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ABSTRACT

The instanton tunnelling amplitude induces a non-
perturbative violation of scale invariance which can be un-
derstood in terms of the anomaly in the trace of the stress
energy tensor. The scaling violation determined by the
trace anomaly is compared with the explicitly constructed

instanton amplitude in the one-loop approximation.

+) Work supported by the US Energy Research and Development
Administration.

#) Address after 15 April 197T.

Ref.TH.2300-CERN
2k March 1977



In quantum chromodynamics (QCD) because of the chiral anomaly the instanton
tunnelling amplitude induces a non-perturbative violation of the chiral U(1) sym-
metryl). The purpose of this note is to observe that because of the anomaly in
the trace of the stress energy tensore) the instanton also induces a non-perturba-
tive breaking of scale and conformal symmetry. The non-conservation of the dila-
tion charge is Jjust proportional to the gauge field action. In Euclidean space,

where the tunneling amplitude is computed, the gauge field action is greater than

or equal to the topologically determined quantity

% 6,67 2 d‘xﬁ/‘v@:"‘ = 3_2;_355_‘_1.1' )

ewae

o=

where g 1s the coupling constant, Gz\) =

GaOLB’ and q 1is the winding
number. Therefore all solutions with q # 0 induce non-perturbative breaking of

scale (and conformal) symmetry.

Unlike the chiral anomaly, the trace anomaly is not free of higher order per-
turbative corrections, since the theory cannot be regulated in a scale invariant
way. The lowest order trace anomaly occurs at the one-loop level -- the triangle,
square, and pentagon diagrams familiar from the chiral anomaly. For the instanton
with g = 1 we can compare the scale breaking computed from the lowest order trace
anomaly with 't Hooft's explicit construction3) of the one-loop quantum correc-
tions to the instanton tunnellingamplitude. The results agree. In particular, the
anomaly requires that the contribution of the non-zero eigenmodes be independent
of the coupling constant subtraction point U, as is verified by the explicit one-

loop calculation of Ref. 3).

The simple details for the one-loop approximation are presented below. The
note then concludes with two comments: on the breaking of conformal symmetry and
on the possible experimental significance of the non-perturbative breaking of scale

invariance.

The trace anomaly may be regarded as the scale invariance analogue of the more
familiar anomaly of chiral symmetry. The trace of the tress tensor is the diver-—
gence of the dilatation currenth), 6=6"=050" whose charge D = [ d°x D°
generates scale transformations, [D(t), ¢(x = —ﬁ,t):l = -i (dy + x°9)¢(x) (which
defines the scale dimension dq) of the field ¢). In the <6 JMJ\)> amplitude in
spinor electrodynemics the lowest order triangle diagram requires that the naive

2)

trace 0 = m-‘J-JIP be modified by addition of an "anomalous'" term
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Equation (3) is valid to any finite order in perturbation theory, but Eq. (2) is
5)

modified by radiative corrections, which have recently been computed’’ to all

orders in o in terms of functions defined by the renormalization group.

Here we are interested in the trace anomaly of QCD, which has also recently

been expressed6) to all orders in the renormalized coupling constant g:
6 = (I+X...)N(¢MR9’) +-49—N(G;',G’N ()
32. 7V a

We use the notation of Collins et al.: ‘ym(g) and B(g) are defined in the con-
text of the renormalization group, N denotes the normal product definition.

of the operators, and Gz\) is the normal gauge covariant field tensor. We will
use Eq. (4) in Green's functions with only gauge field or current external legs,

*
in which case the one-loop approximation to Eq. (4) is )
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where

= =-bq? + ... (6)
g 3

*#) In such Green's functions the factor Y in Eq. (4) only appears in two-loop
order. I thank John Ellis for dispelling my confusion on this point.
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To compare with Ref. 3) we choose SU(2) to be the gauge group, so
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where NF is the number of quark flavours.

The breaking of the dilatation charge is characterized by

AD = [d% Q/,D/'.‘: d% & (8)

We want to compute in the one-loop approximation the contribution to AD due to
the anomalous term in Eq. (5) in the presence of the gq = 1 instanton background
field. The leading order anomaly in Eq. (5) is already a one-loop effect, so it

\Y . . . .
suffices to evaluate <G:‘. G in tree approximation. The amplitude in

au\J> instanton 7)
this approximation is just the classical instanton field ' and we compute
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Here ST denotes the classical solution with g = 1, for which the inequality
of Eq. (1) is saturated. The factor "i" in Eq. (9) is due to the continuation

of Eq. (1) back to Minkowski space.

Now we compare this result with the explicit one-loop calculation of Ref. 3).
To this order the contribution to the g = 1 tunnelling amplitude from the instan-
tons within Az of the space-time point 2z and with size parameter within Ap

3)

of size is
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We want to compute the change in D in such a transition due to the anomalous con-
tribution to ©. Under a dilatation p, Ap, &and Az are rescaled, while u and

m are held fixed, so the generator is

D= -i(p4 A/M,) 2 )

with the phase fixed by the quantum equal time commutation relation [D,qnj =
= -i (d¢ + x*3)d.

However, we want to compute only the contribution to AD from the anomaly,
6 - ﬁzmxp in Eq. (5), so we subtract the scaling violation generated by the factor
N

m ¥ in Eq. (10). For our purpose the relevant differential operator is then

D w2

= -[,2 2. 2 2
anomaly " (09(0 +At°a(4f)+ Aia(m) 9m (12)

In Eq. (9) we computed the violation of Danomaly in the presence of the in-
stanton background field. That is, we assumed the instanton to be present with
robability one. We now compute the analogous quantity by applyi
b y D g q 1ty by applying Danomaly’
Eq. (12), to the transition amplitude and normalizing to the value of the ampli-

tude. So we have

{BPunity %= Devomaty [& (Bl 0V

instanton (13)
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Danoma.ly vanishes when applied to the factor g m FoF > Ap(Az) ", which is the

contribution of the zero eigenmodes. The entire contribution to Eg. (13) is from

the exponent in Eq. (10), which is due to the non-zero eigenmodes. We have
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in agreement with Eq. (9). Turning the argument around we can say that the ano-
maly requires the one quantum loop correction of the non-zero eigenmodes to have
just that 1  dependence which cancels the leading (one loop) U dependence of

the classical action, exp [—81T2/g2(u)].

1f we attempt to compute <ADa.nomaly>insta.n‘ton to all orders in quantum fluc-
tuations, we encounter a second way in which the trace anomaly differs from the
chiral snomaly. To compute the breaking of the chiral U(1l) charge, AQs =
L ) . : Y
in the presence of the instanton we must compute Jd'x(G G . .
fatx BHJS’ D P < a auv> instanton

Because this volume integral can be written as an integral over the surface at in-

T)

finity where the integrand is determined by the boundary conditions'’, it is given
*®

to all orders in quantum loops by the classical value of Eq. (1) ). This fact,
together with the Adler-Bardeen theorem on the absence of higher order corrections
for the chiral anomaly itself, means that <AQ5,a.nomaly>instan‘ton is equal to
2Npg  to all orders in the loop expansion.

For the trace anomaly, not only are there higher order corrections given by

. .. . I v

the factor B/2g, but in addition the integral Jfd'x <Gau\) Ga >insta.nt9n

the gauge field action which is also corrected by gquantum fluctuations |which must

is Jjust

be positive in Euclidean space because of Eq. (l)].

A second difference: 1in QCD the chiral U(1) symmetry is broken (as far as
we know) only by the instanton, while scale symmetry is broken by the well—known
perturbative effects and in addition by the non-perturbative effects due to the

instanton.
I conclude with two comments:

i) The trace anomaly is also responsible for an anomaly in the divergence of

the conformal currentB)s
9/, Ka/’(x) - sz 2 (") (15)

where for QCD we substitute Eq. (4) for ©. The instanton therefore non-perturba-

tively breaks the conformal charge, by

AK® = [d% g K™

#) I am grateful to David Olive for an explanation of this point.
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ii) The instanton suggests an interesting possible solution of the chiral U(1)
problem in QCDl). But lacking even an order of magnitude estimate of its effect
on the pseudoscalar mass matrix, it would be premature to claim that the problem
is already solved. In general, there is no contact with experiment: what is
calculable is exponentially small. If the instanton really does solve the chiral
U(1l) problem, then it must have a large though presently incalculable effect on
the pseudoscalar masses. Then, because of the trace anomaly, it would also have
a large effect on the scalar meson masses. The instanton should also induce non-
perturbative scaling violations in deep-inelastic phenomena. Whether these are
big enough to observe will depend on whether in the amplitude under consideration

the integration over the instanton size p has important contributions from sizes

much larger or smaller than the short distance scale being probed.
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