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The depolarization of captured muons in the atomic cascade has
been given considerable attention 1). For muonic atoms with spinless nuclei,
the main source of depolarization is spin-orbit coupling, resulting in a loss
of about five-sixths of the initial muon polarization 2 . If the nucleus has

spin the hyperfine contact interaction will give additional depolarization in

3)

s orbits « The muon loses part of its polarization to an initially unpolar-
ized nucleus, similar to the Overhauser effect 4). There is an analogous phe-
nomenon in muonium 5).

If the target is initially polarized, the contact interaction can
"repolarize" the muons . The case for spin % nuclei is similar to muonium 5),
so we treat here the case of spin 1 nuclei in detail. We take the muon to be
in a 1s orbit and neglect the effects of the finite muon life-time znd of
possible conversion between the two hyperfine levels 7). Initially the den-
sity matrix p of both muons and nuclei is a direct product of density ma-

trices for spin % and spin 1

S > = D VvV X "'")
0= S5 08 =1 (1+28,3) 041+ 2o 43k37T(55
(1)
where indices 1 and 2 refer to muons and nuclei, respectively. The initial
muon and nuclear polarizations are EO and 30 and go is a symmetric,
traceless tensor describing the initial tensor polarization (of rank 2) of

the spin 1 nuclei. As usual
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When the contact interaction

-
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is switched on, the density matrix develops in time and can no longer be

factored. Recoupling §1 and §2 as well as §1 and %(§2§2) to give
symmetric, traceless tensors in the product space of §1 and §2 we obtain

a general expression for the density matrix
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i.e., one scalar, four vectors, three rank two tensors and one rank three

tensor, giving a total of 35 time-dependent polarization quantities. The

boundary conditions are :
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The various symmetric and traceless tensors of rank 1, 2 and 3 are cons-

tructed as follows 8

> o~ = Ve V) .
(w-v); = Eu-\/]: = U5 Vi

= ~q(2)

[u,\/J ) < %(E(ww umVnJ"? Ejmuumvut)
> 9(3)

[w injk = JB-(M{th+ WU Vik + Ui Vij)

- % (&J ((?"\y)g* S;k(b?'v)j'f“gk@";?[)

if V is traceless and symmetric.

The equations of motion for the polarization quantities follow

from the time-dependent Schrddinger equation for p 9)
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where P is any of the polarization quantities «c, g,...,%<3> in Eq. (2)

and T its associated spin tensor. The normalization Np follows from

P= NeTr(eT)

The 35 equations for the various DP's are easy to solve because the commu-
tator [ﬁ,Tj is a linear combination of tensors of the same rank as T

—>

itself since H 1is a scalar in the product space of §1 and Sye The

trace of a product of two-spin tensors, made from either §1 or from §2
or from both of them [és the nine tensors in (22] is always zero if their
ranks (in product space) are different. This can be verified for all cases
in this note, using standard trace theorems 10). Different tensors of the
same rank are also orthogonal ; the nine tensors in (2) are of course ortho-

gonal. For example

Tr{ G 3 TSI = .

since the last trace, involving only §2 operators of different rank,
vanishes 8). When we evaluate Tr(p[H,T]), the commutator will pick out

only terms with the same rank as T. But T itself will not survive since
T (TLH,TI) =0

trivially. There is then a "social hierarchy" in the equations of motion

(3) ; the time derivatives of tensor polarizations will only

for c,...,?
%(3)

couple to other tensors of the same rank. Therefore ¢ and are

constant since they have nothing to couple to.

We work out the commutators Eﬁ,f] and write them in terms of

the spin tensors in (2) as well as other tensors involving the rank two

- 5 o

tensor %(3131) and the rank three tensor %(3 (8282S2>. For the vector

polarizations we obtain
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which are easily solved subject to the boundary conditions (3)
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and b(t) is given by b(t)= bo(ao_ a(t))/2. There are similar expressions

— — \ . . : - — ) .
for c(t) and d(t). The last term in Eq. (3), aav’ is what we are lefs
-
with when we take the time-average of a(t>‘ This i1s the most relevant
quantity, physically, since a(t) will meke of the order of 105 oscillations

during the lifetime of the muon. We find

.S ) = - oL
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This gives the Overhauser effect for spin 1 nuclei. In the absence of any
initial nuclear polarization, the muons retain 11/27 of their polarization,
and the nuclei are polarized by 8/27 of the polarization the muons had when

they entered the 1s orbit.

The muon polarization can never exceed 100%. Take the muons %o
be 100% polarized initially in the =z direction, EO::E, and let the
nuclei be prepared in a pure state with magnetic quantum number +7i. The

initial nuclear density matrix is then :

P
f‘: o o
o o

e o ©

from which we obtain |see Eq. (IZ
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which gives 30=:E0/3. S0 when both muons and nuclei are in pure '"spin up"
states, Eq. (6) gives gavz=f, again 100% muon polarization.
The equations of motion for %, T and & are even simpler than
(4). We find : 2
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which are trivial to solve. The frequency of the oscillations are again

3w/2 and

N~
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So we obtain a tensor polarization (alignment) if the nuclei have initial
vector polarization even if they have no tensor polarization to start with,
provided the muons are polarized.

The corresponding results for pin 4 nuclei are

-y - ~ ~i
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and the polarization oscillations, similar to Eq. (5), have frequency w
and not 3w/2. Spin 4 nuclei are about 10% more effective for repolarizing

muons than spin 1 nuclei, since they transfer half their polarization.

One can generalize the results (5) and (6) to nuclei with any
spin I. There are never more than four vector polarizations, so one gets
a system of equations similar to (4), but with coefficients which are com-
plicated functions of I. The re-coupled (time-averaged) results for gene-

ral spin when go and b are parallel (or anti-parallel) can be obtained

by doing an incoherent average over the two hyperfine states

ca> = fN,cm)<a..|v)m)+Z_Ncn)<r..a o 1ER)

m-§ mz-F.
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where F =14 + and o, 1is a Pauli matrix. The magnetic sub-level popu-
lations N+(m) have been given in a previous note 6 » Rank two and higher

nuclear polarizations have been ignored. The result is :

Yo I
{ap= 3“(“"@_“\)‘)"’ "I'i';ji. (e)

which agrees with (6) for I=1 and with (7) for I=%4. For I=0 we get
no muon depolarization, of course. The result (8) was derived by Uberall

for bO::O 3>° The same procedure for b gives :

<">~ % (i;" ) t iro(‘ (ZIH\")

This checks with the constancy of 5+~21§ , which follows from the fact

that the total spin J= 84+ 8, commutes with H,., In the limit of infinite

nuclear polarization the muons retain one third of their original polariza-

\

tion and the nuclear polarization does not change., It is clear from Eq., (&)
that spin + nuclei will be the most effective for repolarizing the muons

with a polarized target.

Our results are of practical importance for muonic atoms with
light nuclei with spin, where the hyperfine conversion is absent or negli-
gible. Applications may be in several areas of physics : (1) Muon spin
relaxation (HSR) with hyperfine coupling. The initial nuclear polarigzation
could be adjusted to give a zero final muon polarization., (2) Parity-
violating effects in nuclear muon capture experiments such as the gamma-
neutrino correlation, neutron or photon asymmetry, etc. 1 .can be enhanced,
(3) The coupling of the nuclear polarization to the muon polarization can

11)

ossibly be used to detect neutral currents N
D

We have explicitly solved the equation of motion for the density

matrix for spin 1 and spin 4 particles interacting by a hyperfine contact
Hamiltonian. Tensor technigues reduced the equations for the 35 polarization

2)

text of muonium 5>) to, effectively, a set of four equations and a set of

quantities (sometimes referred as Wangsness-Bloch equations in the con-
three equations. The time-averaged solution gave the polarizations after
they have been recoupled by the contact interaction. The explicit time-
dependence of the muon polarization, Eq. (5), will be needed to calculate
the depolarization in higher s orbits with lifetimes of the order of the

oscillation period 0T,
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The dynamics treated here, in particular the regeneration of
muon polarization, are essential features in any muon capture experiment

with a polarized target.
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