and show it to be
well behaved at low k⊥.

A topic of considerable current interest is the possibility of forming an equilibrated
plasma of quarks and gluons, a quark–gluon plasma (QGP), in very high energy nuclear
collisions. Experimental signatures of such a plasma may provide insight into the nature
of the QCD phase diagram at finite temperature and baryon density [1].

Equally interesting, is the information that heavy ion collisions may provide about
the distributions of partons in the wavefunctions of the nuclei before the collision. At
very high energies, the growth of parton distributions in the nuclear wavefunction satu-
rates, forming a state of matter sometimes called a Color Glass Condensate (CGC) [2].
The condensate is characterized by a bulk momentum scale Qs. If Qs � ΛQCD, the
properties of this condensate, albeit non–perturbative, can be studied in weak coupling.
The partons that comprise this condensate are freed in a collision. Since the scale of
the condensate, Qs, is the only scale in the problem, the initial multiplicity and energy
distributions of produced gluons at central rapidities are determined by this scale alone.
We will briefly discuss later the relation of these quantitities to physical observables.

The above statements may be quantified in a classical effective field theory approach
(EFT) to high energy scattering [4]. The EFT is classical because, at central rapidities,
where x � 1 and p⊥ � ΛQCD, (x ∼ p⊥/

√
s), parton distributions grow rapidly with
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decreasing x giving rise to large occupation numbers. Briefly, the EFT separates partons
in a hadron (or nucleus) into static, high x valence and hard glue sources, and “wee”
small x fields. For a large nucleus in the infinite momentum frame, the hard sources
with color charge density ρ, are randomly distributed in the transverse plane with the
distribution

P ([ρ]) = exp

(
− 1

2g4µ2

∫
d2x⊥ ρ2(x⊥)

)
. (1)

The average squared color charge per unit area is determined by the parameter µ2,
which is the only dimensional parameter in the EFT apart from the linear size L of the
nucleus. Parton distributions, correlation functions of the wee gauge fields, are computed
by averaging over gauge fields with the weight P ([ρ]) [5].

Quantum corrections to the EFT [6] are implemented using Wilson renormalization
group techniques [7]. The scale µ2 grows with decreasing x, and can be estimated from
the nucleon quark and gluon distributions at x � 1 [9]. The saturation scale — at which
parton distributions stop growing rapidly with decreasing x — is Qs ∼ 6g2µ/4π [3], a
function determined self–consistently from the typical x and Q2 of interest. Since most of
the saturated partons have momenta of this order, Qs, rather than g2µ, is the appropriate
scale. At RHIC energies, Qs ∼ 1 GeV, and at LHC, Qs ∼ 2–3 GeV. The magnitude of
Qs is a rough estimate because of our uncertain knowledge of gluon structure functions
at these energies. This scale, and the properties of the CGC, may be further determined
in future high energy deeply inelastic scattering (DIS) experiments off nuclei [8].

In this letter, we obtain a non-perturbative relation between the multiplicity of glu-
ons produced in heavy ion collisions at central rapidities on the one hand, and g2µ, or
equivalently Qs, on the other. We will also demonstrate that non–perturbative strong
field effects, at momenta k⊥ ∼ Qs, qualitatitively alter transverse momentum distribu-
tions, rendering them infrared finite. A preliminary version of these results was reported
in Ref. [14]. In a previous letter [15], we obtained a similar expression for the energy of
gluons, per unit rapidity, produced shortly after a very high energy nuclear collision.

The problem of initial conditions [16] for nuclear scattering can be formulated in the
classical EFT [10] in the gauge Aτ = 0. Matching the Yang–Mills equations DµF µν = Jν

in the four light cone regions, along the light cone, one obtains for the gauge fields
in the forward light cone, at proper time τ = 0, the relations Ai = Ai

1 + Ai
2 and

A± = ±igx±[Ai
1, A

i
2]/2. Here Jν = Σ1,2δ

ν,±δ(x∓)ρ1,2(x⊥) are random light cone sources
corresponding to the valence or hard glue sources in the two nuclei. The transverse
pure gauge fields Ai

1,2(ρ
±), with i = 1, 2 are solutions of the Yang–Mills equations for

each of the two nuclei before the collision. With these initial conditions, the Yang–
Mills equations can be solved in the forward light cone to obtain gluon configurations
at late proper times. Since the initial conditions depend on the sources ρ±, averages
over different realizations of the sources — specified by the weight in Eq. (1) — must be
performed.

Perturbative solutions for the number distributions in transverse momentum, per
unit rapidity, were obtained in Refs. [10, 11]. These were shown to be infrared divergent.

2



In the classical EFT, this divergence is logarithmic. The number distributions have the
form

nk⊥ ∝
1

αS

(
αSµ

k⊥

)4

ln

(
k⊥
αSµ

)
, (2)

for k⊥ � αSµ. The perturbative description breaks down at k⊥ ∼ αSµ. Thus, for
robust predictions of gluon multiplicity distributions, a fully non-perturbative study of
the classical EFT is necessary [12].

The model is discretized on a lattice in the transverse momentum plane. Boost in-
variance and periodic boundary conditions are assumed. The lattice Hamiltonian is the
Kogut–Susskind Hamilitonian in 2+1–dimensions coupled to an adjoint scalar field. The
lattice field equations are then solved by computing the Poisson brackets, with initial
conditions that are the lattice analogs of the continuum initial conditions mentioned ear-
lier. Technical details of our simulations can be found in Refs. [13, 15]. Our simulations
are presently only for an SU(2) gauge theory — the full SU(3) case will be studied later.

The scale g2µ and the linear size of the nucleus L are the only physically relevant
dimensional parameters of the classical EFT. Any dimensional quantity P well defined
within the EFT can then be written as (g2µ)d fP (g2µL), where d is the dimension of
P . All the non–trivial physical information is therefore contained in the dimensionless
function fP (g2µL). On the lattice, P will generally depend on the lattice spacing a; this
dependence can be removed by taking the continuum limit a → 0. Assuming g = 2,
the physically relevant values of g2µ for RHIC and LHC energies are ∼ 2 GeV and ∼ 4
GeV respectively. Also, assuming central Au–Au collisions, we obtain L = 11.6 fm as the
physical linear dimension of our square lattice. Thus, g2µL ≈ 120 (240) for RHIC (LHC).
In Ref. [15], we computed the initial energy density, per unit area per unit rapidity, to
be dE/L2/dη = fE (g2µ)3. We computed fE as a function of g2µL, and extrapolated
our results for fE to the continuum limit. We could however just as well expressed our
result as dE/πR2/dη = cE(QsR) (Qs)

3, with cE ∼ 4.3–4.9 in the region of interest.

We will now report on our results for the initial multiplicity of gluons produced at
central rapidities in very high energy nuclear collisions. This quantity, while not directly
observable, is related to the number of hadrons produced at central rapidities [20]. The
initial multiplicity and momentum distribution of gluons also determine the equilibration
time, the temperature and the chemical potential of the QGP [17, 24]. The various
signatures of QGP formation are highly sensitive to these quantitites [1].

We must first clarify what we mean by the number of quanta in the interacting, non-
Abelian gauge theory at hand. To motivate the discussion, let us first consider a free
field theory whose Hamiltonian in momentum space has the form

Hf =
1

2

∑
k

(
|π(k)|2 + ω2(k) |φ(k)|2

)
, (3)

where φ(k) is the kth momentum component of the field, π(k) is its conjugate momentum,
and ω(k) is the corresponding eigenfrequency. The average particle number of the k-th
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mode is then
N(k) = ω(k)〈|φ(k)|2〉 =

√
〈|φ(k)|2|π(k)|2〉, . (4)

In our case, the average 〈〉 is over the initial conditions.

Clearly, any extension of this notion to interacting theories should reduce to the
standard free-field definition of the particle number in the weak coupling limit. However,
this requirement alone does not define the particle number uniquely outside a free theory.
We therefore use two different generalizations of the particle number to an interacting
theory. Each has the correct free-field limit. Even though the fields in question are
strongly interacting at early times, they are only weakly coupled at late times, and it is
only at this stage that it becomes reasonable to define particle number. We verify that
the two definitions agree in this weak-coupling regime.

Our first definition of the multiplicity is straightforward. We impose the Coulomb
gauge condition in the transverse plane, ~∇⊥ · ~A⊥ = 0, and substitute the momentum
components of the resulting field configuration into Eq. (4). One option now is to as-
sume ω(k⊥) to be the standard massless (lattice) dispersion relation and use the middle
expression of Eq. (4) to compute N(k⊥). Alternatively, we can determine N(k⊥) from
the rightmost expression of Eq. (4); the middle expression of Eq. (4) can then be used
to obtain ω(k⊥). The second option is preferable; it does not require us to assume that
the dispersion relation is linear.

Our second definition is based on the behavior of a free-field theory under cooling.
Consider a simple relaxation equation for a field in real space,

∂tφ(x) = −∂H/∂φ(x), (5)

where t is the cooling time (not to be confused with real or proper time) and H is the
Hamiltonian. For a free field theory (H = Hf) the relaxation equation has exactly the
same form in the momentum space with the solution φ(k, t) = φ(k, 0) exp(−ω2(k)t). The
potential energy of the relaxed free field is V (t) = (1/2)

∑
k ω2(k)|φ(k, t)|2. It is then

easy to derive the following integral expression for the total particle number of a free-field
system:

N =

√
8

π

∫ ∞
0

dt√
t
V (t). (6)

Eq. (5) can be solved numerically for interacting fields. Subsequently, V (t) can be deter-
mined, and N can be computed by numerical integration. Note that in a gauge theory
the relaxation equations are gauge-covariant, and the relaxed potential V (t) is gauge-
invariant, entailing gauge invariance of this definition of the particle number. This is an
attractive feature of the cooling method. On the other hand, unlike the Coulomb gauge
computation discussed earlier, this cooling technique presently only permits determina-
tion of the total particle number. It cannot be used to find the number distribution
N(k⊥).

Both our definitions cease to make sense if the system is far from linearity. In partic-
ular, if the theory has metastable states, and the system relaxes to one of these states,
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the right hand side of (6) will diverge. The expression in Eq. (4) can then still be for-
mally determined in the Coulomb gauge but its interpretation as a particle number is
problematic. This situation deserves special attention and will be discussed in detail
elsewhere. We did not observe any effects of metastabilty within the range of parame-
ters of the current numerical study. In particular, we verified the convergence of Eq. (6)
with respect to the upper limit of integration.

We now present our results using both the techniques discussed. We begin with the
number distribution, which can only be computed in Coulomb gauge. We have verified,
for g2µL = 35.35, that in the range of values of g2µa considered here the system is close
to the continuum limit. This is consistent with our earlier analysis of the lattice spacing
dependence of a more ultraviolet-sensitive quantity, the energy density [15]. In Fig. 1a,
we plot the gluon number distribution, n(k⊥) ≡ dN/L2/dk2

⊥ = N(k⊥)/(2π)2 versus k⊥
for fixed g2µL = 35.5, but for different values of the lattice spacing g2µa. For large
k⊥, the finest lattice (g2µa = 0.138) agrees well with the lattice perturbation theory
(LPTh) analogue of Eq. (2). At smaller k⊥, the distribution is softer, and converges to a
constant value. In Fig. 1b, we plot the gluon distribution in the infrared, at fixed g2µa,
for different g2µL (148.5 and 297). We notice that these distributions are nearly universal
and independent of g2µL! Also, the convergence of the distribution to a constant value
is more clearly visible in Fig. 1b.

When k⊥ ≤ g2µ, non–perturbative effects qualitatively alter the perturbative num-
ber distribution, rendering it finite in the infrared. Unfortunately, since these effects
are large, an analytical understanding of the behavior at low k⊥ is lacking. Our re-
sults, despite being universal, are not simply fit by any of the physically motivated
parametrizations we have considered.

From our previous discussion, the formula

1

L2

dN

dη
=

1

g2
fN(g2µL) (g2µ)2 , (7)

relates the number of produced gluons per unit area per unit rapidity at zero rapidity to
g2µ. We have computed fN on the lattice using the two techniques discussed earlier. Our
result for fN as a function of g2µL, for the smallest values of g2µa feasible, are plotted
in Fig. 2. We see that the agreement between the cooling and Coulomb techniques at
larger values of g2µL is excellent. It is not as good at the smaller values – in general,
the cooling number is more reliable [18]. We also note that Fig. 2 demonstrates that the
distributions in Fig. 1b are not quite universal — otherwise, fN would be a constant.
We see instead that it has a weak logarithmic rise with g2µL for larger g2µL’s. Table 1
lists fN for various g2µL. The third row is the Coulomb gauge number after cooling —
see Ref. [18].

In Fig. 3, we plot the dispersion relation ω(k⊥) vs k⊥ using the relation Eq. (4).
All the dispersion curves rapidly approach the ω(k⊥) = k⊥ asymptote characteristic of
on-shell partons, while exibiting a mass gap at zero momentum. We reserve for a later
work a detailed study of this mass gap and its role in rendering the number distributions
infrared finite.
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g2µL 35.36 70.71 106.1 148.5 212.1 297.0
g2µa .276 .276 0.207 .29 .41 .29
fN (cooling) .116 ± .001 .119 ± .001 .127 ± .001 .138 ± .001 .146 ± .001 .151 ± .001
fN (Coulomb) .127 ± .002 .125 ± .002 .135 ± 0.001 142± .001 .145 ± .001 .153 ± .001
fN (res.)×103 14± 2 7.8± 0.2 8.9 ± 0.2 5.6 ± 0.1 7.12 ± 0.08 4.83 ± .04

Table 1: Values of fN vs g2µL, for fixed g2µa, plotted in Fig. 2. fN (res.) is defined in
Ref. [18].

We can compare our results for the number distribution to the one predicted by A.
H. Mueller [17]. In terms of Qs and R, we can re–write Eq. 7 as

1

πR2

dN

dη
= cN

N2
c − 1

Nc

1

4π2αS
Q2

s .

Mueller estimates the non–perturbative coefficient cN to be of order unity. If we take
fN = 0.14± 0.01, as is the case for much of the range studied, we find cN = 1.29± 0.09,
a number of order unity as predicted by Mueller. Despite this close agreement, the
transverse momentum distributions, shown in Fig. 1a and 1b, and discussed earlier, look
quite different from Mueller’s guess of θ(Q2

s − k2
⊥). The θ–function distribution was only

a rough guess to represent a qualitative change of the distributions at k⊥ ∼ Qs.

A large number of models of particle production in nuclear collisions at RHIC and
LHC energies can be found in the literature. A nice recent summary of their various
predictions and relevant references can be found in the compilation of Ref. [21]. Naively
extrapolating our results to SU(3), we find for Au-Au central collisions at RHIC energies,
dN/dη ∼ 950 for fN = 0.132± 0.006 (g2µL ≈ 120 — we take the mean of the 106 and
148 cooling point). Similarly, for LHC energies fN = 0.148 ± 0.002 (g2µL ∼ 255 —
the mean of the 212 and 297 cooling point), one finds dN/dη ∼ 4300. In particular,
comparing our predictions with those of pQCD based models [19], we find our numbers
to be in rough agreement. However, if we include a K factor like many of these models
do, our numbers will be roughly a factor of 2 larger.

There is considerable uncertainity in the value of Qs because the gluon densities at
the relevant x and Q2 are ill–known. Since the multiplicity depends quadratically on
Qs, a prediction of the same is perforce unreliable. Distinguishing between different
models will therefore require, at the very least, testing their predictions for the scaling
of multiplicities with A and with

√
s. In our case, Qs ∼ A1/6, hence from Eq. 7 the

number per unit rapidity will, up to logarithms of A, be proportional to A. In the
EFT, one naively expects the energy dependence to be a power law, the power being
determined by the rise in the gluon density at small x. Quantitative estimates of the
dependence of Qs with energy in the saturation region are being developed. Predictions
from other models vary significantly, ranging from a power law dependence [22] of Qs to

Qs ∝ exp(
√

ln(s/s0)), where s0 is a constant. In the latter case [23], it is claimed that a
good fit to the multiplicity from existing high energy hadron scattering data is obtained.
Data from RHIC will help constrain the energy dependence of Qs.
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The reader should also note that our relations are derived only for the initial parton
multiplicity distributions at central rapidities. These provide the initial conditions for
the subsequent evolution of the system, which can be investigated in a transport ap-
proach [17, 24]. The rate of chemical equilibration, and uncertainities due to hadroniza-
tion also have to be taken into account in predictions of observables such as charged
hadron multiplicities. Conversely, these observables may help constrain the saturation
scale Qs, and inform us about the very earliest stages of nuclear collisons.

In summary, we have derived a non–perturbative relation between the multiplicity
of produced partons and the saturation scale of parton distributions in high energy
nuclear collisions. We have computed number distributions which have the predicted
perturbative behavior in the ultraviolet, and are finite in the infrared. At present, in our
approach, we are only able to make qualitative “ball-park” predictions. However, we have
developed a framework in which these can be quantified and extended in a consistent
manner to study a large number of final state observables in heavy ion collisions.
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Figure 1: a: n(k⊥) ≡ dN/L2/d2k⊥ as a function of the gluon momentum k for g2µL =
35.35 and the values 0.138 (squares), 0.276 (plusses), and 0.552 (diamonds) of g2µa. The
gluon momentum k is in units of g2µ. The solid line is a fit of the lattice analog of the
perturbative expression Eq. (2) to the high-momentum part of the g2µa = 0.138 data. b:
n(k⊥) at soft momenta at g2µa = 0.29 for the values 148.5 (plusses) and 297 (diamonds)
of g2µL.
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relaxation method (plusses) and by the Coulomb gauge fixing (diamonds). The values of
g2µa are 0.276 for g2µL = 35.35 and g2µL = 70.8; 0.29 for g2µL = 148.5 and g2µL = 297;
and 0.414 for g2µL = 212.
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Figure 3: Gluon dispersion relation ω(k⊥) obtained from Eq. (4), for the values 70.8
(diamonds), 148.5 (plusses), and 297 (squares), with the values of g2µa as in Figure 2.
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