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The LEP-2 Monte Carlo Workshop 1999/2000

Four-Fermion Production in Electron-Positron Collisions

Four-Fermion Working Group Report

Abstract

This report summarises the results of the four-fermion working group of the LEP2-MC workshop,
held at CERN from 1999 to 2000. Recent developments in the calculation of four-fermion processes in
electron-positron collisions at LEP-2 centre-of-mass energies are presented, concentrating on predictions
for four main reactions: W-pair production, visible photons in four-fermion events, single-W production
and Z-pair production. Based on a comparison of results derived within different approaches, theoretical
uncertainties on these predictions are established.
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1. Introduction

During the year 1999 an informal workshop on Monte Carlo (MC)generators and programs took place
at CERN, concentrating on processes ine+e− interactions at LEP 2 centre-of-mass energies (161 GeV
to 210 GeV). One of the goals was to summarize and review critically the progress made in theoretical
calculations and their implementation in computer programs since the 1995 workshop onPhysics at
LEP2. One of the reasons for this report was the need of having an official statement on various physics
processes and the accuracy of their predictions, before deciding on LEP 2 activities in the year 2000.

This part of the workshop report summarizes the findings in the area ofFour-Fermionfinal states.
At the beginning of the workshop the following goals were identified for theFour-Fermionsub-group:

a) Describe the new calculations and improvements in the theoretical understanding and in the up-
graded MC implementations.

b) Indicate where new contributions have changed previous predictions in the MC adopted by the
collaborations, and specify why, how and by how much.

c) In those cases where a substantial discrepancy has been registered and the physical origin has been
understood, recommendations should be made on what to use.

d) In those cases where we have found incompleteness of the existing MC, but no complete improve-
ment is available, we should be able to indicate a sound estimate of the theoretical uncertainty, and
possibly way and time scale for the solution.

Our strategy is determined by the physics issues arising in the experimental analyses performed at LEP 2.
Therefore, the four LEP Collaborations have been asked to provide a list of relevant processes together
with the level of theoretical accuracy needed.

Clearly, the LEP experiments investigate many different processes. For theoretical predictions
we thus have to manage with lots of different sets of cuts. At the beginning of our activities the four
experiments have presented us with lists that reflect ratherdiverse styles and different approaches: The
complexity of the observables varied greatly, ranging fromthose defined by simple phase-space cuts
on four-fermion (+ photon) level to complete event-selection procedures requiring parton shower and
hadronization of quark systems.

An effort was made to settle as much as possible on a set of quasi-realistic but simple cuts for each
process. We have collected processes and/or phase space regions where improved theoretical predictions
are desirable. A weight has been assigned to each process according to its relevance and urgency.

The focus of activity has been on improving the theoretical predictions for the relevant processes
and/or phase space regions. Also, all contributors have been asked to give an estimate for the remaining
theoretical uncertainty. As a consequence, the output of the whole operation should not be a mere
collection of comparison tables but a coherent attempt in assessing the theoretical uncertainty to be
associated to any specific process.

The realm of theoretical uncertainty is ill defined and in order to reach a general consensus one
cannot be satisfied with just some statement on the overall agreement among different programs. When-
ever differences are found, one has to make sure that they aredue to physics, and not to some different
input. So our project had to foresee a preliminary phase withmore of a technical benchmark. Once triv-
ial discrepancies are understood and sorted out, one can start digging into inevitable differences arising
from different implementations of common theoretical wisdom.

In a vast majority of cases the main theoretical problem is represented by the inclusion of QED ra-
diation. Therefore, one of the main questions was: can we improve upon our treatment of QED radiation
and/or give some safe estimate of the theoretical uncertainty associated with it?

Below we will present our reference table of four-fermion processes. It is an idealised common
ground where, in principle, all theoretical predictions should be compared. More advanced setups would
be accessible only to a more limited number of generators, built for that specific purpose.



6

It is useful to recall that the ultimate, perfect program does not exist and, most likely, will never
exist. Roughly speaking, programs belong to two quite distinct classes. On one side there are event
generators, usually interfaced with parton shower and hadronization packages. They may miss some fine
points of the theoretical knowledge but represent an essential ingredient in the experimental analyses
concerning the evaluation of signal efficiencies and backgrounds. Thus they create the necessary bridge
between the raw data recorded by the detectors and the background-subtracted efficiency-corrected re-
sults published. At the other end of this cosmos we have semi-analytical programs that are not meant to
generate events. Rather, they show their power in dealing with the signal, furnishing the implementation
of (almost) everything available in the literature concerning the calculation of specific processes. In ei-
ther case, we want to know about the theoretical uncertainty, process by process, to make clear which
program is able to achieve that level of accuracy under whichconfiguration. ForW -pair production,
however, the scenario is slightly changed: We have now MC event generators that, at the same time,
represent a state-of-the-art calculation. Nevertheless,we do not have yet the ultimate MC: the one with
radiative corrections, virtual/soft/hard photons, DPA, complete phase-space including single-W , single-
Z, Zγ∗ and able to produce weight-1 events in finite time.

The results presented in this report are based on several different approaches and on comparisons
of their numerical predictions. They are calculated with the following computer codes:BBC, Comp-
HEP, GENTLE, grc4f , KORALW/YFSWW/YFSZZ, NEXTCALIBUR, PHEGAS/HELAC, RacoonWW,
SWAP/WRAP, WPHACTandWTO/ZZTO.

This article is organised as follows. In Sect. 2. we present the four-fermion processes looked at
in detail. Then we review the most recent theoretical developments in four-fermion physics ine+e−

interactions. In Sect. 4. we discuss the CC03σWW cross-section and predictions based on the DPA. Here
different approaches are compared. In Sect. 5. we discuss the radiative process with4f+γ final states. In
Sect. 6. the single-W production is critically discussed. Finally the NC02 cross-section,σZZ is analysed
in Sect. 7. Conclusions and outlook are presented in Sect. 8.
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2. Four-fermion processes

Here we present our basic reference table and specify the calculational setup. One should read it as
summarizing our original manifest. After reading the following sections, it will be instructive to come
back here with a critical eye: not all the items and questionslisted below have found a satisfactory
answer. This was, somehow, foreseeable. If one thinks carefully one will easily discover some important
message also for those issues that remain unsolved: they cannot be solved in any reasonable time scale
and the associated effect is a real source of uncertainty.

2.1 List of processes

The following list provides the observables together with precision tags in%, as requested by the exper-
imental Collaborations. The accuracy of MC simulations should be better than the requested precision
tag, i.e. thephysicsuncertainty should be smaller and at worst the one indicated. How much better is left
to the contributors. For benchmarking it is certainly advisable to use the maximum available precision.

In general, radiative corrections and radiative photons inthe final state should be considered for all
processes, including the discussion of photon energy and polar-angle spectra. Typical minimal require-
ments on real photons are: energyEγ > 1 GeV; polar angle| cos θγ | < 0.985, 0.997, 0.9995 depending
on channel; and minimal angle between photon and any chargedfinal-state fermionξ > 5◦.

• WW andZZ type signal:

1. e+e− → WW → all (CC03). The full phase space is needed and the inclusive cross-section
accuracy is0.2%, which is1/3 of experimental accuracy combining all LEP 2 energies,
The spectrum for the photon energy and the polar angle is needed (| cos θγ | < 0.985 (0.997)).

2. e+e− → ZZ → all (NC02). The full phase space is needed and the inclusive cross-section
accuracy is1%. The spectrum for the photon energy and the polar angle is needed (| cos θγ | <
0.985 (0.997)).

3. e+e− → lνlν(γ) where all{e/µ/τ} ⊗ {e/µ/τ} combinations are requested with the following
conditions: (| cos θl1/l2 | < 0.985, El1/l2 > 5 GeV,M(l+l−) > 10 (45) GeV (full and high-mass
region). The inclusive cross-section accuracy is4% for individual combination; the inclusive cross-
section accuracy is1% for the summed one; photon energy and polar angle spectrum (| cos θγ | <
0.985 (0.997)).

4. e+e− → qqeν(γ) (CC20),q-flavour blind,| cos θe| < 0.985, Ee > 5 GeV,M(qq) > 10 (45) GeV
(full and high-mass region); inclusive cross-section accuracy is 1% (5% for low-mass region);
photon energy and polar angle spectrum (| cos θγ | < 0.985 (0.997)).

5. e+e− → qqµν(γ) ande+e− → qqτν(γ) (incl. tau polarization in tau decay) (CC10),| cos θµ/τ | <
0.985, Eµ/τ > 5 GeV,M(qq) > 10 (45) GeV (full and high-mass region), inclusive cross-section
accuracy1%. Photon energy and polar angle (| cos θγ | < 0.985 (0.997)) spectrum.

6. e+e− → qqqq(γ), flavour blind,bbqq, bbbb. At least two pairs withM(qi, qj) > 10 (45) GeV
(full and high-mass region), inclusive cross-section accuracy1%. photon energy and polar angle
(| cos θγ | < 0.985 (0.997)) spectrum.

7. e+e− → qql+l−(γ), q-flavour blind, heavyq-flavors, l = e/µ/τ , | cos θl1| < 0.985, no cut on
2nd lepton (only one lepton tagged),M(qq) > 10 (45) GeV (full and high-mass region), inclusive
cross-section accuracy2%. Photon energy and polar angle (| cos θγ | < 0.985 (0.997)) spectrum.

8. e+e− → qql+l−(γ), q-flavour blind, heavyq-flavors, | cos θl1|, | cos θl2| < 0.985 (both leptons
tagged), full and high-mass regions:M(l+l−) > 10 (45) GeV,M(qq) > 10 (45) GeV, inclusive
cross-section accuracy2%. Photon energy and polar angle (| cos θγ | < 0.985 (0.997)) spectrum.

9. e+e− → qqe+e−(γ), q-flavour blind, heavyq-flavors, with one electron in the beam pipe,| cos θe| >
0.997, and one electron tagged,| cos θe| < 0.985, M(qq) > 10 (45) GeV (full and high-mass re-
gion) . Photon energy and polar angle (| cos θγ | < 0.985 (0.997)) spectrum.
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10. e+e− → qqνν(γ), q-flavour blind, heavyq-flavors,M(qq) > 10 (45) GeV, inclusive cross-
section accuracy4% (10% for low-mass region). Photon energy and polar angle (| cos θγ | <
0.985 (0.997)) spectrum.

11. e+e− → l+l−L+L−(γ) ande+e− → l+l−l+l−(γ) (all possible charged lepton flavour combina-
tions): 3 or 4 leptons within acceptance| cos θ| < 0.985,M(l+l−) andM(L+L−) > 10 (45) GeV
(full and high-mass region). Photon energy and polar angle (| cos θγ | < 0.985 (0.997)) spectrum.

• Single-W type signal:

1. e+e− → qqeν(γ), | cos θe| > 0.997, eitherM(qq) > 45 GeV orEq1
, Eq2

> 15 GeV, inclusive
cross-section accuracy3%, photon energy and polar angle (| cos θγ | < 0.997 (0.9995)) spectrum.

2. e+e− → eνeν(γ), | cos θe| > 0.997, Ee > 15 GeV, | cos θe| < 0.7 (0.95), inclusive cross-section
accuracy5%, photon energy and polar angle (| cos θγ | < 0.997 (0.9995)) spectrum.

3. e+e− → eνµν(γ) ande+e− → eντν(γ), | cos θe| > 0.997, Eµ/τ > 15 GeV, | cos θµ/τ | < 0.95,
inclusive cross-section accuracy5%, photon energy and polar angle (| cos θγ | < 0.997 (0.9995))
spectrum.

This list deserves already few words of comment.

For hadronic systems (CC or NC), there is usually a requirement of at least45 GeV invariant mass
(W andZ signal) or at least10 GeV (background for other processes). Even lower invariantmasses,
say down to1 GeV, should be handled by the dedicatedγγ subgroup. For leptons, there should be no
problem to go down to lower invariant masses or energies thanlisted above.

We consider as radiative events those events with real photons where at least one photon passes
the photon requirements listed above, and as non-radiativeevents those with no photon or only photons
below the minimal photon requirements. In case of non-radiative and radiative events, the cross section
and its accuracy is needed. In case of non-radiative events,this amounts to adding up virtual and soft
radiative corrections. In case of radiative events, some distributions are needed in addition, in particular
photon energy and polar angle, and photon angle with respectto the nearest charged final-state fermion.

2.2 Questions to theory

We now elaborate in more detail on specific questions associated to specific processes.

• O(α) electroweak corrections toe+e− →WW → 4 f.

Until 1999, the LEP experiments were using a2% theoretical uncertainty on the calculation of
the CC03W -pair cross section, not changed since the 1995 LEP 2 workshop. Although no complete
one-loopO (α) EW calculation exist yet for off-shelle+e− → WW → 4 f production, we wish the
theoretical uncertainty to be below1% (0.5% if possible) with justification. Also the uncertainties in
CC03 vs.4f corrections when measuring theWW cross section should be understood.

• Photon radiation (ISR) withpt in WW andZZ-dominated channels.

The principle effects will be on the selection efficiency andon the differential distributions used
for W mass and triple gauge boson coupling (TGC) studies. Theinterest in photons is twofold: photons
explicitly identified as such - usually at larger polar angles - and photons which simply create noticeable
activity in the detector. The latter is, for example, also important in single-W type analysis, therefore the
photon angular range is extended to very low polar angles.

• SingleW channels.

For the single-W process there are several issues to be addressed. In the region of high invariant
masses of theW boson (above45 GeV) this process is important for both searches and TGC measure-
ments. One topic of investigation should be ISR: this process is dominated byt-channel diagrams,
whereas the current MC program implement ISR assuming s-channel reactions. A second issue is the
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treatment of theαQED scale, not only for single-W but also for single-Z and forZγ∗. Is it better to
re-weight on a event by event basis or on a diagram basis?

One of the outcomes of the workshop should be a recommendation on the mass cut which distin-
guishes the high mass region (more reliable) from the low mass region, i.e. the lower value to which the
5% (or better) precision tag applies.

The importance of ISR in this channel is threefold: (a) change in total cross-section due to normal
radiative corrections, (b) change in event distributions used to make cuts which changes the fraction of
the total that fall inside our cuts, (c) fraction of events with identified photons - this forms a background
to some of the chargino searches where a detected gamma is required.

Since the single-W topology is defined as the one where a high mass object is foundin the detector
and the electron is not observed, we would like to know how thepresence ofpt ISR changes the fraction
of events where the electron getskickedout of the beam-pipe, how the differential distributions are
distorted for TGC studies and what the explicit hard photon rate is.

The low mass region (below45 GeV) is mostly important for searches and studied within the
γγ sub-group. One would like to trust the MC predictions down to5 − 10 GeV invariant mass for the
hadronic system. The required precision should also be around 5 to 10%.

2.3 Input parameter set

A set of parameters must be specified for the calculation ofO (α) predictions (CC03 and to some extent
also NC02). Once radiative corrections are included, the question of Renormalization Scheme (RS) and
of Input Parameter Set (IPS) becomes relevant. For calculation, the following input parameters are used:

M
Z

= 91.1867GeV, 1/α(0) = 137.0359895,

GF = 1.16637 × 10−5 GeV−2. (1)

As far as masses are concerned one should use:

Leptons: PDG values, i.e.

me = 0.51099907MeV, mµ = 105.658389MeV,

mτ = 1.77705GeV. (2)

Quarks: for light quarks one should make a distinction; for phase space:

mu = 5MeV, md = 10MeV, only relevant for single-W, (3)

while, in principle, these masses shouldnot be used in derivingαQED(s) from αQED(0).

Here the recommendation follows the agreement in our community on using the following strategy for
the evaluation ofαQED at the mass of theZ. Define:

α(M
Z
) =

α(0)

1 − ∆α(5)(M
Z
) − ∆top(M

Z
) − ∆

αα
S

top (M
Z
)
, (4)

where one has∆α(5)(M
Z
) = ∆αlept + ∆α

(5)
had.

The input parameter should be∆α(5)
had, as it is the contribution with the largest uncertainty, while

the calculation of the top contributions to∆α is left for the code. This should become common to all
codes. Codes should include, for∆αlept, the recently computedO

(

α3
)

terms of [1] and use as default

∆α
(5)
had = 0.0280398, taken from [2]. Using the default one obtains1/α(5)(M

Z
) = 128.877, to which

one must add thett contribution and theO (αα
S
) correction induced by thett loop with gluon exchange,
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[3]. Therefore, light quark masses shouldnotappear in the evaluation ofαQED(M
Z
) and one should end

up with:

1/α(M
Z
) = 128.887,

for M
Z

= 91.1867GeV, mt = 175GeV,

M
H

= 150GeV, α
S
(M

Z
) = 0.119. (5)

Furthermore, one should use:

α
S
(M

Z
) = 0.119, M

H
= 150GeV, M

W
= 80.350GeV. (6)

The quantitiesΓ
Z
,Γ

W
should be understood as computed in the minimal standard model, e.g. Γ

Z
=

2.49471GeV andΓ
W

= 2.08699GeV for our IPS.

Now we come to the most important point, what to do with IPS in the presence of radiative correc-
tions. In principle, all RS and all IPS are equally good and accepted, and differences are true estimates
of some component of the theoretical uncertainty. However,we want to make sure that differences are
not due to technical precision. The IPS that we want to specify is over-complete, let us repeat,

GF = 1.16637 × 10−5 GeV−2, 1/α(M
Z
) = 128.887,

M
Z

= 91.1867GeV, M
W

= 80.350GeV,

α
S
(M

Z
) = 0.119, M

H
= 150GeV. (7)

Clearly, once radiative correction are on,sθ = sxxx−scheme
θ and we don’t care anymore since

enough radiative corrections should be included to make allschemes equivalent toO (α). Thus, for
O (α) numberssθ drops out. Perhaps we should give the highest marks to schemes whereM

W
is in the

IPS; after all, experiments measureM
W

at LEP 2 and any scheme whereM
W

is not a primary quantity
in the IPS is as bad as a scheme for LEP 1 whereM

Z
is a derived quantity.

Nevertheless, we can use the over-completeness of the present IPS to set some internal consistency:
it is a good idea to have an over-complete set of IPS, nevertheless consistent, so that everybody can make
his favourite choice of the RS. Since we include values forα(M

Z
) and forGF we can, as well, fine-tune

the numbers so that the internal relations hold, to the best of our knowledge. The recommendation, in
this case, is as follows:

• write down your favorite equation

f (M
Z
,M

W
,mt,MH

, α
S
(M

Z
), α(0), GF ) = 0, (8)

• keep everything fixed butmt which, in turn, is derived as a solution of the consistency equation
(for OMS this involves typically∆r).

Even this solution is RS-dependent but variation should be minimal, sort of irrelevant. For instance, one
could use the following result (derived fromTOPAZ0[4]):

mt = 174.17GeV Default for CC03O (α) . (9)

With M
W

= 80.350GeV andM
H

= 150 GeV we are in a lucky situation,mt doesn’t change too much.
For more solutions, we refer to Tab.(1).

2.4 Comparisons for4 f results

There is an old tradition in LEP physics, new theoretical ideas and improvements should always be
cross-checked before being adopted in the analysis of the experimental data. In this Report we present
accurate and detailed comparisons between different generators. In most cases the authors have agreed to
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M
H

[ GeV] mt [ GeV]

100 170.03
150 174.17
180 176.14
250 179.90

Table 1:mt as a function ofM
H

.

coordinate their action in understanding the features of the generators, their intrinsic differences and the
goodness of their agreement or disagreement for the predictions. In so doing, and for the attuned com-
parisons, they can exclude that eventual disagreement may originate from trivial sources, like different
input parameters.

Before entering into a detailed study of the numerical results it is important to underline how an
estimate of the theoretical uncertainty emerges from the many sets of numbers obtained with the available
generators. First of all one may distinguish betweenintrinsic andparametricuncertainties. The latter are
normally associated with a variation of the input parameters according to the precision with which they
are known. These uncertainties will eventually shrink whenmore accurate measurements will become
available.

In this Report we are mainly devoted to a discussion of the intrinsic uncertainties associated with
the choice of one scheme versus another. With one generator alone one cannot simulate the shift of a
given quantity due to a change in the renormalization scheme. Thus the corresponding theoretical band
in that quantity should be obtained from the differences in the prediction of the generators. On top of
that we should also take into account the possibility of having different implementations of radiative
corrections within one code. Many implementations of radiative corrections and of DPA are equally
plausible and differ by non-leading higher order contributions, which however may become relevant in
view of the achieved or projected experimental precision. This sort of intrinsic theoretical uncertainty
can very well be estimated by staying within each single generator. However, since there are no reasons
to expect that these will be the same in different generators, only the full collection of different sources
will, in the end, give a reliable information on how accuratean observable may be considered from a
theoretical point of view.
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3. Phenomenology of unstable particles

In order to extract theWW signal from the full set ofe+e− → 4f processes, the CC03 cross-section
was introduced and discussed in [5]. In lowest order, this cross-section is simply based on the three
WW signal diagrams with the full four-particle kinematics with off-shellW bosons. Compared to the
full set of diagrams, the CC03 subset depends only triviallyon the final state and allows to combine all
channels easily. However, since the CC03 cross-section is based on a subset of diagrams, it is gauge-
dependent and usually defined in the ’t Hooft–Feynman gauge.While the CC03 cross-section is not an
observable, it is nevertheless a useful quantity at LEP 2 energies where it can be classified as a pseudo-
observable. It contains the interesting physics, such as the non-abelian couplings and the sensitivity of
the total cross section toM

W
near theW -pair threshold. The goal of this common definition is to be able

to combine the different final state measurements from different experiments so that the new theoretical
calculations can be checked with data at a level better than1%. Note, however, that the CC03 cross-
section will become very problematic at linear-collider energies, where the background diagrams and the
gauge dependences are much larger.

It is worth summarizing the status of theWW cross-section prior to the 2000 Winter Conferences.
Nominally, any calculation fore+e− → WW → 4f was a tree level calculation and one could try the
standard procedure of including, in a reasonable way, as much as possible of the universal corrections
by constructing an improved Born approximation (hereafterIBA). This is the way the data have been
analyzed so far, mostly with the help ofGENTLE. Different programs have been compared for CC03, see
Ref. [5]: when one puts the same input parameters, renormalization scheme, etc, a technical agreement
at the0.1% level is found. The universal corrections are not enough, since we wish the theoretical
uncertainty to be below1% (0.5% seems possible) with justification.

Indeed, we have clear indications that non-universal electroweak corrections forWW (CC03)
cross-section are not small and even larger than the experimental LEP accuracy.GENTLEwill pro-
duce a CC03 cross-section, typically in theGF -scheme, with universal ISR QED and non-universal
ISR/FSR QED corrections, implemented with the so-called current-splitting technique. The correspond-
ing curve has been used for the definition of the Standard Model prediction with a±2% systematic error
assigned to it. This error estimate [42, 133] is based on the knowledge of both leading and fullO (α)
corrections to on-shellW -pair production. Note that, inGENTLE, the non-universal ISR correction with
current-splitting technique reads as+0.4% effect at LEP 2 energies.

Recently, a new electroweakO (α) CC03 cross-section has become available, in the framework of
DPA, showing a result that is2.5÷ 3% smaller than the CC03 cross-section fromGENTLE. This is a big
effect since the combined experimental accuracy of LEP experiments is even smaller. It is, therefore, of
the upmost importance to understand the structure of a DPA-corrected CC03 cross-section.

The double-pole approximation (DPA) of the lowest-order cross-section emerges from the CC03
diagrams upon projecting theW -boson momenta in the matrix element to their on-shell values. This
means that the DPA is based on the residue of the double resonance, which is a gauge-invariant quantity,
because it is directly related to the sub-processes of on-shell W -pair production and on-shellW decay.
In contrast to the CC03 cross-section, the DPA is theoretically well-defined. The price to be paid for this
is the exclusion of the threshold region, where the DPA is notvalid. On the other hand, the DPA provides
a convenient framework for the inclusion of radiative corrections.

3.1 Dealing with unstable particles

Most of ourtechnicalproblems originate from the complications naturally pertaining to the gauge struc-
ture of the theory and to the presence of unstable particles.As an interlude, we would like to summarize
the nominal essence of the theoretical basis of all generators. In this respect one should remember that
several, new, theoretical ideas were fully developed also as a consequence of the previous workshop on
WW -physics (Physics at LEP2, Yellow report CERN/96-01, February 1996) and, in turn, many gener-
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ators have profited from the most recent theoretical development. Furthermore, this Section will be a
natural place where to add some consideration about the fine points in the DPA-procedure.

Four-fermion production processes, with or without radiative corrections, all involve fermions in
the initial and final state and unstable gauge bosons as intermediate particles. Sometimes a photon is also
present in the final state. If complete sets of graphs contributing to a given process are taken into account,
the associated matrix elements are in principle gauge-invariant, i.e. they are independent of gauge fixing
and respect Ward identities. This is, however, not guaranteed for incomplete sets of graphs like the ones
corresponding to the off-shellW -pair production process (CC03). Indeed this process has been found to
violate theSU(2) Ward identities [6].

In addition, the unstable gauge bosons that appear as intermediate particles can give rise to poles
1/(p2 −M2) in physical observables if they are treated as stable particles. In view of the high precision
of the LEP 2 experiments, the proper treatment of these unstable particles has become a demanding
exercise, since on-shell approximations are simply not good enough anymore. A proper treatment of
unstable particles requires the re-summation of the corresponding self-energies to all orders. In this way
the singularities originating from the poles in the on-shell propagators are regularized by the imaginary
parts contained in the self-energies, which are closely related to the decay widths (Γ) of the unstable
particles. The perturbative re-summation itself involvesa simple geometric series and is therefore easy
to perform. However, this simple procedure harbours the serious risk of breaking gauge invariance.
Gauge invariance is guaranteed order by order in perturbation theory. Unfortunately one takes into
account only part of the higher-order terms by re-summing the self-energies. This results in a mixing of
different orders of perturbation theory and thereby jeopardizes gauge invariance, even if the self-energies
themselves are extracted in a gauge-invariant way. Apart from being theoretically unacceptable, gauge-
breaking effects can also lead to large errors in the MC predictions. At LEP 2 energies this problem
occurs for instance in the reactionse+e− → e−νeud, e

+νeud for forward-scattered beam particles [7].

Based on this observation, it is clear that a gauge-invariant scheme is required for the treatment of
unstable particles. It should be stressed, however, that any such scheme is arbitrary to a greater or lesser
extent: since the Dyson summation must necessarily be takento all orders of perturbation theory, and
we are not able to compute the complete set ofall Feynman diagrams toall orders, the various schemes
differ even if they lead to formally gauge-invariant results. Bearing this in mind, we need besides gauge
invariance some physical motivation for choosing a particular scheme. In this context two options can
be mentioned. Either one can try tosubtractgauge-violating terms or one can try toaddgauge-restoring
terms to the calculation.

The first option is the so-calledpole scheme[8]. In this scheme one decomposes the complete
amplitude by expanding around the poles. As the physically observable residues of the poles are gauge-
invariant, gauge invariance is not broken if the finite widthis taken into account in the pole terms∝
1/(p2 −M2). In reactions with multiple unstable-particle resonancesit is rather awkward to perform the
complete pole-scheme expansion with all its subtleties in the treatment of the mapping of the off-shell
phase space on the on-shell phase space.

Therefore one usually approximates the expansion by retaining only the terms with the highest
degree of resonance. This approximation is called the leading-pole approximation and is closely related
to on-shell production and decay of the unstable particles.The accuracy of the approximation is typically
O (Γ/M), making it a suitable tool for calculatingradiative corrections, since in that case the errors are
further suppressed by powers of the coupling constant. Since diagrams with a lower degree of resonance
do not feature in the leading-pole approximation, it is not an adequate approach for describing lowest-
order reactions. So, for lowest-order reactions one needs an alternative approach.

The second option is based on the fundamentally different philosophy of trying to determine and
include the minimal set of Feynman diagrams that is necessary for compensating the gauge violation
caused by the self-energy graphs. This is obviously a theoretically very satisfying solution, but it may
cause an increase in the complexity of the matrix elements and consequently a slowing down of the
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numerical calculations. Two methods have been developed along these lines.

First of all, for the gauge bosons we are guided by the observation that thelowest-orderde-
cay widths are exclusively given by the imaginary parts of the fermion loops in the one-loop self-
energies. It is therefore natural to perform a Dyson summation of these fermionic one-loop self-energies
and to include the other possible one-particle-irreducible fermionic one-loop corrections (fermion-loop
scheme) [7, 11, 12, 13]. For thelowest-orderLEP 2 processe+e− → 4f this amounts to adding the
fermionic corrections to the triple gauge-boson vertex. The complete set of fermionic contributions

forms a manifestly gauge-invariant subset, since it involves the closed subset of allO
(

[Nf
c α/π]n

)

con-

tributions (withNf
c denoting the colour degeneracy of fermionf ). Moreover, it obeys all Ward identities

exactly, even with re-summed propagators, as shown in Ref. [12] for two- and four-fermion production.
For any particle reaction this can be deduced from the fact that the Ward identities of the underlying
gauge symmetry, which are obeyed by the fermion loops, survive such a consistent Dyson summation, in
contrast to the Slavnov–Taylor identities of the BRS symmetry, as shown in Ref. [14] in the framework
of the background-field formalism [15]. The limitation of the fermion-loop scheme is due to the fact that
it does not apply to particles with bosonic decay modes and that on resonance one perturbative order is
lost. This in turn disqualifies it as a candidate for handlingradiative corrections. Moreover, the inclusion
of a full-fledged set of one-loop corrections in a lowest-order amplitude tends to over-complicate things
for reactions likee+e− → 4fγ.

Recently a novel non-diagrammatic technique has been proposed for arbitrarytree-levelreactions,
involving all possible unstable particles and an unspecified amount of stable external particles [16]. By
using gauge-invariant non-local effective Lagrangians, it is possible to generate the self-energy effects in
the propagators as well as the required gauge-restoring terms in the multi-particle (3-point, 4-point, etc.)
interactions. In this way the full set of Ward identities canbe solved, while keeping the gauge-restoring
terms to a minimum.

A simplified version of this non-diagrammatic technique is thecomplex-mass scheme, which was
introduced in Ref. [18] for the reactionse+e− → 4f ande+e− → 4fγ. In this scheme, the modifica-
tions of the vertices that are necessary to compensate the width effects of the propagators are obtained
by analytically continuing the corresponding mass parameters in all Feynman rules consistently, leading
to complex couplings. Thecomplex-mass schemepreserves all Ward identities and works for arbitrary
lowest-order predictions. As a small drawback we note, thatfor space-like gauge-boson momenta the
propagators are complex in thecomplex-mass scheme, whereas perturbation theory in fact predicts the
absence of any imaginary contribution to the propagator. This leads to complex couplings through gauge
restoration and it will change, potentially, the CP structure of the theoretical predictions, whenever imag-
inary parts are redistributed between vertex functions.

We must admit that the effect on the CP structure has not been investigated in any scheme. How-
ever, for the Fermion-Loop scheme one does not see any problem with CP and for the non-local approach
the modifications of the vertices have the feature that no imaginary parts are generated for space-like par-
ticles. One can also use the non-local approach starting from proper imaginary parts for time-like and
unproper ones for space-like propagators and then look for asolution. One finds the complex mass
scheme. As such it is confirmed by the non-local method, but only when one starts with an ad-hoc
ansatz.

3.2 The leading-pole approximation

As mentioned above, the pole scheme consists in decomposingthe complete amplitude by expanding
around the poles of the unstable particles. The residues in this expansion are physically observable and
therefore gauge-invariant. The pole-scheme expansion canbe viewed as a gauge-invariant prescription
for performing an expansion in powers ofΓ/M . It should be noted that there is no unique definition of the
residues. Their calculation involves a mapping of off-shell matrix elements with off-shell kinematics on
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on-resonance matrix elements with restricted kinematics.This mapping, however, is not unambiguously
fixed. After all, it involves more than just the invariant masses of the unstable particles and one thus
has to specify the variables that have to be kept fixed in the mapping. The resulting implementation
dependence manifests itself in differences of sub-leadingnature, e.g.O (Γ/M) suppressed deviations
in the leading pole-scheme residue. In special regions of phase space, where the matrix elements vary
rapidly, the implementation dependence can take noticeable proportions. This happens in particular near
phase-space boundaries, like thresholds.

In order to make these statements a bit more transparent, we sketch the pole-scheme method for a
single unstable particle. In this case the Dyson re-summed lowest-order matrix element is given by

M∞ =
W (p2, ω)

p2 − M̃2

∞
∑

n=0

(

−Σ̃(p2)

p2 − M̃2

)n

=
W (p2, ω)

p2 − M̃2 + Σ̃(p2)

=
W (M2, ω)

p2 −M2

1

Z(M2)
+

[

W (p2, ω)

p2 − M̃2 + Σ̃(p2)
− W (M2, ω)

p2 −M2

1

Z(M2)

]

, (10)

whereΣ̃(p2) is the unrenormalized self-energy of the unstable particlewith momentump and unrenor-
malized massM̃ . The renormalized quantityM2 is the pole in the complexp2 plane, whereasZ(M2)
denotes the wave-function factor:

M2 − M̃2 + Σ̃(M2) = 0, Z(M2) = 1 + Σ̃′(M2). (11)

The first term in the last expression of Eq. (10) represents the single-pole residue, which is closely related
to on-shell production and decay of the unstable particle. The second term between the square brackets
has no pole and can be expanded in powers ofp2 − M2. The argumentω denotes the dependence
on the other variables, i.e. the implementation dependence. After all, the unstable particle is always
accompanied by other particles in the production and decay stages.

For instance, consider the LEP1 reactione+e− → f̄f . In the mappingp2
Z → M2 one can either

keep t = (pe− − pf )2 = −p2
Z(1 − cos θ)/2 fixed orcos θ. In the former mappingcos θpole is obtained

from the on-shell relationcos θpole = 1 + 2t/M2, whereas in the latter mappingtpole = −M2(1 −
cos θ)/2. It may be that a particular mapping leads to an unphysical point in the on-shell phase space.
In the present exampletpole will always be physical whencos θ is kept fixed in the mapping. However,
since| cos θpole| > 1 for t < −ReM2, it is clear that mappings with fixed Mandelstam variables harbour
the potential risk of producing such unphysical phase-space points.1

This can have repercussions on the convergence of the pole-scheme expansion. Therefore it is
recommended to use implementations that are free of unphysical on-shell phase-space points.

The issue of taking angles instead of Mandelstam variables was raised in Ref. [133] (see text after
Eq.(58) there) and in the second reference of [8] (see paragraph after Eq.(2)). For the DPA presented
in Ref. [9], in discussing the treatment of the mapping of theoff-shell phase space on the on-shell
phase space, angles and completely decoupled off-shell invariant masses for theW bosons were used.
Finally, in Ref. [10] the numerical effects coming from different phase-space treatments was considered
also numerically. Specifically, the non-factorizable corrections were considered for different choices of
Mandelstam variables used in the DPA.

The at present only workable approach for evaluating the radiative corrections to resonance-pair-
production processes, likeW -pair production, involves the so-called leading-pole approximation (LPA).
This approximation restricts the complete pole-scheme expansion to the term with the highest degree of
resonance. In the case ofW -pair production only the double-pole residues are hence considered. This

1In the resonance region,|p2
Z−M2| ≪ |M2|, the unphysical on-shell phase-space points occur near theedge of the off-shell

phase space, sincet < −ReM2 requirescos θ ≈ −1.
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is usually referred to as the DPA. The intrinsic error associated with this procedure isαΓW/(πMW
) ×

ln(. . .) <∼ 0.5%, except far off resonance, where the pole-scheme expansioncannot be viewed as an
effective expansion in powers ofΓ/M , and close to phase-space boundaries, where the DPA cannot
be trusted to produce the dominant contributions. In the above error estimate, theln(. . .) represents
leading logarithms or other possible enhancement factors in the corrections. In the latter situations also
the implementation dependence of the double-pole residuescan lead to enhanced errors. Close to the
nominal (on-shell)W -pair threshold, for instance, the intrinsic error is effectively enhanced by a factor
M

W
/(
√
s− 2M

W
) ≡M

W
/∆E. In view of this it is wise to apply the DPA only if the energy isseveral

ΓW above the threshold.

In the DPA one can identify two types of contributions. One type comprises all diagrams that
are strictly reducible at both unstableW -boson lines (see Fig. 1). These corrections are therefore called
factorizable and can be attributed unambiguously either tothe production of theW -boson pair or to one
of the subsequent decays. The second type consists of all diagrams in which the production and/or decay
sub-processes are not independent and which therefore do not seem to have two overallW propagators
as factors (see Fig. 2). We refer to these effects as non-factorizable corrections.2

e+

e−
W

W

f ′1

f̄1

f̄ ′2

f2

production decays

Fig. 1: The generic structure of the virtual factorizableW -pair contributions. The shaded circles indicate the Breit–Wigner

resonances, whereas the open circles denote the Green functions for the production and decay sub-processes up toO (α)

precision.

γ

W

W

γ

W
W

W

γ

W
W

W

W

W

γ

W

W

Fig. 2: Examples for virtual (top) and real (bottom) non-factorizable corrections toW -pair production. The black circles denote

the lowest-order Green functions for the production of the virtual W -boson pair.

2It should be noted that the exact split-up between factorizable and non-factorizable radiative corrections requires aprecise
(gauge-invariant) definition. We will come back to this point.
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In the DPA the non-factorizable corrections arise exclusively from the exchange or emission of
photons withEγ

<∼ ΓW [19]. Hard photons as well as massive-particle exchanges donot lead to double-
resonant contributions. The physical picture behind all ofthis is that in the DPA theW -pair process can
be viewed as consisting of several sub-processes: the production of theW -boson pair, the propagation of
theW bosons, and the subsequent decay of the unstableW bosons. The production and decay are hard
sub-processes, which occur on a relatively short time interval, O (1/M

W
). They are in general distin-

guishable as they are well separated by a relatively big propagation interval,O (1/ΓW ). Consequently,
the corresponding amplitudes have certain factorization properties. The same holds for the radiative cor-
rections to the sub-processes. The only way the various stages can be interconnected is via the radiation
of soft photons with energy ofO (ΓW ).

As is clear from the above-given discussion of the DPA, a specific prescription has to be given for
the calculation of the DPA residues. Or, in other words, we have to fix the implementation of the map-
ping of the full off-shell phase space on the kinematically restricted (on-resonance) one. Two strategies
have been adopted in the literature [9, 20]. One can opt to always extract pure double-pole residues [9].
This means in particular that after the integration over decay kinematics and invariant masses has been
performed the on-shell cross-section should be recovered.Alternatively, one can decide to exclude the
off-shell phase space from the mapping and apply the residueonly to the matrix elements [20, 37]. We
will come back to the conceptual and numerical differences between these two implementation strategies
in the detailed discussion of the DPA programs. At this pointwe merely note that the numerical differ-
ences can serve as an estimate of the theoretical uncertainty of the DPA procedure. Ref. [37] also used
the approach in which the full off-shell phase space is maintained and the residue is only applied to the
matrix elements.

In the rest of this section we will explain those aspects of the DPA procedure that are common to
both implementation methods. To this end we focus on the lowest-order reaction

e+(q1) e
−(q2) →W+(p1)W

−(p2) → f̄1(k1)f
′
1(k

′
1) f2(k2)f̄

′
2(k

′
2), (12)

involving only those diagrams that contain as factors the Breit–Wigner propagators for theW+ andW−

bosons. Herēf1 andf ′1 are the decay products of theW+ boson, andf2 andf̄ ′2 those of theW− boson.
It should be noted that a large part of the radiative corrections in DPA to this reaction can be treated in a
way similar to the lowest-order case, which is therefore a good starting point. The amplitude for process
(12) takes the form

M =
∑

λ1,λ2

Πλ1λ2
(M1,M2)

∆
(+)
λ1

(M1)

D1

∆
(−)
λ2

(M2)

D2
, (13)

where any dependence on the helicities of the initial- and final-state fermions has been suppressed, and

Di = M2
i −M2

W
+ iM

W
ΓW , M2

i = (ki + k′i)
2. (14)

The quantities∆(+)
λ1

(M1) and∆
(−)
λ2

(M2) are the off-shellW -decay amplitudes for specific spin-polari-
zation statesλ1 (for theW+) and λ2 (for theW−), with λi = (−1, 0,+1). The off-shellW -pair
production amplitudeΠλ1λ2

(M1,M2) depends on the invariant fermion-pair massesMi and on the po-
larizationsλi of the virtualW bosons. In the limitMi → M

W
the amplitudesΠ and∆(±) go over into

the on-shell production and decay amplitudes.

In the cross-section the above factorization leads to
∑

fermion helicities

|M|2 =
∑

λ1,λ2,λ′
1,λ′

2

P[λ1λ2][λ′
1λ′

2](M1,M2)
Dλ1λ′

1
(M1)

|D1|2
Dλ2λ′

2
(M2)

|D2|2
. (15)

In Eq. (15) the production part is given by a9 × 9 density matrix

P[λ1λ2][λ′
1λ′

2]
(M1,M2) =

∑

e± helicities

Πλ1λ2
(M1,M2) Π∗

λ′
1λ′

2
(M1,M2). (16)
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Similarly the decay part is governed by3 × 3 density matrices

Dλiλ′
i
(Mi) =

∑

fermion helicities

∆λi
(Mi) ∆∗

λ′
i
(Mi), (17)

where the summation is performed over the helicities of the final-state fermions.

It is clear that Eq. (16) is closely related to the absolute square of the matrix element for stable
unpolarizedW -pair production. In that case the cross-section contains the trace of the above density
matrix

Tr P(M
W
,M

W
) =

∑

λ1,λ2

P[λ1λ2][λ1λ2](MW
,M

W
) =

∑

all polarizations

|Πλ1λ2
(M

W
,M

W
)|2. (18)

The decay of an unpolarized on-shellW boson is determined by

Tr D(M
W

) =
∑

λi

Dλiλi
(M

W
) =

∑

all polarizations

|∆λi
(M

W
)|2. (19)

Note, however, that also the off-diagonal elements ofP(M
W
,M

W
) andD(M

W
) are required for deter-

mining Eq. (15) in the limitMi →M
W

.

As a next step it is useful to describe the kinematics of process (12) in a factorized way, i.e. using
the invariant massesM1 andM2 of the fermion pairs. The differential cross-section takesthe form

dσ =
1

2s

∑

|M|2 dΓ4f =
1

2s

∑

|M|2 dΓpr · dΓ+
dec · dΓ−

dec ·
dM2

1

2π
· dM

2
2

2π
, (20)

wheredΓ4f indicates the complete four-fermion phase-space factor and s = (q1+q2)
2 the centre-of-mass

energy squared. The phase-space factors for the productionand decay sub-processes,dΓpr anddΓ±
dec,

read

dΓpr =
1

(2π)2
δ(q1 + q2 − p1 − p2)

d~p1

2p10

d~p2

2p20
,

dΓ+
dec =

1

(2π)2
δ(p1 − k1 − k′1)

d~k1

2k10

d~k′1
2k′10

,

dΓ−
dec =

1

(2π)2
δ(p2 − k2 − k′2)

d~k2

2k20

d~k′2
2k′20

. (21)

When the factorized form for
∑ |M|2 is inserted one obtains

dσ =
1

2s

∑

λ1,λ2,λ′
1,λ′

2

P[λ1λ2][λ′
1λ′

2](M1,M2) dΓpr ×Dλ1λ′
1
(M1) dΓ

+
dec×Dλ2λ′

2
(M2) dΓ

−
dec×

× 1

2π

dM2
1

|D1|2
× 1

2π

dM2
2

|D2|2
, (22)

which is the common starting point for any of the DPA implementations.

3.3 Radiative corrections in double-pole approximation

A full calculation of the complete electroweakO (α) corrections toe+e− → 4f(+γ) for all four-fermion
final states is beyond present possibilities. While the realbremsstrahlung corrections induced bye+e− →
4fγ are known exactly [30, 18, 31], there are severe technical and conceptual problems with the virtual
corrections to four-fermion production. Fortunately, thefull account of theO (α) corrections is not
needed at the level of accuracy demanded by LEP 2. ForW -pair-mediated processes,e+e− → WW →
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4f , the required accuracy of predictions is of the order of0.5% for integrated quantities. At this level,
the corrections toW -pair production can be treated in the DPA. In regions of phase space where two
resonantW bosons do not dominate the cross-sections, such as in theWW -threshold region or in the
single-W domain, the DPA is, of course, not valid and one should resortto other approximations as the
Weizsäcker-Williams for single-W [91].

Since only diagrams with two nearly resonantW bosons are relevant for the DPA, the number
of graphs is reduced considerably, and a generic treatment of all four-fermion final states is possible.
Obviously all diagrams that appear for the pair production and the decay of on-shellW bosons are also
relevant for the pole expansion in the DPA. Since such contributions involve a product of two independent
Breit–Wigner factors for theW resonances, they are calledfactorizablecorrections. However, there
exist also doubly-resonant corrections in which the production and decay sub-processes do not proceed
independently. Power counting reveals that such corrections are only doubly-resonant if the particle
that is exchanged by the sub-processes is a low-energetic photon. Owing to the complicated off-shell
behaviour of these corrections, they are callednon-factorizable.

While the definition of the DPA is straightforward for the virtual corrections, it is problematic
for the real corrections. The problem is due to the momentum carried away by photon radiation. The
invariant masses of theW bosons in contributions in which the photon is emitted in theW -pair pro-
duction subprocess differ from those where the photon is emitted in theW -decay sub-processes. The
corresponding Breit–Wigner resonances overlap if the energy of the emitted photon is of the order of
ΓW. It is not obvious how to define the DPA for such photons. Therefore, the results based on a DPA for
the real corrections have to be treated with some caution.

According to the above classification, there are four categories of contributions toO (α) correc-
tions in DPA: factorizable and non-factorizable ones both for virtual and real corrections. In the following
the salient features of those four parts are described.

3.31 Virtual corrections

As a first step we discuss how to separate the virtual corrections into a sum of factorizable and non-
factorizable virtual corrections. The diagrammatic split-up according to reducible and irreducibleW -
boson lines is an illustrative way of understanding the different nature of the two classes of corrections,
but since the double-resonant diagrams are not gauge-invariant by themselves the precise split-up needs
to be defined properly.

We can make use of the fact that there are effectively two scales in the problem:M
W

andΓW . Let
us now consider virtual corrections coming from photons with different energies:

• soft photons,Eγ ≪ ΓW ,

• semi-soft photons,Eγ = O (ΓW ),

• hard photons,ΓW ≪ Eγ = O (M
W

).

Only soft and semi-soft photons contribute to both factorizable and non-factorizable corrections. The
latter being defined to describe interactions between different stages of the off-shell process. The reason
for this is that only these photons can induce relatively long-range interactions and thereby allow the
various sub-processes, which are separated by a propagation interval ofO (1/ΓW ), to communicate with
each other. Virtual corrections involving the exchange of hard photons or of massive particles contribute
exclusively to the factorizable corrections. In view of theshort range of the interactions induced by these
particles, their contribution to the non-factorizable corrections are suppressed by at leastO (ΓW/MW

).

As hard photons contribute to the factorizable correctionsonly, we merely need to define a split-up
for soft and semi-soft photons. It is impossible to do this ina consistent gauge-invariant way on the basis
of diagrams. In Refs. [10, 9] it was shown that only part of particular diagrams should be attributed to the
non-factorizable corrections, the rest being of factorizable nature. The complete set of non-factorizable
corrections was obtained by collecting all terms that contain the ratiosDi/[Di ± 2kpi], wherek denotes
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the momentum of the (semi-)soft photon. The so-defined non-factorizable corrections read [9]

Mvirt
nf = iMDPA

0

∫

d4k

(2π)4[k2 + io]

[

(J µ
0 + J µ

⊕)J+, µ + (J µ
0 + J µ

⊖)J−, µ + J µ
+J−, µ

]

, (23)

which contains the gauge-invariant currents

J µ
0 = e

[

pµ
1

kp1 + io
+

pµ
2

−kp2 + io

]

,

J µ
⊕ = − e

[

qµ
1

kq1 + io
− qµ

2

kq2 + io

]

, J µ
⊖ = + e

[

qµ
1

−kq1 + io
− qµ

2

−kq2 + io

]

(24)

for photon emission from the production stage of the process, and

J µ
+ = − e

[

pµ
1

kp1 + io
+Qf1

kµ
1

kk1 + io
−Qf ′

1

k′1
µ

kk′1 + io

]

D1

D1 + 2kp1
,

J µ
− = − e

[

pµ
2

−kp2 + io
+Qf2

kµ
2

−kk2 + io
−Qf ′

2

k′2
µ

−kk′2 + io

]

D2

D2 − 2kp2
(25)

for photon emission from the decay stages of the process. HereMDPA
0 is the lowest-order matrix element

in DPA andQf stands for the charge of fermionf in units of e. Since Eq. (23) contains (at least)
all contributions from diagrams with irreducibleW -boson lines, it can be viewed as a gauge-invariant
extension of the set ofW -irreducible diagrams. In general one has to calculate all of the integrals
appearing in the above expressions. The complete set of integrals has been given in Ref. [24] and explicit
expressions for the full set of virtual factorizable corrections can be found in [22]. However, if one is
interested in the sum of virtual corrections and real-photon radiation, then some simplifications occur
depending on the treatment of the photon3.

If the radiated (real) photon is treated inclusively, then many of the terms in Eq. (23) cancel
[19]. In this context the difference in the signs of theio parts appearing in the currentsJ⊖ andJ⊕
are crucial. These signs actually determine which interference terms give rise to a non-vanishing non-
factorizable contribution after virtual and real-photon corrections have been added. As a result of such
considerations only a very limited subset of ‘final-state’ interferences survives for inclusive photons: the
virtual corrections corresponding to Figs. 2 and 3 as well asthe associated real-photon corrections.

γ

W

W

W

W

Fig. 3: The Coulomb graph, contributing to both factorizable and non-factorizable corrections.

3Note that Eq. (23) is UV-finite and contains4- and5-point integrals. In fact it was observed that certain combinations of
these4- and5-point integrals are equal to a simple (Coulomb-like)3-point integral plus a constant. This simple3-point integral
has an artificial UV divergence, which cancels against the constant and can be regulated by either a cut-off (BBC) or by keeping
the DPA-subleadingk2 contributions in the denominators (RACOONWW). The final answer of course does not depend on this.
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The sum of virtual and real non-factorizable corrections has been calculated, Refs. [23, 24, 10, 21]4.
It has been shown in Ref. [19] that this sum vanishes if the invariant masses of bothW bosons are inte-
grated over, i.e. in particular that the full non-factorizable correction to the total cross-section is zero in
DPA.

In Refs. [24, 10, 21] the full non-factorizable correctionshave also been discussed numerically.
They vanish on top of the double resonance and are of the orderof 1% in its vicinity. The shift in the
W invariant-mass distributions is only of the order of a few MeV. These results can be reproduced by
a simple approximation [25] based on the so-called screenedCoulomb ansatz. However, it is impor-
tant to note that all these numerical results on non-factorizable corrections are based on the DPA for
real corrections and have been obtained in idealized treatment of phase space, namely the assumption
that theW -boson momenta can be reconstructed from the fermion momenta alone, i.e. without photon
recombination. It is not clear how these results change in physical situations with photon recombination.

The virtual factorizable corrections consist of all hard contributions and the left-over part of the
semi-soft ones. The so-defined factorizable corrections have the nice feature that they can be expressed
in terms of corrections to on-shell sub-processes, i.e. theproduction of two on-shell W bosons and their
subsequent on-shell decays. The corresponding matrix element can be expressed in the same way as
described at lowest-order:

Mvirt
fact =

∑

λ1,λ2

Πλ1λ2
(M1,M2)

∆
(+)
λ1

(M1)

D1

∆
(−)
λ2

(M2)

D2
. (26)

Here two of the amplitudes are taken at lowest order, whereasthe remaining one contains all possible
one-loop contributions, including theW wave-function factors that appear in Eq. (10). In this way
the well-known on-shell radiative corrections to the production and decay of pairs ofW bosons [26, 27]
appear as basic building blocks of the factorizable corrections.5 In the semi-soft limit the photonic virtual
factorizable corrections to the production stage, contained inΠ, cancel against the corresponding real-
photon corrections. Non-vanishing contributions fromΠ occur as soon as thek2 terms in the propagators
cannot be neglected anymore. An example of this is the factorizable correction from the Coulomb graph
Fig. 3. For the on-shell (factorizable) part of the Coulomb effect photons with momentak0 = O (∆E)
and |~k| = O

(√

M
W

∆E
)

are important [28], i.e.k2 cannot be neglected in the propagators of the
unstable particles. Since we stay well away from theW -pair threshold (∆E ≡ √

s − 2M
W

≫ ΓW ),
this situation occurs outside the realm of the semi-soft photons. This fits nicely into the picture of the
production stage being a hard subprocess, governed by relatively short time scales as compared with the
much longer time scales required for the non-factorizable corrections, which interconnect the different
sub-processes.

3.32 Real-photon radiation

In this subsection we discuss the aspects of real-photon radiation in the DPA as used in [9]. To this end
we consider the process

e+(q1) e
−(q2) →W+(p1)W

−(p2) [γ(k)] → f̄1(k1)f
′
1(k

′
1) f2(k2)f̄

′
2(k

′
2) γ(k), (27)

where in the intermediate state there may or may not be a photon. We will show how to extract the
gauge-invariant double-pole residues in different situations. The exact cross-section for process (27) can

4The original result of the older calculation [23] does not agree with the two more recent results [24, 10], which are in
mutual agreement. As known from the authors of Ref. [23], their corrected results also agree with the ones of Refs. [24, 10].

5Note that the complete density matrix is required in this case, in contrast to the pure on-shell calculation which involves
the diagonal elements of the density matrix only.
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be written in the following form

dσ =
1

2s
|Mγ |2dΓ4fγ =

1

2s

[

2Re

(

M0M∗
++M0M∗

−+M+M∗
−

)

+|M0|2+|M+|2+|M−|2
]

dΓ4fγ ,

(28)
wheredΓ4fγ indicates the complete five-particle phase-space factor, and the matrix elementsM0 and
M± correspond to the diagrams where the photon is attached to the production or decay stage of the
threeW -pair diagrams, respectively. This split-up can be achieved with the help of the partial-fraction
decomposition [29]

1

Di(Di + 2pk)
=

1

2pk

(

1

Di
− 1

Di + 2pk

)

. (29)

Each contribution to the cross-section can be written in terms of polarization density matrices, which
originate from the amplitudes

M0 = Πγ(M1,M2)
∆(+)(M1)

D1

∆(−)(M2)

D2
, (30)

M+ = Π(M1γ ,M2)
∆

(+)
γ (M1γ)

D1γ

∆(−)(M2)

D2
, (31)

M− = Π(M1,M2γ)
∆(+)(M1)

D1

∆
(−)
γ (M2γ)

D2γ
, (32)

where all polarization indices for the W bosons and the photon have been suppressed, and

Diγ = Di + 2kki + 2kk′i, M2
iγ = M2

i + 2kki + 2kk′i, M2
i = (ki + k′i)

2. (33)

The matrix elementsΠγ and∆
(±)
γ describe the production and decay of theW bosons accompanied by

the radiation of a photon. The matrix elements without subscript γ have been introduced in Eq. (13).

In the calculation of the Born matrix element and virtual corrections only two poles could be identi-
fied in the amplitudes, originating from the Breit–Wigner propagators1/Di. The pole-scheme expansion
was performed around these two poles. In contrast, the bremsstrahlung matrix element has four in gen-
eral different poles, originating from the four Breit–Wigner propagators1/Di and1/Diγ . As mentioned
above, the matrix element can be rewritten as a sum of three matrix elements (M0,M+,M−), each of
which only contain two Breit–Wigner propagators. For thesethree individual matrix elements the pole-
scheme expansion is fixed, as before, to an expansion around the corresponding two poles. However,
when calculating cross-sections [see Eq. (28)] the mappingof the five-particle phase space introduces a
new type of ambiguity. The interference terms in Eq. (28) involve two different double-pole expansions
simultaneously. One might think this will pose a problem, since there is no natural choice for the phase-
space mapping in those cases. As we will see later, however, only photons withEγ

<∼ ΓW ≪MW give
noticeable contributions to these interference terms. This means that one can apply a soft-photon-like
(semi-soft) approximation (see below).

In Ref. [9] it was argued that the resulting ambiguity in the phase-space mapping will not have
significant repercussions on the quality of the DPA calculation, in the same way as stable-particle cal-
culations are not significantly affected by the photon momentum in the soft-photon regime. We note,
however, that there is still some controversy on this issue.

Let us return now to the three earlier-defined regimes for thephoton energy:

• for hard photons [Eγ ≫ ΓW ] the Breit–Wigner poles of the W-boson resonances before and after
photon radiation are well separated in phase space (seeM2

iγ andM2
i defined above). As a result,
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the interference terms in Eq. (28) can be neglected. This leads to threedistinct regions of on-
shell contributions, where the photon can be assigned unambiguously to the W-pair-production
subprocess or to one of the two decays. This assignment is determined by the pair of invariant
masses (out ofM2

i andM2
iγ) that is in theM2

W
region. Therefore, the double-pole residue can be

expressed as the sum of the three on-shell contributions without increasing the intrinsic error of the
DPA. Note that in the same way it is also possible to assign thephoton to one of the sub-processes,
since misassignment errors are suppressed, assuming for convenience that all final-state momenta
can ideally be measured.

• for semi-soft photons [Eγ = O(ΓW )] the Breit–Wigner poles are relatively close together in
phase space, resulting in a substantial overlap of the line shapes. The assignment of the photon
is now subject to larger errors. Moreover, since the interference terms in Eq. (28) cannot be
neglected, a proper prescription for calculating the DPA residues (i.e. the phase-space mapping) is
required [24, 10, 9].

• for soft photons [Eγ ≪ ΓW ] the Breit–Wigner poles are on top of each other, resulting in a pole-
scheme expansion that is identical to the one without the photon.

Let us first consider the hard-photon regime in more detail. Due to the fact that the poles are well
separated in the hard-photon regime, it is clear that the interference terms are suppressed and can be
neglected:

dσ =
1

2s

[

|M0|2 + |M+|2 + |M−|2
]

dΓ4fγ . (34)

Note that each of the three terms has two poles, originating from two resonant propagators. However,
these poles are different for different terms. The phase-space factor can be rewritten in three equivalent
ways. The first is

dΓ4fγ = dΓγ
0 = dΓγ

pr · dΓ+
dec · dΓ−

dec ·
dM2

1

2π
· dM

2
2

2π
, (35)

with

dΓγ
pr =

1

(2π)2
δ(q1 + q2 − p1 − p2 − k)

d~p1

2p10

d~p2

2p20

d~k

(2π)32k0
. (36)

The two others are

dΓ4fγ = dΓγ
+ = dΓpr · dΓ+γ

dec · dΓ−
dec ·

dM2
1γ

2π
· dM

2
2

2π
, (37)

with

dΓ+γ
dec =

1

(2π)2
δ(p1 − k1 − k′1 − k)

d~k1

2k10

d~k′1
2k′10

d~k

(2π)32k0
, (38)

and a similar expression fordΓγ
−. The phase-space factorsdΓpr anddΓ±

dec are just the lowest-order ones.
The cross-section can then be written in the following equivalent form

dσ =
1

2s

[

|M0|2 dΓγ
0 + |M+|2 dΓγ

+ + |M−|2 dΓγ
−

]

. (39)

In order to extract gauge-invariant quantities, the DPA limit should be taken. This amounts to taking
the limit p2

1,2 → M2
W

, using a particular prescription for mapping the full off-shell phase space on the
kinematically restricted on-resonance one. Note however thatp1,2 can be different according to theδ-
functions in the decay parts of the different phase-space factors. To be specific, the production term
|M0|2 has poles atp2

i = M2
i = M2

W
, |M+|2 has poles atp2

1 = M2
1γ = M2

W
andp2

2 = M2
2 = M2

W
, and

|M−|2 has poles atp2
1 = M2

1 = M2
W

andp2
2 = M2

2γ = M2
W

.

We complete our survey of the different photon-energy regimes by considering semi-soft and
soft photons. The split-up of factorizable and non-factorizable real-photon corrections proceeds in the
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same way as described in the previous subsection for virtualcorrections. The result reads in semi-soft
approximation

dσ =
1

2s
|Mγ |2dΓ4fγ ≈ − dσ0

DPA
d~k

(2π)32k0

[

2Re

(

Iµ
0 I∗

+, µ +Iµ
0 I∗

−, µ +Iµ
+I∗

−, µ

)

+ |I2
0 |+ |I2

+|+ |I2
−|
]

.

(40)
The gauge-invariant currentsI0 andI± are given by

Iµ
0 = e

[

pµ
1

kp1
− pµ

2

kp2
− qµ

1

kq1
+

qµ
2

kq2

]

,

Iµ
+ = − e

[

pµ
1

kp1
+Qf1

kµ
1

kk1
−Qf ′

1

k′1
µ

kk′1

]

D1

D1 + 2kp1
,

Iµ
− = + e

[

pµ
2

kp2
+Qf2

kµ
2

kk2
−Qf ′

2

k′2
µ

kk′2

]

D2

D2 + 2kp2
. (41)

The first three interference terms in Eq. (40) correspond to the real non-factorizable corrections. The last
three squared terms in Eq. (40) belong to the factorizable real-photon corrections. They constitute the
semi-soft limit of Eq. (39).

3.4 A hybrid scheme – virtual corrections in DPA and real corrections from full matrix elements

The reliability of the error estimate of(α/π) × (ΓW/MW
) × ln(· · ·) <∼ 0.5% for the accuracy of the

DPA can, of course, only be controlled by a comparison to calculations that are based on the full matrix
elements. While for the virtual corrections such results donot exist yet, the situation for the real correc-
tions is much better, since full matrix-element calculations for the processese+e− → 4fγ are available
[30, 18, 31]. The latter results seem to be of particular importance, because the above error estimate for
real corrections in DPA is subject of some controversy.

Although it deserves some care, it is possible to combine thevirtual O (α) corrections in DPA
with real corrections from the fulle+e− → 4fγ lowest-order matrix elements. The non-trivial point in
this combination lies in the relations of IR and mass singularities in virtual and real corrections. The
singularities have the form of a universal radiator function multiplied or convoluted with the respective
lowest-order matrix elementM0 of the non-radiative process. SinceM0 appears in DPA for the virtual
correction (MDPA

0 ), but as full matrix element for the real ones, a simple summation of virtual and real
corrections would lead to a mismatch in the singularity structure and eventually to totally wrong results.
A solution of this problem is to extract those singular partsfrom the real photon contribution that exactly
match the singular parts of the virtual photon contribution, then to replace the full|M0|2 by |MDPA

0 |2 in
these terms and finally to add this modified part to the virtualcorrections. This modification is allowed
in the range of validity of the DPA and leads to a proper matching of all IR and mass singularities. The
described approach for such a hybrid DPA scheme is followed in theRacoonWWprogram [20, 22]. More
details of this approach can also be found in Sect. 4.1.

A particular advantage of this method is due to the fact that the leading ISR logarithms, which are
part of the extracted singularities of the real corrections, can be easily kept with the full matrix element
M0 (see [22] for details). In this way, the logarithmic enhancement factorln(. . .) does not involve large
contributions from the electron mass, i.e. corrections like ln(m2

e/s). In the hybrid scheme, also the non-
factorizable corrections have to be treated carefully. If the full matrix elements for photon radiation is
employed, one cannot exploit any cancellations between real and virtual non-factorizable corrections, as
it is done in the calculations of [23, 24, 10, 21]. Instead, one needs the full set of non-factorizable virtual
corrections, which includes also photons coupling to the initial state. Such results can be derived from
Eq. (23) and Ref. [24], and are explicitly given in Ref. [22].
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3.5 Intrinsic ambiguities and reliability of the double-pole approximation

The theoretical accuracy of theoretical predictions is indeed at the core of the workshop. For this reason
it has already been discussed extensively in a purely theoretical context. Although only the numerical
comparisons can tell us where the present theoretical uncertainty really stands, it is not superfluous that
the relevant facts are summarized in one place.

An improved assessment of the theoretical uncertainty can be obtained by varying predictions
within the intrinsic freedom of the followed approach for the DPA. For instance, any kind of DPA makes
use of an on-shell projection of the off-shell four-fermionphase space to the phase space with on-shell
W bosons. The difference between different on-shell projections is part of the theoretical uncertainty of
the DPA approach and should be considered in predictions (see Sect. 4.2 for a numerical discussion).

It is a fact of life that questions of principle are sometimesof scarce practical relevance. CC03
contains gauge-invariance-breaking terms but what is their numerical impact at LEP 2 energies? It is
quite a known fact that, when computed in the ’t Hooft-Feynman gauge, they are unimportant. At least
they are for theWW total cross-section – the signal – and we can verify this statement by comparing
the gauge-dependent CC03 with the full gauge-invariant cross-section (CC11 for instance) including
background diagrams. There is a general agreement, dating from the ’95 workshop that the difference is
less than0.2% at LEP 2 energies.

It is bizarre that one can render the Born CC03 diagrams gauge-invariant at the prize of large
numerical variations; it is enough to project the kinematics in the matrix elements onto the on-shell
phase space, while keeping the off-shellness in the Breit-Wigner propagators. However, this changes
the cross-section by several per cent! Therefore, the use ofDPA at Born level (CC03) is numerically
not recommendable. Once more, for lowest-order reactions one needs an alternative approach and for
predictions that have a DPA Born and a DPAO (α) and nothing else the expected accuracy is no more
than ΓW/MW

≈ 2.5%. The difference between Born CC03 and Born DPA should not enter in the
discussion of the theoretical uncertainty.

At the Born level one can accept a non-gauge-invariant CC03 cross-section (at least in the ’t Hooft-
Feynman gauge) as a reasonable quantity at LEP 2 energies. For higher energies one should be more
careful.

The same phenomenon will occur when we include radiative corrections and we would like to add
some comment on the DPA procedure, in particular on the choice of projecting the kinematics.

For high enough energies, any processe+e− → V V will be a dominant source of four-fermion fi-
nal states due to the double resonant enhancement and hence CC03(NC02) will be a good approximation
to the total cross-section for four-fermion production in asituation where we exclude certain regions of
the phase space, e.g., a small scattering angle of the outgoing electron in single-W production.

Thus, for example, to calculate the cross-sectione+e− → V V one proceeds as described above;
one calculates the matrix element fore+e− → V V → 4f and extracts the part resonant in the invariant
masses of the pairs,k2

+, k
2
−. The general matrix element takes the form

M (. . . , k+, k−, . . .) =
∑

i

Mi (. . . , k+, k−, . . .) Ai

(

. . . , k2
+, k

2
−
)

, (42)

where theMi contain the spinor and Lorentz tensor structure of the matrix element, e.g. they have the
external fermionic wave-functions attached. TheAi are Lorentz scalars that depend on the invariants of
the problem and become non-trivial and difficult to compute when higher order corrections are included.
One way of looking at the DPA-procedure is to say that the resonant part is extracted from theAi, by
Laurent expansion. The external particle wave functions, and hence theMi, should not be affected by
the process hence the kinematics of the problem should be left unchanged because the final state inte-
grations involve only the fermions, stable on-shell particles. The gauge nature of the theory is intimately
connected with theAi not with kinematics.
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Whenever we have processes with external,unstable, vector-bosons, like inWW → WW or
ZZ → ZZ, the Higgs resonance will appear in thes-channel and by shifting e.g. a factors from
the Mi to theAi one gets factorss/M2 which violate unitarity at high energies [32]. This can be
avoided by making the splitting between theAi andMi with some care. Here, fore+e− → WW,ZZ,
the corresponding factors do not directly violate unitarity. Nevertheless, one could expect that Ward
identities are violated by the splitting by terms of the order k2

±/M
2 − 1, i.e. non double-resonant terms

negligible in the DPA approach. If, on the other hand, one includes theMi in the DPA, as commonly
done, one has on-shell matrix elements and the WI are fulfilled, at the price of expanding kinematics.

We do not necessarily expect an improvement of the accuracy when taking theMi exactly, but
comparing results with DPA applied toMi or not could give an additional estimate on the theoretical
uncertainty, of the order ofα/π (CC03Born/CC03DPA − 1). We expect that, well above threshold,
this will not exceed the quoted0.5% DPA precision, which involves logarithmic enhancement factors.

Another questionable point in DPA is connected to the fact that a particular mapping may lead to
an unphysical point in the on-shell phase-space (c.f. Sect.3.2). Even if we do not expand the kinematics
in theMi there are Landau singularities in theAi at the edge of the off-shell phase space. If one performs
a DPA projection in theAi, these Landau singularities move into the on-shell phase space, although only
at a distance(k2 −M2)/M2 from the boundary [10]. This might happen when theAi are parametrized
in terms of invariants. If on the other hand, one parametrizes theAi in terms of angles and energies, this
can be more easily avoided.

Note that the formulation of a DPA where the on-shell projection is not applied to theMi has been
implemented the formulation of the LPA of Ref. [37] (eqs.(1)and (2)).

3.6 Remarks on DPA corrections to distributions inclusive w.r.t. photons

The DPA corrections to distributions that are inclusive w.r.t. photons depend in a very sensitive way
on how the four-particle phase space is parametrized, or, inother words, on the way the distributions
are defined after the photon has been integrated out. This statement sounds obvious, but nevertheless
deserves some special attention.

In particular the invariant-mass distributions (W line shapes) are affected. In reactions with two
resonances the invariant masses have to be defined from the decay products. Depending on the precise
definition of the invariant masses different sources of large Breit–Wigner distortions can be identified [33,
35, 20], in contrast to the situation at LEP1 where only initial-state radiation (ISR) can cause such
distortions.

In Ref. [33] it has been shown that also final-state radiation(FSR) can induce distortions. This is
a general property of resonance-pair reactions, irrespective of the adopted scheme for implementing the
finite-width effects. The only decisive factor for the distortion to take place is whether the virtuality of
the unstable particle is defined with (s′V ) or without (sV ) the radiated photon (see Fig. 4).

e+

e− p+k

V

p

V

γ

k

Fig. 4: Photon radiation from an unstable particleV . Virtualities: sV = p2 ands′V = (p + k)2.

Upon integration over the photon momentum, the former definition (cfM2
iγ defined in Sec. 3.32)
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is free of large FSR effects from theV -decay system. It can only receive large corrections from the
other (production ordecay) stages of the process. The latter definition (cfM2

i defined in Sec. 3.32),
however, does give rise to large FSR effects from theV-decay system. In contrast to the LEP1 case,
where the ISR-corrected line shape receives contributionsfrom effectively lower Z-boson virtualities,
the sV line shape receives contributions from effectivelyhigher virtualities s′V of the unstable particle.
As was argued above, only sufficiently hard photons (Eγ ≫ ΓV ) can be properly assigned to one of the
on-shell production or decay stages of the process in the DPA. For semi-soft photons [Eγ = O(ΓV )],
however, the assignment is not so clear-cut and will be determined by the experimental event-selection
procedure.

Event selection procedures that involve an invariant-massdefinition in terms of the decay products
without the photon give rise to large FSR-induced distortion effects [33]. These are caused by semi-soft
photons, since hard FSR photons move the virtualitys′V of the unstable particle far off resonance for
near-resonancesV values, resulting in a suppressed contribution to thesV line shape. This picture fits
in nicely with the negligible overlap of the three on-shell double-pole contributions for hard photons,
discussed above. The reason why the FSR distortions can be rather large lies in the fact that the final-
state collinear singularities [∝ α

π Q
2
f ln(m2

f/M
2
V ) ln(ΓV /MV )] do not vanish, even not for fully inclusive

photons. After all, a fixed value ofsV makes it impossible to sum over all degenerate final states bya
mere integration over the photon momentum. So the KLN theorem does not apply in this case. These
FSR distortion effects result in shifts in the measurement of theW -boson mass of the order of 40 MeV,
as has been qualitatively confirmed in Ref. [35].

This situation changes for event-selection procedures in which not all photons can be separated
from the charged fermions. If photon recombination has to betaken into account, i.e. if photons within
a finite cone around the charged fermions have to be combined with the corresponding fermion into a
single particle, the mentioned mass singularities connected to final-state fermions disappear. The KLN
theorem applies and the large fermion-mass logarithms are effectively replaced by logarithms depending
on the cone size [33]. In Ref. [35] this expectation has been confirmed numerically, showing that the
large negative shifts in the peak position of theW invariant-mass distribution obtained without photon
recombination are reduced. In Ref. [20] it has been shown that the effect of photon recombination can
even overcompensate the momentum loss from FSR if the recombination is very inclusive. This is due to
the recombination of photons that are radiated off the initial state or off particles belonging to the other
decayingW boson. The resulting positive peak shifts can amount to several 10MeV. Explicit numerical
results onW invariant-mass distributions can also be found in Sect. 10.

Finally we mention a special property of the non-factorizable corrections. When considering
pure angular distributions with an inclusive treatment of the photons, one should integrate over the pho-
ton phase spaceand the invariant massesM2

i . After integrating out both invariant masses the non-
factorizable corrections will vanish, which is a typical feature of the non-factorizable interference ef-
fects [19].

3.7 Double-pole approximations in practice

For LEP 2 energies three different groups6 have formulated versions of a DPA fore+e− → WW →
4f(+γ). While Beenakker, Berends and Chapovsky [9], called BBC in the following, formulated a
semi-analytic DPA, the other two groups implemented variants of the DPA in the event generatorsYFSWW
[37, 38] andRacoonWW[22, 20]. The basic features of these different implementations are summarized
in the following.

6Another DPA has been discussed in Ref. [36] for linear-collider energies.
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3.71 TheYFSWWapproach

YFSWW: O (α) correction toe+e− → W+W− in LPA, using the results of Ref. [52], leading-log cor-
rections to leptonicW decays viaPHOTOS(up to two radiative photons with finitept according to the
exactO (α) soft limit), W decays normalized to branching ratios, quark hadronization with JETSET
andτ decays withTAUOLA(including radiative corrections), YFS exponentiation for ISR and photon
emission fromW -bosons, off-shell Coulomb singularity, no full non-factorizable corrections – only an
approximation in terms of thescreenedCoulomb ansatz of Ref. [25], approximateW spin correlations
(incomplete correlation beyond Born) – they are missing only in a non-IR non-LL part of EW virtual
corrections.

3.72 TheBBCapproach

BBC: semi-analytical calculation of completeO (α) corrections in DPA (with both factorizable and
non-factorizable corrections andW spin correlations), no background. Since the DPA is only valid
well above threshold, the on-shell part of the Coulomb singularity is automatically included as part of
the factorizable corrections and the off-shell part is contained in the non-factorizable corrections, as
discussed in Ref. [24].

3.73 TheRacoonWWapproach

RacoonWWtreats the virtualO (α) corrections toe+e− → WW → 4f in DPA. No further approxi-
mations beyond the pole expansion of the matrix element are made, i.e. non-factorizable corrections are
included, andW -spin correlations are respected. The Coulomb singularityis part of the virtual correc-
tions, and the corresponding part that goes beyond DPA has been added as discussed in Ref. [10]. The
realO (α) corrections are based on the full4f + γ matrix element (of the CC11 class), so that the full
kinematics is supported also for photon radiation. All matrix elements are based on massless fermions,
and fermion masses are introduced only for collinear photonemission that is inclusive within a (small)
finite cone for each fermion. Thus, a photon collinear to an outgoing fermion has to be recombined with
the corresponding fermion, and a photon close to the beams has to be considered as invisible. Initial-state
radiation beyondO (α) is treated in the structure-function approach, including soft-photon exponentia-
tion and leading-log contributions up toO

(

α3
)

.

3.8 The fermion-loop and non-local approaches

As was mentioned above, the alternative tosubtractingsub-leading gauge-violating terms is toadd
gauge-restoring terms to the calculation. In order to do this, one has to add to the amplitude those terms
that are needed for satisfying the Ward identities. This is not easy to do in general. The following ob-
servation helps. The very fact that the perturbative amplitudes require re-summation of the self-energies
indicates that either the perturbative expansion parameter (coupling constant) is not the proper one, or
alternatively that the quantity that is expanded (i.e. the lowest-order Lagrangian of the Standard Model)
is not the best choice. This observation leads one to consider first the one-loop corrected effective poten-
tial of the Standard Model before doing Born calculations, in order to avoid Dyson re-summation of the
self-energies.

For the discussion of the fermion-loop and non-local approaches it is therefore worthwhile to first
have a closer look at the origin of the gauge-invariance problem associated with the re-summation of
self-energies. To this end we consider the simple example ofan unbroken non-abelianSU(N) gauge
theory with fermions and subsequently integrate out these fermions [16].

First we fix the notations and introduce some conventions. TheSU(N) generators in the funda-
mental representation are denoted by Ta with a = 1, · · · , N2−1. They are normalized according to

Tr (TaTb) = δab/2 and obey the commutation relation
[

Ta,Tb
]

= ifabc Tc. In the adjoint representation
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the generators Fa are given by(Fa)bc = −ifabc. The Lagrangian of the unbrokenSU(N) gauge theory
with fermions can be written as

L(x) = − 1

2
Tr
[

F µν(x)F µν(x)
]

+ ψ̄(x) (iD/ −m)ψ(x), (43)

with

F µν ≡ TaF a
µν =

i

g
[Dµ,Dν ], Dµ = ∂µ − ig TaAa

µ ≡ ∂µ − igAµ. (44)

Hereψ is a fermionicN -plet in the fundamental representation ofSU(N) andAa
µ are the (N2−1) non-

abelianSU(N) gauge fields, which form a multiplet in the adjoint representation. The Lagrangian (43)
is invariant under theSU(N) gauge transformations

ψ(x) → ψ′(x) = G(x)ψ(x),

Aµ(x) → A′
µ(x) = G(x)Aµ(x) G−1(x) +

i

g
G(x)

[

∂µG−1(x)
]

, (45)

with theSU(N) group element defined as G(x) = exp[ig Taθa(x)]. The covariant derivativeDµ and
field strengthF µν both transform in the adjoint representation

Dµ → G(x)Dµ G−1(x), F µν(x) → G(x)F µν(x) G−1(x). (46)

Since the Lagrangian is quadratic in the fermion fields, one can integrate them out exactly in the func-
tional integral. The resulting effective action is then given by

i Seff[J ] = i

∫

d4x

{

− 1

2
Tr
[

F µν(x)F µν(x)
]

+ Ja
µ(x)Aa, µ(x)

}

+ Tr
[

ln(−D/ − im)
]

, (47)

with Ja
µ(x) denoting the gauge-field sources. The trace on the right-hand side has to be taken in group,

spinor, and coordinate space. As a next step one can expand the effective action in terms of the coupling
constant

Tr
[

ln(−D/ − im)
]

= Tr
[

ln(− ∂/ − im)
]

+ Tr

[

ln
(

1 +
g

i ∂/ −m
A/
)

]

= Tr
[

ln(− ∂/ − im)
]

+
∞
∑

n=1

(−1)n−1

n
Tr

[

(

g

i ∂/ −m
A/

)n
]

. (48)

Note that the left-hand side of Eq. (48) is gauge-invariant as a result of the trace-log operation. In contrast,
the separate terms of the expansion on the right-hand side are not gauge-invariant. This is due to the fact
that, unlike in the abelian case, the non-abelian gauge transformation (45) mixes different powers of the
gauge fieldAµ in Eq. (48). Thus, if one truncates the series on the right-hand side of Eq. (48) one will
in general break gauge invariance. From Eq. (48) it is also clear that the fermionic part of the effective
action induces higher-order interactions between the gauge bosons.

What are these higher-order interactions? Let us consider the quadratic gauge-field contribution

− 1

2
Tr

[

(

g

i ∂/ −m
A/

)2
]

= − 1

2

∫

d4x d4y Tr
[

O(x, y)O(y, x)
]

, (49)

where
O(x, y) = g S

(0)
F (x− y)A/(y) (50)

andi S(0)
F (x − y) =< 0 |T (ψ(x) ψ̄(y)) | 0>free is the free fermion propagator. The trace on the right-

hand side of Eq. (49) has to be taken in group and spinor space.A quick glance at this quadratic gauge-
field contribution reveals that it is just the one-loop self-energy of the gauge boson induced by a fermion
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loop. In the same way, the higher-order terms∼ gnAn in Eq. (48) are just the fermion-loop contributions
to then-point gauge-boson vertices.

One can truncate the expansion in Eq. (48) atn = 2, thus taking into account only the gauge-boson
self-energy term and neglecting the fermion-loop contributions to the higher-point gauge-boson vertices.
This is evidently the simplest procedure for performing theDyson re-summation of the fermion-loop self-
energies. However, as was pointed out above, truncation of Eq. (48) at any finite order ing in general
breaks gauge invariance. This leads to the important observation that,although the re-summed fermion-
loop self-energies are gauge-independent by themselves, the re-summation is nevertheless responsible
for gauge-breaking effects in the higher-point gauge-boson interactions through its inherent mixed-order
nature. Another way of understanding this is provided by the gauge-boson Ward identities. Since the
once-contractedn-point gauge-boson vertex can be expressed in terms of(n−1)-point vertices, it is
clear that gauge invariance is violated if the self-energies are re-summed without adding the necessary
compensating terms to the higher-point vertices.

An alternative is to keep all the terms in Eq. (48). Then the matrix elements derived from the
effective action will be gauge-invariant. Keeping all the terms means that we will have to take into
account not only the fermion-loop self-energy in the propagator, but also all the possible fermion-loop
contributions to the higher-point gauge-boson vertices. This is exactly the prescription of the fermion-
loop scheme (FLS) [7, 11, 12, 13]. Although the FLS guarantees gauge invariance of the matrix elements,
it has disadvantages as well. Its general applicability is limited to those situations where non-fermionic
particles can effectively be discarded in the self-energies, as is for instance the case forΓW andΓZ at
lowest order. Another disadvantage is that in the FLS one is forced to do the loop calculations, even
when calculating lowest-order quantities. For example, the calculation of the tree-level matrix element
for the processe+e− → 4fγ involves a four-point gauge-boson interaction, which has to be corrected
by fermion loops in the FLS. This over-complicates an otherwise lowest-order calculation.

It is clear that the FLS provides more than we actually need. It does not only provide gauge
invariance for the Dyson re-summed matrix elements at a given order in the coupling constant, but it also
takes into account all fermion-loop corrections at that given order. In the vicinity of unstable particle
resonances the imaginary parts of the fermion-loop self-energies are effectively enhanced byO(1/g2)
with respect to the other fermion-loop corrections. Therefore, what is really needed is only a minimal
subset of the non-enhanced contributions such that gauge invariance is restored. In a sense one is looking
for a minimal solution of a system of Ward identities. The FLSprovides a solution, but this solution is
far from minimal and is only practical for particles that decay exclusively into fermions. Since the decay
of unstable particles is a physical phenomenon, it seems likely that there exists a simpler and more
natural method for constructing a solution to a system of Ward identities, without an explicit reference to
fermions. This is precisely the philosophy behind the non-local approach [16]. This approach consists in
using gauge-invariant non-local effective Lagrangians for generating both the self-energy effects in the
propagators and the required gauge-restoring terms in the higher-point interactions. In this way the full
set of Ward identities can be solved, while keeping the gauge-restoring terms to a minimum.

3.81 The fermion-loop scheme

The Fermion-Loop scheme developed in [7] and refined in [12] makes the approximation of neglecting
all masses for the incoming and outgoing fermions in the processese+e− → n fermions. It is possible,
however, to go beyond this approximation [112, 39] and give the construction of an exact Fermion-Loop
scheme (EFL) [39], i.e. , a scheme for incorporating the finite-width effects in the theoretical predictions
for tree-level, LEP 2 and beyond, processes.

One can work in the ’t Hooft-Feynman gauge and create all relevant building blocks, namely the
vector-vector [97], vector-scalar and scalar-scalar [39]transitions of the theory, all of them one-loop re-
summed. The loops, entering the scheme, contain fermions and, as done before in [12], one allows for a
non-zero top quark mass inside loops. There is a very simple relation between re-summed transitions and
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running parameters, since Dyson re-summation is most easily expressed in terms of running couplings
and running mixing angles.

In the EFL generalization, it is particularly convenient tointroduce additional running quantities.
They are the running masses of the vector bosons,M2

0
(p2) = M2(p2)/c2(p2), formally connected to the

location of theW andZ complex poles. After introducing these running masses, it is straightforward
to prove that allS-matrix elements of the theory assume a very simple structure. Coupling constants,
mixing angles and masses are promoted to running quantitiesand theS-matrix elements retain their
Born-like structure, with running parameters instead of bare ones, and vector-scalar or scalar-scalar tran-
sitions disappear if we employ unitary-gauge–like vector boson propagators where the masses appearing
in the denominator of propagators are the running ones. If theW −W andφ−φ transitions are denoted
by Sµν

W and bySφ with,

Sµν
W =

g2

16π2
Σµν

W , Σµν
W = Σ0

W δµν + Σ1
W pµpν ,

Sφ =
g2

16π2
Σφ, (51)

then, theW -boson running mass is defined by the following equation (note the metric):

1

M2(p2)
=

1

M2

p2 − S0
W + M2

p2 Sφ

p2 − Sφ
, (52)

The whole amplitude can be written in terms of aW -boson exchange diagram, if we make use of the
following effective propagator:

∆µν
eff =

1

p2 +M2 − S0
W

[

δµν +
pµpν

M2(p2)

]

. (53)

For the vertices we need that all vector-boson lines be off mass-shell and non-conserved and, moreover,
a Ward identity has to be computed and not only the corresponding amplitude. Therefore, the number of
terms increases considerably with respect to the standard formulation of the FL-scheme and we refer to
Ref. [39] for all details.

The renormalization of ultraviolet divergences can be easily extended to the EFL-scheme by show-
ing that all ultraviolet divergent parts of the one-loop vertices,γWW, γWφ, γφW andγφφ for instance,
are proportional to the lowest order part. Therefore, the only combinations that appear are of the form
1/g2 + V V V vertex orM2/g2 + V V φ vertex etc. All of them are, by construction, ultraviolet finite.

Equipped with this generalization of the Fermion-Loop scheme, one can prove the fully-massive
U(1) Ward identity which is required for a correct treatment of the single-W processes. As a by-product
of the method, the cross-section for single-W production automatically evaluates all channels at the right
scale, without having to use ad hoc re-scalings and avoidingthe approximation of a unique scale for all
terms contributing to the cross-section.

The generalization of the Fermion-Loop scheme goes beyond its, most obvious, application to
single-W processes and allows for a gauge invariant treatment of alle+e− → n fermion processes
with a correct evaluation of the relevant scales. Therefore, the EFL-scheme can be applied to several
other processes likee+e− → Zγ∗ and, in general toe+e− → 6 fermion processes, with the inclusion
of a stable, external, top quark, but it does not apply to reactions involving the physical Higgs boson.
Furthermore, the scheme misses those corrections to the total decay width in the propagator denominators
that are induced by two-loop contributions.

3.82 The non-local approach

The main idea of the non-local approach is to rearrange the series on the right-hand side of Eq. (48) in
such a way that each term becomes gauge-invariant by itself.Subsequent truncation of the series at a
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given term is then allowed. It is possible to approximate Eq.(48) by means of an effective Lagrangian in
such a way that the resulting effective action has the following properties:

• it generates the Dyson re-summed transverse gauge-boson self-energy in the propagator. This
means that it contributes to the gauge-boson two-point function. Hence, the effective lagrangian
should depend at least on two gauge-boson fields.

• the Dyson re-summed self-energy is in general not a constant, but rather a function dependent
on the interaction between the gauge-bosons and the fermions. This means that the effective La-
grangian should in general be non-local (bi-local) in the gauge fields. Thus the gauge fields should
be taken at two different space–time points.

• it is gauge-invariant. As such the effective Lagrangian should have the form of an infinite tower of
gauge fields.

For the gauging procedure of the non-local Lagrangians we will need a special ingredient, thepath-
ordered exponential, which is defined as

U(x, y) = U †(y, x) = Pexp

[

− ig

y
∫

x

Aµ(ω) dωµ

]

(54)

Heredωµ is the element of integration along some pathΩ(x, y) that connects the pointsx andy.7 The
so-defined path-ordered exponential transforms as

U(x, y) → G(x)U(x, y) G−1(y) (55)

under theSU(N) gauge transformations. It hence carries the gauge transformation from one space-time
point to the other.

For aSU(N) Yang–Mills theory the non-local action with the above-described properties takes
the form

SNL = − 1

2

∫

d4x d4yΣNL(x− y) Tr
[

U(y, x)F µν(x)U(x, y)F µν(y)
]

≡
∫

d4x d4yLNL(x, y),

(56)
with LNL(x, y) the non-local effective Lagrangian. As required, the action contains bilinear gauge-
boson interactions. The induced infinite tower of higher-point gauge-boson interactions, which are also
of progressively higher order in the coupling constantg, is needed for restoring gauge invariance.

It is important to stress at this point that this term in the effective action should not be understood
as a new fundamental interaction. It is generated by radiative corrections. From the point of view
of general properties of non-local Lagrangians, the non-local coefficientΣNL(x − y) is arbitrary. In
practice, however, it is fixed by the explicit interaction between the gauge-bosons and the fermions in the
underlying fundamental theory. In our simple example this connection is given by Eq. (48).

Let us now derive the two-point function as an example of the Feynman rules generated by
Eq. (56):

a1, µ1

q1

a2, µ2

q2
: iΣa1a2, µ1µ2(x1, x2) =

i δ2(SL + SNL)

δAa1
µ1(x1) δA

a2
µ2(x2)

∣

∣

∣

∣

∣

A=0

, (57)

7In principle we are free to choose this particular path. Thisfreedom is just one out of the many freedoms that characterize
the treatment of unstable particles (as mentioned earlier). It just reflects the fact that in a perturbative expansion one is free
to pick up additional higher-order contributions, since the answer at any given (truncated) order will not be changed bysuch
additional terms.
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where the local actionSL follows from the gauge-boson term in Eq. (43). The Fourier transform of this
two-point function can be calculated in a straightforward way, since the path-ordered exponentials are
effectively unity. The result reads

i Σ̃a1a2, µ1µ2(q1, q2) = i δa1a2

(

qµ
1 q

ν
1 − q21g

µν
) [

1 + Σ̃NL(q21)
]

(2π)4 δ(4)(q1 + q2). (58)

Note that this two-point interaction is transverse, as it should be for an unbroken theory. The non-local
coefficient acts as a (dimensionless) correction to the transverse free gauge-boson propagator, exactly
what is needed for the Dyson re-summation of the gauge-bosonself-energies. The infinite tower of
gauge-restoring higher-point gauge-boson interactions are provided by the gauge-boson fields present in
bothF µν and the path-ordered exponential occurring in Eq. (56). Forexplicit Feynman rules we refer to
Ref. [16].

Although the above-described non-local procedure provides a gauge-invariant framework for per-
forming the Dyson re-summation of the gauge-boson self-energies, we want to stress that it is not unique.
We have seen above that the FLS provides a different solutionof the system of gauge-boson Ward iden-
tities. In the context of non-local effective Lagrangians it is always possible to add additional towers of
gauge-boson interactions that start with three-point interactions and therefore do not influence the Dyson
re-summation of the gauge-boson self-energies.

In the light of the discussion presented in Sect. 3.8, we rearrange the series on the right-hand side
of Eq. (48) according to gauge-invariant towers of gauge-boson interactions labelled by the minimum
number of gauge bosons that are involved in the non-local interaction. Effectively this constitutes an
expansion in powers of the coupling constantg, since a higher minimum number of particles in the
interaction is equivalent to a higher minimum order ing. In order to achieve minimality we have truncated
this series at the lowest effective order. This should not beviewed as somead hocrecipe, but rather as a
systematic expansion of the effective potential.

Up to now we have seen how the non-local effective Lagrangianmethod works for unstable gauge
bosons in a simpleSU(N) gauge theory with fermions. In the Standard Model there are different types
of unstable particles: the top-quark, the massive gauge-bosons, the Higgs boson. In Ref. [16] it was
shown how to extend the above-described method in such a way that it allows the description of all the
unstable particles in terms of bi-local effective Lagrangians.



34

4. The CC03 cross-section,σWW

As mentioned before, a new electroweakO (α) CC03 cross-section is available, showing a result that is
between2.5% and3% smaller than the old 1995 CC03 cross-section predicted withGENTLE. This is a
big effect since the combined experimental accuracy of LEP experiments is even smaller.

In the ’95 workshop [5] predictions for CC03 were produced with variations in the IPS which
agreed at the level of1%, and then a2% theoretical error was quoted, to be conservative. How does
this estimate compare with the present shift of2.5 ÷ 3% downwards? This is a1.25 to 1.5 sigma dif-
ference, totally acceptable within the area of statistics.Certainly, this is more of a systematic theoretical
uncertainty which is hard to quantify, but still: it is compatible and in agreement. However, a comment
is needed here. In ’95 several groups produced tuned comparisons for CC03 agreeing at the level of one
part in104. Then they moved to the Best-You-Can approach, defined by switching on all flags to get the
best physics description according to the flag description of individual codes. The programGENTLE, in
its BYC-mode, was selected to represent the Standard Model.However, if we take other codes, notice-
ably WPHACTandWTO, we easily discover CC03, Born-like, predictions that havea maximal+1.6%
shift with respect toRacoonWW(+1.3% with respect toYFSWW) at the highest energy. Therefore, the
old estimate of2% in theoretical accuracy was not underestimated.

It is important to discuss the numerical predictions for theDPA-corrected CC03 cross-section.
Therefore, in this Section, we present numerical results and also an accurate description of the com-
parisons between different approaches,YFSWW, BBCandRacoonWW. In principle, one would like to
understand the effect of DPA and, therefore, is interested in the ratio (with DPA)/(without DPA), both
with ISR, (naive) QCD etc. for each of the programs. For this Report, however, this was not done and
we have to take the old results (e.g.GENTLE) for a comparisonnew – old. By comparing different
calculations one can numerically check the quality of the DPA for CC03.

4.1 Description of the programs and their results

CC03 withRacoonWW

Authors

A.Denner, S.Dittmaier, M.Roth and D.Wackeroth

General description

The programRacoonWW[22] evaluates cross-sections and differential distributions for the reactions
e+e− → 4f ande+e− → 4f + γ for all four-fermion final states. For the W-pair mediated channels
e+e− → WW → 4f(+γ) the full virtualO (α) corrections are taken into account in DPA, while for the
corresponding real corrections the full4f + γ matrix elements are used.

Features of the program

• Lowest order: the full matrix elements for all4f final states are included, and the contribution of
the CC03 matrix elements or of other subsets of diagrams is provided as an option. All external
fermions are assumed to be massless.

• Virtual O (α) corrections: the full one-loop corrections are included in DPA, i.e. all factorizable
corrections [26] and non-factorizable corrections [10]. In this way, fullW -spin correlations are
taken into account.

• Real corrections —4f + γ production: the cross-sections are based on the full matrix-element
calculation [18] for all4f + γ final states with massless fermions. If the processe+e− → 4f + γ
is investigated with a separable photon, i.e. if the photon is neither soft nor collinear to a charged
fermion, all4f + γ final states are possible, and subsets of diagrams can be chosen as options (e.g.
boson-pair production diagrams, QCD background diagrams). If the real corrections toe+e− →
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WW → 4f are calculated, the full4f + γ matrix elements for the CC11 class8 are taken, i.e.
photon radiation from background diagrams is partially included.
Depending on the choice of the user, the cancellation of collinear and infrared singularities is
performed within the phase-space slicing method or within the subtraction formalism of Ref. [41].
In both cases, care is taken in avoiding mismatch between thesingularities of the virtual and the
real corrections, which is non-trivial owing to the application of the DPA to the virtual corrections
only. The treatment of fermion-mass singularities is described below in more detail.

• ISR: higher-order ISR is implemented via structure functions for the incominge+ ande−. The
structure functions used are those of Ref. [40] with the ‘BETA’ choice, i.e. the collinear-soft lead-
ing logarithms are exponentiated. If theO (α) corrections toe+e− → WW → 4f are included,
the O (α) contributions already contained in the structure functions are subtracted, in order to
avoid double counting, and the full CC11 Born matrix elements are used in the convolution.

• Treatment of collinear photons: the program is only applicable to observables that involve no
mass-singular contributions from the final state. These mass singularities cancel if all photons
collinear to a charged final-state fermion are combined withthis fermion9. The recombination
procedure is controlled by recombination cuts, i.e. photonemission angles and photon energies,
or invariant masses of photon–fermion pairs. Specifically,first the charged fermion that is clos-
est to the photon according to these criteria (emission angle or invariant mass) is selected, and
secondly the photon is recombined with this fermion if it is within the recombination cuts for a
final-state fermion and discarded for an initial-state fermion. The mass singularities that remain
from collinear photon emission off initial-state electronor positron [i.e. the(α lnme)

n terms] are
included in the structure functions.

• Coulomb singularity: within DPA it is fully included in theO (α) corrections. The full off-shell
behaviour of the singularity as described in Ref. [10] can beswitched on as an option.

• Finite gauge-boson widths: in the tree-level processese+e− → 4f, 4f + γ several options are
included, such as fixed-width, running-width, and complex-mass scheme [18]. IfO (α) corrections
are taken into account the fixed width is automatically used.

• Cuts: since each event is completely specified, in principle any conceivable phase-space cut can
be implemented. However, since all fermions are taken to be massless, singularities can occur in
photon-exchange channels, rendering cuts unavoidable. Inparticular, if a charged fermion–anti-
fermion pair is produced, a lower cut on its invariant mass has to be specified, or if a final-state
electron or positron is present, cuts on its minimal angle tothe beam and its minimal energy
are required. For calculations based on restricted sets of diagrams, not all cuts are necessary; in
particular, no cut at all is needed for the CC03 diagrams.

• QCD contributions: gluon-exchange contributions can be switched on in the tree-level processes
e+e− → 4f, 4f + γ. Gluon-emission processese+e− → 4f + g can be calculated for the CC11
class of4f final states.
For the QCD corrections toe+e− → WW → 4f , one can choose between the naive QCD factors
of (1+αs/π) per hadronically decaying W boson and the fullO (αs) corrections in DPA. The full
calculation is performed in the same way as the photonic parts of theO (α) corrections.

• IBA: the program includes, as an option, an improved Born approximation (IBA) [42], which
involves the leading ISR logarithms, the running of the electromagnetic coupling, corrections as-
sociated with theρ parameter, and the Coulomb singularity.

• Subsets of diagrams:For lowest-order predictions ofe+e− → 4f, 4f+γ there is the possibility to

8The CC11 class is the smallest gauge-invariant subset of diagrams fore+e− → 4f that contains all graphs with two
resonantW bosons; in this class only those background diagrams are missing that are peculiar toe±, νe, νe, or ff pairs in the
final state.

9Note that without photon recombination, only the total cross section (without any cuts) fulfills this requirement, whereas
distributions or cuts that make use of fermion momenta in general involve mass-singular corrections.
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select subsets of diagrams, such as those including the pairproduction ofW, Z, Z/γ∗, or W/Z/γ∗

bosons. Furthermore, all diagrams corresponding to the CC11 process class can be selected.

• Intrinsic ambiguities: the accuracy of the DPA can be studied by changing the DPA within its
intrinsic ambiguities. This is described in Sect. 4.2.

Program layout

RacoonWWconsists of two nearly independent Monte Carlo programs: one uses phase-space slicing and
the other the subtraction method of Ref. [41]. Only the main control program, the routines for photon
recombination and phase-space cuts, and the calculation ofthe matrix elements are commonly used.
The numerical integration is performed with the multi-channel Monte Carlo technique [43] and adaptive
weight optimization [44]. The generator produces weightedevents.

Input parameters/schemes

RacoonWWneeds the following input parameters:

α(0), α(M
Z
), GF , αs, M

W
,M

Z
,M

H
,ΓW ,ΓZ,

mf , f = e, µ, τ,u, c, t,d, s,b. (59)

The weak mixing angle is fixed byc2w = 1−s2w = M2
W
/M2

Z
, and the quark-mixing matrix is set to unity.

The masses of external fermions are consistently set to zerowhere possible. While the masses of the
final-state fermions appear only as regulators, the mass singular logarithms of ISR depend onme. The
user can choose between the externally fixedW width ΓW and an internally calculated value including
electroweak and/or QCD one-loop radiative corrections.

The parameter set (59) is over-complete. The program supports three different input schemes,
fixing the independent parameters. We recommend to use theGF scheme where the tree level is fixed by
GF ,MW, andMZ and the relativeO(α) corrections are calculated withα(0).

The code is available from the authors upon request.

Numerical results

In Tab.(2) we list the predictions ofRacoonWWfor the total CC03 cross-section including radiative
corrections (best-with-CC03-Born as defined below). We give the results for one leptonic channel, for
one semi-leptonic channel, for one hadronic channel, and for the sum of all channels separately. Note
that for CC03 and negligible fermion masses the results are independent of the final state within these
channels. No cuts are applied. While in all otherRacoonWWresults in this report LLO

(

α3
)

corrections
according to Ref. [40] are included, in this table only the LLO

(

α2
)

terms are taken into account. The
LL O

(

α3
)

contributions reduce the cross-sections by only about0.02% The given errors are purely
statistical. The error for the total cross section were obtained by adding the (statistically correlated)
errors of the various channels linearly.
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√
s [GeV] lept. [fb] semi-lept. [fb] hadr. [fb] total [pb]

172.086 142.088(71) 442.50(36) 1376.14(67) 12.0934(76)
176.000 160.076(78) 498.03(25) 1550.04(75) 13.6171(67)
182.655 180.697(89) 562.22(28) 1749.48(86) 15.3708(76)
188.628 190.882(96) 594.31(55) 1848.07(92) 16.2420(111)
191.583 194.271(118) 604.12(31) 1880.19(94) 16.5187(85)
195.519 197.320(123) 614.11(31) 1911.45(97) 16.7910(88)
199.516 199.497(103) 620.53(33) 1931.28(99) 16.9670(89)
201.624 200.200(104) 622.65(33) 1937.94(100) 17.0254(89)
210.000 200.910(107) 624.95(33) 1945.00(103) 17.0876(91)

Table 2: Cross-sections fore+e− → W +W− → 4f from RacoonWW.

In the following we show the predictions fromRacoonWWfor theM(W−) invariant mass distri-
butions in four different configurations:

4f-Born: full e+e− → 4f Born without radiative corrections;
best-with-4f-Born: fulle+e− → 4f Born plus radiative corrections

including ISR beyondO (α),
soft photon exponentiation,
LL O

(

α3
)

, and naive QCD ;
CC03-Born: CC03 Born without radiative corrections;
best-with-CC03-Born: CC03 Born plus radiative corrections

including ISR beyondO (α),
soft photon exponentiation,
LL O

(

α3
)

, and naive QCD,

for the three final states,µ+νµτ
−ντ , udµ

−νµ andudsc at
√
s = 200GeV.

As explained in the text, DPA sits only in the virtual correction in the RacoonWWapproach.
Everything else is (or can be) calculated from full4f(γ) matrix elements. This means that best-with-4f-
Born and best-with-CC03-Born contain the same DPA part (thevirtual correction).

All distributions have been obtained with the following cutand photon recombination procedure:

– All photons within a cone of5◦ around the beams are treated as invisible, i.e. their momenta are
disregarded when calculating angles, energies, and invariant masses.

– Next, the invariant masses of the photon with each of the charged final-state fermions are cal-
culated. If the smallest one is smaller thanMrec or if the photon energy is smaller than1GeV,
the photon is combined with the corresponding fermion, i.e.the momenta of the photon and the
fermion are added and associated with the momentum of the fermion, and the photon is discarded.

– Finally, all events are discarded in which one of the final-state charged fermions is within a cone
of 10◦ around the beams. No other cuts are applied.

We consider the cases of a tight recombination cutMrec = 5GeV (bare) and of a loose recombination cut
Mrec = 25GeV (calo). Born predictions are independent of the recombination cut. TheW− invariant-
mass is always defined via the four-momenta (after eventual recombination with the photon) of theW−

decay fermions.
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In Fig. 5 (left) we show the CC03-Born predictions for theM(W−) distributions for all three
final states. The r.h.s. of Fig. 5 showsbest-with-CC03-Bornwith the bare recombination cut , i.e. the
corrections are included in DPA. In Fig. 6 we show the effect of the radiative corrections by computing
the ratio of the invariant-mass distributions including radiative corrections and the Born distributions
both forbareandcalo recombination. In the peak region, i.e.|M(W−) −M

W
| < ΓW/2, the effects of

radiative corrections lower the line-shape by approximately 3% (5%) (udsc), 7% (7%) (udµ−νµ), and
11% (12%) (µ+νµτ

−ντ ) for bare (calo) distributions. The differences between the final states originate
mainly from the (naive) QCD corrections.

The shape of the relative corrections to the invariant-massdistributions can be understood as fol-
lows. For small recombination cuts (bare), in most of the events theW− bosons are defined from the
decay fermions only. If a photon is emitted from the decay fermions and not recombined, the invariant
mass of the fermions is smaller than the one of the decayingW− boson. This leads to an enhancement of
the distribution for invariant masses below theW resonance. This effect becomes smaller with increasing
recombination cutMrec. On the other hand, if the recombination cut gets large, the probability increases
that the recombined fermion momenta receive contributionsfrom photons that are radiated during the
W-pair production subprocess or from the decay fermions of the W+ boson. This leads to positive cor-
rections above the consideredW− resonance. The effect is larger for the hadronic invariant mass since
in this case, two decay fermions (the two quarks) can be combined with the photon. The effect of the
squared charges of the final-state fermions is marginal in this case because the contribution of initial-state
fermions dominates.

In Fig. 7 (left) we show the 4f-Born predictions for theM(W−) distributions, without radiative
corrections, i.e. the invariant mass distributions are constructed from all diagrams without the restriction
to the CC03 diagrams. The ratio 4f-Born/CC03-Born, shown inFig. 7 (right) for theudsc final state,
confirms the goodness of the CC03 approximation for final states involving no electrons in describing the
WW cross-section at LEP 2 energies, especially in the peak region. The ratio best-with-4F-Born/best-
with-CC03-Born is nearly the same as the one shown on the r.h.s. of Fig. 7, since the corrections con-
tained in the numerator and the denominator are the same. In Fig. 8 we show the ratio best-with-4f-
Born/CC03-Born for both the bare (right) and the calo (left)W− invariant-mass distributions, exhibiting
the combined effect of including radiative corrections andbackground diagrams.

Further numerical results fromRacoonWWcan be found in Ref. [20] and, for the same set-up as
here, in Sect. 10.
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Fig. 5: TheW− invariant-mass distributions for CC03-Born (left) and best-with-CC03-Born (right) with bare recombination
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CC03 withKORALW/YFSWW

Authors

S. Jadach, W. Placzek, M. Skrzypek, B. Ward and Z. Was

General Description

The programKORALW1.42has been fully documented and published in Ref. [49, 50]. Here one can
find the differences betweenYFSWW3andKORALWin terms of radiative corrections.

Thus, here we describeYFSWW3first. This latter program evaluates the the double resonantpro-
cesse+e− → W+W− → 4f in the presence of multiple photon radiation using Monte Carlo event
generator techniques. The theoretical formulation is based, in the leading pole approximation (LPA), on
the exactO (α)prod YFS exponentiation, withO (α) corrections (both weak and QED) to the production
process taken from Ref. [52], combined withO

(

α3
)

LL ISR corrections in the YFS scheme and with
FSR implemented in theO

(

α2
)

LL approximation usingPHOTOS[53]. AnomalousWWV couplings
are supported. The Monte Carlo algorithm used to realize theYFS exponentiation is based on the YFS3
algorithm presented in Ref. [54] and in Ref. [55]. This algorithm is now described in detail in Ref. [56].
In this way, one achieves an event-by-event realization of our calculation in which arbitrary detector cuts
are possible and in which infrared singularities are cancelled to all orders inα. A detailed description of
this work can be found in Refs. [45, 57, 58, 59]. The programKoralW 1.42 evaluates all four-fermion
processes ine+e− annihilation by means of the Monte Carlo techniques. It generates all four-fermion
final states with multi-branch dedicated Monte Carlo pre-samplers and complete, massive, Born matrix
elements. The pre-samplers cover the entire phase space. Multi-photon bremsstrahlung is implemented
in the ISR approximation within the YFS formulation with theO

(

α3
)

leading-log matrix element. The
anomalousWWV couplings are implemented in CC03 approximation. The standard decay libraries
(JETSET, PHOTOS, TAUOLA) are interfaced. The semi-analytical CC03-type codeKorWan for dif-
ferential and total cross-sections is included. It operates both in weighted (integrator) and unweighted
(event generator) modes. The detailed description of this work can be found in Refs. [46, 47, 48, 50, 51]
and the long write-up of the program in Ref. [49] .

Features of the Program

As the programKORALW1.42is already published in Ref. [49, 50], we again start with thefeatures
of theYFSWW3program. The latter code is a complete Monte Carlo event generator and gives for each
event the final particle four-momenta for the entire4f+nγ final state over the entire phase space for each
final state particle. The events may be weighted or unweighted, as it is more or less convenient for the
user accordingly. The code features two realizations of theLPA, which are described in Refs. [57, 58, 59]
wherein we also discuss their respective relative merits.

The operation of the code is entirely analogous to that of theMC’s YFS3 and YFS2 in Refs. [54,
67]. A crude distribution based on the primitive Born level distribution and the most dominant part of
the YFS form factors that can be treated analytically is usedto generate a background population of
events. The weight for these events is then computed by standard rejection techniques involving the ratio
of the complete distribution and the crude distribution. Asthe user wishes, these weights may be either
used directly with the events, which have the four-momenta of all final state particles available, or they
may be accepted/rejected against a maximal weight WTMAX to produce unweighted events via again
standard MC methods. Standard final statistics of the run areprovided, such as statistical error analysis,
total cross-sections, etc. The total phase space for the process is always active in the code.

The program prints certain control outputs. The most important output of the program is the series
of Monte Carlo events. The total cross-section inpb is available for arbitrary cuts in the same standard
way as it is forYFS3 andYFS2, i.e. the user may impose arbitrary detector cuts by the usual rejection
methods. The program is available from the authors via e-mail. The program is currently posted on
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WWW at http://enigma.phys.utk.eduas well as onanonymous ftpat enigma.phys.utk.eduin the form
of a tar.gzfile in the /pub/YFSWW/directory together with all relevant papers and documentation in
postscript.

As far as theW -pair physics is concerned theKoralW is optimized to operate together with the
YFSWWprogram:KoralW provides the complete background (beyond CC03) simulationby including
all the Born level Feynman diagrams of a given process, whereas the signal process (CC03) is simulated
by YFSWWincluding first order corrections toW production. The final prediction is then obtained by
adding and subtracting appropriate results.

In order to facilitate thisadd and subtractprocedure both programs have been re-organized in the
following way: (1) The CC03 anomalous Born matrix element and corresponding phase-space generator,
covering the entire phase-space, are the same in both codes.(2) The ISR, based on YFS principle, with
O
(

α3
)

leading-log matrix element and finite transverse photon momenta is also the same in both codes
(in the case ofYFSWWit requires switching off the bremsstrahlung offW -pair). (3) The FSR is realized
in both codes in the same way with the help ofPHOTOSlibrary. (4) The input data cards are in the same
format for both codes and can be stored in one data file with common data base of parameters along with
keys specific for both programs.

The features (1) – (3) guarantee that the common for both programs Born+ISR+FSR CC03 part
can be defined and conveniently subtracted. This is a non-trivial feature, as for instance there are a
number of different implementations of photonic cascades available amongst four-fermion Monte Carlo
codes. The feature (4) is a matter of convenience as it allowsfor coherent and safe handling of the input
parameters. For CC03, we note for clarity thatYFSWW3andKoralW 1.42 differ in thatYFSWW3has
the YFS exponentiated exact NLO (α) correction to the production process whereasKoralW 1.42 does
not.

Numerical results

We start with predictions for the total cross-section, shown in Tabs.(3–5), where the Born approximation
and thebest results are shown. These results in Tabs.(3–5) already showthe size of the NLO (α)
correction,∼ 1.5− 2.0%, when compared to the analogous results from programs such asGENTLE, see
for example Ref. [34]. In the sub-section below on the comparison betweenRacoonWWandYFSWW3,
results such as those in Tabs.(3–5) are used to arrive at the current precision on the totalWW signal
cross-section at LEP 2 energies.

Turning now toKORALW, we note that it has multiple-options in the presence multi-photonic
events. It can define distributions for

1. visibleγ (radiative/hardest);

2. all photons, i.e. no cuts, in which case one can take only a)the most energetic photon to determine
energy and angles (all/hardest), b) the sum (all/sum).

A sample of results is shown in Figs. 9, 11 where we present various differential distributions for
e+e− → udlνl including all background graphs and emission of multiple photons with finite transverse
momenta from initial and final states generated byKoralW . The following general cuts have been used
for all plots:Mud ≥ 10 GeV,El ≥ 5 GeV and| cos θl| ≤ 0.985.

In the first plot of Fig. 9 the photon energy distributions areshown for: the hardest of all photons,
the hardest of visible (radiative) photons and the sum of allphotons. A visible photon is defined as having
energy of at least1 GeV, separated by at least5◦ from all charged fermions and having| cos θγ | ≤ 0.985.
Apart from the natural big difference between visible and invisible photons one can also see a substantial
effect due to emission of more than one photon (hardestvs. sum). A similar pattern for the electron final
state is shown in Fig. 10. In the second plot of Fig. 9 the angular distributions of the hardest and hardest
visible photon are shown.
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Channel Born Best

udsc 1.96325(37) 1.59365(86)
uddu 1.96369(41) 1.59572(71)
udµ−νµ 0.65441(14) 0.53901(22)
ude−νe 0.65458(12) 0.53899(23)

µ−νµτ
+ντ 0.21809(4) 0.18193(7)

all WW channels 17.66681(351) 15.49161(618)

Table 3: Cross-sections [fb] fore+e− → W +W− from YFSWWat
√

s = 183 GeV.

Channel Born Best

udsc 2.03231(39) 1.68293(93)
uddu 2.03285(40) 1.68565(76)
udµ−νµ 0.67756(14) 0.56931(24)
ude−νe 0.67756(14) 0.56931(24)

µ−νµτ
+ντ 0.22573(4) 0.19220(8)

all WW channels 18.29266(354) 16.36329(694)

Table 4: Cross-sections [fb] fore+e− → W +W− from YFSWWat
√

s = 189 GeV.

Channel Born Best

udsc 2.06691(40) 1.75725(96)
uddu 2.06737(41) 1.76065(82)
udµ−νµ 0.68899(16) 0.59440(26)
ude−νe 0.68913(13) 0.59444(27)

µ−νµτ
+ντ 0.22957(5) 0.20065(9)

all WW channels 18.59649(383) 17.09010(771)

Table 5: Cross-sections [fb] fore+e− → W +W− from YFSWWat
√

s = 200 GeV.
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Fig. 9: KORALWEγ andcos θγ spectra forudµ−νµγ.

Fig. 10:KORALWEγ spectra forude−νeγ.
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In Fig. 11 the invariant mass distributions are shown.mass1 denotes theud-system invariant mass
andmass2 theµνµ mass. Calo mass includes all photons that have either energy smaller than 1 GeV
or their angle to any final state charged particle less than10◦ for leptons or25◦ for quarks. In the case
of leptons one can see the familiar pattern of reduction of the cross-section below the peak (and weak
change above) due to FSR when going from theBare to Calo mass definition (cf. eg. Ref. [35]). In the
case of hadrons the FSR is not generated.

Fig. 11:KORALWbare, caloM spectra forudµ−νµγ.

CC03 withGENTLE

Authors

D. Bardin, A. Olchevski and T. Riemann

We describe shortly theGENTLEdevelopment after v.2.00 (1996).GENTLE v.2.10 (March
2000) [68, 5], with authors D. Bardin, J. Biebel, D. Lehner, A. Leike, A. Olchevski and T. Riemann can
be obtained from:http://www.ifh.de/ ∼riemann/doc/Gentle/gentle.html ,
/afs/cern.ch/user/b/bardindy/public/Gentle2 10

Program developments sinceGENTLEv.2.00 (used in the 1996 LEP 2 workshop):
GENTLE v.2.01 (14 March 1998) compared to v.2.00:
Angular distribution (with anomalous couplings) extendedfrom CC03 class to CC11 class [69, 70].
GENTLE v.2.02 (11 Sept 1998) compared to v.2.01:
For CC cross-sections, also a constantW width may be chosen; minor bugs eliminated.
ZAC v.0.9.4 (12.02.1999) [71]: new package, includes anomalous couplings and calculates the an-
gular distribution for polarizedZ pair production in the NC08 class.
GENTLE v.2.10 (March 2000) differs from v.2.02 by the following features:
– for the CC cross-sections, above threshold the Coulomb correction was modified.
– the NC cross-sections in package4fan include now besides the NC32 class also the NC02 process;
also some new options introduced, see flag descriptions below.



46

As is well-known, recent comparisons for the total CC03 cross-section showed thatGENTLE
v.2.00 overestimated it by about2%. The reason was understood in a study made by theRacoonWW
collaboration [72]. It was found that the Coulomb correction as computed in references [28] overesti-
mates the FSR QED correction above the2W threshold. Such a behaviour was not excluded, of course,
because old calculations control only the leading term at thresholdO (1/βW ), whereβ2

W = 1− 4M2
W
/s.

Only more complete calculations, using e.g. the DPA, may check how precisely the1/βW approximation
works.

An introduction of a simple suppression factor

max

(

1 − βW

βW |√s=200 GeV

, 0

)

(60)

switching off the Coulomb correction smoothly between
√
s = 2M

W
and200 GeV improves the nu-

merical agreement withRacoonWWconsiderably. In this sense, the introduction of such afudgefactor
is justified by a more complete calculation based on DPA.

Compared toGENTLE v.2.00 , new or extended flag regimes inGENTLE v.2.10 allow for:
(a) IFUDGF=0,1: switching the Coulomb suppression factor off/on (forIPROC=1, ie, CC);
(b) IIQCD =0,1: without/with inclusive (naive) treatment of QCD corrections (forIPROC=2, ie, NC);
(c) IIFSR =0,1,2: choice of final state QED corrections [none, at scales=M2

Z
, or at scalesi] (for

IPROC=2);
(d) ICHNNL=0,1: switching between NC02 and NC32 classes (forIPROC=2);
(e) IGAMWS=0,1: switching between constant ands-dependentW width (for IPROC=1);
(f) IINPT =2: use of theGF input scheme (forIPROC=2) See section 2.13, eq. (8) of [5]:s2θ ≡
(1 −M2

W
/M2

Z
), g2 ≡ 4

√
2GFM

2
W

.
Further, by calling subroutineWUFLAG, one may redefine the numerical value ofαem(M2

Z
)=ALPHFS

(for IIFSR =1).

Remaining electroweak corrections, genuine weak corrections in particular, are not included in
GENTLE. Although, we have several choices of input parameters. We may recall here thatGENTLE
v.2.00 had two options:α-scheme andGF -scheme, as defined by Eqs.(71). InGENTLEv.2.10 this is
extended to the NC32 family. A sample of the numerical results is shown in Tab.(6). The CC table is
produced with the followingGENTLEflag settings:
IPROC,IINPT,IONSHL,IBORNF,IBCKGR,ICHNNL = 1 1 1 1 0 0
IGAMZS,IGAMWS,IGAMW,IDCS,IANO,IBIN = 0 0 1 0 0 0
ICONVL,IZERO,IQEDHS,ITNONU,IZETTA = x x x 0 1
ICOLMB,IFUDGF,IIFSR,IIQCD = 2 1 0 1
IMAP,IRMAX,IRSTP,IMMIN,IMMAX = 1 0 1 1 1

As seen from the Table, there is a very good agreement betweenGENTLEv.2.10 andRacoonWW.
It is important to emphasize, that the introduction of a suppression factor, Eq.(60), is the only modifica-
tion as compared to v.2.00 which overestimated the total cross-section by about2%. In this respect one
could say that, followingGENTLE’s example, all programs that do not include DPA may, nevertheless,
give aneffectivedescription of CC03 that emulates the results of DPA, e.g.RacoonWW. Nevertheless,
only programs including DPA represent a state-of-the-art calculation. Indeed, the Coulomb correction
is just part of the fullO(α) correction and cannot be split from the rest unambiguously at energies
well above threshold. However, an improved Born approximation (IBA) comes significantly closer to
theO (α)-corrected result if the Coulomb singularity is switched off above threshold with some weight
functionf(βW ). This was already done in the IBA of Ref. [42], wheref(βW ) reduced the Coulomb part
from 2% to about1% at

√
s = 200GeV. The more radicalf(βW ) of (60) reduces the2% to zero at√

s = 200GeV.
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√
s [GeV] RacoonWW GENTLE− GENTLE2.10 GENTLE+

172.086 12.0934 (76) 12.0366 12.0457 12.1289
176.000 13.6171 (67) 13.5651 13.5723 13.6655
182.655 15.3708 (76) 15.2628 15.2731 15.3771
188.628 16.2420 (111) 16.1723 16.1839 16.2935
191.583 16.5187 (85) 16.4749 16.4869 16.5983
195.519 16.7910 (88) 16.7674 16.7797 16.8927
199.516 16.9670 (89) 16.9590 16.9723 17.0864
201.624 17.0254 (89) 17.0309 17.0435 17.1579
210.000 17.0876 (91) 17.1419 17.1539 17.2687

Table 6: Cross-sections [pb] fore+e− → W +W− → 4f; first column:RacoonWW[20, 72], second column:GENTLE 2.10,

third and fourth columns estimate variations due to theoretical uncertainties. Flags:ICONVL,IZERO,IQEDHS =001,100,013.

Concerning the theoretical uncertainties given in Table 6,one should understand that they are
exclusively due to ISR as it is implemented within theGENTLEapproach. As seen, they are of the
order of0.75%. Again, a complete approach, like the DPA, is better suited to provide a safe estimate of
theoretical uncertainties.

Comparison betweenRacoonWWandBBCresults

Authors

RacoonWW A. Denner, S. Dittmaier, M. Roth and D. Wackeroth
BBC F. Berends, W. Beenakker and A. Chapovsky

In this section we compare the Monte Carlo generatorRacoonWW[22, 20] with the semi-analytical
benchmark program [9] of Berends, Beenakker and Chapovsky,calledBBCin the following. The numer-
ical comparison has been done for the leptonic channele+e− → νµµ

+τ−ντ and the input parameters
of Ref. [9]. As explained in more detail below, in this section theRacoonWWresults are not calculated
with the preferred options, but rather in a setup as close as possible to theBBCapproach.

The two programs include the complete electroweakO(α) corrections toe+e− → WW →
4f(+γ), both including the non-factorizable corrections andW -spin correlations, which at present is
only possible within the DPA formalism. Although both programs use the DPA, nevertheless there are
differences between these two calculations. One is technical, the usual difference between a flexible
Monte Carlo calculation, which is also meant for experimental use, and a more rigid semi-analytical one,
which was constructed as a benchmark for future calculations. The other difference is in the implemen-
tation of the DPA. TheBBCcalculation adheres strictly to DPA definitions, so also thephase space and
photon emission are taken in DPA. InRacoonWWthe matrix elements for virtual corrections are calcu-
lated in the DPA, but the exact off-shell phase space is used.For real photon radiation the DPA is not
used. Instead all Born diagrams fore+e− → 4fγ (including the background) are taken into account and
the finite width is introduced in the fixed-width scheme. Formally this procedure is not gauge-invariant,
but it has been checked numerically with a gauge-invariant calculation (complex-mass scheme). The
matching between the virtual and real corrections, which isnecessary in order to cancel the IR and mass
singularities, is done in such a way that the leading-logarithmic corrections arising from ISR are taken
into account exactly, i.e. not in DPA. By comparing the two calculations one can numerically check the
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quality of the DPA for real-photon radiation. The expected differences in the relative corrections be-
tween both approaches are formally ofO (α/π × ΓW/∆E), with ∆E =

√
s − 2MW near theW -pair

production threshold.

The differences in the approaches have important consequences. WithRacoonWWpredictions can
be obtained for general cuts and physically relevant situations. The fact that the masses of the final-state
fermions are neglected restricts the applicability of the program to those observables that are free of
mass singularities connected to the final state. This means,in particular, that collinear photons have to
be combined with the corresponding fermions. This combination depends on the experimental situation,
which in turn depends on the type of final state. The semi-analytical approach is of course less flexible
for implementing the experimental cuts. In the benchmarkBBCcalculation some of the integrations were
performed analytically in order to speed up the numerical evaluations. For instance, the invariant-mass
distributions were treated differently from observables where the invariant masses have been integrated
over. This is not a requirement in general in the DPA if one is prepared to do more of the integrations
numerically. On the other hand, a treatment of mass-singular observables, i.e. ones without photon
recombination, can be easily performed in the semi-analytical approach.

For the total cross-section, the differences between the two approaches should be of the naively
expected DPA accuracy ofO (ΓW/∆E) relative to theO (α) correction. In Figure 12 we show the
prediction ofBBCas points with error-bars and the prediction ofRacoonWWas a curve together with
error-bars for some points. All error-bars are purely statistical.
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Fig. 12: RelativeO (α) corrections to the total cross-section ofe+e− → νµµ+τ−ντ
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As shown in Figure 12, both calculations agree very well above 185GeV. Below this energy the
differences in the implementation of the DPA become visible, in agreement with the expected relative
error ofO (ΓW/∆E). The main effect originates probably from the different treatment of theO(α) ISR
and the phase space. WhileBBCtreat the completeO(α) correction (including ISR) in DPA and use
the on-shell phase space consistently, inRacoonWW10 the universal leading-log part of theO(α) ISR
correction is applied to thefull CC11 cross-section, and the off-shell phase space is used throughout.
Below about170GeV the DPA cannot be trusted any more for both virtual corrections and real-photon
radiation, since the kinetic energy of theW bosons becomes of the order of theW width. The large
deviations of up to2% in the energy range between170 and180GeV can be partially attributed to the
fact thatBBCtreats also the leading logarithmic ISR corrections in DPA which is not done inRacoonWW.
Therefore this difference cannot be viewed automatically as a theoretical uncertainty of the Monte Carlo
programs.

For angular and energy distributions unavoidable differences arise from the definition of the phase-
space variables in the presence of photon recombination. When defining the momenta of theW bosons
for angular distributions,BBCchooses to assign the photon to one of the production/decay sub-processes.
If the detected photon is hard,Eγ ≫ ΓW , then this is theoretically possible. The error in the assignment
is suppressed byO(ΓW/∆E). If the detected photon is semi-soft,Eγ ∼ ΓW , then it is impossible to
assign it to any of the sub-processes, but as the photon momentum is much smaller than theW -boson
momentum, the error associated with this procedure is suppressed by the same relativeO(ΓW/∆E).
The angles are then determined from the resultingW -momenta and the original fermion momenta. In
RacoonWW, all angles are defined from the fermion momenta after eventual photon recombination. To
this end, the invariant masses of the photon with each of the charged initial- or final-state fermions are
calculated. If the smallest of these invariant masses is smaller thanMrec and the fermion corresponding
to this invariant mass is a final-state particle, the photon is recombined with this fermion. The two
different angle definitions lead to a redistribution of events in the angular distributions, which arises, in
particular, from hard photon emission.

The relative corrections to the distributions in the cosines of the polar production angle,θW =
∠(e+,W+), and the decay angle,θµW = ∠(µ+,W+), are compared for

√
s = 184GeV in Figure 13.
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Fig. 13: RelativeO (α) corrections to theW -production and decay angle distributions fore+e− → νµµ+τ−ντ at
√

s =

184 GeV for the two different values ofMrec = 5 GeV and25 GeV

10The exponentiation of ISR has been switched off inRacoonWWfor this comparison, the on-shell Coulomb singularity
has been used and no naive QCD corrections are included. Moreover, the lowest-order cross-section used for normalization is
calculated in DPA with on-shell phase space. This allows to compare directly the relative corrections of both approaches.
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The results ofBBCare again shown as points with error-bars. The results ofRacoonWWare plotted
as histograms for two different photon recombination cutsMrec = 5GeV or 25GeV. The relative
corrections in the two recombination schemes differ at the level of0.5÷ 1%, with the largest differences
for large angles where the cross-section is small. The deviations betweenBBCand RacoonWWare
somewhat larger than this and also larger than in the case of the total cross-section, but of the same order
of magnitude. A repetition of the analysis at

√
s = 250GeV has shown that the deviations at large angles

grow with increasing centre-of-mass energy, since also thehard-photon redistribution effects grow with
energy.

Invariant-mass distributions depend crucially on the treatment of the real photons. Since this is
fundamentally different inRacoonWWandBBC, it does not make sense to compare these distributions
between the two programs. Specifically,BBCdefine theW invariant masses from the fermion momenta
only (bareor muon-like) which make them sensitive to the collinear mass singularities. InRacoonWW,
the photons are always recombined with the fermions (calorimetric or electron-like). The actual mass
shifts crucially depend on the experimental setup. They areof the order of several10MeV and negative
for the bare procedure. In the calorimetric treatment thesemass shifts are reduced and can even become
positive depending on the recombination procedure.

As was already mentioned earlier, the most important difference between the two approaches is the
treatment of real-photon radiation. Therefore, it is important to compare distributions that are exclusive
in the photon variables. As an example of such a distributionwe present in Figure 14 a comparison of
the photon spectrum,Eγ dσ/dEγ , as a function of photon energy at the CM energy184GeV.
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Fig. 14: Photon energy spectrum,Eγ dσ/dEγ , at the CM energy184 GeV for the two different sets of angular cuts, as

described in the text.

The spectrum is shown for two different sets of angular cuts,which restrict the angles between the
photon and the beam momenta,∠(e±, γ), the photon and final-state lepton momenta,∠(ℓ±, γ), and the
beam and final-state lepton momenta,∠(ℓ±, e±):

1. ∠(e±, γ) > 1 deg, ∠(ℓ±, γ) > 5 deg and∠(ℓ±, e±) > 10 deg,

2. ∠(e±, γ) > 50 deg, ∠(ℓ±, γ) > 50 deg and∠(ℓ±, e±) > 10 deg.

The first set of cuts is closer to experiment, but the second suppresses the dominant contribution of ISR in
the real-photonic factorizable corrections. Since the second set of cuts removes a large part of the phase
space, statistics in the first case is about ten times bigger than in the second case. However, the second
set of cuts renders non-factorizable and factorizable radiation of a comparable order, thus checking the
former. Figure 14 reveals an agreement between the two approaches within∼ 10% for both sets of cuts,
which is of the order of the naive expectation for the DPA error of O (ΓW/∆E). Note a peculiar decrease
of the photon energy spectrum at lower photon energies for the second set of cuts. It was numerically
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checked in the BBC approach that this decrease is due to non-factorizable contributions (interference
between various stages of the process). More precisely, thenon-factorizable part amounts to roughly
20% of the complete contribution and is negative forEγ ≪ ΓW; it tends to zero aboveEγ ∼ ΓW.

Comparison ofRacoonWWandYFSWW3results

Authors
RacoonWW A.Denner, S.Dittmaier, M.Roth and D.Wackeroth

YFSWW3 S. Jadach, W. Placzek, M. Skrzypek, B. Ward and Z. Was

In this section we compare results obtained with the Monte Carlo generatorsRacoonWW[22, 20]
andYFSWW3[76]. The numerical comparison has been done for the LEP 2 input parameter set. This
comparison is restricted to the CC03 contributions fore+e− → WW → 4f , i.e. background diagrams
have been omitted11.

First we recall thatRacoonWWcontains the complete electroweakO(α) corrections toe+e− →
WW → 4f(+γ) within the DPA, including the non-factorizable corrections andW -spin correlations.
Real-photon emission is based on the fulle+e− → 4fγ matrix element (of the CC11 class), and ISR
beyondO(α) is treated in the structure-function approach with soft-photon exponentiation and leading-
logarithmic contributions inO(α3). To be more precise, for4f and4fγ (with a hard non-collinearγ) at
tree level all final states are supported, i.e. also Mix43, i.e.uddu. If, however, soft and collinear photons
are allowed, the virtual correction toe+e− → WW → 4f is required. In this case,RacoonWWtakes
photon radiation from the CC11 class into account12. The singular Coulomb correction is included with
its full off-shell behaviour.QCD corrections are taken into account by the naive QCD factors(1 +αs/π)
for hadronically decayingW bosons.

In YFSWW3the exactO(α) electroweak corrections toe+e− → W+W− are implemented together
with YFS exponentiation of the corresponding soft-photon effects for the production process as defined
in the DPA, which is equivalent to the LPA as defined in Ref. [77] for this process. ISR beyondO(α)
is taken into account up toO(α3) in leading-logarithmic approximation. The full off-shellbehaviour
of the singular Coulomb correction is included. The corrections to theW decay, including naive QCD
corrections, are implemented by using the corrected branching ratios. In this way, the total cross-section
receives the fullO(α) corrections in DPA. Taking this cross section as normalization, final-state radi-
ation with up to two photons is generated byPHOTOS, which is based on a leading-logarithmic (LL)
approximation in which finitepT effects are taken into account in such a way that the soft limit of the
respective exactO (α) pT spectrum is reproduced.

For observables where the decay of theW bosons and their off-shellness are integrated out, the
expected differences between the two calculations are of the order of the accuracy of the DPA, i.e. of
the relative orderO (αΓW/∆E), modulo possible enhancement factors. Here∆E is a typical energy
scale for the considered observable, i.e.∆E ∼ √

s − 2MW for the total cross-section near theW -
pair production threshold. For observables that depend on the momenta of the decay products larger
differences can be expected. This holds, in particular, forobservables involving a real photon. While
such observables are based on the full lowest-order matrix element fore+e− → 4fγ in RacoonWW, in
YFSWW3the multi-photon radiation in theWW production (within the YFS scheme) is combined with
O(α2) LL radiation inW -decays (done byPHOTOS), i.e. the real photon radiation is treated in DPA and
some finiteO(α) terms from FSR are neglected, but the treatment of the leading logarithms goes beyond
strictO(α).

For the total cross-section, the differences between the two approaches should be of the naively

11Note that the real corrections inRacoonWWinclude the background diagrams of the CC11 class, and the ISR is convoluted
with this class of diagrams. For LEP 2 energies, however, thedifference induced by these background diagrams with respect to
the Born should be at the per mille level.

12To do this, in any program, for Mix43 would require virtual corrections toZ-pair production, which are not implemented.
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no cuts σtot[fb]

final state program Born best

YFSWW3 219.770(23) 199.995(62)
νµµ

+τ−ν̄τ RacoonWW 219.836(40) 199.551(46)
(Y–R)/Y −0.03(2)% 0.22(4)%

YFSWW3 659.64(07) 622.71(19)
ud̄µ−ν̄µ RacoonWW 659.51(12) 621.06(14)

(Y–R)/Y 0.02(2)% 0.27(4)%

YFSWW3 1978.18(21) 1937.40(61)
ud̄sc̄ RacoonWW 1978.53(36) 1932.20(44)

(Y–R)/Y −0.02(2)% 0.27(4)%

Table 7: Total cross-sections for CC03 fromRacoonWWand YFSWW3at
√

s = 200 GeV without cuts. The numbers in

parentheses are statistical errors corresponding to the last digits.

expected DPA accuracy, i.e. below 0.5% for
√
s > 180GeV. In Table 7 we compare the results from

both generators for the total cross-section without any cuts. Thebestnumbers correspond to the inclusion
of all corrections implemented in the programs. Independently of the channel both programs differ by
0.2÷0.3%, which is of the order of the intrinsic ambiguity of any DPA implementation, i.e. the numbers
are consistent with each other.

The results ofYFSWW3presented here differ from the ones presented at the winter conferences,
where still a difference of0.7% between the programs was reported. The main point is that theresults
in Table 7 are obtained with version 1.14 whereas those presented at the winter conferences were ob-
tained with version 1.13. Version 1.14, which has benefittedfrom the detailed comparison between the
RacoonWWandYFSWW3virtual corrections, represents, according to renormalization group improved
YFS theory [78], an improved re-summation of the higher order corrections as compared to version 1.13.
We stress that we (theRacoonWWandYFSWW3groups) have also checked that, when we use the same
couplings, ourO (α) virtual plus soft corrections in the W-pair production building block agree differ-
entially at the sub-per mille level and agree for the total cross section at< 0.01%. This is an important
cross check on both programs. However, as a by-product of this detailed comparison, we have realized
that theGF scheme of Refs. [79] has only the IR divergent part of the virtual photonic corrections with
couplingα(0) whereas the renormalization group equation implies that any photon of 4-momentumq
should couple completely withα(0) whenq2 → 0, whereα(q2) is the running renormalized QED cou-
pling. In version 1.14 ofYFSWW3, we have made this improvement as implied by the renormalization
group equation [78]. The generic size of the resulting shiftin theYFSWW3prediction can be understood
by isolating the well-known soft plus virtual LL ISR correction to the process at hand, which has in
O (α) the expression [79]

δv+s
ISR,LL = β ln k0 +

α

π

(

3

2
L+

π2

3
− 2

)

, (61)

whereβ ≡ 2α
π (L − 1), L = ln(s/m2

e), andk0 is a dummy soft cut-off which cancels out of the cross
section as usual. In theGF scheme of Refs. [79] which is used inYFSWW3-1.13, only the partβ ln k0 +
(α/π)(π2/3) of δv+s

ISR,LL has the couplingα(0) and the remaining part ofδv+s
ISR,LL has the coupling

αGF
∼= α(0)/(1−0.0371). The renormalization group improved YFS theory implies, however, thatα(0)

should be used for all the terms inδv+s
ISR,LL. This is done inYFSWW3-1.14 and results in the normalization

shift ((α(0) − αGF
)/π) (1.5L − 2), which at 200GeV is∼ −0.33%. This explains most of the change

in the normalization ofYFSWW3-1.14 vs that ofYFSWW3-1.13. Moreover, it does not contradict the
expected total precision tag of either version ofYFSWW3at their respective stages of testing. We stress
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that, according to the renormalization group equation, version 1.14 is an improvement over version 1.13
– it better represents the true effect of the respective higher order corrections. More details of the actual
scheme of renormalization and re-summation used inYFSWW3-1.14 will appear elsewhere [59].

In RacoonWW, the couplingα(0) is used everywhere in the relativeO (α) corrections, even in
theGF scheme, in order to include the appropriate coupling for the(dominant) photonic corrections. A
switch inYFSWW3-1.14 to this scheme shifts the maximal differences betweenthe programs to0.34%,
somewhat larger than the0.27% shown. This confirms the expectation that the effects of unknown
higher-order corrections are at the level of0.1%.

It should be noted that the results in Table 7 lie by2 ÷ 3% below the LL-type predictions given
by GENTLE[68] (see also Section 4.1). As stated above, however, this consideration only applies to
GENTLEin somespecialsetup. The disagreement with all other codes active in the ‘95 workshop [5]
is within 1.5%. The fact that two independent Monte Carlo calculations with physical precision at the
level ofO(α

π
ΓW

M
W

) now agree to0.2 ÷ 0.3% at 200 GeV for this total cross section is truly an important

improvement over the situation in the ’95 workshop [5].

In the following we consider observables obtained with the cut and photon recombination pro-
cedure as given in the description of numerical results ofRacoonWWin Sect. 4.1. We again con-
sider the cases of a tight recombination cutMrec = 5GeV (bare) and of a loose recombination cut
Mrec = 25GeV (calo).

Table 8 shows the analogous cross-sections to Table 7 but nowwith the describedbare cuts ap-
plied. The difference of0.2÷ 0.3% between the two compared programs does not change by the applied
cuts. When turning frombare to calo cuts the results for the cross-sections do not change significantly;
of course, the lowest-order results do not change at all.

In the following relative corrections to various distributions for the semi-leptonic channele+e− →
ud̄µ−νµ are compared at

√
s = 200GeV. All these distributions have been calculated using the above

set of separation and recombination cuts.

The corrections to the cosine of the production angle for theW+ andW− bosons are shown in
Figures 15 and 16, respectively, for thebare (left) and thecalo (right) recombination schemes. The
distributions are compatible with each other to better than1%. The largest differences are of the order of
1% and appear in general for large scattering angles.
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Fig. 15: Distribution in the cosine of theW+ production angle with respect to thee+ beam for thebare (left) andcalo (right)

setup at
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55

with bare cuts σtot[fb]

final state program Born best

YFSWW3 210.918(23) 192.147(63)
νµµ

+τ−ν̄τ RacoonWW 211.034(39) 191.686(46)
(Y–R)/Y −0.05(2)% 0.24(4)%

YFSWW3 627.18(07) 592.68(19)
ud̄µ−ν̄µ RacoonWW 627.22(12) 590.94(14)

(Y–R)/Y −0.01(2)% 0.29(4)%

YFSWW3 1863.40(21) 1826.80(62)
ud̄sc̄ RacoonWW 1864.28(35) 1821.16(43)

(Y–R)/Y −0.05(2)% 0.31(4)%

Table 8: Total cross-sections for CC03 fromYFSWW3and RacoonWWat
√

s = 200 GeV with bare cuts (see text). The

numbers in parentheses are statistical errors corresponding to the last digits.

The corrections to the invariant mass distributions for theW+ and W− bosons are shown in
Figures 17 and 18 for thebare (left) and thecalo (right) recombination scheme. The distributions are
statistically compatible with each other everywhere and agree within 1%. It should be noted that the
distortion of the distributions is mainly due to radiation off the final state and theW bosons. It may
seem remarkable that the LL approach ofPHOTOSproperly accounts for these distortion effects. But
one should remember thatPHOTOSwas fine-tuned to describe the exactO

(

α1
)

FSR for the radiativeZ
andτ decays, likeZ → µ−µ+(γ) andτ → µνν̄(γ). PHOTOSwas also cross-checked against the exact
matrix element for theW → µνγ process.

Figs. 19, 20, and Fig. 21 show the distributions in the photonenergyEγ , in the cosine of the polar
angle of the photon (w.r.t. thee+ axis), and in the angle between the photon and the nearest final-state
charged fermion from the two programs and in the two recombination schemes.

The differences are of the order of15 ÷ 20%. Differences of this order may be expected, since
photonic observables are no corrections anymore, but belong to the class ofe+e− → 4fγ processes,
sincee+e− → 4f does not contribute here. Whether or not the observed differences are consistent with
the differences in the treatments of the real photon emission in the two programs is under investigation.
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4.2 Internal estimate of theoretical uncertainty for CC03

Here we give a quantitative statement on the theoretical precision for DPA-approximation.

Estimating the theoretical uncertainty of the DPA withRacoonWW

Authors

A.Denner, S. Dittmaier, M. Roth and D.Wackeroth

All existing calculations of electroweak corrections toe+e− → WW → 4f are based on DPA. A
naive estimate of the accuracy of this approach yields(α/π)× ln(. . .)×ΓW/MW, whereΓW/MW is the
generic accuracy of the DPA,α/π results from considering one-loop corrections, andln(. . .) represents
leading logarithms or other possible enhancement factors in the corrections. This naive estimate suggests
that the DPA has an uncertainty of some0.1%. Note, however, that this estimate can fail whenever small
scales become relevant. In particular near theW -pair threshold, the estimate should be replaced by
(α/π) × ln(. . .) × ΓW/(

√
s− 2MW).

In order to investigate the accuracy of the DPA quantitatively, a number of tests have been per-
formed withRacoonWW. The implementation of the DPA has been modified within the formal level
of αΓW/MW, and the obtained results have been compared. Note that inRacoonWWonly the virtual
corrections are treated in DPA, while real photon emission is based on the fulle+e− → 4fγ matrix
element with the exact five-particle phase space. Thus, onlythe2 → 4 part is effected by the following
modifications. Specifically, three types of uncertainties have been considered (see Ref. [22] for details):

• Different on-shell projections:
In order to define a DPA one has to specify a projection of the physical momenta to a set of
momenta for on-shellW -pair production and decay13. This can be done in an obvious way by
fixing the direction of one of theW bosons and of one of the final-state fermions originating from
eitherW boson in the CM frame of the incominge+e− pair. The default inRacoonWWis to fix
the directions of the momenta of the fermions (not of the anti-fermions) resulting from theW+

13This option only illustrates the effect of different on-shell projections in the four-particle phase space; if real photonic
corrections are treated in DPA the impact of different projections may be larger.
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andW− decays (def). A different projection is obtained by fixing the directionof the anti-fermion
from theW+ decay (proj) instead of the fermion direction.

• Treatment of soft photons:
In RacoonWW, the virtual photon contribution is treated in DPA, while real photon radiation is
fully taken into account. These two contributions have to bematched in such a way that IR and
mass singularities cancel. This requirement only fixes the universal, singular parts, but leaves
some freedom to treat non-universal, non-singular contributions in DPA or not. For instance, in the
branch ofRacoonWWthat employs the subtraction method of Ref. [41], the endpoint contributions
of the subtraction functions are calculated in DPA and addedto the virtual photon contribution as
default. As an option,RacoonWWallows to treat also the universal (IR-sensitive) part of the virtual
photon contribution off-shell by extracting an U(1)-invariant factor à la YFS [80] from the virtual
photon contribution and adding it to the real photon contribution, i.e. this soft+virtual part of the
photonic correction is treated off shell (eik). The two described treatments only differ by terms
of the form(α/π) × π2 × O (1) which are either multiplied with the DPA (def) or with the full
off-shell Born cross-sections (eik).

• On-shell versus off-shell Coulomb singularity:
The Coulomb singularity is (up to higher orders) fully contained in the virtualO (α) correction in
DPA. Performing the on-shell projection to the full virtualcorrection leads to the on-shell Coulomb
singularity. However, since the Coulomb singularity is an important correction in the LEP 2 energy
range and is also known beyond DPA,RacoonWWincludes this extra off-shell Coulomb correction
as default. Switching the extra off-shell parts of the Coulomb correction off (Coul), yields an effect
of the order of the accuracy of the DPA.
In the following table and figures the total cross-section and various distributions have been com-

pared for the different versions of the DPA defined above. Theresults have been obtained using the LEP 2
input parameter set and the set of separation and recombination cuts as given in the description of numeri-
cal results ofRacoonWWin Sect. 4.1. The recombination cut is chosen to beMrec = 25GeV. As default,
we take theRacoonWWresults (best-with-4f-Born) of Sect. 10 for the processe+e− → ud̄µ−νµ(γ) at√
s = 200GeV, which are based on the above input. The only differences arethat the naive QCD factors

and ISR corrections beyondO (α) are not included in the results of this section. The results for the total
cross-section are shown in Table 9.

def proj eik Coul

σ/pb 570.53(46) 570.37(46) 570.47(46) 571.28(46)
δ/% 0 −0.03 −0.01 0.13

Table 9:RacoonWWpredictions for the total cross-section ofe+e− → ud̄µ−νµ(γ) at
√

s = 200 GeV in various versions of

the DPA and relative differencesδ = σ/σdef − 1

Note that these cross-sections are calculated with the above cuts. We find relative differences
at the level of0.1%. As expected, the prediction that is based on the on-shell Coulomb correction is
somewhat higher than the exact off-shell treatment, since off-shell effects screen the positive Coulomb
singularity. The results in Table 9 have been obtained usingphase-space slicing for the treatment of the
IR and collinear singularities. If the subtraction method is used instead, the resulting cross-section is
about 0.01% smaller.

In Figures 22 and 23 we show the differences of theproj, eik, and Coul modifications to the
default version of the DPA for some distributions. For the distribution in the cosine of the W-production
angleθW+ and in the W-decay angleθW−µ− (see Figure 22) the relative differences are of the order of
0.1 ÷ 0.2% for all angles, which is of the expected order for the intrinsic DPA uncertainty.

For theµ-energy distribution, shown in the l.h.s. of Figure 23, the differences are typically of the
same order, as long asEµ is in the range forW -pair production, which is20.2GeV < Eµ < 79.8GeV at
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√
s = 200GeV. Outside this region, the four-fermion process is not dominated by theW -pair diagrams,

and the DPA is not reliable anymore, which is also indicated by large intrinsic ambiguities. The r.h.s.
of Figure 23 shows the DPA uncertainties for theud̄ invariant-mass distribution. Within a window of
2ΓW around the W resonance the relative differences between theconsidered modifications are also at
the level of0.1 ÷ 0.2%. The differences grow with the distance from the resonance point.

The discussed results illustrate that the intrinsic ambiguities of the DPA, as applied inRacoonWW,
are at the level of a few per mil, whenever resonantW -pair production dominates the considered observ-
able.

Estimating the theoretical uncertainty of the DPA withYFSWW3-KoralW

The accuracy of the combined result fromYFSWW31.13 and our all 4-fermion process MCKoralW 1.42
[81] as presented in Ref. [59] is expected to be below0.5% for the total cross-section when all tests are
finished. These tests are currently in progress.

4.3 Summary and conclusions

In this Section we have compared different theoretical predictions for the CC03 cross-section that have
been used to analyze the data in terms of allW -pair final states,4q(qqqq) and non-4q(qqlν, lνlν). The
major achievement in this area is represented by inclusion of radiative corrections in DPA for theWW
cross-section.

Data are collected from161 GeV up to210 GeV. One should remember that below some threshold
(≈ 170GeV) the DPA cannot be trusted any more for both virtual corrections and real-photon radiation,
since the kinetic energy of theW bosons becomes of the order of theW width. RacoonWWhas shown
that the intrinsic ambiguities of its implementation of theDPA are at the level of a few per mille.

For the total CC03 cross-section, the differences betweenRacoonWWandYFSWWshould be of
the naively expected DPA accuracy, i.e. below 0.5% for

√
s > 180GeV. And, indeed, independently of

the channel, the two MC differ by0.2 ÷ 0.3% in the results presented herein and this increases to 0.4%
if uncertainties from unknown higher-order corrections are taken into account. Note that, withbarecuts
applied, the difference of0.2 ÷ 0.3% shown here between the two compared programs does not change.

The corrections to the distribution in the cosine of the production angle for theW+ and W−

bosons have also been analyzed for thebareand thecalo recombination algorithms. They are compatible
with each other at a level below 1%. Although compatible withthe statistical accuracy, the deviations
seem to become somewhat larger for large scattering angles.The corrections to the invariant mass
distributions for theW+ and W− bosons, again withbare and calo recombinations are statistically
compatible between the two Monte Carlo programs everywhereand agree within 1%.

Another comparison, shown in Figure 12, indicates thatRacoonWWandBBCcalculations agree
very well for the totalW -pair production cross-section above185GeV. Below this energy the differ-
ences in the implementation of the DPA become visible, in agreement with the expected relative error
of O (α/π × ΓW/∆E). However, for angular and energy distributions unavoidable differences at the
level of1 ÷ 2% arise between the two predictions, as a consequence of the definition of the phase-space
variables in the presence of photon recombination. Although theBBC-calculation has not been imple-
mented in a MonteCarlo it can be used for obtaining a relativeO (α) correction factor where one has an
estimated internal accuracy ranging from1.5% at lower energies to0.3% at210 GeV.

In conclusion, from the direct comparisons ofRacoonWWandYFSWW3, supported byBBC, we
can estimate an overall theoretical uncertainty of the current predictions for the totalWW cross-section
at0.4% at200 GeV. The0.4% precision tag is an important conclusion of this Workshop.

For other energies no complete investigations of the theoretical uncertainty have been performed.
However, based on the error estimate of0.4% for 200GeV, the intrinsic uncertainty of the DPA of0.2%
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at 200GeV and the generic energy dependence of this uncertainty givenby Γ
W
/(ECMS − 2MW) we

estimate an uncertainty of the predictions ofRacoonWWandYFSWW3of 0.5% for 180GeV and0.7%
for 170GeV. This could be somewhat further reduced, if the sources of the differences between the
different programs are found.

Results for theWW cross-section atO (α) are also available fromGRACEbut a comparison with
the other codes is not yet at the level of those already presented where a considerable amount of time
was invested to try to understand differences towards a safeestimate of theoretical uncertainty.
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5. Four fermions plus a visible photon

The class of processes that are investigated at LEP 2 aree+e− →W+W− → 4 f, single-W production,
Z-boson-pair production, single-Z production. LEP 2 and also future linear colliders will allow us to
study a new class of processes,e+e− → 4f + γ.

The physical interest of the latter is twofold. They can be used to obtain informations on the
quartic gauge-boson couplings and include the production processes of three gauge-bosons,W+W−γ,
ZZγ andZγγ. In this case the photon is visible by definition and we term the corresponding process
radiative, i.e. we consider as radiative events those events with photons where at least one photon passes
the experimental photon requirements, for instanceEγ > 1 GeV,cos θγ < 0.985(0.997) andθf−γ > 5◦.

Note that for all final states, the invariant mass needs a moreprecise definition in case radiative
photons are present in the event. From a calculational pointof view, there is always a minimal invariant
mass (energy and separation angle) below which photons are not resolved. Thus we need to specify
fermion-photon invariant mass or fermion-photon energiesand separation angles, below which the the
photon are combined with the fermion and above which the photons are not included in the mass calcu-
lation. A baremass would set these cuts rather tight, excluding photons from theff mass, acalo mass
would set the separation cuts looser. Theorists like cuts onM(γ − nearestf). Experimentalists like cuts
on energies and angles. In the following we list both TH(eory)-cuts and EXP(erimental)-cuts.

TH cuts :
bare M(ff + (γ)) including photons ifM(f + γ) < 5 GeV,

calo M(ff + (γ)) including photons ifM(f + γ) < 25 GeV.
EXP-cuts :

bare : M(f1f2 + (γ)), photons less than 1 GeV or less than1◦ away fromf1 or f2 are included;

calo : M(l1l2 + (γ)), photons less than 1 GeV or less than10◦ away from charged leptons are
included,
M(q1q2 + (γ)), photons less than 1 GeV or less than25◦ away from either quarkq1, q2 are
included, which takes at least the major difference betweenfermions - quarks versus leptons
- into account.

These definitions serve for benchmarking distributions, not so much to mimic an actual experi-
mental strategy, which is of course fermion dependent. In other words this is an approximation to the
experimental side: if the fermion is a muon, even0◦ opening angles can be separated experimentally.
In addition, for identified photons one still may or may not choose to recombine the photon with the
fermion.

Furthermore,e+e− → 4f + γ is an important building block for the radiative corrections to the
Born processe+e− → 4 f, hence non-radiative events are those with no photon or only photons below the
minimal photon requirements. In case of non-radiative events, this amounts to adding up virtual and soft
radiative corrections. The effect ofO (α) QED corrections very often amounts to several percent, mostly
originating from collinear photon radiation off highly energetic particles and from virtual photon ex-
change. For initial state radiation, for instance, we have three types of corrections, a)O (α/π ln(me/Q))
with Q ≫ me being the typical scale at which the process occur, b)O (α/π) from hard photons that
must, nevertheless, be included for a1% precision tag, c) leadingO

(

α2
)

, or higher corrections that
becomes relevant for a precision tag below the1% thresholds.

Owing to the fact that a theoretical prediction with a typical accuracy of some fraction of a per-
cent must include all QED corrections, we face the complexity of it. Handling the singularities of the
squared matrix element represents a formidable task; in anybremsstrahlung process the integrand blows
up for arbitrary small photon energies and similar problemsarise from collinear emission off the charged
particles.

A general comment about this section is that some of the programs, but not all, implement4f + γ
at the level of (exact) matrix elements. Few programs have only an effective treatment of photons via
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structure functions, with or withoutpt. Furthermore we also have to distinguish between massless vs.
massive calculations.

5.1 Description of the programs and their results

4f + γ with RacoonWW

Authors

A.Denner, S.Dittmaier, M.Roth and D.Wackeroth

General description

The programRacoonWW[22] evaluates cross-sections and differential distributions for the reactions
e+e− → 4f ande+e− → 4f + γ for all four-fermion final states. The long write-up has already been
presented in Sect. 4.1, so that we only stress the features that are peculiar to4f + γ production with a
separated hard photon. The calculation is based on full4f+γ matrix elements for all final possible states.
Since fermion masses are neglected, lower cuts on the invariant mass off f̄ pairs and one± emission
angles have to be imposed, in addition to the angular and energy cuts for the hard photon.RacoonWW
supports different ways to treat finite gauge-boson widths (fixed and running widths, complex-mass
scheme) and allows to select subsets of graphs (V V γ signal diagrams, QCD background). Detailed
numerical results on4f + γ production withRacoonWWcan be found in Ref. [18] and in Sect. 5.2.

4f + γ with PHEGAS/HELAC

Author

C. G. Papadopoulos

This section refers to a novel Monte Carlo program that is capable to deal with any tree-order
process involving any particle and interaction described by the Standard Model, including QCD.

The program consists of two modules:

1. HELACwhich is a matrix element computation-tool [60] based on Dyson-Schwinger equations,
and

2. PHEGASan automatic phase-space generator [61] capable to simulate all peaking structures of the
amplitude.

The over all code is using a Monte Carlo integration based on multichannel optimization [62].

HELAC

The matrix element is evaluated using a recursive approach based on Dyson-Schwinger equations. The
computational cost exhibits an exponential growth (≃ 3n) as a function of the number of external parti-
cles (n) which for multi-particle processes results to a very important increase in the efficiency as com-
pared with the traditional Feynman-graph approach whose computational cost grows factorially (≃ n!).
In order to optimize code’s efficiency the computational strategy consists of two phases. In the first
phase a solution to the recursive equations is established in terms of an integer array containing all rel-
evant information for the process under consideration. This is theinitialization phase and is performed
once at the beginning of the execution of the program. In the second phase, using the already generated
information, the actual computation is performed resulting to the numerical evaluation of the amplitude
for each specific phase-space point provided.

In order to consistently describe unstable particles the fixed width as well as the complex width
schemes have been included. ISR and running couplings are also an option and work is in progress to
implement higher order corrections within the approach of reference [16].
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In order to deal with numerical stability problems, besidesthe double precision, a quadruple
as well as amulti-precision[63] version is available. This makesHELACable to deal with processes
exhibiting strong collinear singularities, likee−e+ → e−e+µ−µ+ at zero scattering angles. Moreover
all particle masses and vertices of the Standard Model, including QCD, in both the Feynman and unitary
gauges are incorporated.

PHEGAS

Although several matrix element computational tools were available in the past that can deal with ar-
bitrary processes, to the one or to the other extent [64], phase-space generators were always developed
according to a specific process or a class of processes [65].PHEGASis a phase space generator that
incorporates in an automatic way all possible kinematical mappings for any given process, using the
relevant information provided byHELAC. To this end each Feynman graph contributing to the process
under consideration gives rise to a kinematical mapping. The integration is performed via a Monte Carlo
multichannel approach and during the computation, weight optimization selects automatically those kine-
matical mappings that are relevant for the process under consideration.

As a first highly non-trivial testPHEGAS/HELAChas been used to produce results for four-
fermion plus a visible photon within the current study. Nevertheless, it is worthwhile to emphasize
thatPHEGAS/HELACis able to deal with any process involving any Standard Modelparticle and is by
no means restricted toe+e− → 4 f + γ reactions. A detailed presentation of the code, the implemented
algorithms as well as the incorporated physics effects willbe available in the near future [61].

4f + γ with WRAP

Authors

G. Montagna, M. Moretti, O. Nicrosini, M. Osmo and F. Piccinini

Description of the Method.

Contributions of the Pavia/ALPHAgroup to the subject of four fermions plus gamma final states are
summarized.

Hard-scattering matrix element

The exact tree-level matrix elements for the processes withfour fermions plus a visible photon in the
final state are computed by means of theALPHAalgorithm [82]. At present, the processes which can be
mediated by twoW -bosons ( CC processes) or by twoZ-bosons ( NC processes) are accounted for. The
effect of finite fermion masses is taken into account exactlyboth in the kinematics and dynamics. The
contribution of anomalous trilinear gauge couplings can bealso simulated, after having implemented in
ALPHAand cross-checked the parameterization in terms of∆kγ , λγ , δZ , ∆kZ andλZ of refs. [83, 84].
The genuinely anomalous quartic gauge boson couplings, involving at least one photon and relevant
for this process at tree-level, are also included, according to the parameterization of Ref. [85]. Final
cross-checks on anomalous quartic couplings are in progress. The fixed-width scheme is adopted as
gauge-restoring approach, as motivated in comparison withother gauge-invariance-preserving schemes
in Ref. [18].

Radiative corrections

The phenomenologically relevant Leading Log (LL) QED radiative corrections, due to initial-state ra-
diation (ISR), are implemented via the Structure Function (SF) formalism [86], according to the two
following options:

– collinear SFD(x, s);
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– pt-dependent SF̃D(x, cos θγ ; s), i.e. a combination of the collinear SFD(x, s) with an angular
factor for photon radiation inspired by the leading behaviour 1/(p · k) [87, 88].

In fact, as discussed in detail in refs. [31, 88], due to the presence of an observed photon in the final
state, the treatment of ISR in terms of collinear SF turns outto be inadequate because affected by double
counting between the pre-emission photons (described by the SF) and the observed one (described by
the hard-scattering matrix element).14 By keeping under control also the transverse degrees of freedom
of ISR, as allowed bypt-dependent SF, it is possible to remove the double-countingeffects, following
the procedure for the calculation of the QED corrected cross-section discussed in Ref. [88, 31], i.e.

σ4f+1γ
QED =

∫

dx1dx2dc
(1)
γ dc(2)γ D̃(x1, c

(1)
γ ; s)D̃(x2, c

(2)
γ ; s)Θ(cuts)dσ4f+1γ , (62)

wherec(i)γ ≡ cos θ
(i)
γ , i = 1, 2. According to eq. (62), anequivalentphoton is generated for each

colliding lepton and accepted as a higher-order ISR contribution if:

– the energy of the equivalent photon is below the threshold for the observed photonEmin
γ , for

arbitrary angles; or

– the angle of the equivalent photon is outside the angular acceptance for the observed photons, for
arbitrary energies.

Within the angular acceptance of the detected photon, the cross-section is evaluated by means of the
exact matrix element for the processese+e− → 4f + γ. Therefore, eq. (62) applies to the signature of
four fermions plus exactly one photon in the final state, corrected by the effects of undetected soft and/or
collinear ISR. TheQ2-scale entering the QED SF is fixed to beQ2 = s.

Computational tool and obtained results

The theoretical features sketched above have been implemented into a massive MonteCarlo (MC) pro-
gram, namedWRAP(W Radiative process withAlpha & Pavia). The multi-channel importance sampling
technique is employed to perform the phase-space integration, paying particular attention to the infrared
and collinear peaking structures due to photon emission. The code supports realistic event selections and
can be employed either as a cross-section calculator or as a true event generator. Results obtained in
the present study can be summarized as follows: We have performed a critical analysis of the effect of
ISR (see Figs. 24–26) and a study of the impact of finite fermion masses (see Tab.(10)), Finally, we have
tuned comparisons with the predictions of other codes, especially with RacoonWW(see Sec. 5.2).

The impact of ISR via collinear SF on the4f + γ integrated cross-section of the CC10 final state
µ− νµ u d γ is shown in Figs. 24–25, as a function of the LEP 2 c.m.s. energy (Fig. 24) and of the photon
energy threshold at

√
s = 192 GeV (Fig. 25). Fig. 24 shows that ISR in the collinear approximation

reduces the Born cross-section between16 − 12% in the c.m.s. range180 − 190 GeV and at the10%
level close to200 GeV, for the considered photon separation cuts. In particular, at

√
s = 192 GeV the

reduction factor as due to ISR is12 − 13%, almost independent of the photon detection threshold, as
shown in Fig. 25.

Note that collinear SF contradicts photon detection criteria, as discussed before. However, in order
to get a first estimate of the correction due to ISR, collinearSF can be used, since the error introduced by
this treatment (double-counting effects) is estimated in Fig. 26, by comparing collinear andpt structure
functions.

14In the tuned comparison withRacoonWWthe effect of ISR SF was switched off.



67

Fig. 24: The effect of ISR, simulated by collinear SF, on the integrated cross section of the CC10 final stateµ− νµ u d γ as a

function of the LEP 2 c.m.s. energy. The Born cross-section for the CC20 final statee− νe u d γ is also shown.

Fig. 25: The effect of ISR via collinear SF to the cross-section of the CC10 final stateµ− νµ u d γ, as a function of the

minimum energy of the observed photon, at 192 GeV.
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Fig. 26: Comparison between the effects of ISR via collinearSF (dashed line) andpt-dependent SF (solid line), respectively,

for the cross section of the the CC10 final stateµ− νµ u d γ, as a function of the minimum energy of the observed photon, at

192 GeV.

ϑγ−q (deg) ϑγ−µ [deg] cross-section [fb] δ (%)

5◦ 1.0◦ 90.157 ± 0.036 1.92 ± 0.08
91.903 ± 0.035

5◦ 0.1◦ 104.777 ± 0.046 9.31 ± 0.09
115.004 ± 0.044

5◦ 0.0◦ 105.438 ± 0.045

Table 10: Comparison between massive and massless Born cross sections for the processµ−νµcs + γ at
√

s = 200 GeV, as

obtained by means of WRAP.θγ−f , with f = q, µ is the minimum separation angle between the photon and final state charged

fermions. In the third column, the first result refers to the massive case, and the second one to the massless case. Relative

difference is shown in the last column.
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As far as fermion masses are concerned we show in Tab.(10) a comparison between the cross-
section for the final stateµ− νµ c s γ in the massless approximation is compared with the same cross-
section in the presence of finite masses for the final state fermions. The mass values and cuts used are:
mµ = 0.105 GeV,ms = 0.3 GeV,mc = 1.55 GeV, withMcs ≥ 3 GeV. In the considered channel with a
muon in the final state, the minimum separation angle betweenthe quarks and the photon is maintained
fixed at5◦, while the separation angle between the muon and the photon is varied from1◦ down to zero.
It can be seen that the mass effects on the the integrated cross section are of the order of1% for not too
small separation angles, but it may reach, not surprisingly, the10% level in more stringent conditions,
where only a massive4f+ γ calculation can provide a reliable prediction in the presence of muons in the
final state.

4f + γ with CompHEP

Authors

E. Boos, M. Dubinin and V. Ilyin

General description

The programCompHEP[89] calculates cross-sections and distributions for all channelse+e− → 4f
and e+e− → 4f + γ. The calculation is based on a tree-level matrix element forthe complete set
of diagrams. Finite fermion masses are taken into account both in the matrix element and in the four
or five particle phase space parameterization. The fixed-width prescription is used for the gauge boson
propagators. In so far asCompHEPuses the squared diagrams technique, the calculation for the five
particle states with radiative gamma is CPU time consuming and in the following only the results for the
channele+e− → γµννµud (2556 squared diagrams) are presented (Fig. 27, Fig. 28, where the factor
α(0)/αGF

is not accounted for). We used the standard set of cuts including EXP-cuts for the distributions
in thebareandcalo mass.

On-shellW boson approximation fore+e− → γµνµud

In the2 → 4 approximation of the on-shellW bosone+e− → γµνµW
+ for the2 → 5 processe+e− →

γµνµud the number of diagrams is much smaller (31 for the4-body and71 for the5-body final state).
It is interesting to find out if a simpler on-shellW approximation reproduces with enough likelihood the
total rate and distributions given by the exact2 → 5 tree level amplitude. The possibility to describe
quantitatively the5-body distributions of radiative events by some trivial change of the normalization in
the4-body results could be attractive.

We calculated the cross section of the processe+e− → γµνµW
+ multiplied by a factor given by

the following on-shellW isotropic decay toud. Vectors of theu, d quarks momenta generated randomly
in the rest frame of theW were boosted to thee+e− c.m.s., where the standard kinematical cuts were
introduced:Eγ ≥ 1 GeV,Eµ ≥ 5 GeV,| cos θ(γe)| ≤ 0.985. Furthermore,| cos θ(µe)| ≤ 0.985, θ(γ, µ),
θ(γ, u), andθ(γ, d) ≥ 5◦. Such a scheme of calculation is based on the well-known approximation of
infinitely smallW widthM

W
Γtot/[(M

2
ud

−M2
W

)2+M2
W

Γ2
tot] ⇒ π δ(M2

ud
−M2

W
) and have been widely

used for the simulation of the3- and4-body final states in many generators. The simulation byPYTHIA
generator [90] follows slightly better scheme, when theW decay products invariant mass is distributed
according to the Breit-Wigner and gamma radiation from quarks can be switched on in the approximation
of final state shower.

The total rate of theσ(e+e− → γµνµW
+) Br(W+ → ud) is equal to49.4(2) fb to be compared

with the exact2 → 5 result69.1(9) fb. Missing contribution of the omitted diagrams, especially from
the phase space regions near the collinear and infrared poles of the photons radiated from the initial
state and theu, d quarks leads to substantial underestimate of the rate. Peaks of the forward and back-
scattered photons (Fig. 27), radiated from the initiale+, e−, are much stronger underestimated than
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Fig. 27: Distributions in the gamma energy, gamma transverse momentum, gamma angle with the beam, and in the opening

angle between the gamma and the nearest charged fermion. Thedistributions for thee+e− → γµν̄µud are shown by the solid

line and the distributions for thee+e− → γµν̄µW + with the followingW isotropic decay are shown by the dashed line.
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Fig. 28: Upper row of plots - distributions in the quark energy and the quark transverse momentum for the channele+e− →
γµν̄µud (solid) and the approximatione+e− → γµν̄µW + (dashed). Lower row of plots - distributions in the ’bare’ and

’calo’ Mud invariant mass for the approximatione+e− → γµν̄µW + (solid) and the exact2 → 5 processe+e− → γµν̄µud

(dashed/dotted).



72

the photon distribution in the central rapidity region. Distributions in the quark energy and transverse
momentum (upper plots in Fig. 28) are rather different in theexact and approximate calculation. For the
exact calculation the quark energy spectrum more rapidly decreases than for the approximation where
the photon radiation from quarks is not accounted for. In theexact5-body consideration theW boson is
created in a rather well defined polarization state, so the approximation of an isotropic on-shellW decay
could be unsatisfactory for angular variables. Large difference of the distributions in the photon-fermion
(muon or quark) angle (lower plot in Fig. 27) is caused by a simple combinatorial reason.Calo jet-jet
mass (lower plot in Fig. 28) contains the unresolved photon radiated from the initial state or from the
muon, so onlyMudγ ≥M

W
is possible.

It follows that in the case of four fermion events with radiative photon the approximation of the
on-shellW isotropic decay does not, generally speaking, satisfactorily describe both the total rate and
the full set of final particle distributions.

4f + γ via Structure Functions withNEXTCALIBUR

Authors

F.A.Berends, C. G. Papadopoulos and R.Pittau

In this Section we show illustrative results for the processese+e− → µ−µ+uū(γ) (ZZ signal) and
e+e− → µ−ν̄µud̄(γ) (WW signal). Analogous results for the single-W case can be found in section 6..

NEXTCALIBURdoes not contain the exact matrix element fore+e− → 4f +γ, therefore we gen-
erate photons always throughpt-dependentISR Structure Functions. We used the set of cuts specified
in the proposal at

√
s = 200 GeV, all diagrams and fermion masses included. In tables 11 and 12 four

values of cross section (in pb) are shown.

Type Cross-section

σtot 16.107(9)
σnrad 15.018(9)
σsrad 1.0697(30)
σdrad 0.0189(4)

Table 11: Cross-sections in fb fromNEXTCALIBURfor the processe+(1)e−(2) → µ−(3)µ+(4)u(5)u(6). M(34) > 10 GeV

andM(56) > 10 GeV. Separation cuts for the photons:Eγ > 1GeV, | cos θγ | < 0.985.

Type Cross-section

σtot 617.27(59)
σnrad 578.19(58)
σsrad 38.54(16)
σdrad 0.54(2)

Table 12: Cross-sections in fb fromNEXTCALIBURfor the processe+(1)e−(2) → µ−(3)νµ(4)u(5)d(6). M(56) > 10 GeV.

Separation cuts for the photons:Eγ > 1 GeV, | cos θγ | < 0.985.
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The first value, labelled bytot, is the sum of radiative and non radiative events (within thespecified
separation cuts for the generated photons). The second onenradcorresponds to non-radiative events and
the third onesrad to single-radiative events, namely events with only one radiated photon outside the
separation cuts. We also include a fourth entry that represents the small fraction of radiative events with
2 photons (drad).

To check the sensitivity of the distributions to the chosen form of Structure Function, we run again
the above processes with a slightly different implementation of the sub-leading terms, without observing
any significant deviation with respect to the previous results.

4f + γ with GRACE

Authors

Y. Kurihara, M. Kuroda and Y. Shimizu

In this Section we present results fromGRACEfor the4f+γ processes withW -pair and single-W
cuts. Parameters and cuts used are the same as those of theWRAPandRacoonWWcollaborations, except
that we usedαGF

for all vertices. Unfortunately,GRACEresults cannot be compared directly with those
of RacoonWWandWRAP; indeed, whenGRACEnumbers are be compared with the others one should
multiply by a factorα(0)/αGF

. To check the calculations, the following tests have been performed for
the processese+e− → µνµudγ at

√
s = 200 GeV:

– Gauge parameter independence check; the amplitude generated byGRACEkeeps gauge parameters
in covariant gauge. It has been checked numerically that theamplitude is independent of gauge
parameters at several phase-space points.

– Ward Identity check; when the polarization vectors of the external photons are replaced by their
four-momentum, the amplitude must be zero due to Ward-Identity. We have checked it numerically
at several phase-space points.

– Soft photon check; the cross-sections with soft-photon emission can be easily calculated by non-
radiation cross-section and the soft-photon emission function. We have calculated the soft-photon
emission cross-section by two methods;

1. Using4f + γ matrix elements with cuts,10−4 GeV < Eγ < 10−2 GeV, no angular cut
on the photon,| cos θµ| < 0.985, Eµ > 5GeV,M(ud) > 10GeV, giving σ = 0.5105 ±
−0.0002 pb;

2. Using 4f + γ matrix elements with soft-photon function with cuts,10−4 GeV < Eγ <
10−2 GeV, no angular cut on the photon,| cos θµ| < 0.985, Eµ > 5GeV,M(ud) > 10GeV
giving σ = 0.5109 ± 0.0005 pb.

The two methods, therefore, give consistent results. We have used exact matrix elements for the
calculations of4f + γ. ForW -pair processes, we simply used fixed width for the gauge-boson
propagator in the unitary gauge. For single-W processes we used a special gauge [93] for the
t-channel photon, which shows very small effects from the gauge violation due to the gauge-boson
width.

Distributions fromGRACEare shown in Fig. 29-34.
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Fig. 29:Eγ andcos θγ distributions for the processµνµudγ from GRACEwith WW -cuts.

Fig. 30: Bare and caloM(ud) distributions for the processµνµudγ from GRACEwith WW -cuts.
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Fig. 31:Eγ andcos θγ distributions for the processeνeudγ from GRACEwith WW -cuts.

Fig. 32: Bare and caloM(ud) distributions for the processeνeudγ from GRACEwith WW -cuts.
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Fig. 33:Eγ andcos θγ distributions for the processeνeudγ from GRACEwith single-W cuts.

Fig. 34: Bare and caloM(ud) distributions for the processeνeudγ from GRACEwith single-W cuts.
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5.2 Comparisons for4f + γ

A first set of comparisons between the predictions of severalindependent codes, namelyWRAP, CompHEP,
GRACEandRacoonWWwas performed at the beginning of the workshop.

This comparison covers integrated cross-sections and various differential distributions, essentially
for a CC10 final state. Discrepancies observed at that stage are mainly to be ascribed to non-tuned
comparisons. In fact, a detailed tuned comparison betweenWRAP, RacoonWWandPHEGAS/HELAC
presently shows a beautiful agreement for several distributions and final states.

Input parameters and cuts used to carry out this tuned comparison correspond to those of the4f
proposal (in the approximation of massless fermions). In particular, the photon cuts are:Emin

γ = 1 GeV,
| cos θγ | < 0.985, at

√
s = 200 GeV. In thePHEGAS– RacoonWW– WRAPcomparison, the following

final states have been considered:

– µ νµ u d γ

– e− νe u d γ

– µ νµ τ
+ ντ γ

– e− νe τ
+ ντ γ

– s c̄ u d γ

The observables studied in the tuned comparison are:

– integrated cross-sections;

– Eγ distribution,dσ/dEγ [fb/GeV];

– distribution in the cosine of the photon angleθγ , dσ/d cos θγ [fb];

– distribution in the opening angleθfγ between the photon and the nearest charged final-state fermion,
dσ/dθγf [fb];

– distributions in the bare invariant masses of theW+ andW− bosons,M+ = Mud,Mτ+ντ
,

dσ/dM+ [fb/GeV]; M− = Msc,Mµ−ν̄µ
,Me−ν̄e

, dσ/dM− [fb/GeV].

All the observables are calculated for
√
s = 200 GeV in the fixed width scheme. The squared matrix

element is calculated in theGF scheme and subsequently multiplied byα(0)/αGF
, to take exactly into

account of the scale of the real photon.

The applied cuts are:

– common to all processes:Eγ > 1 GeV, | cos(θ(γ,beam)| < 0.985, θ(γ, f) > 5◦, f = charged
fermion.

– for udµνµγ andudeνeγ: M(ud) > 10 GeV, | cos θ(l,beam)| < 0.985 El > 5 GeV, where l is a
charged lepton,

– for τντµνµγ andτντeνeγ: | cos θ(l,beam)| < 0.985, El > 5 GeV,M(l+l−) > 10 GeV,

– for udcsγ: at least two pairs withM(qiqj) > 10 GeV.

The generators have produced a huge collection of results and only a small sample will be shown here.

The total cross-sections are reported in Table 13 where the differences between the predictions of
WRAP, RacoonWWandPHEGAS/HELACare around0.1%, signalling perfect technical agreement.

In the following we will show few example of predictions. By comparing the three different codes
with a tunedcomparison we get a rough estimate of the associated technical uncertainty also for distri-
butions. Besides the distributions compared in plots we also be present ratio-plots, as the distributions
themselves are too close to show a difference between programs in the actual scale.

First we consider the angular distribution, i.e. thecos θγ distribution in the range[−1, 1] for
various final states, as shown in Figures 35 to 39, where we also plot the ratios bewteen the predictions.
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Process WRAP RacoonWW PHEGAS/HELAC

udµ−νµγ 75.732(22) 75.647(44) 75.683(66)
ude−νeγ 78.249(43) 78.224(47) 78.186(76)

νµµ
+τ−ντγ 28.263(9) 28.266(17) 28.296(22)

νµµ
+e−νeγ 29.304(19) 29.276(17) 29.309(25)
udscγ 199.63(10) 199.60(11) 199.75(16)

Table 13: Comparison betweenWRAP, RacoonWWandPHEGAS/HELACfor a sample of total cross-sections (fb).
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Fig. 35:cos θγ distributions and ratios for the processesνµµ+e−νeγ.
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Fig. 36:cos θγ distributions and ratios for the processesνµµ+τ−ντγ.
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Fig. 37:cos θγ distributions and ratios for the processudµ−νµγ.
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Fig. 38:cos θγ distribution for the processesudscγ andude−νeγ.
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Fig. 39:cos θγ ratios for the processesudscγ andude−νeγ.
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Similarly, theEγ distributions and ratios in the range [1, 50] GeV are shown for various processes
in Figures 40 to 43. Note that virtual corrections are not included, therefore, the photon spectrum starts at
some lower boundary of1 GeV. Deviations are of the order of1% for soft photons and tend to deteriorate
for harder ones. Statistically the deviations are compatible with zero. Note that for very hard photons the
cross section and therefore the accuracy of the numerical integration of the programs becomes poorer.

In Fig. 44 we show the fermion-photon opening angleθ(γ, f) (where f is a charged fermion) dis-
tribution. In the same figure we show the percentage deviation between the three predictions. The most
interesting region occurs for small angles, i.e. towards the collinear region, where a reasonable agree-
ment is registered, of the order of a percent. For the used statistics the deviations are not yet significant.
The agreement deteriorates for a larger separation betweenthe photon and the charged particles. How-
ever, in this region the cross-section is an order of magnitude lower. Note that the peculiar behavior of
the distribution towards0◦ is only due to the fact that the third bin is between3.6◦ and5.4◦ with a cut at
5◦.

Finally, we compare the distributions in the bare invariantmasses. First theW− one as predicted
by WRAPandRacoonWW. Results for all considered channels and for theW−-distribution are shown in
Fig. 45(left). Note that the curves for the two purely leptonic channels and the two semi-leptonic final
states are almost identical. In Fig. 45 (right) we also present the percentage deviations for the process
udscγ. In Fig. 46 we give the correspondingW+ invariant-mass distribution including results from the
3 programs. In Fig. 47 we show the ratio between theW+ and theW− invariant-mass distributions from
WRAPandRacoonWWrespectively.
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Fig. 40:Eγ distributions and ratios for the processνµµ+e−νeγ.
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Fig. 41:Eγ distributions and ratios for the processνµµ+τ−ντγ.
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Fig. 42:Eγ distributions and ratios for the processudscγ.
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Fig. 43:Eγ distributions and ratios for the processude−νeγ.
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Fig. 44: Distribution in the opening angleθ(γ, charged fermion) between the photon and the nearest charged final-state

fermion in the processeνeµ
−νµγ and the corresponding ratios.
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Fig. 45: BareW− mass distributions and percentage deviations betweenWRAPand RacoonWWfor one specific example,

udscγ.

Fig. 46: BareW + mass distributions fromWRAP, RacoonWWandPHEGAS.
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Fig. 47: Ratio of invariant mass distributionsW−/W + from WRAPandRacoonWWfor the processµνµeνe.

5.3 Estimate of theoretical uncertainty

No global statement can be given, at the moment, on this issue. The following programs have agreed to
make individual statements:

RacoonWW

Since the program has only tree-level precision fore+e− → 4f+γ, a reliable estimate for the theoretical
uncertainty cannot be given with the present version. This could be done if leading corrections such as
ISR were included, which is planned in future extensions of the program.

WRAP

WRAPhas tried to estimate the theoretical uncertainty in4f + γ processes coming from variations in the
renormalization scheme. The selected process ise+e− → udµ−ν̄µγ with the cuts used in the tuned
comparisons. The following two schemes have been adopted:

I) s2
W

= 1 −
M2

W

M2
Z

, α =
4
√

2GFM
2
W
s2

W

4π
, g2 = 4π

α

s2
W

,

II) s2
W

=
πα(2M

W
)√

2GFM2
W

, g2 = 4
√

2GFM
2
W
, with α(2M

W
) = 128.07. (63)

The cross section is always rescaled by the factorα(0)/α in order to take into account of the scaleα(0)
for the emitted real photon. Here,α is the value computed in the corresponding renormalizationscheme.
The results are shown in Tab.(14).



86

√
s [GeV] cross section [fb] δ

200 (I) 75.750(29) fb
200 (II) 75.887(29) fb 0.18%

189 (I) 71.889(25) fb
189 (II) 71.997(25) fb 0.15%

183 (I) 67.238(22) fb
183 (II) 67.324(22) fb 0.13%

Table 14: Estimate of the contribution to the theoretical uncertainty as due to variation of the input parameter set, according to

WRAP. I and II refer to the choices in Eq.(63) andδ is the percentage difference.

Note that the overall theoretical uncertainty for4f + γ production cannot be below the level of
1 ÷ 2%. In this respect the numbers given in Tab.(14) are only a partial indication of possible sources
of uncertainty. As shown by the previous analysis, ISR needsto be taken into account in programs
for a realistic analysis of4f + γ final states. Furthermore, in order to avoid double-counting between
pre-emission and matrix-element radiation, the implementation of QED corrections in computational
tools for4f + γ processes should rely upon methods, such parton shower, YFSor pt-dependent structure
functions, able to keep under control photonpt effects. Effects due to finite fermion masses can become
important at some percent level for small photon-charged fermion separation cuts.

In order to better understand the uncertainty associated tothe implementation of collinear ISR
in 4f + γ processes, a comparison between the effects of ISR via collinear SF andpt-dependent SF,
respectively, is shown in Fig. 26 for the cross section of thethe CC10 final stateµ− νµ u d γ, as a
function of the minimum energy of the observed photon, at

√
s = 192 GeV. As can be seen, the two

prescriptions for ISR can differ at5% level forEmin
γ close to1 − 2GeV, while the difference becomes

smaller and smaller asEmin
γ increases. In general, the difference between collinear and pt-dependent SF

is stronger near the soft and collinear regions, as a priori expected, and it gives an estimate of the size of
the double-counting effect at the level of ISR.

NEXTCALIBUR

To check the sensitivity of various distributions to the chosen form of the Structure Functions, the pro-
cessese+e− → µ−µ+uu(γ) ande+e− → e−νeud(γ) have been considered with a slightly different
implementation of the sub-leading terms, without observing any significant deviation, at the per mille
level, with respect to the previous results.

5.4 Summary and conclusions

While the technical precision ine+e− → 4f + γ does not represent a problem anymore for all those
programs that implement an (exact) matrix element, very little effort has been devoted in analyzing the
overall theoretical uncertainty. Some of the programs alsoinclude the large effect of initial state radiation
at the leading logarithmic level. When this is done, the bulkof large radiative corrections is included.
Since however in general non-logarithmicO (α) corrections are not known, the theoretical accuracy is
at the level of2.5% on integrated cross-sections and on inclusive distributions.
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6. Single-W

Another interesting process at LEP 2 is the so-called single-W production,e+e− → Weν which can
be seen as a part of the CC20 process,e+e− → q q (µ νµ, τ ντ ) e νe, or as a part of the Mix56 process,
e+e− → e+ e− νe νe. For a more detailed theoretical review we refer to [91] and to [92]. All pro-
cesses in the CC20/Mix56 families are usually considered intwo regimes,| cos θ(e−)| ≥ c or SA and
| cos θ(e−)| ≤ c or LA. In the list of observables, the singleW production is defined by those events that
satisfy| cos θ(e−)| ≥ 0.997 and therefore is a SA.

The LA cross-section has been computed by many authors and references can be found in [5]. It
represents a contribution to thee+e− → W+W− total cross-section. From a theoretical point of view
the evaluation of a LA cross-section is free of ambiguity, even in the approximation of massless fermions,
as long as a gauge-preserving scheme is applied andθ(e−) is not too small.

For SA instead, one cannot employ the massless approximation anymore. In other words, in addi-
tion to double-resonantW -pair production with oneW decaying intoeνe, there aret-channel diagrams
that give a sizeable contribution for small values of the polar scattering angle of thet-channel elec-
tron. Single-W processes are sensitive to the breaking ofU(1) gauge invariance in the collinear limit,
as described in Ref. [7] (see also [93]). The correct way of handling them is based on the so-called
Fermion-Loop (FL)scheme [12], the gauge-invariant treatment of the finite-width effects ofW andZ
bosons in LEP 2 processes. However, till very recently, the Fermion-Loop scheme was available only
for the LA-regime. Fore+e− → e−νef1f2, theU(1) gauge invariance becomes essential in the region
of phase space where the angle between the incoming and outgoing electrons is small, see the work
of [7] and also an alternative formulations in [11]. In this limit the superficial1/Q4 divergence of the
propagator structure is reduced to1/Q2 by U(1) gauge invariance. In the presence of light fermion
masses this gives raise to the familiarln(m2

e/s) large logarithms. Furthermore, keeping a finite electron
mass through the calculation is not enough. One of the main results of [91] was to show that there are
remaining subtleties in CC20, associated with the zero masslimit for the remaining fermions.

In [39] a generalization of the Fermion-Loop scheme (hereafter EFL) is introduced to account for
external, non-conserved, currents. Another extension hasbeen given in [112] for the imaginary parts of
Fermion-Loop contributions, which represents the minimalset for preserving gauge invariance.

The most recent numerical results produced for single-W production are from the following
codes [95]:CompHEP, GRC4F, NEXTCALIBUR, SWAP, WPHACTandWTO.

In view of a requested, inclusive cross-section, accuracy of 2% we must include radiative correc-
tions to the best of our knowledge, at least the bulk of any large effect. As we know, the correct scale
of the couplings and their differentiation betweens- andt-channel is connected to the real part of the
corrections, so that the imaginary FL is not enough, we need acomplete FL for single-W , or EFL. Hav-
ing all the parts, the tree-level couplings are replaced by running couplings at the appropriate momenta
and the massive gauge-boson propagators are modified accordingly. The vertex coefficients, entering
through the Yang–Mills vertex, contain the lowest order couplings as well as the one-loop fermionic
vertex corrections.

Each calculation aimed to provide some estimate for single-W production is, at least nominally, a
tree level calculation. Among other things it will require the choice of some Input Parameter Set (IPS)
and of certain relations among the parameters. Thus, different choices of the basic relations among the
input parameters can lead to different results with deviations which, in some case, can be sizeable and
should be included in the theoretical uncertainty. Here, more work is needed.

For instance, a possible choice is to fix the coupling constant g as

g2 =
4πα

s2
W

, s2
W

=
πα√

2GFM2
W

, (64)
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whereGF is the Fermi coupling constant. Another possibility would be to use

g2 = 4
√

2GFM
2
W
, (65)

but, in both cases, we miss the correct running of the coupling. Ad hoc solutions should be avoided, and
the running of the parameters must always follow from a fullyconsistent scheme.

Another important issue in dealing with single-W production is connected with the inclusion of
QED radiation. It is well known that universal,s-channel structure functions are not adequate enough to
include the radiation since they generate an excess of ISR bremsstrahlung. Int-channel dominated pro-
cesses the interference between incoming fermions becomesvery small while the destructive interference
between initial and final states becomes strong.

It is quite a known fact that, among the electroweak corrections, QED radiation gives the largest
contribution and the needed precision requires a re-summation of the large logarithms. For annihilation
processes,e+e− → ff , initial state radiation is a definable, gauge-invariant concept and we have general
tools to deal with it; the structure function approach and also the parton-shower method. However, when
we try to apply the algorithm to four-fermion processes thatinclude non-annihilation channels we face a
problem: it is still possible to include the large universallogarithms by making use of the standard tools
but an appropriate choice of scale is mandatory. Such is the case in single-W . The problem of the correct
scale to be used in QED corrections has been tackled by two groups,GRACEandSWAPand additional
results will be shown in Sub-Sects. 6.21, 6.23 and in Sub-Sect. 6.2.

6.1 Signal definition in single-W

The experimental requirements on single-W are:

– CC20 – Mix56 calculations with some detector acceptance that are used for a) triple gauge cou-
pling determination, b) standard model background to searches;

– the LEP EWWG cross-section definition that is used to combine the cross-section measurements
from the four LEP experiments.

During the last WW99 Crete Workshop a proposal has been made to reach a commonsignal
definition for the LEP EWWG cross-section [96]. The persons who participated in the WW99 workshop
agreed on some setup to define the single-W production and now this has been formalized in one of the
LEP EWWGmeetings; there, it was decided to have a combination of the single-W cross-section using
the signal definitions of Tab.(15) fore+e− → e−νef

′f : The set oft-channel diagrams, all for CC20, are
shown in Fig. 48. The signal definition uses10 diagrams for CC20,9 for CC18 and37 for Mix56.

Process diagrams cuts

eeνν t-channel only E(e+) > 20GeV, | cos θ(e+)| < 0.95, | cos θ(e−)| > 0.95

eνµν t-channel only E(µ
+) > 20GeV

eντν t-channel only E(τ
+) > 20GeV

eνud t-channel only M(ud) > 45GeV

eνcs t-channel only M(cs) > 45GeV

Table 15: Signal definition for single-W processes.

Note that charge-conjugate state should be taken into account and that an asymmetric cut has been
introduced foreeνν; the latter is due to the fact that the process itself is CP-even when no cut is applied,
but an ambiguity remains if one starts to discuss single-W with e− in the forward direction. Then we
should multiply this process by a factor2 as well. The goal of this common definition is to be able to
combine the differenteνqq, eνµν, eντν, eνeν measurements from different experiments so that the new
theoretical calculations can be checked with data at a levelbetter than10%.
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Fig. 48: Thet-channel component of the CC20 family of diagrams: fusion, bremsstrahlung and multi-peripheral.

Signal definition has a longstanding tradition in LEP physics, the most celebrated being thet-
channel subtraction in Bhabha and the most recent being the CC03 cross-section. Here we have a dif-
ferent situation. First of all, nobody has radiative corrections for single-W production, hence the usual
argument of the availability of a sophisticated semi-analytical calculation for the signal does not apply.
We could avoid a definition of the signal in terms of diagrams and have recourse to a definition in terms
of cuts since, in a very narrow cone around the beam axis, the single-W family is fully dominated by the
t-channel photons.

6.11 A study of single-W signal definition withCompHEP

Authors

E. Boos, M. Dubinin and V. Ilyin

Single-W signal definition in the reactione+e− → e+e−νeνe

It is well-known for a long time how the singleW signal can be separated with the help of kinematical
cuts [93]. The typical set of cuts used by ALEPH, DELPHI and L3collaborations for the leptonic four
fermion statese−νel

+νl separates the configurations with very forwarde− and a rather energeticl+ pro-
duced at a sufficiently large angle with the beam. For instance, the L3 cuts to be used in the following
calculations are| cos θe−| ≥ 0.997,El ≥ 15GeV and| cos θl+| ≤ 0.997. In the case of the semi-leptonic
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statese−νeqq
′

an additional cutM(qq
′
) ≥ 45 GeV have been applied by OPAL. In so far as different

collaborations are using not exactly the same cuts (defined by the optimal detector acceptance), the def-
inition of theW signal in terms of angular cuts is not universal and some standardization procedure is
needed. In the recent proposal by LEP experiments [96] the OPAL collaboration considered the possibil-
ity to introduce the definition of theW signal in terms of diagrams. Angular cuts on the forward electron
and the corresponding anti-lepton are not imposed, so the singleW cross-section depends only on the
El energy cut and is defined by the gauge invariant subset of thet-channel single resonant diagrams.
The universality of such definition is satisfactory if the interferences between the gauge invariant subsets
of diagrams in the channelse−νel

+νl ande−νeqq
′

are always negligible. Then indeed the singleW
cross-section in terms of diagrams could be meaningful.

We performed a detailed calculation of the contributions from various diagram sets of the Mix56
channele+e− → e+e−νeνe (see Appendix for Fig. 63-Fig. 70 referred to in the following). Using
the general approach to the amplitude decomposition into gauge invariant classes [131], we found ten
gauge invariant subsets of diagrams (see Fig. 63-Fig. 64). In Tab.(16)18W denotes two gauge invariant
subsets of9 diagrams with singleW (see Fig. 63),8Z denotes two gauge invariant subsets of4 diagrams
with singleZ (see Fig. 64),9W+W− stands for the double-resonant subset (Fig. 65) and so on. Main
contribution to the final configurations with forward electron come from the singleW and the single
Z production, while variousγ, Z → e+e− conversion corrections (Fig. 68-Fig. 70) to thee+e− →
e+e−, νeνe are negligible. For the case of angular cuts on the forward electron the interference between
the singleW and singleZ subsets18W and8Z is negative and equal to several fb. However, if the
angular cuts are removed, the destructive interference modulo increases rather considerably (Table 16).
This is not an unexpected fact since both single-W and single-Z (NC processes with one lost electron)
subsets have a similart-channel pole structure. Other interferences are also not negligible. So in the case
of e+e−νeνe channel the diagram-based definition of singleW signal is not completely satisfactory.

26 t-ch. 18W 8Z 9W+W− 4ZZ 9νeνe 4e+e− 2νeνe 2 t-ch

θe,El 49.9 36.1 16.4 0.91 0.02 8·10−3 7·10−5 1·10−5 6·10−7

onlyEl 220.5 106.6 153.6 240.5 44.9 15.9 0.02 3·10−3 8·10−4

Table 16: Contributions of the gauge invariant subsets (fb)at the energy
√

s =200 GeV. First row - with angular cuts, second

row - no angular cuts fore−, e+. The result for 26t-channel diagrams (18W and 8Z, see Fig.1,2) is indicated in the second

column.

6.2 Description of the programs, results and comparisons

WTOand EFL

Author

G. Passarino

The Fermion-Loop scheme (EFL)

The EFL scheme for non-conserved currents is described in Ref. [39] and briefly discussed in Sect. 3.81.
It consists of the re-summation of the fermionic one-loop corrections to the vector-vector, vector-scalar
and scalar-scalar propagators and of the inclusion of all remaining fermionic one-loop corrections, in
particular those to the Yang–Mills vertices.

In the original formulation, the Fermion-Loop scheme requires that vector bosons couple to con-
served currents, i.e. , that the masses of all external fermions can be neglected. There are several exam-
ples where fermion masses must be kept to obtain a reliable prediction. As already stated, this is the case
for the single-W production mechanism, where the outgoing electron is collinear, within a small cone,
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with the incoming electron. Therefore,me cannot be neglected. Furthermore, among the20 Feynman
diagrams that contribute (foreνeud final states, up to56 for e+e−νeνe) there are multi-peripheral ones
that require a non-vanishing mass also for the other outgoing fermions.

As well known in the literature, the Fixed-Width scheme behaves properly in the collinear and
high-energy regions of phase space, to the contrary of the Running-Width scheme, but it completely
misses the running of the couplings, an effect that is expected to be above the requested precision tag of
2%. To be specific the name of Fixed-Width scheme is reserved forthe following: the cross-section is
computed using the tree-level amplitude. The massive gauge-boson propagators are given by1/(p2 −
m2 + iΓm). This gives an unphysical width int-channel, but retainsU(1) gauge invariance in the CC20
process.

The correct way of handling this problem is to apply the EFL-scheme and, by considering the
impact of the EFL-scheme on the relevant observables, one isable to judge on the goodness of naive
rescaling procedures or of any incomplete FL-scheme. One ofthe problem with the latter is that vertices,
although chosen to respect gauge-invariance, are not uniquely defined. Furthermore, couplings other
thanαQED usually do not evolve with the scale and complex poles, the truly gauge-invariant quantities,
are never introduced or explicitly computed. Finally, programs than cannot split diagrams and apply an
overall rescaling, both ins- andt-channel, mistreat single-W and/or violatesSU(2) invariance.

Numerical results and recommendations.

Numerical results for EFL have been shown in Ref. [115]. Here, we limit the presentation to some useful
recommendations:

– the bulk of the effect is in the running of the e.m. coupling constant;

– one can compute the single-W cross-sections for a fixed mass of the top quark, such asmt =
173.8 GeV, without finding any significative difference with the case wheremt is fixed by a con-
sistency relation. We are using complex-mass renormalization but we only include fermionic
corrections. Therefore, we can start with the Fermi coupling constant but also withM

W
as an

input parameter. Equating the corresponding renormalization conditions yields a relation be-
tweenM

Z
, GF , Re{α(M2

Z
)−1}, M

W
, andmt, see [12]. This relation can be solved iteratively

for mt. For the following input parameter set,M
W

= 80.350GeV, M
Z

= 91.1867GeV and
GF = 1.16639 × 10−5 GeV−2, we obtain the following solution:

µW =
√

Re (p
W

) = 80.324GeV, γW = − Im (p
W

)

µW

= 2.0581GeV, mt = 148.62GeV,

(66)
with 26MeV difference betweenM

W
andµW . See Sect. 6.31 for the inclusion of QCD effects.

This type of effect should be included in any incomplete FL-scheme;

– the main accent in the EFL-scheme is on putting the correct scale in the running ofαQED. The
latter is particularly important for thet-channel diagrams, dominated by a scaleq2 ≈ 0 and not
q2 ≈M2

W
. However, a consistent implementation of radiative corrections does more than evolving

αQED to the correct scale, other couplings are also running, propagators are modified and vertices
are included;

– the effective FW-scheme describes considerably well the hadronic final state with a cut ofM(ud) >
45 GeV. However, the diminution induced byαQED(q2) is too large for the leptonic final state. The
latter is a clear sign that other effects are relevant and a naive rescaling does not suffice in repro-
ducing a realistic approximation in all situations, at least not within the2% level of requested
theoretical accuracy;

– Modifications induced by the fermionic loops are sensitiveto the relative weight of single-resonant
terms and of multi-peripheral peaks. Furthermore, the effect of radiative corrections inside theW -
propagators (ρ-factors of Ref. [115]) is far from being negligible and tends to compensate the
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change due to the running ofαQED.

These recommendations are better illustrated by few examples. At
√
s = 183 GeV we consider the

angular distribution,dσ/dθe for theude−νe final states. The results are shown in Fig. 49. From Fig. 49
we see that the EFL prediction is lower than the FW one, from−7.46% in the bin0◦ − 0.1◦ to −5.56%
in the bin0.3◦ − 0.4◦. Correspondingly, the first bin is6.78 higher than the second one,11.60(16.37)
than the third(fourth) one. This is not a surprise, since thefirst bin represents50% of the total single-W
cross-section.

Always in the same figure, we have reported the behavior of
[

α(q2)/αGF
−1
]2

as a function ofθe

for three values ofy, using the appropriate relation:q2 = q2(θe, y), y being the fraction of the electron
energy carried by the photon. The behavior of EFL/FW-1, whenwe varyθe, is very similar to the one
given by the ratio of coupling constants, indicating that the bulk of the effect is in the running of the e.m.
coupling constant.

For completeness we have reported the numerical results forthe three energies in Tab.(17), where
the first entry is Fixed-Width distribution and the second entry is EFL one. Only the first four bins are
shown, owing to the fact that they are the most significant in the distribution. The third entry in Tab.(17)
gives EFL/FW-1 in percent.

θe [Deg]
√
s = 183GeV

√
s = 189GeV

√
s = 200GeV

0.0◦ ÷ 0.1◦ 0.48395 0.54721 0.67147
0.44784 0.50695 0.62357

-7.46 -7.36 -7.13

0.1◦ ÷ 0.2◦ 0.07026 0.07815 0.09323
0.06605 0.07357 0.08798

-5.99 -5.86 -5.63

0.2◦ ÷ 0.3◦ 0.04095 0.04554 0.05433
0.03860 0.04298 0.05141

-5.74 -5.62 -5.37

0.3◦ ÷ 0.4◦ 0.02897 0.03223 0.03845
0.02736 0.03045 0.03646

-5.56 -5.52 -5.18

Table 17: dσ/dθe in [pb/degrees], fromWTO, for the processe+e− → e−νeud, for M(ud) > 45 GeV. First entry is Fixed-

Width distribution, second entry is Fermion-Loop one and third entry is EFL/FW-1 in percent.

Next we considere+e− → eνµν, with | cos θe| > 0.997, Eµ > 15 GeV, and| cos θµ| < 0.95. In
Tab.(18) we report the comparison between the EFL distribution and the FW one for

√
s = 183 GeV.

As before, only the most significant bins are shown (0.0◦ ÷ 0.4◦). As for the hadronic case, the EFL
prediction is considerably lower than the FW one, although the percentage difference between the two is
approximately2.2% ÷ 2.4% smaller than in the previous case. Useful comparisons will be presented in
theWPHACTdescription of this Section.
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Fig. 49:WTOpredictions fordσ/d cos θe [fb/degrees] fore+e− → ude−νe with M(ud) > 45 GeV and
√

s = 183 GeV.
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θe [Deg] FW EFL EFL/FW-1 (percent)

0.0◦ ÷ 0.1◦ 0.14154 0.13448 -4.99

0.1◦ ÷ 0.2◦ 0.02113 0.02031 -3.88

0.2◦ ÷ 0.3◦ 0.01238 0.01194 -3.55

0.3◦ ÷ 0.4◦ 0.00880 0.00851 -3.30

Table 18: dσ/dθe in [pb/degrees], fromWTO, for the processe+e− → e−νeνµµ+, for | cos θe| > 0.997, Eµ > 15 GeV, and

| cos θµ| < 0.95. Furthermore,
√

s = 183 GeV.

A final comment will be devoted to QED ISR. Very often one can find the statement that the choice
of the appropriate scale in the structure functions is mandatory. This is a jargon for ‘implementing the
correct exponentiation factor in multi-photon emission’.Note that the usual infrared exponentαB is
represented by

αB =
2α

π
[
1 + r2

1 − r2
ln

(

1

r

)

− 1] ∼ 2α

π

(

ln
Q2

m2
− 1

)

, for Q2 ≫ m2,

m2

Q2
=

r

(1 − r)2
∼ r, (67)

whereQ2 is the Mandelstam invariant associated with the emitting pair. For |t| ≫ m2
e the photon

radiation is governed byln(|t|/m2
e) rather than byln(s/m2

e). The difference is again alarge log and
explain the excess of radiation generated bys-channel SF. However, the whole expression forB is known
and not only its asymptotic behavior (the scale). Therefore, for vanishing scattering angles, the correct
behavior should be read from Eq.(67). In this respect one should remember that|tγ |min in single-W can
be much lower thanm2

e, beingm2
ey

2/(1 − y) wherey = M2(νef1f2)/s.

Single-W with WPHACT

Authors

E. Accomando, A. Ballestrero and E. Maina

A new version ofWPHACT[127] is now available. It includes all massive matrix elements in
addition to the previous ones which accounted forb-quark masses only. As before, the matrix elements
are computed with the method of Ref. [126], which has proved to be fast and reliable in particular for
massive calculations. New mappings of the phase space have been added, in order to account in an
efficient way for the peaking structure of contributions like single-W , single-Z andγγ contributions.
With the new version one has, therefore, the choice of using fully massive or massless calculations.
The former are needed in various processes which diverge formassless fermions , while the latter are
faster and give an excellent approximation for most cases. We start with the introduction of the IFL-
scheme showing comparisons with alternative solutions, designed to deal with gauge-invariance issues.
However, the most important part is contained in the second Subsection where the effective scaling
induced byαQED is presented.
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IFL-scheme

The Imaginary Part Fermion-Loop scheme has been generalized to the fully massive case of non-con-
served weak currents in Ref. [112]. The results obtained have been compared with other gauge restoring
schemes used in single-W processes computations. The following schemes have been considered in the
analysis:

– Imaginary-part FL scheme(IFL): The imaginary part of the fermion-loop corrections, as computed
in Ref. [112], are used. Fermion masses are neglected only inloops but not in the rest of the
diagrams.

– Fixed width(FW): TheW-boson propagators show an unphysical width forp2 < 0, but retains
U(1) gauge invariance in the CC20 process [7].

– Complex Mass(CM): All weak boson masses squaredM2
B
, B = W,Z are changed toM2

B −
iMBΓB [18] (ΓB is the on-shellB width), including when they appear in the definition of the
weak mixing angle. This scheme, which again gives an unphysical width in some cases, has
however the advantage of preserving bothU(1) andSU(2) Ward identities.

– Overall scheme(OA): The diagrams fore−e+ → e−ν̄eud̄ can be split into two sets that are sepa-
rately gauge invariant underU(1). In the actual implementation of the OA-scheme,t channel dia-
grams are computed without any width and are then multipliedby (q2 −M2)/(q2 −M2 + iMΓ)
whereq, M andΓ are the momentum, the mass and the width of the possibly-resonantW-boson.
This scheme retainsU(1) gauge invariance at the expenses of a mistreatment of the non-resonant
terms.

In order to asses the relevance of current non-conservation, the imaginary part of the fermion-loop
corrections have also been implemented with the assumptionthat all currents that couple to the fermion-
loop are conserved. In this case the expressions of Ref. [112] reduce to those computed in [7]. Note
that the masses of external fermions are nonetheless taken into account in the calculation of the matrix
elements. This scheme violatesU(1) gauge-invariance by terms which are proportional to the fermion
masses squared, as already noted in Ref. [94]. However they are enhanced at high energy by large factors
and can be numerically quite relevant. This scheme will be referred to as the imaginary-part FL scheme
with conserved currents (hereafter IFLCC). All schemes described above have been implemented in the
new version ofWPHACT[127] with the fully massive option.

190 GeV 800 GeV 1500 GeV

IFL 0.11815 (13) 1.6978 (15) 3.0414 (35)

FW 0.11798 (11) 1.6948 (12) 3.0453 (41)

CM 0.11791 (12) 1.6953 (16) 3.0529 (60)

OA 0.11760 (10) 1.6953 (13) 3.0401 (23)

IFLCC 0.11813 (12) 1.7987 (16) 5.0706 (44)

Table 19: Cross-sections in pb for the processese+e− → e−ν̄eud for various gauge restoring schemes. No ISR is included

and we apply the following cuts:M(ud) > 5GeV , Eu > 3GeV, Ed > 3GeV, cos(θe) > .997

In Tab.(19) the cross-sections for CC20 are given for the different gauge restoring schemes at
LEP 2 and LC energies. From it, one can immediately deduce that the IFL, FW, CM and the OA schemes
agree within2σ in almost all cases. The IFLCC scheme agrees with the other ones at LEP 2 energies but
already at 800GeV it overestimates the total cross-section by about6%. At 1.5 TeV the error is almost
a factor of two. On the contrary, even in the presence of non–conserved currents, i.e. of massive external
fermions, the FW CM and OA calculations give predictions which are in agreement, within a few per
mil, with the IFL scheme. The agreement with the results of a self-consistent approach justifies, from a
practical point of view, the ongoing use of the FW, CM and OA schemes.
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IFL FW
e−e+ → e−ν̄eud̄ Mud̄ > 45 GeV 0.12043 (10) 0.12041 (11)
e−e+ → e−ν̄eud̄ Mud̄ < 45 GeV 0.028585 (14) 0.028564 (14)

e−e+ → e−ν̄eµ
+νµ 0.035926 (34) 0.035886 (32)

e−e+ → e−ν̄ee
+νe 0.050209 (38) 0.050145 (32)

Table 20: Comparison of FW and IFL schemes for different single-W cross-sections in pb and at200 GeV. No ISR is included.

Cuts are defined in the text.

The possible dependence of this agreement on the particularsingle-W process considered has
been examined and we compare in Tab.(20) the cross-sectionsobtained in the IFL and FW scheme at√
s = 200 GeV. In this case, as in the following ones, the standard cutshave been applied: the electron

angle is limited in all processes by| cos θ−e | > 0.997, the other charged lepton by| cos θl| < 0.95, its
energy has to beEl > 15 GeV. These results confirm that, at LEP 2, there is no dependence of the cross-
sections on the scheme. Distribution of several observables have also been studied withWPHACTin the
IFL and FW schemes. In most variables like the electron angleand energy no difference has been found.
However, the mass spectrum of theud pair shows some scheme dependence, as reported in Fig. 50. The
physical motivation for this difference can be traced to thefact that the IFL scheme uses, correctly, a
runningW -width. In fact, comparing IFL mass distribution with a FW calculation in whichW mass
and width are properly shifted [113], the difference is reduced to a small overall factor, as expected, and
should not be viewed as a theoretical uncertainty.

In any case, in view of possible discrepancies, the use of IFLhas to be preferred among the
schemes analyzed in this section.

Fig. 50: Mass distribution of theud pair in e−e+ → e−ν̄eud̄ at
√

s = 200 GeV in the IFL and FW schemes. No ISR.

| cos θ−
e | > 0.997
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Running ofα, comparisons with EFL.

The EFL scheme implemented in [39, 115] for the massive (non-conserved currents) case solves the
gauge-invariance problems exactly, as IFL does, but in addition it computes the real part of Fermion-
Loop radiative corrections. These terms are known to determine the running of the couplings involved in
single-W processes. One may argue, therefore, that considering the running ofαQED at an appropriate
physical scale might account for the most relevant part of EFL corrections. To test the correctness of this
argument, a properαQED evolution has been introduced as an option inWPHACT. For every set of final
momenta,αQED is evaluated at the scalet, the virtuality of the photon emitted by the electron line, and
used for two vertices in thet-channel contributions only.

The separate gauge invariance ofs- andt-channel diagrams makes it possible to use a differentα
for them: α(t) for t-channel andαGF

for s-channel. Such a separation, which can be implemented in
codes computing Feynman diagrams asWPHACT, should automatically account for the relative weight
of s andt contributions for any set of cuts.

Computations performed with this choice will be referred toas IFLα. Several comparisons have
been performed between the IFL and IFLα schemes and with the FW/EFL predictions byWTO[128].

The good agreement of the two codes as far as FW and IFL schemesare concerned is documented
in Tabs.(21–25) for the cross-sections, the electron angular distribution and the quark invariant mass
distribution. However, this has to be considered as a technical agreement more than a physical one.
Whether IFLα can satisfactory reproduce the EFL complete calculations seems to depend on the process
considered. Note, in Tab.(21), the agreement between IFLα and EFL for the total cross-section of the
processe−e+ → e−ν̄eud̄. Only at200 GeV there is a disagreement of less than0.5% . Moreover, the
angular distribution studied in Tab.(22), for the most relevant bins, never shows a higher discrepancy.

The variation of the cross-section of the process at hand with the invariant massM(ud) cut is
reported in Fig. 51 from which one deduces that the IFL and theIFLα schemes practically coincide
when the cut reaches the mass of theW -boson. In Tab.(23) one sees that, even varying the cuts, the
difference between FL and IFLα is at most of the order of1%.

The conclusion is, therefore, that at LEP 2 and fore−e+ → e−ν̄eud̄ the IFLα scheme is reliable
at the percent level. The same does not apply toe−e+ → e−ν̄eµ

+νµ, as can be verified with the help
of Tab.(24) and Tab.(25). From these one sees that the discrepancy is of the order of2% or worse. This
confirms that varying the scale ofαQED, on an event by event basis, is not completely satisfactory.These
numerical results point towards an estimate of about3% theoretical error for single-W predictions via the
IFLα-scheme. One can try to apply the running ofαQED to only one vertex of thet-channel diagrams; the
agreement obtained with this approximation (hereafter IFLα1) is much better fore−e+ → e−ν̄eµ

+νµ.
Of course, it becomes worse fore−e+ → e−ν̄eud̄. At 183, 189 and200 GeV the cross-sections for
e−e+ → e−ν̄eµ

+νµ are respectively25.65(1), 28.80(2), 34.86(2) fb, to be compared with the EFL
results of Tab.(24). The first bins of the angular distribution are also very close to EFL. No physical
meaning has to be attributed to this fact: there is no theoretical reason for using runningαQED just at
one vertex. The agreement may be accidental and it is probably due to the fact that with the cuts used for
e−e+ → e−ν̄eµ

+νµ the contribution of multi-peripheral diagrams is suppressed.

Since the IFLα and IFLα1 schemes are, in turn, in good agreement with complete EFL fordif-
ferent processes and cuts, the difference between their results will be used as an estimate of the theo-
retical error fore−e+ → e−e+νeν̄e ande−e+ → e−e+νµν̄µ, where EFL predictions are not available.
The cross-sections for such processes are presented in Tab.(26) and Tab.(27). The angular distributions
for the four processes that we have discussed so far are reported in bins of0.01 degrees in Fig. 52.
Note that the relevant part of the cross-section is concentrated in the first three or four bins, also for
e−e+ → e−e+νeν̄e(Mix) ande−e+ → e−e+νµν̄µ(NC), as well as for the two CC processes. Finally the
comparison betweenWPHACTandWTOhas been extended to cover the LEP 2 signal definition for the
hadronic decays of theW -boson, but the results will not be presented here.
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√
s FW IFL IFLα EFL EFL/FW-1

(percent)

183GeV 88.17(44) 88.50(4) 83.26(5) 83.28(6) -5.5(5)

189GeV 98.45(25) 99.26(4) 93.60(9) 93.79(7) -4.7(3)

200GeV 119.77(67) 120.43(10) 113.24(8) 113.67(8) -5.1(5)

Table 21: Total single-W cross-section in fb for the processe+e− → e−ν̄eud, for M(ud) > 45 GeV and| cos θe| > 0.997.

FW and EFL are computed byWTO, IFL and IFLα by WPHACT. No ISR. The number in parenthesis shows the statistical error

of the numerical integration on the last digit.

θe [Deg] FW IFL IFLα EFL EFL/FW-1
(percent)

0.0◦ ÷ 0.1◦ 0.67147 0.67077 0.62404 0.62357 -7.13

0.1◦ ÷ 0.2◦ 0.09323 0.09321 0.08753 0.08798 -5.63

0.2◦ ÷ 0.3◦ 0.05433 0.05455 0.05141 0.05141 -5.37

0.3◦ ÷ 0.4◦ 0.03845 0.03867 0.03624 0.03646 -5.18

Table 22: dσ/dθe in [pb/degrees] for the processe+e− → e−νeud, for M(ud) > 45 GeV,
√

s=200 GeV. No ISR. FW and

EFL are computed byWTO, IFL and IFLα by WPHACT.
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Mmin(ud) FW IFL IFLα EFL EFL/FW-1
(percent)

45 0.04841(3) 0.04845(3) 0.04510(4) 0.04478(3) -7.5(1)

35 0.05104(7) 0.05107(1) 0.04754(1) 0.04711(6) -7.7(1)

25 0.0546(1) 0.05467(2) 0.05090(1) 0.0504(1) -7.7(2)

15 0.0595(1) 0.05968(2) 0.05555(2) 0.0552(1) -7.2(2)

10 0.0626(1) 0.06283(2) 0.05847(1) 0.0582(1) -7.0(2)

5 0.0659(1) 0.06623(2) 0.06164(2) 0.0615(1) -6.7(2)

1 0.0682(1) 0.06864(1) 0.06388(1) 0.0637(1) -6.6(2)

Table 23: Cross-sections for the processe+e− → e−νeud in pb for 0.0◦ < θe < 0.1◦ andM(ud) ≥ Mmin (in GeV).
√

s = 183 GeV. No ISR. FW and EFL are computed byWTO, IFL and IFLα by WPHACT. The number in parenthesis shows

the statistical error of the numerical integration on the last digit.

√
s FW IFL IFLα EFL EFL/FW-1

(percent)

183GeV 26.77(14) 26.45(1) 24.90(1) 25.53(4) -4.6(5)

189GeV 29.73(14) 29.70(2) 27.98(2) 28.78(4) -3.2(5)

200GeV 36.45(23) 35.93(4) 33.85(4) 34.97(6) -4.1(6)

Table 24: Total single-W cross-section in fb for the processe+e− → e−ν̄eµ
+νµ, for | cos θe| > 0.997, Eµ > 15 GeV, and

| cos θµ| < 0.95. No ISR. FW and EFL are computed byWTO, IFL and IFLα by WPHACT. The number in parenthesis shows

the statistical error of the numerical integration on the last digit.
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θe [Deg] FW IFL IFLα EFL EFL/FW-1
(percent)

0.0◦ ÷ 0.1◦ 0.14154 0.14170 0.1319 0.13448 -4.99

0.1◦ ÷ 0.2◦ 0.02113 0.02117 0.01987 0.02031 -3.88

0.2◦ ÷ 0.3◦ 0.01238 0.01240 0.01166 0.01194 -3.55

0.3◦ ÷ 0.4◦ 0.00880 0.00879 0.00830 0.00851 -3.30

Table 25: dσ/dθe in [pb/degrees] for the processe+e− → e−νeνµµ+, for | cos θe| > 0.997, Eµ > 15 GeV, and| cos θµ| <

0.95.
√

s = 183 GeV. No ISR. FW and EFL are computed byWTO, IFL and IFLα by WPHACT.

√
s final state IFL IFLα IFLα1

183GeV e+e−νeνe 38.24(1) 35.99(1) 37.10(2)
e+e−νµνµ 12.81(1) 12.05(1) 12.42(1)

189GeV e+e−νeνe 42.38(1) 39.86(1) 41.09(2)
e+e−νµνµ 13.74(1) 12.92(1) 13.32(1)

200GeV e+e−νeνe 50.20(2) 47.25(2) 48.70(2)
e+e−νµνµ 15.37(1) 14.46(1) 14.91(1)

Table 26: Total single-W cross-section in fb byWPHACTfor the processese+e− → e+e−νν for | cos θ−
e | > 0.997,

Ee+ > 15 GeV, and| cos θe+ | < 0.95. No ISR. The number in parenthesis shows the statistical error of the numerical

integration on the last digit.
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θe [Deg] final state IFL IFLα IFLα1

0.0◦ ÷ 0.1◦ e+e−νeνe 0.27958 0.260390 0.26990
e+e−νµνµ 0.09007 0.08386 0.08693

0.1◦ ÷ 0.2◦ e+e−νeνe 0.03890 0.03643 0.03764
e+e−νµνµ 0.01158 0.01086 0.01123

0.2◦ ÷ 0.3◦ e+e−νeνe 0.02279 0.02146 0.02216
e+e−νµνµ 0.00680 0.00641 0.00660

0.3◦ ÷ 0.4◦ e+e−νeνe 0.01622 0.01535 0.01573
e+e−νµνµ 0.00482 0.00456 0.00467

Table 27: dσ/dθe in [pb/degrees] byWPHACTfor the processese+e− → e+e−νν for | cos θ−
e | > 0.997, Ee+ > 15 GeV,

and| cos θe+ | < 0.95.
√

s = 200 GeV. No ISR.

Fig. 51: Total cross-section fore−e+ → e−ν̄eud̄ at
√

s = 200 GeV withθe < 0.1◦ as a function of the lower cut on Mud in

IFL and IFLα schemes. The markers give the results of FW and FL byWTO.
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Fig. 52: Angular distributions for different single-W processes at
√

s = 200 GeV in the IFL and IFLα scheme.

Single-W andSWAP.

Authors

G. Montagna, M. Moretti, O. Nicrosini, A. Pallavicini and F.Piccinini

Description of the Method

Contributions of the Pavia/ALPHAgroup to the subject of single-W production are summarized. The
exact matrix elements for single-W production are computed by means of theALPHAalgorithm [82] for
the automatic evaluation of the Born scattering amplitudes. Fermion masses are exactly accounted for in
the kinematics and dynamics. The contribution of anomaloustrilinear gauge couplings is also taken into
account. The anomalous gauge boson couplings∆kγ , λγ , δZ , ∆kZ andλZ are implemented according to
the parameterization of refs. [83, 84]. The fixed-width scheme is adopted as gauge-restoring approach,
as motivated in comparison with other gauge-invariance-preserving schemes in Ref. [112].

Radiative corrections

Leading-log (LL) QED radiative corrections are implemented via the Structure Function (SF) formalism
in the collinear approximation [86]. TheQ2-scale entering the SFD(x,Q2) is fixed by comparing the
O (α) expansion of the SF method with the analytic results obtained for theO (α) double-log photonic
corrections as given by soft-photon bremsstrahlung from the external legs, its virtual counterpart and
hard-photon radiation collinear to the final-state particles. Notice that, since the goal is to determine the
scale entering the SF, only the contribution of real photonsis explicitly calculated, because the virtual
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corrections, in order to preserve the cancellations of infrared singularities, must share the same leading
collinear structure of the real part itself. More details about the derivation in the present approach of the
soft/collinear limit of theO (α) correction can be found in [114].

For example, for the processe+e− → e−νud, this comparison translates in the following two
Q2-scales: (two initial-state (IS) SF are assumed:Q2

− refers to the SF attached to the incoming electron,
whileQ2

+ to the SF attached to the incoming positron) [114]

Q2
− = 4E2 (1 − c−)2

δ2
, Q2

+ = 2
14
9 E2 ((1 − cd)(1 − cu)2)

2
3

((1 − cud)
2δ5)

2
9

(68)

whereE is the beam energy,c− the cosine of the electron scattering angle,cu andcd the cosine of the
quark scattering angles with respect to the initial positron, cud the cosine of the relative angle between the
quarks,δ the half-opening angle of the electromagnetic jet (calorimetric angular resolution). It is worth
noticing that in the numerical implementation, whenever one of the two scales is less than a small cut-off
(Λ2

cut−off = 4m2
e, whereme is the electron mass), the radiation from the correspondingleg is switched

off, in accordance with the expected power law behaviour.15 It was carefully tested that variations of the
cut-off do not alter the numerical results.

Also a naive ansatz for the two scales, as motivated by an analysis of the single-W process in
terms of the Weizsäcker-Williams approximation, can be given [114] as follows:

Q2
−,naive = |q2γ∗ | , Q2

+,naive = M2
W

(69)

whereq2γ∗ is the squared momentum transfer in theeeγ∗ vertex andM
W

is the mass of theW boson.

The effect of vacuum polarization is also taken into accountin the calculation, by including the
contribution of leptons, heavy quarks and light quarks, thelatter according to the standard parameteriza-
tion of Ref. [2].

Computational tool and obtained results

The theoretical features sketched above have been implemented into a massive MonteCarlo (MC) pro-
gram, namedSWAP(Single Wprocess withAlpha & Pavia). The multi-channel importance sampling
technique is employed to perform the phase-space integration. The code supports realistic event selec-
tions and can be employed either as a cross-section calculator or as a true event generator. The main
results obtained in the present study can be summarized as follows: we have performed a critical analy-
sis of the energy scale for QED radiation (see Fig. 53); Next,we have evaluated the effect of a running
of αQED (see Fig. 54); Finally we have performed a tuned comparisonswith other codes.

Input parameters and cuts used to obtain the numerical results shown in the following are those
of the4f proposal for the processe+e− → e−ν̄ud̄ (| cos ϑe| > 0.997,Mud > 45 GeV). For Fig. 53 the
value ofδ parameter entering eq. (68) isδ = 5◦, but it has been checked that the numerical results are
very marginally affected by its actual value.

Scales & QED radiation. In Fig. 53 the numerical impact of different choices of theQ2-scale
on the cross-section of the single-W processe+e− → e−ν̄ud̄ is shown. The marker• represents the
Born cross-section,© represents the correction given byQ2

± = s scale for both IS SF(s),♦ represents
the correction given byQ2

± = |q2γ∗ | scale for both IS SF(s),△ the correction given by the scales of
eq. (68), the correction given by the naive scales of eq. (69). It can be seen that neither thes scale, as
implemented in computational tools used for the analysis ofthe single-W process, nor the|q2γ∗ | scale, as
recently proposed in Ref. [92], are able to reproduce the effects due to the scales of eq. (68) and eq. (69).
These two scales are in good agreement and both predict a lowering of the Born cross-section of about

15Although this behavior is exactly known and could be implemented,SWAPhas evidence for a corresponding small effect.
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Fig. 53: The effect of LL QED corrections to the cross sectionof the single-W processe+e− → e−ν̄ud̄ for different choices of

theQ2-scale in the electron/positron SF. Left: absolute cross section values; Right: relative difference between QED corrected

cross-sections and the Born one. The marker• represents the Born cross-section,© represents the correction given byQ2
± = s

scale,♦ represents the correction given byQ2
± = |q2

γ∗ | scale,△ the correction given by the scales of eq. (68), the correction

given by the naive scales of eq. (69). The entries correspondto 183, 189, 200 GeV

.

8%, almost independent of the c.m.s. LEP 2 energy. Note the4% difference between ISR withs-scale
and the new scale.

Running ofαQED. BecauseGF ,M
W

andM
Z

are the agreed input parameters in the4f proposal,
the value of the e.m. coupling constantα is fixed at tree-level to a high energy value as specified by the
GF -scheme. On the other hand, the single-W process is aq2γ∗ ≃ 0 dominated process and therefore the
above high-energy evaluation ofα, αGF

, needs to be rescaled to its correct value at small momentum
transfer. In order to take into account the effect of the running of αQED in a gauge invariant way, are-
weightingprocedure can be adopted, by simply rescaling the differential cross sectiondσ/dt (t ≡ q2γ∗)
in the following way

dσ

dt
→ α2(0)

α2
GF

dσ

dt
,

dσ

dt
→ α2(t)

α2
GF

dσ

dt
, (70)

whereα(0), α(t) is the QED running coupling computed at virtualityq2γ∗ equal to0 andt, respectively.

Fig. 54 shows the effects of the above re-weighting procedure. The△ represent the relative differ-
ence between the integrated cross-section computed in terms ofαGF

and the cross-section computed in
terms ofα(0), while ♦ is the relative difference between the integrated cross-section computed in terms
of αGF

and the cross-section computed in terms ofα(t). As can be seen, the rescaling fromαGF
to α(t)

introduces a negative correction of about5 − 6% in the LEP 2 energy range. The difference between△
and♦, which is about2 − 3%, is a measure of the running ofαQED from q2γ∗ = 0 to q2γ∗ = t. A detailed
numerical analysis of the effect of the running couplings insingle-W production has been very recently
performed in Ref. [39], based on the theoretical results of the massive fermion-loop scheme of Ref. [39].
The results for the running ofαQED, as shown in Fig. 54, are in agreement with those of Ref. [115],
as far as the effect ofαQED is concerned, which is the bulk of the EFL contribution, leaving residual
differences at the level of1− 2%, depending on the considered channel and event selection, see also the
discussion in theWPHACTpart of this Section.
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Fig. 54: The effects of the rescaling ofαQED from αGF
to α(q2

γ∗ = 0) (△) andα(q2
γ∗ ) (♦) on the integrated cross section of

the single-W processe+e− → e−ν̄ud̄. σ0 is the cross-section computed in terms ofαGF
. The entries correspond to 183, 189,

200 GeV.

NEXTCALIBUR

Authors

F.A.Berends, C. G. Papadopoulos and R.Pittau

This section describes the features of a new Monte Carlo program NEXTCALIBUR[111], which
aims at keeping the advantages ofEXCALIBUR[116], but tries to improve on its shortcomings. The
advantages, which should be kept are the high speed of the program and the applicability to all possible
4-fermion final states. The shortcomings ofEXCALIBUR, which are partly related to its assets, are the
massless nature of its fermions, the inclusive treatment ofISR QED corrections (nopt from a photon in
an event) and the neglect of any running of coupling constants.

The strategy of the code

To start with, it should be noted that unless stated otherwise complex gauge boson masses and a complex
weak mixing angle are used to ensure gauge invariant matrix elements [18]. This procedure has been
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shown to work well [112]. The various wanted improvements will now be successively discussed.

Inclusion of fermion masses

Inside the program a massive matrix element is needed, for the calculation of which a recursive method
[117] is used.

This massive matrix element now exists in the whole phase space, since the singularities of the
massless case are regularized. Nevertheless serious numerical cancellations take place in very specific
situations. The most dramatic case is caused by the photonicmulti-peripheral diagrams which blow up
for forward scattering. When at the same time both electron and positron move in the forward direction,
it becomes necessary to perform the calculation in quadruple precision. When only one is moving in
the forward direction the usual double precision is sufficient. A version of the program using double
precision in all possible situations is currently under study.

The phase space generation is an extension of the treatment in EXCALIBUR, i.e. a self-adjusting
multi-channel approach, now including the multi-peripheral situation in an improved form.

With the above mentioned ingredients one indeed has an eventgenerator for any massive four-
fermion final state. In particular, for the potentially dangerous kinematical situations events can now
be generated, like forward single W-production orγ − γ processes. Also all channels, where Higgs
exchange can take place now indeed contain Higgs exchanges.

To demonstrate the ability of the program to cover all phase-space regions, without loosing effi-
ciency, we show, in Tabs.(28–29), the total cross-sectionsfor the processese+e− → e+e−µ+µ− and
e+e− → e+e−e+e−. Where available, we compare our predictions with the QED numbers published in
Ref. [125].

√
s BDK NEXTCALIBUR

20 98.9± 0.6 99.20± 0.98
35 131.4± 2.2 131.03± 0.88
50 154.4± 0.9 152.33± 0.83
100 205.9± 1.2 204.17± 1.73
200 — 263.50± 1.31
200 (all) — 265.58± 1.44

Table 28:σtot (in nb) for the processe+e− → e+e−µ+µ−. Only QED diagrams, except in the last entry.

√
s BDK NEXTCALIBUR

20 0.920± .011 0.905± .011
35 1.070± .015 1.079± .014
50 1.233± .018 1.214± .016
100 1.459± .025 1.485± .020
200 — 1.776± .019
200 (all) — 1.787± .030

Table 29:σtot (in nb×107) for the processe+e− → e+e−e+e−. Only QED diagrams, except in the last entry.

NEXTCALIBURcontains all electroweak diagrams, and can therefore be used to compute the elec-
troweak background to the aboveγ γ processes. By looking at the last entry of the tables, the latter
is found to be less than1% at LEP 2 energies, at least for totally inclusive quantities.

All numbers have been produced at the Born level, but ISR and runningαQED can be included as de-
scribed in the next sections.
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Taking into account the correct scale

As mentioned above, the matrix element calculation can easily be modified. One option would be to take
into account Fermion-Loop corrections, which becomes relevant when there are different scales in the
matrix element, e.g. due to smallt-channel scales. A possible solution is the Fermion-Loop approach of
Refs. [12, 115], where all fermion corrections are consistently included by introducing running couplings
g(s) ande(s), together with the re-summed bosonic propagators.

In presence of theWWγ vertex, the above ingredients are not sufficient to ensure gauge invari-
ance, because loop mediated vertices have to be consistently included. On the contrary, when noWWγ
vertex is present, the neutral gauge boson vertices, induced by the Fermion-Loop contributions, are sep-
arately gauge invariant [12].

Instead of explicitly including the loop vertices, we follow aModified Fermion-Loopapproach. Namely,
we neglect the separately gauge invariant neutral boson vertices, and include only the part of theWWγ
loop function necessary to renormalize the bareWWγ vertex and to insure theU(1) gauge invariance.
Our procedure is as follows: besides running couplings, we use bosonic propagators

Pµν
w (s) =

(

s−M2
w(s)

)−1
(

gµν − pµpν

M2
w(s)

)

Pµν
z (s) =

(

s−M2
z (s)

)−1
(

gµν − pµpν

M2
z (s)

)

with running boson masses defined as

M2
w(s) = µw

g2(s)

g2(µw)
− g2(s)[TW (s) − TW (µw)]

M2
z (s) = µz

g2(s)

c2θ(s)

c2θ(µz)

g2(µz)
− g2(s)

c2θ(s)
[TZ(s) − TZ(µz)] .

TW ,Z(s) are contributions due to the top quark,µw,z the complex poles of the propagators (one can take,
for instance,µw,z = M2

w,z − iΓw,zMw,z) and

s2θ(s) =
e2(s)

g2(s)
, c2θ(s) = 1 − s2θ(s) .

The leading contributions are in the real part of the runningcouplings therefore we take only the real
part of them. This also means that one can replace, in the above formulae,g2(µw,z) → g2(M2

w,z),
c2θ(µz) → c2θ(M

2
Z
) and alsoTW ,Z(µw,z) → TW ,Z(M2

w,z).

When theWWγ coupling is present, we introduce, in addition, the following effective three gauge
boson vertex

γµ

W+
ν

W−

ρ

p

p+

p
−

= i e(s)Vµνρ

with s = p2 , s+ = p2
+ , s

− = p2
− and

Vµνρ = gµν(p− p+)ρ + gνρ(p+ − p−)µ (1 + δV ) + gρµ(p− − p)ν
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+
(p+ − p−)µ
s− − s+

[(

g(s−)

g(s+)
− 1

)

p+νp+ρ −
(

g(s+)

g(s−)
− 1

)

p−νp−ρ

]

δV =
1

g(s+)g(s−)(s− − s+)

[

g2(s+)g2(s−) [TW (s−) − TW (s+)]

+ [g(s+) − g(s−)] [s−g(s+) + s+g(s−)]
]

. (71)

It is the easy to see that, with the above choice forVµνρ, theU(1) gauge invariance - namely current
conservation - is preserved, even in presence of complex masses and running couplings, also with massive
final state fermions.

By looking at Eq.(71), one can notice at least two effective ways to preserveU(1). One can either
computeg(s) at a fixed scale (for example always withs = M2

W
), while keeping only the running of

e(s), or let all the couplings run at the proper scale.16

With the first choice the modification of the three gauge bosonvertex is kept minimal (but the
leading running effects included). With the second choice everything runs at the proper scale, but a heav-
ier modification of the Feynman rules is required. At this point one should not forget that our approach
is an effective one, the goodness of which can be judged only by comparing with the exact calculation of
Ref. [39]. We found that the second choice gives a better agreement for leptonic single-W final states,
while the first one is closer to the exact result in the hadronic case, which is phenomenologically more
relevant. Therefore, we adopted this first option as our default implementation inNEXTCALIBUR. The
results of the EFL-scheme are then reproduced at2% accuracy for both leptonic and hadronic single-W
final states.

We want to stress once more that the outlined solution is flexible enough to deal with any four-
fermion final state, whenever small scales dominate. For example, once the given formulae are im-
plemented in the Monte Carlo, the correct running ofαQED is taken into account also fors-channel
processes asZγ∗ production.

Also naive QCD corrections can be easily included, without breakingU(1) gauge invariance, by
the usual recipe of rescaling the totalW -width and the cross-section.

In fact, in our approach,Γ
W

can be generic, and the above procedure respects current conservation,
provided the sameW -width is used everywhere17.

Improving the treatment of the QED radiation

Once the matrix element calculation is fixed one can add externally the QED leading logarithmic effects
in the Structure Function method [118]. Such a strategy is implemented in most of the programs used
for the analysis of the LEP 2 data [119] and accurately reproduces the inclusive four-fermion cross-
sections, at least fors-channel dominated processes. In principle both initial and final state radiation
(ISR and FSR) can be treated in this way, as it has been explicitly done originally for Bhabha scattering
[120]. Here only the implementation of ISR inNEXTCALIBURis discussed. There are two issues to
be discussed. One is the choice of scaleq2 in the leading logarithmL = ln(q2/m2

e). Another is the
unfoldingof this leading logarithm in terms of an emitted photon. For the latter issue a particular form of
pt dependent Structure Functions [88] is implemented. These are derived, at the first leading logarithmic
order, for small values ofpt. In practice, we replace the quantity

ln(
q2

m2
e

) by
1

1 − ci + 2m2
e

q2

16Note, however, that in the complete formulation of the EFL-scheme there is no ambiguity and all scales are automatically
fixed.

17Note, however, that in a complete EFL-scheme the relevant objects are the complex poles and QCD corrections should be
computed accordingly, see Sect. 6.31
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in the strictly collinear Structure Function for theith incoming particle, by explicitly generatingc1 andc2,
the cosines (in the laboratory frame) of the emitted photonswith respect to the incoming particles. Once
c1,2 are generated, together with the energy fractionsx1,2, and the azimuthal anglesφ1,2, the momenta
of two ISR photons are known. The four-fermion event is then generated in the c.m.s. of the incoming
particlesafter QED radiation, and then boosted back to the laboratory frame.

We also take into account non leading terms with the substitution [121]

ln(
q2

m2
e

) − 1 → 1

1 − ci + 2m2
e

q2

− 2
m2

e

q2
1

(1 − ci + 2m2
e

q2 )2
.

The above choice ensures that the residue of the soft-photonpole gets proportional toln( q2

m2
e
) − 1, after

integration overci.

As to the scaleq2, s should be taken fors-channel dominated processes, while, when a process is
dominated by smallt exchanges and−t is much smaller thans, the scale is related tot. This is e.g. . the
case in small angle Bhabha scattering [122] and the proper scale is chosen as the one which reproduces
roughly the exact first order QED correction, which is known for Bhabha scattering. A similar procedure
now also exists for the multi-peripheral two photon process[100], since an exact first order calculation
is also available [124]. In theset-channel dominated processes it is important to know whether a cross-
section with angular cuts is wanted, since then thet-related scale will increase and the QED corrections
as well. When no exact first order calculations are availablethe scale occurring in the first order soft
corrections is also used as guideline to guessq2 [100, 114].

In NEXTCALIBURthe choice of the scale is performed automatically by the program, event by
event, according to the selected final state (see Tab.(30)).

Final State q2− q2+
No e± s s

1 e− |t−| s

1 e+ s |t+|
1 e− and 1e+ |t−| |t+|
2 e− and 2e+ min(|t−|) min(|t+|)

Table 30: The choice of the QED scale inNEXTCALIBUR. q2
± are the scales of the incominge± while t± represent thet-

channel invariants obtained by combining initial and final statee± momenta. When two combinations are possible, as in the

last entry of the table, that one with the minimum value of|t| is chosen, event by event.

Numerical results

In Tabs.(31–32) we show single-W numbers produced with the Modified Fermion-Loop approach, as
discussed in the previous section. Comparisons are made with the EFL calculation of Ref. [39]. The
results of EFL are reproduced within2% accuracy for both leptonic and hadronic single-W final states.

It should also be noted that, when neglecting Fermion-Loop corrections, one can directly com-
pareNEXTCALIBURwith other massive Monte Carlo’s and one finds excellent agreement for single-W
production in the whole phase space.

In Figs. 55–56 we show thecos θγ andEγ distributions for the most energetic photon in the
processe+e− → e−ν̄eud̄(γ). We used

√
s = 200 GeV, | cos θe| > 0.997 andM(ud̄) > 45 GeV. Only

ISR photons are taken into account, according to the scheme given in Tab.(30).
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dσ/dθe MFL EFL MFL/EFL − 1 (percent)

0.0◦ ÷ 0.1◦ 0.45062(70) 0.44784 +0.62
0.1◦ ÷ 0.2◦ 0.06636(28) 0.06605 +0.47
0.2◦ ÷ 0.3◦ 0.03848(21) 0.03860 -0.31
0.3◦ ÷ 0.4◦ 0.02726(18) 0.02736 -0.37

σtot 83.26(9) 83.28(6) -0.02

Table 31:dσ/dθe [pb/degrees] andσtot [fb] for the processe+e− → e−νeud. The first column is the Modified Fermion-Loop,

the second one is the exact Fermion-Loop of Ref. [39].
√

s = 183 GeV, | cos θe| > 0.997, M(ud) > 45 GeV. QED radiation

not included. The number in parenthesis is the integration error on the last digits.

dσ/dθe MFL EFL MFL/EFL − 1 (percent)

0.0◦ ÷ 0.1◦ 0.13218(26) 0.13448 -1.7
0.1◦ ÷ 0.2◦ 0.01997(10) 0.02031 -1.7
0.2◦ ÷ 0.3◦ 0.01171(8) 0.01194 -1.9
0.3◦ ÷ 0.4◦ 0.00838(6) 0.00851 -1.5

σtot 25.01(3) 25.53 -2.0

Table 32:dσ/dθe [pb/degrees] andσtot [fb] for the processe+e− → e−νeνµµ+. The first column is the Modified Fermion-

Loop, the second one is the exact Fermion-Loop of Ref. [39].
√

s = 183 GeV, | cos θe| > 0.997, | cos θµ| < 0.95 and

Eµ > 15 GeV. QED radiation not included. The number in parenthesis is the integration error on the last digits.

−1 0 1

10−1

100

101

1
σ

dσ
d cos θγ

cos θγ

Fig. 55:cos θγ distribution (with respect to the incominge+), by NEXTCALIBUR, for the most energetic photon in the process

e+e− → e−ν̄eud̄(γ).
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Fig. 56:Eγ distribution, byNEXTCALIBUR, for the most energetic photon in the processe+e− → e−ν̄eud̄(γ).

Note, however, that the recipe of using Structure Functionswith a proper choice of scales is not
enough to determine without ambiguity the pattern of the radiation in t-channel dominated processes.
The reason is that, when|t| = q2 ∼ m2

e, the Leading Order Structure Function approach fails and one has
to introduce a minimum value for|t|, below which only non-radiative events from the corresponding leg
are generated. Since Structure Functions behave likeδ functions for vanishingq2, this is automatically
achieved by introducing a minimum value|tmin|, such that, for events with|t| < |tmin|, the scale in the
corresponding Structure Function is always set equal to|tmin|18. We observed deviations at the order of
0.5% by varying |tmin| from 2.71828m2

e to 100m2
e . The default value of|tmin| in NEXTCALIBURis

taken to be the latter.

In table (33) we also give the cross sections (in pb) corresponding to the above distributions.
tot refers to radiative plus non radiative events (within the specified separation cuts for the generated
photons),nrad to non-radiative events,sradto single-radiative events anddrad to double radiative events.

Finally, in order to quantify the effects due to ISR scales and running ofαQED, we show, in tables
(34) and (35), the cross sections obtained by using both ISR scales =s and switching on and off the
Modified Fermion loop corrections.

18Note, however, that this behavior is known and could be implemented. It is enough to consider the standard YFS infrared
emission factor̂B, see e.g. Eq.(3) of Ref. [45].
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Type Cross-section

σtot 103.68(33)
σnrad 96.54(32)
σsrad 7.00(7)
σdrad 0.139(7)

Table 33: Cross-sections in fb fromNEXTCALIBURfor the processe+(1)e−(2) → e−(3)νe(4)u(5)d(6). M(56) > 45 GeV,

no energy cut. ISR as in Tab.(30), Modified Fermion Loop included. Separation cuts for the photons:Eγ > 1GeV, | cos θγ | <

0.997.

Type Cross-section

σtot 100.73(17)
σnrad 93.39(16)
σsrad 7.21(4)
σdrad 0.124(5)

Table 34: Cross-sections in fb fromNEXTCALIBURfor the processe+(1)e−(2) → e−(3)νe(4)u(5)d(6). M(56) >

45 GeV, no energy cut. Both ISR scales =s, Modified Fermion Loop included. Separation cuts for the photons: Eγ >

1GeV, | cos θγ | < 0.997.

Type Cross-section

σtot 106.36(18)
σnrad 98.62(17)
σsrad 7.61(5)
σdrad 0.131(5)

Table 35: Cross-sections in fb fromNEXTCALIBURfor the processe+(1)e−(2) → e−(3)νe(4)u(5)d(6). M(56) >

45 GeV, no energy cut. Both ISR scales =s, Modified Fermion Loop excluded. Separation cuts for the photons: Eγ >

1GeV, | cos θγ | < 0.997.

Single-W with GRACE

Authors

Y. Kurihara, M. Kuroda and Y. Shimizu

Introduction

The single-W production processes present an opportunity to study the anomalous triple-gauge-couplings
(hereafter TGC) at LEP 2 experiments. In order to proceed to the precise measurement of TGC, the in-
clusion of an initial state radiative correction (ISR) in any generator is an inevitable step. As a tool
for the ISR the structure function (SF)[129] and the parton shower[130] methods are widely used for
the e+e− annihilation processes. Since the main contribution for the single-W production processes
comes, however, from the non-annihilation type diagrams, the universal factorization method used for
the annihilation processes is, obviously, inappropriate.The main problem lies in the determination of the
energy scale of the factorization. According to the study ofthe two photon process[100], SF and QED
parton shower (QEDPS) methods were shown to reproduce the exactO(α) results precisely even for the
non-annihilation processes, when the appropriate energy scale is used in those algorithms.
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Here, we propose a general method to determine the energy scale to be used in SF and QEDPS.
The numerical results of testing SF and QEDPS fore−e+ → e−νeud ande−e+ → e−νeµ

+νµ are given.
The systematic errors are also discussed.

6.21 Energy Scale Determination in QED corrections

Single-W is not dominated by annihilation and, therefore, standard methods ass-channel structure func-
tions fail to reproduce the correct result.

The factorization theorem for the QED radiative corrections in the LL approximation is valid
independently of the structure of the matrix element of the kernel process. Hence structure functions
(hereafter SF) and QEDPS must be applicable to anye+e− scattering processes. However, the choice
of the energy scale in SF and QEDPS is not a trivial issue. For simple processes likee+e− annihilation
into fermion pairs and two-photon process (with only the multi-peripheral diagrams considered so far),
the evolution energy scale could be determined in terms of the exact perturbative calculations. However,
for more complicated processes, this is not always possible. Hence a way to find a suitable energy scale
without knowing the exact loop calculations should be established.

First we look at the general consequence of the soft photon approximation.

The soft photon cross-section is given, in some approximation, by the Born cross-section multi-
plied by the following correction factor [99]:

dσsoft(s)

dΩ
=

dσ0(s)

dΩ

∣
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∣

∣
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, (72)

βij =
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1 −
m2

im
2
j

(pi · pj)2

)
1
2

, (73)

wheremj (pj) are the mass(momentum) ofj-th charged particle,kc is the maximum energy of the soft
photon (the boundary between soft- and hard-photons),E is the beam energy, andej the electric charge
in unit of thee+ charge. The factorηj is −1 for the initial particles and+1 for the final particles. The
indices (i, j) run over all the charged particles in the initial and final states.

The part proportional toln(E/kc) that is shown explicitly in Eq.(72) is exact and not only LL-
approximated. However, the single-logarithmic part is omitted, so that the formula is not a complete
LL-approximation, but it is enough to guess the energy scaleappearing in SF and QEDPS. For the two-
photon process,e−(p−)+ e+(p+) → e−(q−)+ e+(q+)+µ−(k−)+µ+(k+), it was shown in Ref.[100]
that the soft-photon factor in Eq.(72) with a (p− · q−)-term gives a good numerical approximation to the
exactO (α) correction[101].

This implies that one is able to make and educated guess aboutthe possible evolution energy scale
in SF from Eq.(72) without an explicit loop calculation.

However, one may question why the energy scales = (p− + p+)2 does not appear in the soft-
photon correction, even if they are included in Eq.(72). When applying SF to the two-photon process we
have ignored those terms which come from the photon connecting different charged lines. This is because
the contributions from the box diagrams, with photon exchange between thee+ ande− lines, is known
to be small[102]. Fortunately, the infrared part of the loopcorrection is already included in Eq.(72) and
there is no need to know the full form of the loop diagram. For the two-photon processes we look at those
two terms where, for example, (p− ·p+)-terms and (q− ·p+)-terms are present; here, the momentum ofe−

is almost the same, before and after the scattering(p− ≈ q−). The difference only appears inηjηk = +1
for a (p−p+)-term and inηjηk = −1 for a (q−p+)-term. Then these terms compensate each other after
summing them up for the forward scattering, which is the dominant kinematical region of this process.
This is why the energy scales = (p− + p+)2 does not appear in the soft-photon correction, despite its
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presence in Eq.(72).

When experimental cuts are imposed, for example the finale− is tagged in a large angle, this can-
cellation is not perfect but only partial and the energy scale s must appear in the soft-photon correction.
In this case the annihilation-type diagrams will also contribute to the matrix elements. Then the usual
SF and QEDPS formulation for the annihilation processes arejustified and can be used for ISR with
the energy scales. One can check which energy scale is dominant under the givenexperimental cuts
by numerically integrating the soft-photon cross-sectiongiven by Eq.(72) over the allowed kinematical
region. Thus, in order to determine the energy scale it is sufficient to know the infrared behavior of the
radiative process using the soft-photon factor.

Next, we determine the energy-scale of the QED radiative corrections to the single-W production
process,

e−(p−) + e+(p+) → e−(q−) + νe(qν) + u(ku) + d(kd). (74)

The soft-photon correction factor shown in Eq.(72) is numerically integrated with the Born matrix ele-
ment of the process (74), witht-channel diagrams only and without any cut on the final fermions. The
results are shown in Table36.

all terms p−q− p+kukd all other combinations
1 0.38 0.61 1.9 × 10−3

Table 36: Soft-photon correction factor from different sets of charged particle combinations in the process ofe+e− → e−νeud

at the c.m.s. energy of 200 GeV. The total factor is normalized to unity.

One can see that the main contribution comes from an electron-line (p−q−-term) and a positron-
line (p+kukd-term), while all the other contributions are negligibly small. As in the case of the two-
photon processes, the energy scales does not appear in the soft-photon correction. Applying SF or
QEDPS for the electron and positron charged-lines individually and with an energy scale given by their
momentum-transfer squared might be legitimate, accordingto the above results.

6.22 Structure Function Method

The corrected cross-section is given by

σtotal(s) =

∫

dxI−

∫

dxF−

∫

dxI+

∫

dxu

∫

dxdDe−(xI−,−t−)De−(xF−,−t−)

De+(xI+, p
2
Tud)Du(xu,m

2
ud)Dd(xd,m

2
ud)σ0(ŝ), (75)

using the structure function (Df ) with an energy scalet− = (p− − q−)2, p2
Tud i.e. the transverse-

momentum squared of theu-d̄ system andm2
ud = (ku + kd)

2.

The energy-scale determination for the positron line is rather ambiguous. ThepTu+d is distributing
aroundM

W
/3, then the difference between these two energy scales does not give a significant effect on

the correction factor. After(before) the photon radiationthe initial(final) momentap± (q±) becomep̂±
(q̂±) defined by:

p̂− = xI−p−, q̂− =
1

xF−
q−, ... (76)

Then the c.m.s. energy squareds is scaled aŝs = xI−xI+s.
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6.23 Parton Shower Method

Instead of the analytic formula of the structure-function approach, a Monte Carlo method based on the
parton shower algorithm in QED (QEDPS) can be used to solve the Altarelli-Parisi equation in the LL
approximation[103]. The detailed QEDPS-algorithm can be found in Ref.[105] for thee+e− annihilation
processes, in Ref.[106] for the Bhabha process, and in Ref.[100] for the two-photon process. In QEDPS
we use the same energy scale as in the SF method. One difference between SF and QEDPS is that the
ad hocreplacement of the perturbative expansion coefficientL(= ln(Q2/m2

f )) by L − 1, which was
realized by hand for SF, does not apply for QEDPS. Another significant difference between these two
methods is that QEDPS can give a correct treatment of the transverse momentum of emitted photons by
imposing the exact kinematics at thee→ eγ splitting. Note that it does not affect the total cross sections
too much when the finale− are unconstrained. However, the finite recoiling of the finale± may result
into a large effect on the tagged cross-sections.

As a consequence of the exact kinematics at thee → eγ splitting, thee± are no more on-shell
after photon emission. On the other hand the matrix element of the hard scattering process must be
calculated with the on-shell external particles. A trick tomap the off-shell four-momenta of the initial
e± to those at on-shell is needed. The following method is used in the calculations: First̂s = (p̂−+ p̂+)2

is calculated, wherêp± are the four-momenta of the initiale± after the photon emission by QEDPS.ŝ is
mainly positive even for the off-shelle±. (Whenŝ is negative, that event is discarded.) Subsequently, all
four-momenta are generated in the rest-frame of the initiale± after the photon emission. Four-momenta
of the hard scattering in their rest-frame arep̃±, wherep̃2

± = m2
e (on-shell) and̂s = (p̃− + p̃+)2.

Finally, all four-momenta are rotated and boosted to match the three-momenta of̃p± with those
of p̂±. This method respects the direction of the finale± rather than the c.m.s. energy of the collision.
The total energy is not conserved because of the virtuality of the initial e±. The violation of energy-
conservation is of the order of10−6 GeV or less. The probability to violate it by more than1 MeV is
10−4.

Numerical Calculations, the total cross-sections

Total and differential cross-sections of the semi-leptonic processe−e+ → e−νeud and of the leptonic
one, e−e+ → e−νeµ

+νµ, are calculated with the radiative correction by using SF orQEDPS. For-
tran codes to calculate amplitudes of the above processes are produced usingGRACE system[107]. All
fermion-masses are kept finite in calculations. Numerical integrations of the matrix element squared in
the four-body phase space are done usingBASES[108]. For the study of the radiative correction for the
single-W productions, onlyt-channel diagrams(non-annihilation diagrams) are taken into account.

For the total energy of the emitted photons, both methods must give the same spectrum, when the
same energy scale are used. That is confirmed by the results shown in Fig. 57 at the c.m.s. energy of
200 GeV for the semi-leptonic process.

Total cross-sections as a function of the c.m.s. energies atLEP 2 with and without experimental
cuts are shown in Fig. 58. The experimental cuts applied hereareMqq > 45GeV andEl > 20GeV.

The effect of the QED radiative corrections on the total cross-sections are obtained to be7 to 10%
on LEP 2 energies. If one uses the wrong energy scales in SF, the ISR effect is overestimated of about
4% as shown in Fig. 59 both with and without cuts. For the fully extrapolated case the SF-algorithm with
a correct energy scale is consistent with QEDPS within0.2%. It may reflect the difference betweenL
andL − 1, as mentioned in Sect. 6.21. On the other hand, with the experimental cuts the SF-method at
the correct energy-scale gives a deviation of around1% from QEDPS.

Numerical Calculations, the hard photon spectrum

Energy and angular distributions of the hard photon from QEDPS are compared with those from the
calculations of the exact matrix elements. The cross-sections of the processe−e+ → e−νeudγ are
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Fig. 57: Differential cross-section of the total energy of emitted photon(s) obtained from QEDPS(histogram) and from

SF(circle).

Fig. 58: Total cross-sections ofeνeūd andeνeµνν processes without and with experimental cuts. SF(t) denotes SF with correct

energy scale and SF(s) with wrong energy scale (s).
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Fig. 59: Total cross-sections with SF(s) and SF(t) normalized to those with QEDPS foreνeūd andeνeµνν processes without

and with experimental cuts. SF(t) denotes SF with correct energy scale and SF(s) with wrong energy scale (s).

calculated based on the exact amplitudes generated byGRACE and integrated numerically in five-body
phase space usingBASES. To compare the distributions, the soft-photon correctionfor the radiative
process must be included. For this purpose QEDPS is implemented into the calculation of the process
e−νeudγ with a careful treatment aimed to avoid a double-counting ofthe radiation effect. The definition
of the hard photon isEγ > 1GeV with an opening angle between the photon and the nearest final-state
charged particles that is greater than5◦. The distributions of the hard photons are in good agreementas
shown in Fig. 60. The total cross-section of the hard photon emission is consistent at the2% level. On
the other hand, if the soft-photon correction is not implemented on the radiative process, we end up with
an over-estimate of30%.
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Fig. 60: Differential cross-sections of the hard photon; Energy, transverse energy w.r.t. the beam axis, cosine of the polar

angle, and opening angle between photon and nearest charged-fermion. A histogram shows the QEDPS result and stars from

the matrix element with soft-photon correction.

6.3 Technical precision in single-W

An old comparison for single-W has been extended to cover

1. e+e− → qqeν(γ), | cos θe| > 0.997, eitherM(qq) > 45 GeV orEq1
, Eq2

> 15 GeV, inclusive
cross-section accuracy2%, photon energy and polar angle (| cos θγ | < 0.997 (0.9995)) spectrum

2. e+e− → eνeν(γ), | cos θe| > 0.997, Ee > 15 GeV, | cos θe| < 0.7 (0.95), inclusive cross-section
accuracy5%, photon energy and polar angle (| cos θγ | < 0.997 (0.9995)) spectrum.

3. e+e− → eνµν(γ) ande+e− → eντν(γ), | cos θe| > 0.997, Eµ/τ > 15 GeV, | cos θµ/τ | < 0.95,
inclusive cross-section accuracy5%, photon energy and polar angle (| cos θγ | < 0.997 (0.9995))
spectrum.

With this comparison we want to check a) technical precisionat the Born level, b) the correct inclusion
of QED radiation, c) QCD corrections, especially in the low-mass region.

The first answer is that technical precision is not a problem anymore, all codes agree on single-W
cross-sections and distributions, even forθe < 0.1◦, even for leptonic final states. OnσBorn the technical
accuracy is0.1%, the same fordσ/dθe for θe → 0. Not only invariant-mass cuts, but also energy-cuts
have been tested as shown in Tabs.(37–38) and in Fig. 61.
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√
s = 183 GeV

√
s = 189 GeV

√
s = 200 GeV

NEXTCALIBUR 26.483 ± 0.041 29.679 ± 0.047 35.893 ± 0.048

SWAP 26.47 ± 0.04 29.70 ± 0.04 35.93 ± 0.05

Table 37: Cross-sections [fb] fore+e− → e−νeµ
+νµ.

√
s = 183 GeV

√
s = 189 GeV

√
s = 200 GeV

NEXTCALIBUR 26.422 ± 0.035 29.655 ± 0.046 35.954 ± 0.052

SWAP 26.3 ± 0.2 29.6 ± 0.2 35.92 ± 0.05

Table 38: Cross-sections [fb] fore+e− → e−νeτ
+ντ .

6.31 QCD corrections

QCD corrections are usually implemented in theirnaive form, a recipe where the totalW -width is
corrected by a factor

Γ
W

= ΓEW
W

(

1 +
2

3

αs(M
2
W

)

π

)

, (77)

and the cross-section gets multiplied by1 + αs(M
2
W

)/π. In all those approaches where the Fermion-
Loop is included or simulated, one should pay particular attention to QCD, for instance inWTOQCD
corrections are incorporated in the evaluation of the complex poles by using theO (αα

S
) vector-boson

self-energies of Ref. [3] (the location of the poles is gauge-invariant). Furthermore, the vertices are
effectively corrected so that the relevant Ward identity remains satisfied. In a similar wayWPHACTalso
includes QCD effects in the computation of the imaginary part of both the re-summed propagators and
the vertices, to preserve gauge invariance.

To check the effect of QCD corrections we have comparedWPHACT(IFLα) with WTO(EFL) for
eνeud final states in LEP 2 configuration with and without QCD. The comparison is shown in Tab.(39)
where the first error forWTOcomes from a variation of the scaleµ from µ/2 to 2µ, where we adopt
µ = M

W
as the scale for light quarks andµ = mt for theb− b, b− t andt− t contributions. Therefore,

QCD effects in single-W are under control in those programs that implement them consistently with
Fermion-Loop.
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Fig. 61:θe distributions forudµ−νµ and single-W cross-sections forudµ−νµ.

without QCD with QCD

WPHACT 107.63 ± 0.10 109.18 ± 0.08

WTO 108.96 ± 0.04 110.63+0.18
−0.04 ± 0.04

WPHACT/WTO-1 [%] -1.22 -1.07

Table 39: Cross-sections [fb] at
√

s = 182.655 GeV for e+e− → e−νeud (LEP 2 configuration) with and without QCD

corrections. The first error inWTOcomes from a variation in the scaleµ from µ/2 to 2µ.
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6.32 Assessing the theoretical uncertainty in single-W

If we do not want to use the Fermion-Loop prediction then, by acareful examination of the most plau-
sible re-scaling procedure, we end up with approximately1%, 2% and3% theoretical uncertainty to be
assigned to the energy scale in the channelsud, µνµ and eνe respectively. Therefore, a conservative
estimate of the theoretical uncertainty would read as follows:
Energy scale: ±2 ÷ 3% from a tuned comparison amongNEXTCALIBUR, WPHACTandWTO;

ISR for t-ch, pt: ±4%: if one uses the wrong energy scales in SF, the ISR effect is, indeed, overesti-
mated by approximately4% as shown in the subsequent analysis.

giving a conservative total upper bound of±5%, see Sub-Sect. 6.4 for a more complete discussion.

One should stress that most of the theorists were interestedin gauge invariance issues due to
unstable particle for CC20. The experimentalists, however, were asking from the beginning for ISRpt

effects, comparison with QEDPSt, SF and YFS. Unfortunately, only few groups have been working on
these issues.

In the previous section few recipes have been introduced to improve upon QED ISR; they are
all equivalent insofar as they translate into different choices for the scale in the leading-logarithms of
the structure functions. However this problem has not yet received its final solution and a fullO (α)
calculation would be needed.

There is, however, an additional complication in the use of QED structure functions originating
from mass effects. The single-W is s ⊕ t- channels and thet-channel parts look as in Fig. 62.

e+

e−

νe

f2

f1

e−

+

e+

e−

νe

f2

f1

e−

Q2

Fig. 62: The CC20 family of diagrams with the explicit component containing at-channel photon.

The corresponding cross-section is proportional to
∫

dΦ3
1

Q̂4
L̂µνŴµν , Q̂ = p̂− − q−, L̂µν =

1

2
Q̂2δµν + p̂µ q̂ν + q̂−µp̂−ν (78)

∫

dΦ3Ŵµν = Ŵ1 (−δµν +
Q̂µQ̂ν

Q̂2
) − Q̂2

(p̂+ · Q̂)2
Ŵ2 PµPν

Pµ = p̂µ
+ − p̂+ · Q̂

Q̂2
Q̂µ

wherep̂ andq̂ denote emission of soft and collinear photons. Usually,p2
− = p̂2

− = 0 andq2− = q̂2− = 0,
and one writeŝp− = xin p− and q̂− = q−/xout with the kernel cross-section to be weighted with
structure functions. Here, however, masses matter should not be neglected and the electrons are in a
virtual state, i.e. off their mass-shell. A possible choiceis to write

(p̂−)2 = −m2
e +

1

2
(1 − β) (1 − xin) s ∼ −xinm

2
e
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The important facts are that̂QµL̂µν = 0 owing to gauge invariance. Instead we get

Q̂µL̂µν = 4 (1 − xin)m
2
e q−ν + 4 (1 − 1

xin
)m2

e p−ν .

Even if we insist in puttingp̂− = xinp− and p2
− = −m2

e, gauge invariance is violated by terms of
O
(

m2
e/s
)

. The effect of constant terms on theQ2-integrated photon flux-function can be as large as6%.
Gauge-invariance violation affects this term, resulting in some intrinsic theoretical uncertainty, although
we expect that the effect will be strongly decreased after convolution with SF peaking atxin/out = 1.
Alternatively one may adopt formulations where the electron remains on-shell after emission but at the
price of having collinear photons of non-zero virtuality,(p̂− p)2 6= 0.

It is worth noticing that, the rescaled incoming four-momenta are implemented inSWAPasp̂± =
(xE, 0, 0,±

√

x2E2 −m2
e), by interpretingx as the energy fraction after photon radiation, as motivated

in Ref. [134]. If required,p⊥/pL effects can be implemented in the treatment of ISR, by means of either
p⊥-dependent SF [88] or a QED Parton Shower algorithm [134]. Therefore, in practiceSWAPadopts a
formulation that preserves on-shell incoming electrons. Furthermore, inNEXTCALIBURit is possible to
have both on-shell initial state particles and on shell generated photons but at the price of loosing part of
the information on the direction of the initial states afterradiation.

A final set of comments is needed to quantify the theoretical accuracy of single-W production.

GRACE

The method to apply the QED radiative correction on the non-annihilation processes are established. The
conventional method, SF with energy scales gives about4% overestimation for the QED radiative effect
on the LEP 2 energies. If one wants to look at the hard photon spectrum, the soft-photon correction on
these radiative processes are needed.

SWAP

The difference shown in Fig. 53 between the predictions given by the two set ofQ2 scales of Eq.(68) and
Eq.(69) is at the per mille level, and therefore the simple naive scales of Eq.(69) are a good ansatz for
the energy scale of QED radiation, which could be corroborated by the comparison with the results of
other groups. QED corrections missing in the present approach are beyond the LL approximation. The
present study shows that the choiceQ2

± = s as scale in the IS QED SF(s) can lead to over-estimate the
effect of LL photonic corrections by a factor of1.5, implying an under-estimate of the QED corrected
cross-section of about4%. Also the choice of fixing the scale toQ2

± = |q2γ∗ | for both the IS SF(s), as
recently suggested [92], leads to an under-estimate of the photon correction of about4%. Since these
effects are not negligible in the light of the expected theoretical accuracy, it is recommended to adopt the
Q2-scales as given in eq. (68) or eq. (69), which are motivated by the arguments sketched above.

Further, the effect of rescalingαQED from the high-energy valueαGF
to α(q2γ∗) amounts to a

negative correction of about5 ÷ 6%, to be taken into account carefully.

WPHACT

From the cross-sections of Tabs.(26–27) one deduces that the difference between IFL and IFLα is of the
order of6%, for bothe−e+ → e−e+νeν̄e ande−e+ → e−e+νµν̄µ. The discrepancy between IFLα and
IFLα1 predictions is always of the order of3% and one has, therefore, to attribute an estimate of3 ÷ 4
% error to the IFLα calculations for these processes.

Considering all processes together one can conclude that the implementation of a proper running
αQED reduces the theoretical uncertainty by about one half with respect to fixed-width or imaginary
fermion-loop alone. In some cases this uncertainty is further reduced to less than one percent, but only a
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comparison with complete EFL calculations, as a reference point, may assess whether this is the case. If
no comparisons are available for the process and cuts at handour study points towards a3% uncertainty
for the calculations using the runningαQED, for both single-W and single-Z processes. Of course, one
should add the uncertainty due to the fact that ISR for annihilation processes is not suited fort-channel
contributions. Some obvious improvements on this point will soon be implemented inWPHACT, however
a more careful study both for the theoretical uncertainty ofthese solutions and for a better treatment of
t-channel ISR is still needed.

WTO

Bosonic corrections are still missing and, very often, our experience has shown, especially at LEP 1,
that bosonic corrections may become sizeable [132]. A largepart of the bosonic corrections, as e.g. the
leading-logarithmic corrections, factorize and can be treated by a convolution. Nevertheless the remain-
ing bosonic corrections can still be non-negligible, i.e. ,of the order of a few percent at LEP 2 [133]. For
the Born cross-sections1 ÷ 2% should, therefore, be understood as the present limit for the theoretical
uncertainty. This will have to be improved, soon or later, since bosonic corrections are even larger at
higher energies [6] [135] and the single-W cross-section will cross over theWW one at500 GeV.

6.4 Summary and conclusions

A fairly large amount of work has been done in the last years onthe topic of single-W . In the previous
sections we presented the most recent theoretical developments in single-W and their implementation in
the generators. There are common problematic situations with more or less equivalent solutions. One
has to assign an error band to the cross-section for our partial knowledge of ISR, with or withoutpt,
and for the uncertainty in the scale of the running couplings. As for the energy scale in couplings we
have an exact calculation based on the EFL-scheme which, at the Born-level (no QED) is known to be at
the1% level of accuracy. EFL-scheme, however, is implemented only in one generator while the other
offer a wide range of approximations based on the idea of re-scaling the cross-section. Furthermore, no
program includesO (α) electroweak corrections, not even in Weizsäcker-Williams approximation (for
the subprocesseγ → Wνe), the counterpart of DPA in CC03.

A description of single-W processes by means of the EFL-scheme is mandatory from, at least,
two points of view. EFL is the only known field-theoreticallyconsistent scheme that preserves gauge
invariance in processes including unstable vector-bosonscoupled to e.m. currents. Furthermore, single-
W production is a process that depends on several scales, the single-resonants-channel exchange ofW -
bosons, the exchange ofW -bosons int-channel, the small scattering angle peak of outgoing electrons. A
correct treatment of the multi-scale problem can only be achieved when we include radiative corrections
in the calculation, not only one-loop terms but also the re-summation of leading higher-order terms.
Recent months have shown that this project can be brought to avery satisfactory level by identifying
the correct approximation, process-by-process. In particular, theW − W configuration, dominated
by double-resonant terms, can be treated within DPA. As a consequence, the theoretical uncertainty
associated with the determination of theWW cross-section is sizably decreased. In principle, the same
procedure applies to the determination of theZZ cross-section, where one develops a NC02-DPA instead
of the CC03-DPA one.

We have found that all the modifications introduced via the EFL-scheme are relevant: running of
the couplings,ρ-factors and vertices, not only the changeαQED(fixed) → αQED(running). Therefore,
a naive rescaling cannot reproduce the EFL answers for all situations, all kinematical cuts. The high-
energy Input Parameter Set used in all calculations that arepresently available – we quote, among the
various schemes, the Fixed-Width scheme, the Overall scheme and the IFL one – is based onGF ,MW

andM
Z

with αQED(fixed) = 1/131.95798. It allows for the inclusion of part of higher order effects in
the Born cross-sections but, it fails to give a correct and accurate description of theq2 ∼ 0 dominated
processes. A naive, overall, rescaling would lower the single-W cross-section of about7%. We have
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found, with the EFL calculation, that this decrease is process and cut dependent. Moreover, the effect
is larger in the first bin forθe – 0.0◦ ÷ 0.01◦ – in the distributiondσ/dθe and tends to become less
pronounced for larger scattering angles of the electron. However, the first bin represents almost50% of
the total single-W cross-section, so that, in general, the compensations thatoccur among several effects
never bring the EFL/FW ratio to one. We obtain a maximal decrease of about7% in the result but, on
average, the effect is smaller. We have also found that the effect is rather sensitive to the relative weight
of multi-peripheral contributions.

Finally, the effect of the QED radiative corrections on the total cross-sections are between7% and
10% at LEP 2 energies.grc4f andSWAPhave estimated that if one uses the wrong energy scales in the
structure functions, the ISR effect is overestimated of about 4%, as shown in Figs. 53, 59, both with and
without cuts. For the no-cut case SF with a correct energy scale is consistent with QEDPS around0.2%.
On the other hand with the experimental cuts, SF with correctenergy-scale gives around1% deviation
from QEDPS.

At the same timeSWAPestimates that the effects due to two different scales (eq. (68) and eq. (69)
are in good agreement and both predict a lowering of the Born cross-section of about8%, almost inde-
pendent of the c.m.s. LEP 2 energy.SWAPresults show a good agreement with those ofgrc4f when
both are referred tos-channel SF.

Although we register substantial improvements upon the standard treatment of QED ISR, the prob-
lem is not yet fully solved for processes where the non-annihilation component is relevant. A solution of
it should rely on the complete calculation of theO (α) correction, therefore the the basic YFS approach
or any equivalent one augmented by virtual corrections.

At the moment, a total upper bound of±5% theoretical uncertainty should still be assigned to
the single-W cross-section. In particular, the difference between annihilation-like QED radiation and
the optimized scales amounts to a4%, which is conservatively used (by the LEP EWWG) in the global
estimate of theoretical uncertainty. Alternatively one should use the differences between different im-
plementations of ISR in thet-channel as a basis for the systematic uncertainty. However, we are not yet
ready to formulate a strict and definitive statement along these lines. Furthermore, there seems to be and
indication of some numerical difference arising from different QED treatments inGRACEand inSWAP.
At present no direct comparison has been attempted to understand the origin. We could say that QED
radiation in single-W is understood at a level better than4% but we are presently unable to quantify this
assertion.

In this sense the current5% should be considered as a good estimate of the global upper limit
for theoretical uncertainty. The origins of this upper bound are as follows. QED effects are bounded
by a4%, saturated only by those programs that do not improve upon the scale. Effects due to running
couplings and vertices are bounded by a2% ÷ 3%, saturated by those programs that do not implement
an exact massive FL-scheme. To lower this estimate is presently possible only in a multi-step procedure
where program A is used vs. B to assess the effect of EFL/αQED, then A is used vs. C to assess the effect
of QED ISR and finally A is corrected to take into account the missing pieces and assign an uncertainty.
This procedure should be performed within the experimentalcommunity, using the individual estimates
of theoretical uncertainties as declared by the programs inthis Section.

We expect an improvement upon this estimate when more implementation of the Fermion-Loop
scheme will be available. Presently, the results with a rescaling ofαQED for the t-channel photon show
an agreement with EFL predictions that is between1% and 2%. Note that ineνeν EFL is not yet
implemented and there we use the estimate byWPHACTof roughly 3%. All programs that implement
the correct running ofαQED should be able to reach this level of accuracy, but not all of them have this
implementation.

All program that still implements-channel structure functions saturate the5% level of theoretical
accuracy. Further and more complete studies are needed for QED corrections and ad hoc solutions, like
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fudge factorsshould be avoided.

As stated above, the present level of global theoretical uncertainty, 5%, comes from different
sources and different effects. Some of them have been fully understood from a theoretical point of
view but, sometimes, not yet implemented in most of the programs. There are remaining problems that
have not yet received a satisfactory solution and some of theprograms implement educated guesses.
In general we should say that single-W remains, to a large extent, the land offudge factors. As for
individual programs, the following collaborations (listed in alphabetic order) have agreed to quantify
their performances:

NEXTCALIBURtries to include all leading higher order effects. At present, by comparing with the
Exact-Fermion Loop and varying the internal parameters of the program, we can assign a conservative
3% uncertainty coming from our Modified fermion loop approach.On the other hand, our solution to
thet-channel ISR problem represents the best we have so far at thetheoretical level. Therefore, the final
precision of±5% on single-W has to be considered as a safe estimate of the accuracy reached by the
program, at least in absence of large angle hard photons.

SWAPincludes exact tree-level matrix elements with finite fermion masses and anomalous trilinear
gauge couplings, the effect of vacuum polarization, higher-order leading QED corrections according to
the treatment for the energy scale as given by the (equivalent) choices of eq. (68) and eq. (69). Since,
apart from the effect of the running ofαQED, other one-loop fermionic and bosonic corrections are still
missing inSWAP, its theoretical uncertainty is at the level of2 − 3%19, depending on the channel and/or
event selection considered.

WPHACTcan be used for single-W in its version IFLα. This is at present the best choice: all
other schemes have been employed for studies and comparisons but are not recommended. As already
explained, the theoretical uncertainty due to non implementation of the complete EFL amounts to3−4%
for CC20/Mix56. This, together with the non correct QED radiation for t-channel, leads to an estimate
of 5 − 6% accuracy in actualWPHACTsingle-W predictions.

WTOcan only be used as a benchmark for the determination of the scales in the coupling constants.
In its defaultWTOsaturates the upper bound of5% of accuracy. Ideally, the difference between any
program using some approximation andWTOshould be considered as systematic uncertainty for the scale
determination (in couplings) of that program. In practice EFL, the right approach, is only implemented
in WTOand a cross-check is needed before being able to apply the previous rule. The correct treatment
of QED radiation is still missing, it is a choice of the authorto avoid ad hoc solutions and a consistent
upgrading is currently under study. Furthermore, Fermion-Loop (as DPA) implies certain characteristics
and programs that implement a incomplete-FL that does not reflect at least a large fraction of them should
refrain from using the label FL.

The collaborations each take responsibility for the above statements that range from conservative
to more optimistic ones.

6.5 Outlook

A substantial amount of work was done in the last two years on the topic of single-W production. This
has triggered theoretical developments which can be used also in other areas, e.g. massive Fermion-Loop
scheme, QED radiation in processes dominated byt-channel diagrams. One of the main results of the
theoretical activity has been to upgrade programs that where available prior to the workshop and did
not provide a satisfactory simulation of the process. They might have given a numerically more or less
correct cross section, but this was mostly an accident.

Some work has not yet been done, e.g. low–invariant-masseν+ hadrons final states (searches),
DPA-equivalent set of radiative corrections (high-luminosity LC). Finally, we still do not have a com-

19to be compared with the estimated upper bound of5%
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plete, solution to the ISR problem, although there has been considerable progress in the treatment of
QED radiation, in particular in the determination of the radiation scale. Going beyond the present level
of theoretical accuracy would require a completeO (α) calculation therefore contributing to improve the
present level of theoretical accuracy.

Appendix: the diagrams
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ē
ν̄e

diagr.3

e
νe

e

W+ νe

ē
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ē ν̄e

diagr.8

e
e

Z W+ νe
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Fig. 63: Two gauge invariant subsets for the singleW production in the channele+e− → e+e−νeνe. The set of nine diagrams
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ē

γ
ē
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Fig. 65: TheW +W− double-resonant gauge invariant subset in the channele+e− → e+e−νeνe.
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ē

diagr.5

e

νe

W+

γ
e
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Fig. 67: The gauge invariant subset withγ, Z → e+e− conversion corrections to the processe+e− → νeνe.
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7. The NC02 cross-section,σZZ

The cross-section fore+e− → ZZ is defined starting from the NC02 process, very much ase+e− →
W+W− in terms of CC03, hence we sum over all channels,e+e− → Z(→ f1f1) + Z(→ f2f2)
including four neutrinos in the final state. The electroweakcorrections toee → ZZ were calculated
in [66]. Actually there the weak corrections have been discussed separately, but unfortunately in theα
scheme.

As usual, it is left for the experimenters to evaluate the background, i.e. to define a neutral current
observable cross-section as follows:

σNC = σNC02

(

1 + δDPA
NC

)

+
[

σ4f − σNC02

]

. (79)

The theoretical prediction, therefore, should concentrate onσNC02, with or withoutO (α) radiative cor-
rection in DPA-approximation. In particular, the background should account for the Mixed processes
(Mix43). There is some important remark to be made. When dealing with uuuu etc, i.e. with channels
containing identical particles, we have to evaluate the unphysical sum of the two diagrams corresponding
to e+e− → Z(→ u1u1) + Z(→ u2u2), tacitly assuming that there are twou quarks,u of type 1 and
u of type 2. Since the interferences between the crossings arenot double-resonant, it is customary to
consider them as background and to define theZZ signal, i.e.σNC02, from the absolute squares of the
double-resonant diagrams only. This is a matter of definition, i.e. , we could define theZZ signal to
contain all crossings in case of four identical flavors in thefinal state. That one chooses the first option
is largely based on the drawback that, with the latter,

σ(e+e− → ZZ) × BR2(Z → uu), (80)

is no longerσZZ→uuuu. It is certainly true that the cross-section containing allcrossings would be more
physical but, for the time being this is the convention. Furthermore, one should remember that the
e+e− → γ∗γ∗, γ∗Z background is quite large (see e.g. Ref. [18]).

Bearing this in mind, we should stress that the terminologyσNC02 is, sometimes, unfaithful,
simply because this is not what experiments use in their analysis. A common procedure is to use
EXCALIBURand to restrict it to the complete set of double-resonant diagrams. In other words, experi-
ments measure data in some window of invariant mass and extrapolate with some coefficient, evaluated
by MC, to what one finally calls the NC02-total cross-sectionbut it represents, instead, the sum of all
double-resonantZ diagrams (for some channel4 instead of2).

However, by definition, we select NC02 to bee+e− → ZZ, two diagrams (t andu channel), with
all Z decay modes allowed for bothZ-bosons. If one computes everything as production⊗ decay then,
as long as one remembers to include factors1/2, everything is reasonable. The conclusion is based on
the following observation. When all diagrams are taken intoaccount we find

σ(e+e− → uucc) = 208.9 fb, σ(e+e− → uuss) = 204.4 fb,

σ(e+e− → ddss) = 182.6 fb, σ(e+e− → uudd) = 1.980 pb,

σ(e+e− → uuuu) = 101.4 fb, σ(e+e− → dddd) = 87.88 fb, (81)

and, as a consequence,
Ruucc/uuuu = 2.06, Rddss/dddd = 2.08. (82)

In other words, even if we define on-shell and compute off-shell the same result, within few percents, is
obtained.

The relative significance of theZZ cross-section is considerably less than the one attributedto
theWW cross-section. Its is smaller and with much larger experimental errors, even at the level of
projected ones. As a consequence the NC02 process has received less attention that the CC03 one and,
so far, we have no published result onO (α) DPA calculations for it although, in principle, there is no
major obstacle to it.
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7.1 Description of programs and results

YFSZZ

Authors

S. Jadach, W. Placzek, M. Skrzypek, B. Ward and Z. Was

General Description

The program evaluates the NC02 double resonant processe+e− → ZZ → 4f in the presence of multiple
photon radiation using Monte Carlo event generator techniques. The theoretical formulation is based, in
the leading pole approximation (LPA), onO

(

α2
)

LL YFS exponentiation for the production process,
with the possibility of anomalous gauge couplings if the user so desires. The Monte Carlo algorithm
used to realize the YFS exponentiation is based on the YFS2 algorithm presented in Ref. [67] and in
Ref. [139]. In this way, we achieve an event-by-event realization of our calculation in which arbitrary
detector cuts are possible and in which infrared singularities are cancelled to all orders inα. A detailed
description of our work can be found in Ref. [140].

Features of the program

The code is a complete Monte Carlo event generator and gives for each event the final particle four-
momenta for the entire4f + nγ final state over the entire phase space for each final state particle. The
events may be weighted or unweighted, as it is more or less convenient for the user accordingly. The code
features the realization of the LPA for the NC02 process thatis the analog of that given in Ref. [57] for the
CC03 process of production and decay ofWW pairs. A technical precision check on the program at the
level of 2 per mille for the total cross-section has been doneby comparison with the results in Ref. [141].
The accuracy of the combined result fromYFSZZ 1.02 andKoralW 1.42, when the combination is
taken in analogy with that presented in Ref. [142] forYFSWW3 1.14andKoralW 1.42 , is expected
to be at the level of2% for the total cross-section, due to the missingO (α) pure weak corrections in
YFSZZ 1.02 (we do not expect the other effects missing from our calculation such as non-universal
QED corrections to enter at this level), when all tests are finished. These tests are currently in progress.

The operation of the code is entirely analogous to that of theMC YFS2 in Refs. [67]. A crude
distribution based on the primitive Born level distribution and the most dominant part of the YFS form
factors that can be treated analytically is used to generatea background population of events. The weight
for these events is then computed by standard rejection techniques involving the ratio of the complete
distribution and the crude distribution. As the user wishes, these weights may be either used directly
with the events, which have the four-momenta of all final state particles available, or they may be ac-
cepted/rejected against a maximal weight WTMAX to produce unweighted events via again standard
MC methods. Standard final statistics of the run are provided, such as statistical error analysis, total
cross-sections, etc. The total phase space for the process is always active in the code.

Description of output and availability

The program prints certain control outputs. The most important output of the program is the series of
Monte Carlo events. The total cross-section infb is available for arbitrary cuts in the same standard way
as it is forYFS2, i.e. the user may impose arbitrary detector cuts by the usual rejection methods.

The program is available from the authors via e-mail. The program is currently posted onWWW
athttp://enigma.phys.utk.eduas well as onanonymous ftpatenigma.phys.utk.eduin the form of atar.gz
file in the /pub/YFSZZ/directory together with all relevant papers and documentation in postscript.
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ZZTO

Author

G. Passarino

Description.

ZZTO is a newly created code for computingσNC02 which, at the moment, has universal Initial State
QED, Final State QED, Final State QCD, is fully massive withb andc quarks running masses. Fermion-
Loop is also implemented.ZZTOis missing non-universal QED ISR and purely weak effects (inDPA);
however, it is under construction with the final goal of including those effects. The code sums over allZZ
decay modes, evenνννν. However, single channels are available, i.e.qqqq, qqνν, qqll, llνν, llll, νννν.
Therefor, insideZZTOwe have the exact matrix element fore+e− → ZZ → 4f with massive fermions
and running masses for theb, c-quarks. Cuts are only implemented on theZ invariant masses, therefore
we can apply final state QCD correction factors beyond the usual naivecorrection. In other words, the
total hadronic decay rate of eachZ-boson is split into the sum of the vector current induced rate,ΓV , and
of the axial decay rate,ΓA, which receive different QCD corrections evaluated at the scale equal to the
virtuality of the qq-pair. Non-factorizable QCD corrections are neglected. Final state QED corrections
are also included, again evaluated at the virtuality of the pair, i.e. withαQED(M2

pair). Initial state QED
corrections include, so far, only the universal part of the structure functions evaluated at the scales.

To implement the Fermion-Loop scheme we had to incorporate QCD corrections in the evaluation
of the complex polep

Z
and of theρ-parameter associated to theZ-propagator. This we have done by

taking into account also the massive top quark, while the light quarks, including theb one, are treated
as massless. QCD is exactly implemented by using theO (αα

S
) vector-boson self-energies of Ref. [3]

with M
Z

as the scale for light quarks andmt for the b − b, b − t andt − t contributions. ForM
W

=
80.350GeV,M

Z
= 91.1888GeV andα

S
(M2

Z
) = 0.120 we find a QCD effect illustrated in Tab.(40).

The programZZTOis currently posted onWWW athttp://www.to.infn.it/giampier/zzto.

without QCD with QCD

µW =
√

Rep
W

[GeV] 80.324 80.322
−Im(p

W
)/µW [GeV] 2.0581 2.1109

µZ =
√

Rep
Z

[GeV] 91.155 91.153
−Im(p

Z
)/µZ [GeV] 2.4653 2.5315

mt [GeV] 148.21 156.32

Table 40: Effect of including QCD corrections on the complexp
W

, p
Z

poles according toZZTO.

Distributions.

TheZZ-signal is basically defined through invariant masses, for instancee+e− → qql+l−(γ), q-flavour
blind or heavyq-flavors, l = e/µ/τ , | cos θl1 | < 0.985, no cut on the second lepton (only one lepton
tagged),M(qq) > 10 (45) GeV.

Here, we do not discuss invariant mass distributions in terms of the full processes but only in terms
of the signal NC02. The angular cuts are there only because ofdetector holes at the beam pipe. Since for
NC02 there are no poles at edge of phase space, we could leave these cuts out for simplicity. Furthermore,
we analyze onlye+e− → qql+l−(γ) where the definition of invariant masses is free of ambiguities.
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ZZTOincludes final state radiations in two different options. Ina first caseZZTOimplements the exact,
factorizable,O (α) corrections for some extrapolated setup were one can only cut on theZ-virtuality,
see Ref. [143]. In the second one, hard and collinear photonsare included, within a cone of angular
resolutionδ ≪ 1, according to the formalism of Ref. [144]. Moreover, soft photons are exponentiated.

Therefore, we can defineinvariant massdistributions according to the following choices: a)
M(l+l−γ) or M(qqγ) whereM represents the virtuality of the decayingZ-boson and b)m(l+l−)
wherem is thel+l− invariant mass and hard photons are included whenever the angle between the pho-
ton and the nearest charged final-state fermion is less thanδ ≪ 1. Aboveδ photons are not included
in the mass calculation. Gluons are always included inO (α

S
) with a fully extrapolated setup, i.e. the

M -variable forqq final states is always understood asZ(M) → qq + γ + g.

In Fig. 71 we show theM -distribution for e+e−+ hadrons and forbb(cc)+ leptons at one en-
ergy,

√
s = 188.6 GeV. There is no appreciable difference withµ+µ−+ hadrons due to the fact that the

FSR correction factor is approximately3/4Q2
f α/π since we cut on theZ-virtuality and not on theff

invariant mass.

In Fig. 72 we showe+e−+ hadrons and compareM andm distributions for thee+e−(γ) pair.
The latter includes collinear photons within a cone of half-opening angleδ = 5◦. In the same figure we
also compare them(ff) distributions fore+e−+ hadrons andµ+µ−+ hadrons. Since the cut is on the
invariant mass of the pair one starts appreciating differences between different flavors.

All distributions are computed byZZTO in the Fermion-Loop mode. The largest effects in the
theoretical uncertainty are associated to the fact that non-factorizable QED corrections are neglected,
although one can show that they vanish in the limit of on-shell Z-bosons,|M2 −M2

Z
|≪ ΓZMZ

. They
also vanish for a fully extrapolated setup, i.e. after integrating over the full range of the twoZ virtualities,
which is not the case for distributions.

GENTLE

Authors

D. Bardin, A. Olchevski and T. Riemann

The NC cross-sections in package4fan include now besides the NC32 class also the NC02
process (NC08 is unchanged); also some new options introduced, ICHNNL=0,1: switching between
NC02 and NC32 classes (forIPROC=2); Note, that the treatment ofNC08 sub-family is not changed
compared to the versionv.2.10 . It remains accessible only viaNCqedbranch of the package.

7.2 Comparisons for the NC02 cross-section

In this Section we will compare the NC02 cross-section betweenYFSZZ, GENTLEand the newly created
codeZZTO. First, the comparison betweenYFSZZ and ZZTO. Here,

√
s = 188.6GeV and QCD is

not included. The result is shown in Tab.(41). From Tab.(41)we see a remarkable agreement, further
quantified in Tab.(42). Furthermore, forσZZ with Born+ISR+QCD the uncertainty related to the IPS
(Input Parameter Set) is approximately1%. This does not mean that the total, true, theoretical uncertainty
is 1%. TheZZ line-shape, as predicted byZZTOand including QCD corrections is shown in Tab.(44)
where the results refer to three schemes,α,GF and Fermion-Loop.

Finally, in Fig. 73 we present the NC02 line-shape for a wide range of energy, comparing the
α-scheme with theGF -scheme and the Fermion-loop one. Missing an implementation of the Fermion-
Loop scheme in other codes, our recommendation is to use theGF -scheme since it allows us to include
part of higher order effects in the Born cross-sections.
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Fig. 71: NC02 distributions fromZZTO. HereM(ff(γ, g)) is the virtuality of the correspondingZ-boson.

Fig. 72: NC02 distributions fromZZTO. HereM(ff(γ, g)) is the virtuality of the correspondingZ-boson andm(ff) is the

ff invariant mass with collinear photons that are combined with the nearest fermion,θ(γ − nearest f) = 5◦.
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channel YFSZZ ZZTOGF -scheme ZZTOα-scheme

qqqq 294.6794(490) 298.4411(60) 294.5715(59)
qqνν 175.4404(302) 175.5622(35) 174.9855(35)
qqll 88.1805(134) 88.7146(18) 87.9881(18)
llνν 26.2530(463) 26.0940(5) 26.1342(5)
llll 6.5983(15) 6.5929(1) 6.5706(1)
νννν 26.1080(71) 25.8192(5) 25.9868(5)

total 617.2596(755) 621.2241(124) 616.2366(123)

Table 41: Comparison for the NC02 cross-section betweenYFSZZandZZTOat
√

s = 188.6 GeV. The cross-sections are in

fb.

channel ZZTO(GF )/YFSZZ- 1 ZZTO(α)/YFSZZ- 1

qqqq +1.28 -0.04
qqνν +0.07 -0.26
qqll +0.61 -0.22
llνν -0.61 -0.45
llll -0.08 -0.42
νννν -1.11 -0.46

total +0.64 -0.17

Table 42: DifferencesYFSZZ/ZZTO for the NC02 cross-section in percent.

channel ZZTOGF/α− 1

qqqq +1.31
qqνν +0.33
qqll +0.83
llνν -0.15
llll +0.34
νννν -0.64

total +0.81

Table 43: Scheme differences in percent for NC02, accordingto ZZTO.
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√
s [GeV] σZZ

α [pb] with QCD σZZ

GF
[pb] with QCD σZZ

FL [pb] with QCD GF /FL - 1 [percent]

180 0.12478(1) 0.12568(1) 0.12669(1) -0.80

181 0.16044(2) 0.16160(2) 0.16267(2) -0.66

182 0.21135(2) 0.21287(2) 0.21376(2) -0.42

183 0.27770(2) 0.27970(2) 0.28009(2) -0.14

184 0.35224(1) 0.35477(1) 0.35457(1) -0.03

185 0.42644(1) 0.42950(1) 0.42881(1) +0.16

186 0.49579(1) 0.49936(1) 0.49833(1) +0.21

187 0.55897(1) 0.56299(1) 0.56175(1) +0.22

188 0.61596(1) 0.62039(1) 0.61901(1) +0.22

189 0.66723(1) 0.67203(1) 0.67057(1) +0.22

190 0.71336(1) 0.71848(1) 0.71699(1) +0.21

191 0.75487(1) 0.76030(1) 0.75879(1) +0.20

192 0.79225(1) 0.79794(1) 0.79643(1) +0.19

193 0.82596(1) 0.83190(1) 0.83040(1) +0.18

194 0.85643(2) 0.86258(2) 0.86111(2) +0.17

195 0.88393(2) 0.89028(2) 0.88884(2) +0.16

196 0.90875(1) 0.91528(1) 0.91388(1) +0.15

197 0.93118(1) 0.93787(1) 0.93651(1) +0.15

198 0.95146(1) 0.95830(1) 0.95698(1) +0.14

199 0.96890(1) 0.97677(1) 0.97549(1) +0.13

200 0.98635(2) 0.99343(2) 0.99220(2) +0.12

201 1.00012(2) 1.00843(2) 1.00724(2) +0.12

202 1.01460(2) 1.02189(2) 1.02075(2) +0.11

203 1.02660(1) 1.03397(1) 1.03288(1) +0.11

204 1.03736(1) 1.04481(1) 1.04376(1) +0.10

205 1.04700(1) 1.05452(1) 1.05352(1) +0.09

206 1.05561(1) 1.06320(1) 1.06224(1) +0.09

207 1.06326(1) 1.07090(1) 1.06998(1) +0.09

208 1.07001(1) 1.07770(1) 1.07683(1) +0.08

209 1.07594(2) 1.08367(2) 1.08284(2) +0.08

210 1.08111(2) 1.08888(2) 1.08809(2) +0.07

Table 44: NC02ZZ line-shape fromZZTO.
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Fig. 73: Comparison of different schemes,α, GF and Fermion-Loop, for theZZ line-shape fromZZTO.

In Tab.(45) we show theσZZ cross-section as predicted fromGENTLE. Tab.(45) is produced with
the followingGENTLE/4fan flag settings:
IPROC,IINPT,IONSHL,IBORNF,IBCKGR,ICHNNL = 2 2 1 1 0 0
IGAMZS,IGAMWS,IGAMW,IDCS,IANO,IBIN = 0 0 0 0 0 0
ICONVL,IZERO,IQEDHS,ITNONU,IZETTA = x x 3 0 1
ICOLMB,IFUDGF,IIFSR,IIQCD = 0 0 1 0
IMAP,IRMAX,IRSTP,IMMIN,IMMAX = 1 0 1 1 1

and with the following NCqed branch settings:
IPROC ,IINPT ,IONSHL,IBORNF,IBCKGR,ICHNNL = 3 2 1 1 1 2
IGAMZS,IGAMWS,IGAMW ,IDCS ,IANO ,IBIN = 0 0 0 0 0 0
ICONVL,IZERO ,IQEDHS,ITNONU,IZETTA = 0 1 x x 1
ICOLMB,IFUDGF,IIFSR ,IIQCD = 2 1 1 0
IMAP ,IRMAX ,IRSTP ,IMMIN ,IMMAX = 1 0 1 1 1

The Table deserves an extended comment. Its upper part is obtained with the aid of the stan-
dardGENTLEapproach to ISR: the band of theoretical uncertainties is produced by choosing standard
structure functions (SF) for the minimum and flux functions (FF) for the maximum with a reasonable
choice in between for the preferred one. For the maximum, we include LLA second order corrections
and exclude the lowest order constant term (optionIZERO=0). The band has a typical width of about
3 ÷ 4%. This approach finds its roots in the treatment of the CC03 cross-section where we used the so-
called current-splitting technique, the precision of which is difficult to evaluate since it takes into account
only a part of diagrams. We emphasize again that nowadays, after the advent of DPA calculations, the
theoretical uncertainties in the CC-sector are reduced.

For NC-processes, the ISR is well defined and no current-splitting is required. In paper [145]
we provided the complete lowest order ISR QED corrections (option ITNONU=1). In our complete
calculations the constant term is full reproduced and thereare no justifications to exclude it. This is
why in the lower part of the Table we always useIZERO =1. For the theoretical uncertainties, we vary
then over three working optionsIQEDHS,ITNONU=00,10,11 and select preferred, min and max out of
them. As seen from the lower part of the Table, the theoretical uncertainty derived in such a way is about
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channel GENTLE2.10 GENTLE− GENTLE+

qqqq 299.642 298.614 301.448
qqνν 176.076 175.410 177.137
qqll 89.187 88.851 89.720
llνν 26.204 26.103 26.362
llll 6.637 6.612 6.677
νννν 25.857 25.766 26.013

total 623.602 621.356 627.356

qqqq 301.448 300.418 301.522
qqνν 177.137 176.532 177.180
qqll 89.725 89.418 89.746
llνν 26.361 26.271 26.367
llll 6.676 6.654 6.678
νννν 26.022 25.933 26.029

total 627.370 625.226 627.522

Table 45: Cross-sections [fb] fore+e− → ZZ → 4f at
√

s = 188.6 GeV; first columnGENTLE2.10 with preferred flags,

second and third columns estimate variations due to theoretical uncertainties. The upper part is produced with the 4fanbranch

and with flags:ICONVL,IZERO =00,10,01. The lower part is produced with NCqed branch ofGENTLE/4fan and with flags:

IQEDHS,ITNONU=00,10,11.

twice as narrow as compared to the upper part. It is importantto emphasize that the two bands overlap,
although there is a systematic shift towards slightly higher cross-sections.

This shift is due to the constant term. If we had chosenIZERO=1 for the upper part, its band
would totally contain the band for the lower part. We tend to consider the lower part to be a more correct
treatment of the ISR for the case of NC-processes.

7.3 Summary and conclusions

Three different programs have produced numbers for the NC02cross-section showing remarkable agree-
ment over a wide energy range.ZZTOhas produced results with two different renormalization schemes,
GF andα, showing differences of the order of a percent.GENTLEconfirms the finding with nearly
the same shifts asZZTObetween the two schemes. It looks plausible to have a±2% of theoretical un-
certainty assigned to the NC02 cross-section. There is an indications, coming from the Fermion-Loop
analysis ofZZTO, that show smaller deviations with respect to theGF -scheme and the Fermion-Loop is
usually accurate at the1 ÷ 2% level.

At the moment the estimated theoretical uncertainty comes from the comparisons betweenGENTLE,
YFSZZandZZTOand it is roughly about2%. The size of the uncertainty is confirmed by an internal esti-
mate ofGENTLE, as given in Tab.(45). With the complete lowest order ISR QEDincludedGENTLEgives
a total cross-section at

√
s = 188.6 GeV of 627.37+0.15

−2.14 fb whereZZTOgives621.22 fb, i.e. GENTLE
predicts a0.4% uncertainty withGENTLEandZZTOdiffering by roughly1%. Furthermore,GENTLE
predicts a+0.6% shift due to the constant term in ISR and both programs predict a −0.8% shift from
theGF -scheme to theα-scheme.

Given the experimental uncertainty on the cross-section a difference below2% is reasonable and,
most likely, do not require the implementation of missing effects which are beyond the reach of the
experiments. Nevertheless, work is in progress forZZTOtowards a complete DPA calculation for NC02.
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8. Conclusions and outlook

An extensive collection of theoretical predictions for observables ine+e− interactions at LEP 2 energies
had been presented in the 1996 CERNReport of the Workshop on Physics at LEP2. However, an update
with improved theoretical prescriptions is needed in orderto match the precision achieved by now in the
experimental analyses.

The aim of the four-fermion contribution to this workshop effort is twofold. We have summarized
the most recent theoretical developments concerninge+e− annihilation into four-fermions at LEP 2
energies. Furthermore, applications to the four most important classes of processes have been discussed
in detail. In decreasing order of importance they are theWW -signal, the inclusion of an extra photon in
the final state, the single-W production and theZZ-signal.

To gauge the priorities of this Report one should remember that the experimental situation is rather
different forWW when compared to the other processes. ForW -pairs, LEP (ADLO) is able to test the
theory to below1%, i.e. , below the old uncertainty of±2% established in 1995. Thus the CC03-DPA,
including non-leading electroweak corrections, constitutes a very important theoretical development.
However, ADLO cannot test single-W orZZ-signal to an equivalent level, since their total cross-section
is of the order of1 pb or less,20 times smaller than that ofW -pair production20.

The authors of the four-fermion report agree on the following conclusions from this study:

• There is a nice global agreement between the new DPA predictions for CC03, which are2%÷ 3%
lower than the old approach21.

• The Monte Carlo programsRacoonWWandYFSWW3agree within0.3% at
√
s = 200 GeV. The

present estimated theoretical uncertainty of these programs is0.4%, 0.5%, and0.7% for
√
s =

200GeV, 180GeV, and170GeV, respectively.

• There is a general satisfaction with the progress induced bynew DPA calculations. Nevertheless,
the theoretical uncertainty could probably be improved somewhat in the future.

• More work will be needed to reduce the uncertainty for4f + γ and of parton shower withpt.

• In single-W production most of the theorists were interested in gauge-invariance issues due to
unstable particle. The experimentalists were asking for ISR andpt effects, comparisons including
parton shower, structure functions and exponentiation. Unfortunately, only few groups have been
working on these issues. Their work represents an importantresult of this Report.

• In single-W production we have a (global)2% ÷ 3% theoretical uncertainty associated with the
scale of thet-channel photon, with a projected1% uncertainty when the implementation of the
Fermion-Loop scheme [39] will receive more cross-checks.

• For simple processes likee+e− annihilation and two-photon collision, the evolution of the energy
scale in the structure function or in the parton-shower algorithms can be determined by the exact
perturbative calculations. However, this is not availablefor more complicated processes. When
no exact first order calculations are available then one resorts to the scale occurring in the first
order soft corrections. Therefore, at the moment, we may apply a very conservative (global) upper
bound of4% theoretical uncertainty for ISR in single-W production. Here we repeat one of the
conclusions of Sect. 6., we understand the implementation of QED radiation in the MC better
than before, Structure Functions at the scales are obviously wrong, but we are presently unable
to precisely quantify the improvement upon the quoted – global – upper bound. Single programs
may claim to have more stringent internal estimates. In conclusion, the current upper bound on the
global estimate of the theoretical uncertainty is5% for single-W . A detailed explanation of this
bound is given in Sub-Sect. 6.4.

• Compared to the experimental uncertainty on the NC02ZZ cross-section a difference of about

20For ZZ with 1997+1998+1999 data, the present analyses and global LEP combination method give an average measure-
ment with7% accuracy. At the end of LEP, we may reach better than5%.

21see Sect. 4. for a proper definition of the old approach.
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1% between theoretical predictions is acceptable. The globalestimate of theoretical uncertainty is
2%, again acceptable. However, it would be nice to improve uponthe existing calculations.

These points are discussed in more detail in the following.

The new DPA predictions for CC03 are2%÷ 3% lower than in the old approach. The new Monte
Carlo programsRacoonWWandYFSWW3agree within0.3% at

√
s = 200GeV, i.e. at a level that is

consistent with the accuracy of the DPA. The theoretical uncertainty of these programs for the CC03
W -pair cross section, which we estimate to be below0.4 ÷ 0.5% for

√
s = 180–210GeV, should

be compared with the current experimental precision of±0.9% with all ADLO data at183–202 GeV
combined. It should be mentioned as well thatRacoonWWand the semi-analyticalBBCcalculations
agree very well where they should, i.e. above185GeV.

Turning to distributions, the deviations seem to become somewhat larger for largeW− production
angles, although compatible with the statistical accuracy. The invariant mass distributions agree within
roughly 1% with a distortion of the distributions that is mainly due to radiation off the final state and
theW bosons. We expect that the present uncertainty of the CC03W -pair cross-section can be reduced
somewhat when the sources of the differences betweenRacoonWWandYFSWWand the leading higher-
order corrections will be better analyzed. To go below the level of a few per-mille of accuracy would
require the complete calculation of one-loop radiative corrections in four-fermion production for all 4f
final states, a program that does not seem feasible in a foreseeable future.

The presence of real photons can also change the quantitative agreement of DPA calculations.
For integrated quantities the differences between alternative approaches are expected to be of the order
of the accuracy of the DPA while for more exclusive observables larger differences can be expected.
A comparison betweenRacoonWWandYFSWW3for various distributions in the semi-leptonic channel
e+e− → ud̄µ−νµ and with a specified set of separation and recombination cutsreflects, however, for
observables inclusive in the photon the same global difference as the total cross-section.

The technical precision fore+e− → 4f + γ has reached high standards as shown by the com-
parisons amongPHEGAS/HELAC, RacoonWWandWRAP, but at the moment we are unable to present
any overall statement on the theoretical uncertainty process by process. This is true in particular for
the single-W configuration. Furthermore, no detailed comparison has been performed including parton
shower and hadronization.

In general more work will be needed to establish the uncertainty for 4f + γ. This should be done
process by process, with the target of achieving the required accuracy. At the moment we can fix an
upper bound of2.5% based on missing non-logarithmic corrections.

In single-W production most of our activity was centered around gauge-invariance issues due
to unstable particle. Although, no coordinate effort has been performed, at the moment, to study the
theoretical uncertainty induced by ISRpt effects, comparison with parton shower, structure functions
and exponentiation the interested reader can find in the Report details on QED corrections as they stand
now. Few programs, noticeablyGRACEandSWAP, have produced a preliminary internal estimate of the
uncertainty associated with the treatment of QED radiation; the net effect of QED is between8% and
10% in the LEP 2 energy range, withs-channel structure functions over-estimating the effect by ≈ 4%.
Furthermore, structure functions with a modified scale seems to agree with parton shower at the level of
1% when experimental cuts are included or even better for a fully extrapolated setup.

As far as the scale of the electromagnetic coupling is concerned we find that the results with a
rescaling ofαQED for thet-channel photon that has been implemented inNEXTCALIBUR, SWAPand
WPHACTshow an agreement withWTOpredictions that is roughly around2%.

For single-W , therefore, we register a conservative, overall, upper bound of±5% for the theoret-
ical uncertainty. Single programs may claim better internal estimates but this does not transform, yet,
into a global one22.

22 We recall that, at the moment an uncertainty associated to QED ISR is quoted, by the LEP EWWG, that follows from
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Implementation of the EFL-scheme in single-W (in addition toWTO) will give a more solid basis
to the estimate of1 ÷ 2% for the uncertainty associated with the scale of the e.m. coupling.

The next, obvious, step is represented by the evaluation of missingO (α) electroweak effects,
e.g. in Weizsäcker-Williams approximation (for the sub-processeγ → Wνe), the analogous of DPA for
CC03.

A better understanding of QED ISR and of all radiative corrections in single-W production is
certainly needed in order to reduce the corresponding uncertainty, hopefully around1%. This, however,
requires to go beyond the present approximations, not an easy task and with a considerably large exper-
imental error. Since DPA cannot be applied to single-W production one has to follow some alternative
path, like including radiative corrections in (improved) Weizsäcker-Williams approximation, or WWA.
It is expected that already the normal WWA ( i.e. logarithmicterms only), with a typical Born-accuracy
of 5%, will yield results accurate at the level of5% × α/π. For the moment this is not strictly needed
but one should consider that single-W will be one of the major processes at LC.

For the NC02 cross-section we have a1% variation, obtained by changing the Input Parameter Set
in GENTLEand inZZTOand by varying from the standardGENTLEapproach for ISR to the complete
lowest order corrections. We estimate the real uncertaintyto be2%. However, given the experimental
uncertainty a theoretical uncertainty in this order is acceptable and does not seem to require the imple-
mentation of missing effects. Furthermore,ZZTOwhich is not yet a DPA calculation agrees rather well
with YFSZZ, roughly below the typical DPA accuracy of0.5%, and the latter features the realization of
the LPA for the NC02 process. The implementation of a DPA calculation, in more than one code, in
the NC02Z-pair cross-section will bring the corresponding accuracyat the level of0.5%, similar to the
CC03 case.

taking the average of the Born result with the one corrected via s-channel structure functions, whereSF(t, p2
tW ) > SF(s)

by +5% at 200 GeV and Born> SF(s) by +12%. Note, however, that this is not a real estimate of uncertainty but just a
pragmatic way of determining the effects of ISR.
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