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Abstract

We calculate the two-loop QCD anomalous dimension matrix (ADM) (5™))xpg in the NDR~
MS scheme for all the flavour-changing four-quark dimension-six operators that are relevant in
both the Standard Model and its extensions. Both current—current and penguin diagrams are
included. Some of our NDR-MS results for AF = 1 operators overlap with the previous calcu-
lations, but several others have never been published before. In the case of AF = 2 operators,
our results are compatible with the ones obtained by Ciuchini et al. in the Regularization-
Independent renormalization scheme, but differ from their NDR-MS results. In order to ex-
plain the difference, we calculate the ADM of AF = 2 operators again, extracting it from the
ADM of AF = 1 operators.



1 Introduction

Renormalization group short-distance QCD effects play an important role in the phenomenology
of non-leptonic weak transitions of K-, D- and B-mesons. An essential ingredient in any
renormalization group analysis is the anomalous dimension matrix (ADM), which describes the
mixing of the relevant local four-quark operators under renormalization [1, 2].

The operators considered in the present paper have the form
SR RGN A R SR CR S A (1.1)

where «, (8 are colour indices and F'j" g are generic Dirac matrices given explicitly below. The
subscripts ¢ in ¥; are flavour indices. In the case of FCNC transitions with AF = 2, such as

neutral meson mixing, one has
\Ijl - \:[13, \:[12 == \:[14. (12)

Known examples are the operators (3d)y_(5d)y_4 and (bd)y_(bd)y_4 relevant in the Stan-
dard Model (SM) to K°-K° and BY-BY mixing, respectively.

Four-quark operators that occur in the SM calculations of flavour-changing processes do not
form a complete set of all the dimension-six four-quark operators. Other operators need to be
considered in many extensions of the SM, e.g. in the Supersymmetric Standard Model (SSM)
(see e.g. ref. [3]). For instance, the SSM and SM predictions for K°~K° and B%-BY mixing
can have similar precision only if the two-loop ADM for all the AF = 2 operators is known.

The main purpose of the present paper is a calculation of the two-loop ADM for all the
dimension-six flavour-changing four-quark operators in the NDR—MS scheme (MS scheme with
fully anticommuting ~s). Our main findings are the NDR-MS anomalous dimensions of the

operators with Dirac structures (cf. eq. (1.1)):
Mol =0+%)®(0+y)  and  TEOE = [0u(1£5)] @ 0" (1+5). (1.3)

For these operators, our two-loop results differ from the NDR-MS ones of Ciuchini et al. [4],

but are compatible with their RI-scheme ADM. For all the other operators, no new calculation
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is actually necessary — all the two-loop results can be extracted from the existing Standard
Model ones.

Our paper is organized as follows. In section 2, we perform a direct calculation of the NDR—
MS-scheme ADM of AF = 2 operators. This is a relatively straightforward computation, since
all the methods are already known from similar SM calculations (see e.g. refs. [5]-[8]). The
only novelty here is the introduction of evanescent operators that vanish by the Fierz identities.

In section 3, we compute the NDR-MS ADM for such AF = 1 operators, to which only the
current—current diagrams are relevant. Some of the AF = 1 results have never been published
before. The ones that are not new agree with the old SM calculations. The subject of section 4
are AF = 1 operators containing one quark—antiquark pair of the same flavour. We identify
the operators to which the so-called penguin diagrams are relevant, and give the corresponding
anomalous dimensions.

In section 5, we derive the matrix A7 necessary for transforming the Wilson coefficients from
the NDR-MS to the RI scheme (originally called the MOM scheme) that is more useful for
non-perturbative calculations of hadronic matrix elements [9].

Section 6 is devoted to performing a consistency check of our AF =1 and AF = 2 results.
The current—current ADM of AF = 1 operators is transformed there to such an operator basis,
in which the AF = 2 results can be easily read off. This calculation serves also as a preparation
for the comparison with Ciuchini et al. [4]. Comparison with this article and other existing
literature is the subject of section 7. We conclude in section 8.

In appendix A, we list the evanescent operators relevant to the AF = 2 calculation. In
appendix B, an analogous list for the AF" = 1 case is presented. Appendix C contains additional
evanescent operators that become important only when one wants to derive the AF = 2 results
from the AF = 1 ones, as in section 6. Appendix D is devoted to recalling and generalizing
the notion of “Greek projections”. Finally, appendix E contains a list of separate contributions
from different diagrams to the one- and two-loop ADMs for AF = 1 operators with Dirac

structures (1.3).



2 Direct calculation of the ADM in the AF = 2 case

For definiteness, we shall consider here operators responsible for the K°-K° mixing. There are
8 such operators of dimension 6. They can be split into 5 separate sectors, according to the
chirality of the quark fields they contain. The operators belonging to the first three sectors
(VLL, LR and SLL) read

QM = (8%, Prd*) (5% PLd’),

QY = (54, Prd®) (574" Prd’),

LR — (5%Prd®)(5° Prd®),

Q™ = (5%PLd*)(5°Ppd®),

SLL (3%, PLd®)(5°0" PLdP), (2.1)

where 0., = 3[v4, 7] and P g = 3(1 F 75). The operators belonging to the two remaining
sectors (VRR and SRR) are obtained from QY™ and Q3™ by interchanging P, and Pg. Since
QCD preserves chirality, there is no mixing between different sectors. Moreover, the ADMs in
the VRR and SRR sectors are the same as in the VLL and SLL sectors, respectively. In the
following, we shall consider only the VLL, LR and SLL sectors.

In dimensional regularization, the four-quark operators from eq. (2.1) mix at one loop into the
evanescent operators listed in appendix A. Specifying these evanescent operators is necessary
to make precise the definition of the NDR-MS scheme in the effective theory [5, 8, 10, 11]. An
important novelty in the present case (when compared to AF' = 1 calculations) is the necessity
of introducing evanescent operators that vanish in 4 dimensions by the Fierz identities. The
Fierz identities cannot be analytically continued to D dimensions. Therefore, they have to be

treated in dimensional regularization in the same manner as the identity

VYo Yo = GuVp + GupVu = Gup Vv + 1€apupY Vs, (2.2)

i.e. appropriate evanescent operators have to be introduced.
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As an example, consider the operators Q" and Q3“*. When these operators are inserted

into one- and two-loop diagrams, the operators
Qi = (5°Pd®) (P PLd®), (2.3)

B = (5%0,,Prd®) (5% Ppd®) (2.4)

are generated. In 4 dimensions these operators can be expressed through Q™" and Q5" by

using the Fierz identities

1 1
(Pr)ij(PL)m = §(PL)z‘z(PL)kzj—g(UWPL)z‘l(UWPL)kj,
1
(0w Pr)ij(c" P = —6(PL)z‘z(PL)kzj—Q(UuuPL)z‘z(UWPL)kja (2.5)
which give
ASLL 1 SLL 1 SLL
A O (26)
~§LL D::4 6QSLL+ QSLL' (27)

These relations can be used in the calculation of one-loop ADM. In the case of two-loop calcula-
tions, in the NDR-MS scheme, where Dirac algebra has to be performed in D # 4 dimensions,

these relations have to be generalized to

oS — = QSLL 4z QSLL ESLL (2.8)

1= (I :
WL — 6 QSLL QSLL B (2.9)

Here, ESLY and E5™ are the evanescent operators that vanish in 4 dimensions by Fierz identi-

ties. They are simply defined by (2.8) and (2.9) and are given in appendix A.
The effective Lagrangian can be written separately for each sector. It takes the form

_ GEMy,

™ —LV (V) ZQZC )[Qi; + (counterterms);], (2.10)

Lepp =

where Z, is the quark wave-function renormalization constant.
The coefficients C;(u) satisfy the Renormalization Group Equation (RGE)

e e @2.11)



governed by the ADM 4(u) that has the following perturbative expansion:

A _ O‘S(,U)

2
i) = 250 4 G0y o) (2.12)

(4m)”
The ADM in the MS or MS scheme is found from one- and two-loop counterterms in the

effective theory, according to the following relations (equivalent to eqs. (4.26)—(4.37) of ref. [5]):

50 = 941, (2.13)

50 = 4a" — 2be. (2.14)

12 and b in the above equations parametrize the MS-scheme counterterms

in eq. (2.10) (for D =4 — 2¢)

The matrices a'', a

Qs ozg 1 1
(counterterms); = e %:a};iQk + zk:bzkEk] + i) zk: <€—2@?13 + ;‘%113) Qr
+  (two-loop evanescent counterterms) + O(a?). (2.15)

The matrix ¢ is recovered from one-loop matrix elements of the evanescent operators. Let
us denote by (Ej)100p the one-loop K 0_ K0 amplitude with an insertion of some evanescent
operator Ej. The pole part of such an amplitude is proportional to some linear combination of
tree-level matrix elements of evanescent operators. The remaining part in the limit D — 4 can
be expressed by tree-level matrix elements of the physical operators ();. The finite coefficients

of these matrix elements define the matrix ¢ as follows:
1
<Ek:>1100p - - E deg <Ej>tree + Z 6k:j<Fj>tree - Z Cki<Qi>tree + 0(5) (216)
J J i

Here, Fj stand for such evanescent operators that are not necessary as counterterms for the
one-loop Green functions with insertions of the physical operators ;. The matrices ¢ and a'?
depend on the structure of Fj, but 4 does not.

The matrices 4 = 2al', b and ¢ in each sector are found from the one-loop ds — sd
diagrams presented in fig. 1 with insertions of the physical operators ();, as well as the evanescent
operators Fj. We calculate only the “annihilation-type” diagrams, i.e. we drop all the diagrams

where fermion lines connect the incoming and outgoing particles. Dropping such diagrams
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consistently at the tree level, at one loop and (later) at two loops does not alter the final results
for the renormalization constants.
All the one- and two-loop diagrams considered in the present article are calculated using two

different methods. In both of them, a covariant gauge-fixing term

Lo = (0"G)(0"GY) (2.17)

S

2
is used, and the physical masses are set to zero. In the first method, the external quarks are
assumed to have momentum +p. In the second method, the external momenta are set to zero,
but a common mass parameter is introduced in all the propagator denominators as IR regulator
[12]. The two methods give the same results for the MS renormalization constants. The ADMs
calculated from these renormalization constants with the help of egs. (2.13) and (2.14) are
independent of the gauge-fixing parameter \.

We begin with presenting the ADM in the SLL sector, because in this very sector our results

SLL and bSLL

are going to differ (at two loops) from those of ref. [4]. The matrices 4(* are found

to be the following:

~(0)SLL  _ —6N +6+ 2T (2.18)
gl o448 L :
24 — 48 2N +6— 2
5 0O ¢+ 0 0
PP = ( 2 ) (2.19)
8 -8 gk }

where N stands for the number of colours.
In order to find the matrix a'?, we need to calculate two-loop diagrams obtained from the
ones in fig. 1 by including one-loop corrections on the gluon lines or adding another gluon that

couples to the open quark lines. Of course, one-loop diagrams with counterterm insertions
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need to be included, too. All the two-loop diagrams and the corresponding colour factors are
the same as in fig. 2 and table 2 of ref. [5]. However, in the present article, we also consider
additional Dirac structures (1.3) in the four-quark vertices.

Inserting the calculated matrix a'? into eq. (2.14), we obtain the two-loop ADM. Its entries

are found to be the following:

W = RN N I - B S BN -3 - R,

W = N =g s = e 220
GDSLL. st 04208 80 4 186y 116 p .
A = MBN2 o 188 My 2L Np Gpy 2

where f stands for the number of active flavours. The above equation is one of the main results
of the present paper.
Proceeding analogously in the VLL sector, we reproduce the well-known results for the one-

and two-loop anomalous dimensions of the operator QY™ [13]:

(OVLL _ @ _ 6

! B v (2.21)
(OVLL _ 197\ _ 224 39 57 4 2¢ 2 '
v = 6 3 TN 2NT T3 3N/

The matrix b in the VLL sector reads
M= (-5 —5 1) (2.22)

Finally, our results for the LR sector read

~(O)LR % 12 2.23
T T Lo —en+s ) 22
N
137 15 22 200 6 44
FIR - _ < 5 + N 3N 203 ~rg 7475\[ Ny ’ ) : (2.24)
ANty —2f —S VT e H N5y
. 0 -5 -~ 2 0 0
JLR ( IN 2 L ) . (2.25)
00 0 0 —5 1

As mentioned in the introduction, all the comparisons with existing literature are relegated to

section 7.



3 Current—current contributions to the ADM
of AF =1 operators

In the present section, we evaluate contributions from the current—current diagrams to the
ADM of AF = 1 operators. For this purpose, we choose the operators in such a manner that
all the four flavours they contain are different: 5, d, %, ¢. In such a case, the only possible
diagrams are the current—current ones.

Twenty linearly independent operators can be built out of four different quark fields. They
can be split into 8 separate sectors, between which there is no mixing. The operators belonging

to the first four sectors (VLL, VLR, SLR and SLL) read

QMY = (" Pud’) (@Y Prc) = Qui.

QQ/LL = (gaﬁ)/uPLda)(ﬂﬁ’yuPLcﬁﬁ = QVLVL7

QYMR = (5%, PLd’) (@ Pre®) = Qvvi,

5 = (%9, PLd®) (@Y Prc”) = Quva,

?LR = (EapLdﬁ)(’L_LﬁPRCa) = QLR,

gLR = (EO‘PLdO‘)(a'@PRCﬁ) = QLR;

?LL = (EapLdﬁ)(’L_LﬁPLCQ) = QLL,

s = (5°PLd®)(@’Ppc’) = Qui,

§LL = (Eaauprdﬁ)(ﬂﬁO'/wPLCa) = QTLTL,
SLL (

4 = gaO'NVPLda)(’aﬁO'IWPLCﬁ) = QTLTL, (31)

where on the r.h.s. we have shown the notation of ref. [4].

The operators belonging to the four remaining sectors (VRR, VRL, SRL and SRR) are
obtained from the above by interchanging P, and Pg. Obviously, it is sufficient to calculate
the ADMs only for the VLL, VLR, SLR and SLL sectors. The “mirror” operators in the VRR,
VRL, SRL and SRR sectors will have exactly the same properties under QCD renormalization.
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The evanescent operators for the VLL, VLR, SLR and SLL sectors are listed in appendix B.
Calculation of the renormalization constants and the ADMs proceeds along the same lines as
in the previous section. The relevant divergences in one- and two-loop diagrams in the cases of
VLL, VLR and SLR sectors are given in refs. [5] and [6]. For completeness we give in appendix
E the corresponding results for the SLL sector. These have not been published so far in the
NDR-MS scheme.

Our final results for the AF =1 ADMs are as follows:

6
S(OVLL < N 6 ) (32)
8 = 6 6 | :
N
22 57 2 19 39 2
HOOVLL <_?_W_Wf —sN+5+35f ) (33)
19 39 2 22 57 2 ) .
—s Nty t3 ¥ oo
—6N+2 0
N
203 n12 479 15 10 22 7 18
SOVIR (‘TN +5%5 Tt NS5y TN - +4f) (35)
100 3 22 137 22 ) .
— Nty +ES T an
6
~(0)SLR  _ N —6 (3 6)
! 0 —6N+& ) '
37 22 100 3 22
4SLR - _ <T+W_3_N SN+x+5/f ) (3.7)
o 71 _ 203 479 10 ) .
N - B 4 4f N2+—+2N2+ INf—
6 N 1 1
b oever i
~(0)SLL —ON + -
i L oUN 24 2 4N 6 : (3.8)
48 2
1)SLL 2
P = s dor_gnp o
1)SLL
W = BN+ R R
(SLL 107 pr2 _ 7L 4 1 f
13 = N mw-w Nt
1)SLL
YW = N B L
W = —26N + 1
WS = 22 38 0T L d0Np
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1)SLL
y = BNy 2z lf

18
e P’
:%)SLL _ G_Z)GNQ_%_%_ng_FNG

W = BN -

v = N -+ Sm H ENf RS,

7 = BN -2,

%(J)SLL _ 488N 4 416 416 176f’

,yg)SLL _ _7;6 320 + é?}\f;

W = BN - R+,

%ﬁ)SLL _ 343N2 + 28 + W . —Nf + ng (3.9)

Equation (3.9) is one of the main results of this work.

The careful reader has already noticed that the following equalities hold up to o(a?):

T = T = TR = R, 510
TR =R, R =R, TR =R

At one loop, these equalities are a consequence of the Fierz identities
(VuPr)ig(VW P = —(uPr)a(¥ Pr)kj, (3.11)
(YuPr)ij(V'Pr) = 2(Pr)a(Pr)kj, (3.12)

as well as the flavour- and chirality-blind character of QCD interactions. Since the Fierz iden-
tities are satisfied in four spacetime dimensions only, the relations (3.10) could be potentially
broken at two loops in the NDR-MS scheme. Surprisingly, they are not.!

On the contrary, analogous relations are broken at two loops in the SLL sector. Because

0)SLL

of the Fierz relations (2.5), the one-loop matrix 4! must satisfy the following identity (cf.

egs. (9) and (10) of ref. [4]):

AOSLL _ £4/(0)SLL £ (3.13)

'In section 4, where the penguin diagrams are considered, no invariance under Fierz rearrangement is observed
at two loops for the operators with VLL Dirac structure. A detailed discussion of this fact can be found in
ref. [6].
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with

0 —3 0 %
Fo| 2 05 0 3.14
f‘oeso% (3:.14)
6 0 %0

No similar relation holds for M5 in the NDR-MS scheme. As it has already been said, this
is not surprising, because the Fierz identities are not true in D # 4 dimensions.

It is unclear to us whether the symmetries (3.10) for the VLL, VLR and SLR sectors are
preserved at two loops in the NDR-MS scheme only by coincidence, or if there is some reason
beyond this. As we shall see in section 6, this question is related to the properties of one-loop

matrix elements of certain evanescent operators.

4 Penguin contributions to the ADM
of AF =1 operators

In the present section, we shall describe additional contributions to the ADM of AF = 1
operators that are due to penguin diagrams. Such contributions may arise only when the
operators contain one quark-antiquark pair of the same flavour.

For definiteness, let us consider AS = 1 operators. In the SM analysis of ref. [6], 10 such

operators were considered?

Q1 = (Ea%PLUﬁ)(ﬂ’gVMPLda)a
Qy = (5*v.Pru®)(@’*Prd’),

Qs = (5"v,Prd) Y (¢°+"Prd),

q

Qi = (5°7.Pd”) > (4" Prg®),

q

Qs = (5", Prd™) Y (d°v" Prd”),

q

Qs = (5*7,PLd”) > (4" Prq®),

q

20ur operators here differ from the ones in ref. [6] by a global normalization factor of 4. Of course, it does
not affect their ADM. The factor of 4 can be absorbed into the global normalization factor of the effective
Lagrangian, as the first ratio on the r.h.s. of eq. (2.10). In this case, the Wilson coefficients of our operators
are exactly the same as those in ref. [6].
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3 s o =
Q7 = 5(3 YuPrd )Zeq(qﬂ'VNPRqﬁ)v

q
3 e p @
Qs = 5(5 1. Prd®) > eq(°7" Prq®),
q

3

Qy = i(ga%LPLda) Z eq(q_ﬁ'VuPLqﬁ)v
q
3 p «
Qo = Q(ga%PLdﬁ)Z@q(qﬂV”PLq ). (4.1)

q

Their one- and two-loop ADMs, including current—current and penguin diagrams, can be found
in appendices A and B of ref. [6]. They were also obtained in ref. [7]. The same results hold for
the mirror copies of the SM operators, i.e. for the operators obtained from the ones in eq. (4.1)
by P < Pg interchange.

Beyond SM, new linearly independent operators appear. Their Dirac structures are as in
eq. (3.1). Our aim is to find a minimal set of linearly independent new operators. In the
process of identifying these operators, we shall use four-dimensional Dirac algebra, including
the Fierz relations (2.5), (3.11) and (3.12). It turns out that only 3 additional operators (and
their mirror copies) undergo mixing via penguin diagrams into other four-quark operators in

eq. (4.1). These are

Qu = (5°9.PLd) [(d°yPLd’) + (5°y"Ps”)]
Qu = (5*7.Prd’) |(d°"Prd®) + (5°4" Prs®)] ,

Qs = (8%, Prd) {(Jﬁ’y“PRdﬁ) + (Eﬁ”y“PRsﬁ)} ) (4.2)

The remaining elements of the operator basis can be chosen in such a manner that massless
penguin diagrams with their insertions vanish. The first three of the remaining operators have
the structure of @1, ..., @13, but with a relative minus sign between the two terms. The next
two have the structure of Q)5 and (Qg, but the sum over flavour-conserving currents is replaced by
a difference between the analogous u-quark and c-quark currents. Their mirror copies have to
be included, as well. Further operators have the SLL and SRR Dirac structures as in eq. (1.3),

or they have the form

(5 Pr.rd”)(q° Pr,Lq®), (4.3)
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(5 Pprd*) (7" Pr,Lq”) (4.4)

where ¢ has flavour different from s and d. It is straightforward to convince oneself that we
have not missed any linearly independent AS = 1 operator in the above considerations.
Massless penguin diagrams with insertions of the operators (1.3), (4.3) and (4.4) vanish,

because
Tr(SeaaPr.r) =0 and Pr rSoddPr.r = 0, (4.5)

where Syqq is a product of an odd number of Dirac y-matrices. For dimensional reasons, only
massless penguin diagrams can cause mixing into other four-quark operators. This means that
all the AS = 1 operators, except for )1, ..., Q13 and their mirror copies, mix only due to
current—current diagrams, i.e. their ADMs are identical to the ones we have already calculated
in sections 2 and 3.

At the two-loop level, a complication arises because generally the Fierz relations could be
broken in D # 4 dimensions. Consequently, our use of these relations in the identification of
linearly independent operators could be put in question. However, as we have already discussed
in section 2 and will elaborate in section 5, this complication can be avoided by introducing
appropriate evanescent operators that vanish in four dimensions by Fierz identities. This allows
us to restrict the basis of new physical operators (undergoing penguin mixing) to the one in
eq. (4.2), even at the two-loop level.

The introduction of evanescent operators that vanish in four dimensions by Fierz identities
turns out to have no effect on the two-loop ADM in the case of the operators with VLR and
SLR structures, because the Fierz identity (3.12) remains valid at two loops in the NDR-MS
scheme, even if the penguin insertions are considered [6]. On the other hand, as pointed out
in ref. [6], the Fierz identity (3.11) is broken at two loops in the NDR-MS scheme through
penguin diagrams, although it remains valid for current—current diagrams. As a result, the

mixing of the operator

Q= (3, PLd’) (A" Ppd®) + (579" Ps™)] (4.6)
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with the operators in eq. (4.1), through penguin diagrams, differs from the one of Q)1; at the
two-loop level. This can be easily verified by using the results of ref. [6]. As Q}; = @11 in
D = 4 dimensions due to the Fierz identity (3.11), @)}, was not included in the basis (4.2). By
working with )1; and the evanescent operator @), — Q11, the explicit appearance of ()}, can
be avoided at any number of loops, so that the basis (4.2) remains unchanged.

The above discussion implies that the only additional ADMs we need to find in the present

section are:
e The 3x3 matrix 9., describing the mixing of @11, ..., Q13 among themselves.

e The 3x4 matrix 9, describing the mixing of Q11, ..., Qi3 into @3, ..., Q¢ via penguin
diagrams. (Only @3, ..., Qg are generated by massless QCD penguin diagrams with

four-quark operator insertions.)

The matrix 4. is given by current—current diagrams only. It takes the form
VLL
. TaF=2 0
/YCC - ( ~VLR ) (4‘7)
0 Tar=1

with yXE, and 45}, taken from egs. (2.21), (3.2) and (3.3).

aS A P . . .
The matrix 4, = %()O) + = 1()1) + ... that originates from penguin diagrams can be easily
T

extracted from sections 3.2 and 5.3 of ref. [6]. We find

PAV;(;O) = (%7 gao)T X (_%7 17 _%7 1) ) (48)
6N—%_%+2%\?2 _%_2?51)\?2 _6N+§1_](\]f
&(1)T _ %N - % - 24%(\][ _%N + 2%(\)7 _% ' (4.9)
’ SN B o W ova g
BN-2+m BN-& - Z

The above discussion changes very little in the case of AF = 1 operators, in which F is the
up-type flavour. Similarly to the AS = 1 case, all the contributions from penguin diagrams

can be easily extracted from ref. [6].
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5 Transformation of the Wilson coefficients
to the RI scheme

The ADMs calculated in the present work are given in the NDR-MS scheme that is most
convenient for perturbative calculations. However, after the Wilson coefficients are evolved
with the help of RGE (2.11) down to a low energy scale, it might be necessary to transform
them to another scheme that is more appropriate for non-perturbative calculations of hadronic
matrix elements [9]. One such scheme is the so-called Regularization-Independent (RI) scheme
(originally called the MOM scheme) used in ref. [4]. Below, we shall give relations between the
NDR-MS-renormalized and RI-renormalized Wilson coefficients of all the operators considered
in sections 2 and 3.
For completeness, we begin with the definition of the RI scheme. For the massless quark
propagator, the renormalization condition can be written as
i lvpaipps(p)ﬁl =t (5.1)
pP=—p
where p is the subtraction scale. A simple one-loop calculation is necessary to verify that the

renormalized inverse propagator in the RI scheme reads

2

S(p)pt = —ip [1 - %CF)\ (% —1In ;—2)] + 0(a?), (5.2)

N2—1
2N

where Cr = and A is the gauge-fixing parameter (cf. eq. (2.17)). In dimensional regular-

ization, the corresponding quark wave-function renormalization constant reads
RI Qg 1 1
Zy =1—=—CpA |~ —y+In(dnr)+ ), (5.3)
47 € 2

provided the subtraction scale y is identified with the standard MS renormalization scale.
Conditions similar to eq. (5.1) are imposed on renormalized matrix elements of the operators
(2.1) and (3.1) among four external quarks with the same momentum p. The quarks are assumed

to be massless here. For the AF = 2 operators, such matrix elements have the following form

QY™ = AV (QY™)iee + BYE (%) 'y ((5%7,PrLd®) (577" Prd®)) ree,
@Y = AT Qe + BT (0% PPy ((5°v,PLd®) (57" Prd”))ree
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(@)

(o

(Q53")x

A D") (QF ) ree + B (0%) 0'py ((8%0,,pPrd®) (570" Prd®)) ree,
A (D) (QF ) iree + BH(P?) Py (57, Prd®)(5°7" Prd®))iree

AR (1) (Q5 M + Bag' (%) PP ((5%0,,p PLd®) (570" Prd”)) e,
AP 5) (@7 e + AT

< L>tree:
ASLL( 2) <QSLL>tree+ASLL( 2) < SLL>

tree-

(5.4)

The formfactors B;;(p?) originate from UV-finite parts of Feynman diagrams and are scheme-

independent. Note that in all the matrix elements multiplied by B;;(p?), only colour-singlet

quark currents occur. Colour-octet currents are removed from these terms with the help of the

following Fierz identities (which are independent from the ones in egs. (2.5), (3.11) and (3.12)):

(04 PL)ij (0" Pr)w = 2(PPr)a(PPr)k; —

(PPL)i;(PPL) = (PPL)u(PPL)kj — %p2(7uPL)il(7uPL)kju

1 1
(PPL)ij(PPR) = §pupu(0upPR)il(0'yppL)kj + §p2(PR)il(pL)kj:

1
§p2(7;LPR)z‘z(V“PL)kj

No B;; formfactors occur in the SLL sector thanks to the four-dimensional identity

1

pupu(aupPL)ij(UVpPL)kl = _p2(0'/wPL>ij(0'/wPL)kl-

4

The RI renormalization condition reads

Ay (=) — wp*Bij(—p?) = by,

1
4

w =
{0

for BYLL, BUR and BLE,

otherwise.

The renormalization condition (5.9) can be equivalently written as

AGTeetve (p? = —pi?) = 6y,

with A;?]ffe“i"e obtained from egs. (5.4) by making the following ad hoc replacements

(FPL) © (FPrr) — ~p*(uPL) ® (7" Pur).

4

pupll(o'upPL,R> & (O'VpPRJJ) — 0.
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In the case of AF = 1 operators, the general structure of one-loop matrix elements is similar
to that in eq. (5.4), but the number of formfactors is larger, because operators with colour-octet

currents are now linearly independent. The matrix elements can be written as

(Qi)n = AT (12 (Q )y, + N, (5.13)

where N; vanish under the replacements (5.12). The RI renormalization condition then has the
same form as in eq. (5.11).
In each of the sectors, the RI-renormalized Wilson coefficients can be obtained from the

NDR-MS-renormalized ones with the help of the following relation

0G0 = (1= S ik y0) €0 + 0 (), (5.14)

where

[Arsis_rr()];; = AR ") = AP )] (5.15)
The above relations can be easily derived from the fact that the renormalized matrix element

of the whole effective Hamiltonian is scheme-independent, i.e.

CH () (@, )™ = CMS ()@, )™ (5.16)

Again, the RI subtraction scale and the standard MS renormalization scale have been tacitly
identified. The external states must be the same in eq. (5.16). Consequently, the RI-scheme
renormalization constant (5.3) must be used for external quark lines in A%E(pQ) that enters
into eq. (5.15).

The dependence on p* and the explicit dependence on p cancels out in Ay 5 (5.15).
However, one should not forget that this matrix depends on the gauge-fixing parameter A that
is, in turn, pu-dependent.

Once the RI renormalization conditions have been specified, finding the explicit form of
Afys_ gy 1s only a matter of a straightforward one-loop computation. Our results for the

AF = 2 operators are as follows:

VLL - 7 121n2 3 3 Alno
Ayl = T—%—12In24+ 12824 \ (3 3% — 424 42),
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%+21Nn2+/\<ﬁ+2§32) 4+4In24+A(1+4mn2)
~1+In2-A(3-n2) —4N 42 42023 (3 L 2k2)

5 2In2 1 1 3N 2In2
AN+ T+ 5 —4ln2+ 22 4\ (L4 — 20 4 282)
5 13 2In2
TN s T )
In

51n2 5 _ 1 _ 2 In2
6N +)‘(24 6N 5 T 6N
8

41232249002 (24§ +16In2 -

2
N )

7 5 _ 28In2 | 26In2 N , 7 5 _ 8ln2 , 10In2
3 3N 3 T 3N +)\(2+6 6N 3+3N)‘

In the AF =1 case, we find

~VLL
AL Ry

— L4122 (2 i) 71212+ A (- 4n2)
) )

7T—12In2+ X (3 -4In2) —F 41202 \(Z - 42

N 2N N

4
CAN 222\ 2m2) 9 9gnd 4 A(1-212) )

2 2N N
_2—21n2—/\<%—}-21n2) %erTwJ”\(ﬁerNng)

2 | 2In2 1, 2In2
N TN +/\<W+ N )
2—2In2+ A (1—-2In2)

—2-2mI2 -\ (}+2mn2)

3N 5 21n2 1 21n2
— 4222 (G 4 22y

~I—2m2-\(+2m2),

N 13 51n2 N 1 In2
5 "oy T N +A(§—m+m)a
7 _ 5In2 1 _ 2

12 6 +)‘(24 6)’

—1-2In2+ A (1-2In2),

5 | 2In2 3N 1 2In2
AN (3 22,
1_ In2
6 6 )

_ 13 5m2 (.1 _ In2
2N T 6N )\(6N 6N)’

12 401n 2 8 81ln2
AN — 124 402 4 3 (6N — & 4 Sh2)

13 5In2
12~ tA

8 —40In2+ A (2—-8In2),

5N 5 261n2 5 101n2
A A (Vg - ),
25 261n2 11 10In2
Tome (-1,

12— 40In2+ A (8 —8In2),
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SLL _ 12 , 402 (8 _ 82
[ATWHRJ 1o N TN A (N ) ,

N
SLL _ 5 26In2 1 10In2
[ATM_S—»RI} 5 3 3 T A (3 3 ) )
SLL _ 5 | 262 N 5 , 10ln2
[ATWHRJ u sv T oan T A ( 2 "N T 3N ) :

In section 7, the above results will be used in performing the comparison with ref. [4].

6 Recovering the ADM of AF =2 operators
from AF =1 results

Let us now use our AF = 1 anomalous dimensions from section 3 to find again the ADM of
AF = 2 operators. This will serve as a cross-check of our findings and as a preparation for the

comparison with ref. [4] in section 7.

Starting from eq. (3.1), we shall pass to another operator basis where the operators are either
symmetric or antisymmetric under d < ¢ interchange. Next, the flavours of both quarks and
both antiquarks will be set equal. For definiteness, we shall do it first in the SLL sector. The
superscript “SLL” will be understood for all the relevant quantities below, and we shall not
write it explicitly.

In four spacetime dimensions, passing to the new operator basis would be equivalent to
performing a simple linear transformation of the operators. In the framework of dimensional
regularization, introducing additional evanescent operators becomes necessary. In the SLL
sector, only two evanescent operators were needed in the AF = 1 calculation (see appendix B).
Now, we need to introduce six additional evanescent operators in this sector. They are defined
in appendix C.

We begin with a redefinition of the physical operators @; (i = 1,...,4) that amounts to

adding to them appropriate linear combinations of the evanescent operators Ej;:

8
Qi — Qi + Z WirEr = [Qi]ew (6.1)

k=1
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00 -3 02%000
- 00 0 O0O0O0O0O
W‘006o§000 (62)
00 0 O0O0O0OO0O0
The “new” operators read
1 1
[Ql]new = _a[Ql]F—i_g[QZS]Fa [QQ]HQW:Q27 (63)
1
[Q3]new = 6[Q1]F+§[Q3]F7 [Q4]neW:Q4’ (64)
where
[Ql]F = (gaPLCa) (ﬂﬁPLdﬁ) s [Q?)]F = (EQUNVPLCQ) (aﬁa’“’PLdﬁ) . (65)

In 4 spacetime dimensions, the transformation (6.1) would be equivalent to performing the Fierz
rearrangement, of (); and ()3, as E; would not contribute. Since the Fierz identities cannot
be analytically continued to D dimensions, the Fierz rearrangement must be understood in
terms of the transformation (6.1), so long as the MS scheme is used. The MS-renormalized
one-loop matrix elements of (); and )3 are affected by this transformation. This means that
the renormalization scheme is changed. We pass from one version of the NDR-MS scheme to
another, even though the evanescent operators remain unchanged.

After the redefinition (6.1), we perform a simple linear transformation of the operators

4

[Qi]new - Z Rij [Qj]new (66)
j=1

with

i3 1% O

. 3.0 1 3

s I (6.7)
4 2 16
30 -4}

As one can easily check, our final operator basis is {Q7, Q7 , Q7 , Q5 }, where

1
QF = 5 [P @ PL) £ (3 PLe) (@ P
1
QG = 5| 0w PLd®) (@0 Pre’) & (5%0, Pe®) (W Prd®) (6.8)
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The ADM transforms as follows:

50— RAORT, (6.9)

§O = R{AW + [A7, 4] + 2847} R, (6.10)

where 3y = YN — 2. The matrix A7 reflects in the usual manner [14] change of the renor-

malization scheme that follows from eq. (6.1). The explicit form of A7 is [§]
AP = —TWe, (6.11)

provided We = 0. The matrices ¢ and é are found from one-loop matrix elements of evanescent

operators, as in eq. (2.16). The product Weé indeed vanishes in our case, and

* * * *

* * * *

SN _ 5 17 1y L 3

NN 4 6V~ N 16

. * * * *
¢= 28 7 5 13 (6.12)

TN — = 21 — N+ —1

* * * *

* * * *

* * * *

Here, stars denote non-vanishing elements of ¢ that are irrelevant for us, since they do not affect

the matrix
dNth b W&
A7 Ve ! " ’ ! (6.13)
—8N+% -36 INn-L 1
0 0 0 0

After the transformation (6.9, 6.10), the ADM in the basis {Q7, Q4 , Q7 , Q5 } is found to have

the form
A+
A Yaxa O2x2
= i , 6.14
Taxa ( 02><2 Vox2 ) ( )
where 4% = 4% 4 850 4
AT ’
6 1 1
00— (U aie ), (6.15)
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and

e = —%N?imww?ﬂ W+ ONFFLf -

W = FAN-L+L_Lglry Ly 6.16)
7&) _ q:%N 724:F@_@i136f+176 '
PRt = MBNTLoIN LM 2 Byprgry L

One can easily verify that the matrix 4% is equal to the one we have already found in
egs. (2.18) and (2.20). It must be so, because the operators QF from eq. (6.8) reduce to
Q5™ from eq. (2.1) when the flavour replacements ¢ — d and @ — 5 are made. Moreover, the
evanescent operators listed in appendices B and C can be linearly combined to the ones that are
either symmetric or antisymmetric under d < c interchange. When the flavour replacements
¢ — d and u — § are made, the antisymmetric operators vanish, while the symmetric ones
become equal to those in appendix A. Thus, we have shown how to extract the AF = 2 results
from the AF = 1 ones.

Let us now briefly describe the analogous transformations in the VLL and LR=VLR®SLR
sectors. All the necessary evanescent operators are given in appendices B and C. The relevant

matrices W and R are the following:

*7VLL - 0 0 1 O O O
= <0 00000)"
. 1 1 1
VLL _ &
=y ( -1 1 )
WIR = (WQVX%R O2x6 ):< 2WVEL O2x6 )
Pz O2x6 WQS>%(§{ O2x6 —%WVLL 7
0 1 -2 0
. 11 =+ 0 0 1
R = 5| o1 2 o (6.17)
: 0 0 1

Consequently, the final operator bases are {Q)**" QY "~} and {QV7F, QI QIF~, Q¥ 1,

where

VLL+ __
1 =

(%7 Pod®) (@77 Po?) £ (5%, Pre®) (@7 Prd”)|

N | —
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LR+ __
1 =

5%y, Prd® Bﬁv“PRcﬁ + (5%, Prc” ﬂ’gVNPLd’g ,
i i

LR+ __
5 =

N~ N~

(5% PLd®) (" Ppc®) + (5 Pre®) (@’ Prd”) | . (6.18)

An important simplification in the present case is that the one-loop matrix elements of the
evanescent operators EyLl EYLR and ESYR from appendix C vanish in the limit D — 4,
after subtraction of the MS-counterterms proportional to evanescent operators only. This
means that the third rows of éVit VIR and SR vanish (cf. eq. (2.16)). Consequently,
AFPVEL = _JPVLLEVIL — (g apnd AFLR = _JWLRELR — (. This is why the two-loop
AF = 1 matrices of the VLL, VLR and SLR sectors exhibited Fierz symmetry in eq. (3.10).
The transformations of the two-loop ADMs in the VLL and LR sectors thus look as if we worked
in 4 dimensions, i.e. they reduce to simple multiplications by the corresponding R-matrices
and their inversions. The final results are

A VLL AVEEE 0 LR Aoas Oaxa
Tox2 = < 0 ~VLL— )7 Vaxa = ( 0 ~LR— ) ’ (6.19)
2x2  Y2x2

where

6
7(o)vLLi - 46_ >

N?

19 22 39 57 2 2

(1)VLL+ — OIN 24 4D &
Y % 3TN “ane T3/ T3t
,A}/(O)LRj: _ < % +12 )
6 )
0 —6N+2L
15 22 200 6 44
71 9 203 479 15 10 22 .
+ON+ 2 F2f N+ 2 4+ INf— &

One can see that v 2L and 427F are identical to our AF = 2 results in eqs. (2.21), (2.23) and

(2.24).
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7 Comparison with previous ADM calculations

In the present section, we compare our findings from sections 2, 3 and 4 with the previously

published results for anomalous-dimension matrices.

7.1 Omne-loop results

As far as the one-loop QCD ADMs of four-quark operators are concerned, the historical order

of their evaluation was as follows:

e Current—current contributions to the one-loop ADM of AF = 1 operators belonging to
the VLL and VLR sectors were originally calculated in refs. [15, 16]. These results were
also immediately applicable to the SLR sector, because the Fierz rearrangement has a
trivial effect at one loop. For the same reason, one-loop anomalous dimensions of the
AF = 2 operators belonging to the VLL and LR sectors could have been immediately
read off from these articles. Thus, after 1974, the only unpublished one-loop current—
current anomalous dimensions were those of the SLL sector, both in the AF = 1 and

AF = 2 cases.

e One-loop penguin contributions to the ADM of the Standard Model operators were origi-
nally evaluated in refs. [17]-[19]. As we have shown in section 4, penguin contributions to
the ADM of other (beyond-SM) flavour-changing dimension-six operators can be easily

extracted from the SM calculations, both at one and at two loops.

e To our knowledge, the first published results for 7S occur in refs. [20] and [4], for the
AF =2 and AF =1 cases, respectively.

The one-loop ADMs given in the present article agree with all the papers quoted above. How-
ever, in order to perform comparisons, one often needs to make simple linear transformations,

because different operator bases are used by different authors. For instance, the results for

JSLL in vef. [20] are given in the basis {Q$™, Q$"'}. In order to compare them with our

40
eq. (2.18), one should use the relation (2.6). Similarly, egs. (6.7) and (6.9) need to be used for

SLL

comparing our 4 in eq. (3.8) with the corresponding results in ref. [4].

25



7.2 'Two-loop results

The history of previous two-loop computations is as follows:

e The current—current anomalous dimensions of the AF' = 1 operators belonging to the VLL
sector were originally calculated in ref. [21] (in the DRED-MS scheme), and confirmed in

ref. [5] (where the NDR-MS and HV-MS results were also given).

e The remaining elements of the two-loop QCD ADM for AF = 1 operators relevant in the
SM were calculated in refs. [6, 7]. New results in these papers were the current—current
contributions in the VLR sector, as well as all the penguin contributions. The SLR sector
results in the AF = 1 case, as well as the AF = 2 results for the VLL and LR sectors
could be easily derived from them with the help of Fierz identities, because the NDR~-
MS-renormalized one-loop matrix elements remain invariant under Fierz transformations,
except for the current—current ones in the SLL sector, and the penguin ones in the VLL
sector. Therefore, in the early 1990’s, the only unknown two-loop anomalous dimensions

were those of the SLL sector.

e The first calculation of the two-loop ADM in the SLL sector was performed by Ciuchini
et al. [4], in both the AF = 1 and AF = 2 cases. The ADM was calculated there in
the so-called “FRI” renormalization scheme. The transformation rules were given to the
LRI scheme (Landau-gauge RI-scheme) and to the NDR-MS scheme. Current—current

anomalous dimensions for the remaining sectors were recalculated as well.

e Penguin contributions to the ADM of non-SM operators are considered for the first time

in the present article.

All the two-loop results presented here agree with the previous calculations mentioned above,
except for the NDR-MS ones for the SLL sector found in ref. [4]. Below, we explain the reason

for this disagreement.
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7.3 Comparison with ref. [4]

In ref. [4], the two-loop ADM for AF = 1 operators of the SLL sector was given in the basis
defined in eq. (13) of that paper, which is equivalent to our eq. (6.8). It was presented in the
so-called “FRI” renormalization scheme, and the transformation rules to the NDR-MS scheme
were appended. Applying these transformation rules to their “FRI”-scheme ADM, one obtains
results that differ from our eq. (6.16). In particular, a mixing between Q; and Q; occurs, which
is absent in our result (6.16). We could obtain their result if we ignored the transformation
(6.1) and, consequently, used A7 = 0 in our eq. (6.10). However, the final results would then

correspond to the basis

1 1 1
= 5[(go‘PLda)(aﬁPLcﬁ)JFQ(EQPLdﬂ)(aﬁPLc‘“)ig(an,WPLdﬁ)(aﬁa“”PLca)},

1 1
';t =35 {(EO‘UWPLdO‘)(ﬂ’gUWPLc’g) + 6(§aPLdﬁ)(ﬂ’3PLca) + 5(EQUWPLd’g)(BﬁUWPLcO‘)} ,

(7.1)

rather than the one in eq. (6.8). In 4 spacetime dimensions, the operators (6.8) and (7.1)
are identical, thanks to the Fierz identities (2.5). However, in D dimensions they are not.
Consequently, their NDR-MS-renormalized matrix elements differ at one loop, and it is not
surprising that the two-loop ADM depends on which of the two bases is used.

We informed the authors of ref. [4] about our findings prior to publication of the present
article. They responded that although their NDR-MS results had been claimed to correspond
to the basis (6.8), the NDR-MS renormalization conditions had been actually imposed in the
basis (7.1). However, they had forgotten to mention this in their article. Unfortunately, such a
mistake in the presentation has the same effect on the final result as a mistake in the calculation
that amounts to missing A7 # 0 in eq. (6.10).

As far as the two-loop ADM for AF = 2 operators of the SLL sector is concerned, the
situation is as follows. If we made the flavour replacements ¢ — d and @ — § in the basis (7.1),
but did not change anything in the ADM, we could interpret this ADM as the one for AF = 2
operators, as the authors of ref. [4] did. However, it would correspond to quite non-standard

conventions for the treatment of the evanescent operators obtained from ('] and @Q'; after
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the flavour replacements. One would need to assume that the finite one-loop matrix elements
of these evanescent operators are not renormalized away, contrary to the usual procedure for
any evanescent operator [5, 8, 10, 11]. Such non-standard conventions make the RGE evolution
more complicated, because one has to deal with a 4 x 4 instead of a 2 x2 ADM in the NDR-MS
RGE for the SLL sector, in the AF = 2 case. The calculation of the one-loop matrix elements
becomes more involved, as well.

In the AF = 2 case, no calculation is necessary to convince oneself that the results of
ref. [4] cannot correspond to the NDR-MS renormalization conditions imposed in the basis
(6.8) (their eq. (13)). Once the ¢ — d and @ — 5 replacements have been made, the operators
Q; in eq. (6.8) vanish identically in D dimensions. Therefore, they cannot mix into the Q;
operators, independently of what the treatment of evanescent operators is. On the other hand,
mixing of Q; into Q; was claimed to be found in the NDR-MS scheme in ref. [4]. Therefore,
an inconsistency is clearly seen.

In the remainder of this section, we shall verify that our NDR-MS results are compatible

with the LRI ones of ref. [4]. By differentiating eq. (5.14) with respect to p, one obtains

872

H00C ) = | BEIArE 0+ PN (it )

(1= A ) i800| F) + 0(2), @)
where we have used the RGE (2.11),

M%axu):—mei) and M%Aw):—@‘;‘—j}’”x(m+o<a§>. (7.3)

We have also used the fact that the dependence of Afgg 5, on p originates solely from its
dependence on the gauge-fixing parameter A\(u).
Next, we use eq. (5.14) again to express CMS(1) by CRI(4) in eq. (7.2). Then, the first two

terms of the perturbative expansion (2.12) of 4g; can be easily read off

~(0 ~(0

A = A, (7.4)
0

~(1 ~(1 ~ ~(0

= A+ [ 20 2 (kB35 ) A (75)
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Armed with our explicit expressions for Afyg |, p; given in section 5 and with the values of

A 13

50:—N—§f and ﬁfz(———>N+2

=/ (7.6)

3 2 6 3

we can easily calculate the RI-scheme ADM from our MS results, for arbitrary \. Setting then
A — 0, we recover all the LRI-scheme anomalous dimensions given in ref. [4].

As far as the “FRI”-scheme ADMs of ref. [4] are concerned, we can confirm them as well.
However, it should be emphasized that the “FRI” scheme is not equivalent to the RI scheme
considered in section 5 for any choice of \. The “FRI” scheme cannot be defined beyond
perturbation theory, because different external momenta are chosen in different diagrams when
the renormalization conditions are specified. Therefore, in our opinion, the main advantage of

the RI scheme is lost.

8 Conclusions

In the present paper, we have calculated the two-loop QCD anomalous dimensions matrix
(ADM) (3")ypr in the NDR-MS scheme for all the four-fermion dimension-six flavour-
changing operators that are relevant to both the Standard Model and its extensions.

The AF = 2 two-loop results can be found in egs. (2.20), (2.21) and (2.24). While the
matrices in egs. (2.21) and (2.24) could be extracted from the already published results, the
two-loop NDR-MS ADM (2.20) for the SLL operators defined in eq. (2.1) is correctly calculated
for the first time here.

The AF = 1 two-loop results for operators containing four different quark flavours can be
found in egs. (3.3), (3.5), (3.7) and (3.9). While the matrices in egs. (3.3), (3.5) and (3.7) could
be extracted from the already published results, the two-loop NDR-MS ADM (3.9) for the SLL
operators defined in eq. (3.1) is correctly calculated for the first time here.

Penguin contributions to the ADM of non-SM operators have been considered for the first
time here. These contributions can be easily extracted from the existing SM calculations.
We have identified the relevant non-SM operators in the AS = 1 case, and presented the
corresponding ADM explicitly in eqs. (4.8) and (4.9).
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We have demonstrated that the main findings of our paper, given in eqs. (2.20) and (3.9),
are compatible with each other, i.e. we have shown how to properly transform the ADMs from
the AF =1 to the AF = 2 case. In this context, we have pointed out that in the process of
this transformation it is necessary to introduce additional evanescent operators that vanish in

four spacetime dimensions because of the Fierz identities.

We have also given the rules that allow transforming our NDR-MS ADMs to the correspond-
ing results in the RI scheme, for arbitrary gauge-fixing parameter A\. They can be found in the

end of section 5.

The AF = 1 two-loop ADMs for all the operators defined in eq. (3.1) were previously
presented in ref. [4], in the @ basis. In the case of VLL, VLR and SLR operators, there is full
agreement between their and our results. The case of SLL operators is more subtle. We can
confirm their LRI-scheme results (RI scheme with A = 0). However, their NDR-MS ADM is
compatible with ours only after correcting their eq. (13), i.e. after changing the definitions of

their SLL operators to the ones given in eq. (7.1).

After such a correction in eq. (13) of ref. [4], also their AF = 2 NDR-MS results are
compatible with ours, provided they are understood in terms of quite non-standard conventions
for the treatment of evanescent operators. In their conventions, the two-loop AF = 2 NDR-MS
ADM is a 4x4 rather than 2x2 matrix, which makes the RGE evolution and calculating low-
energy matrix elements unnecessarily complicated. Consequently, the results presented here

should be more useful for phenomenological applications.
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Appendix A
Here, we specify the evanescent operators that are necessary as counterterms for one-loop

diagrams with insertions of the AF = 2 operators (2.1).

EYY = (3%, Prd”) (879 Prd®) — QY

EY™ = (8%, Prd®) (3991977 Prd’) + (=16 + 4€) QY
EfY = (5", Prd”) (57919 1 Prd®) + (=16 + 4€)Qy ",
B = (aPLdﬁ)(EﬂPRda)Jr% %R,

Bt = (8%, Prd?)(5°9" Prd®) + 2Q5"

Bt = (3", Prd®) (579979 Prd”) + (=4 — 4e)

Eft = (37, Prd’) (57997 Prd®) + (8 + 8¢)

EX® = (5%0,,PLd*) (570" Prd’) — 6eQ5",

ER = (590, Prd’) (5% “”PRda)+36 i

EPMY = (3°Ppd®)(3° PLd®) + QSLL——QSLL,

1
EQSLL = (§aO'HVPLd/6)(§ O'NVPLda) - 6Q§LL - 5 gLL,
ES™ = (5%9u77,70 PLd®) (8991777 Prd®) + (—64 + 96€) Q™ + (—16 + 8¢) Q5"

E{M = (8907970 Pud®) (5799497977 Prd®) — 64Q5M" + (—16 + 16€) Q5.

The evanescent operators for the VRR and SRR sectors, i.e. EY#% and EZER are obtained
by replacing L by R in the definitions of EY'Y and EPLL.

The operators EY e, EFRELR - EBSLL and ESM™ vanish in four spacetime dimensions because
of the Fierz identities (3.11), (3.12) and (2.5). The operators Byt EyLL ELR pLR - pSLL
and E$" vanish by the four-dimensional identity (2.2). Finally, EI® and EL® vanish in four
dimensions, because they become full contractions of self-dual and self-antidual antisymmetric
tensors.

The evanescent operators listed here would look somewhat simpler if we removed from them
all the terms proportional to €. It would be equivalent to changing one version of the MS scheme

to another. Keeping the terms proportional to € in the above equations makes our NDR-MS
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scheme equivalent to the one where the so-called “Greek projections” are used (see appendix

D).

Appendix B

Here, we specify the evanescent operators that are necessary as counterterms for one-loop

diagrams with insertions of the AF =1 operators (3.1).

EYLL
E;/LL
EYLR
E;/LR
EISLR
E2SLR
EISLL

SLL
E 2

9, PLd®) (@9 9 9 Pre®) + (—16 + 4e)Qy ™,
59,77, Prd®) (@’ y#y"yP Prc®) + (=16 + 4€)Qy ™",
59 Prd”) (@97 Pre®) + (—4 — 4e) QY™
Y PLd®) (@0 P Pre’) + (=4 — 46) Q5™

5% PLdﬁ)( O'IWPRC) 66Q§LR,

(
(
(
(s
(5
(5%0, PLd®) (@’ 0" Pre”) — 6eQ5™,
(5
(

59V Ve Prd”) (@497 Pre®) + (=64 + 96) Q7 +

5%,V Yo Prd®) (@7 P77 Prc®) + (—64 + 96€) Q5" +

(—16 + 8e)QSM,

(—16 + 8¢)Q5™".

The remaining evanescent operators (for the VRR, VRL, SRL and SRR sectors) are obtained

by interchanging L and R above.

Appendix C

This appendix contains definitions of the “additional” evanescent operators that are not

necessary as one-loop counterterms in the AF = 1 effective Lagrangian in section 3. However,

they have to be included before performing transformation to the “plus—minus” basis in section

6.
VLL
Es
VLL
Ey
VLL
Es

VLL
E6

(5% Pc®) @y PLd®) — QY™
(5%, Pre?) @y PrLd®) — Q3"
(EO‘VMVV%PLCO‘)(aﬁvuv”v’)PLdﬁ) + (=16 + 46)QY"",
(5721 PLc’) (@7 P Prd®) 4 (—16 + 4€)Qy ",
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1
Bt = (3"Pre®) (@ Prd’) + 5Q,

EYM = (5" Pac’) (0 Pod) + 5 QY

EYIR = (EQUWPRCQ)(E’gUWPLdﬁ) + 3eQY™R,

Eg/LR = (EO‘UWPRCﬁ)(ﬂﬁa“”PLdO‘) + 3eQy™R,

B3 = (5%, Pre®) @'y Prd”) + 207,

EJ™R = (8%, Prc?) (04" Prd®) + 205",

S = (5%, Pre®) (@777 PLd®) + (8 + 86) QY™
g™ = (8%%37, Prc”) (a4 7 PrLd®) + (8 + 86)Q5™F,

1
E??LL — (gaPLCa)( ﬁPLdﬂ)‘f‘ QSLL 8 §LL7

E{M = (3°PpcP)(@P Prd®) + = QSLL - QSLL,
1
ESLL — (gao'p,ucha) (/I_L O,HVPLd,@) 6QSLL SLL

’

EELL = (EO‘UWPLcﬁ)(ﬂ’gUWPLda) 6QSLL 1 SLL,
B2 = (3" e Pe®) (@79 "y Prd’ ) = 64Q™" + (=16 + 166) Q5™
ESM = (8"m70%e Pe”) (@799 Prd®) — 64Q5™ + (=16 + 166) Q3.

The remaining evanescent operators (for the VRR, VRL, SRL and SRR sectors) are obtained

by interchanging L and R above.

Appendix D

In the present appendix, the notion of “Greek projections” [2, 5, 22| is recalled and general-
ized to the case of SLL-sector operators. Let us denote the Dirac structure of the operator in
eq. (1.1) by Ty ® 'g. The insertion of this operator in one- and two-loop diagrams results in

new Dirac structures like
Ila @ I'p, (D.1)
where I'y, = v, Vo - Vo - Several examples of such structures occur in appendices A-C. It has
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been suggested in ref. [22] to project them onto physical operators as follows. One defines the

projection GG so that the following equality is satisfied
Gl ® I"T'p] =G | T4 @ TP (D.2)

In the case of I'y = I'p = 7,P., performing the projection G amounts to replacing ® by
~- on both sides of the above equation and contracting the indices using D-dimensional Dirac

algebra. In this manner, the coefficient ¢ is determined. One finds for instance:
G (5" 9, PLd®) (@92 Pue®)| = (16 — 4e) G QY] + O(€) (D.3)

with QY™ as defined in eq. (3.1).

It has been pointed out in ref. [5] that for a proper treatment of counterterms in two-loop
calculations, one has to use eq. (D.3) only as a prescription for defining an evanescent operator.
In the case at hand, this is the operator EYIY of appendix B. As discussed in ref. [2], in the
case of VLR and SLR operators, the analogous projections are performed by replacing ® by
1 and 7,, respectively. Examples of the corresponding evanescent operators can be found in
appendices A—C.

The projections in the SLL sector are slightly more involved. In the case of the insertion of
QI or QSLL the r.hus. of eq. (D.2) has to be generalized to a linear combination of these two
operators. The same applies to the pair (Q5%*, Q3**). The projection G is now performed by
replacing ® by 7,7s. After the projection, one finds linear combinations of g,z and 7,75 on

both sides of the equation. This allows extracting the coefficients in question. One finds for

instance
G (397070 Pud?) (@771 Pre®)| = (64-96¢) G [Q"]+(16—8¢) G [Q5™]+O(¢?). (D.4)

The corresponding evanescent operator is ES in appendix B. An alternative approach to

projections can be found in ref. [11].
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Appendix E

In this appendix, the 1/e and 1/€? poles in the one- and two-loop diagrams are given for the
AF =1 calculation in the SLL sector. Analogous results for the remaining sectors can be found
in refs. [5] and [6]. The gauge-fixing parameter A is set to unity here, i.e. the Feynman—"t Hooft
gauge is used.

Each insertion results in a linear combination of Q$'", ..., Q$*F, after subtracting the evanes-
cent counterterms (see appendix B) or, alternatively, after performing the “Greek projections”
(see appendix D). Table 1 gives the singularities (without colour factors) in the coefficients
of the resulting operators, for each diagram separately. The numbering of the diagrams and
values of the colour factors are exactly as in figs. 1, 2 and tables 1, 2 of ref. [5]. The multiplicity
factors of the diagrams are included.

In the two-loop case, the singularities include one-loop diagrams with counterterm insertions.
The counterterms proportional to evanescent operators are multiplied by an additional factor
1/2, and, at the same time, the term —2b¢ in eq. (2.14) is ignored. Correctness of such a trick
has been justified in refs. [5, 10].

SLL SLL
2

The singularities from table 1 apply for the pair ( , Q77"), too. After including colour

factors and summing the diagrams, the 1/e singularities build a 4 x 4 matrix in the basis

SLL SLL SLL SLL
{Ql ) 2 3 7Q4 }

B O‘Sé+(0‘5>2é + 0@ (E.5)
dr ! 47 2 s
from which the anomalous-dimension matrix can be obtained by means of
/Yi(]('))SLL = -9 [2 ai 6ij + (Bl)z]} s (E6)

Here, a; and ay originate from 1/e singularities in the quark field renormalization constants.

They read
17

3 1
alz—C'F, QQZOF[ZOF—ZN—FQ.]C]. (E8)

Remembering the trick applied to evanescent operators here, it is easy to verify that eqs. (E.6)

and (E.7) are equivalent to egs. (2.13) and (2.14) from section 2.
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QL SLL

D M Q%LL and Q%LL QgLL and QELL Q?LL and Q%LL QgLL and QELL

1/¢€ 1/e 1/¢€ 1/e 1/¢€ 1/e 1/¢€ 1/e
1 2 — 8 — 0 — 0 — 0
2 | 2 - ) - ~1/2 - —924 - -6
3| 2 - 2 - ~1/2 - —924 - 6
4 2 —16 16 0 0 0 0 0 0
5| 2 —4 9 -1 5/4 —48 76 —12 7
6 | 2 —4 9 1 —7/4 48 —52 ~12 7
7| 2 0 4 0 0 0 0 0 4
8 | 2 0 2 0 ~1/2 0 94 0 )
9 | 2 0 2 0 1/2 0 24 0 —2
10| 4 -8 -8 0 0 0 0 0 4
11 4 2 0 1/2 5/4 24 20 6 8
12| 4 —2 0 1/2 5/4 24 20 —6 —4
13| 4 8 —4 0 0 0 0 0 0
14| 4 -2 0 —1/2 —1/4 —24 28 —6 0
15| 4 2 0 -1/2 —-1/4 —24 28 6 —4
16 | 4 8 —4 0 0 96 64 0 0
17 | 4 8 4 2 2 0 0 0 0
18 | 4 —8 4 0 0 96 64 0 0
19 | 4 —8 —4 2 2 0 0 0 0
20| 4 —4 10 -1 1 48 —64 12 2
21| 4 —4 10 1 —2 —48 112 12 —22
22 | 1 —16 0 0 0 0 0 0 0
23 1 —4 5 -1 1/4 —48 28 —12 -5
24 | 1 —4 5 1 —3/4 48 —4 —12 -5
25 | 4 24 —-20 0 0 0 0 0 0
2% | 4 —6 2 —3/2 | -1/4 ~72 108 ~18 6
27| 4 6 -2 -3/2 —-1/4 72 108 18 —18
28 | 4 0 0 0 3 0 —144 0 0
29 | 2 ||-sN42f 2N 8L 0 0 0 0 BN _2f | _16N 4 4f
30 | 2 0 0 SN L |1y L lloon —gp | 134N 4 47 | WON A | 32N 4 &
31| 2 0 0 SN L LNy L llooN —8f +%f —10N 4 Af | 62N 20/
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Table 1: Pole parts of the one- and two-loop diagrams with insertions of Q%" and Q5“*. The colour factors
are omitted, whereas the multiplicity (M) is taken into account. The numbering is according to fig. 2 of ref.
[5]. While the singularities in front of the resulting Q™" and Q5" are the same in this table, they become
different after the inclusion of colour factors. The same comment applies to Q5" and Q$“*. When the colour
factors are omitted, the results for Q5" and Q$“* insertions are equal to those for Q™" and Q5" insertions,
respectively.
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