
ar
X

iv
:h

ep
-p

h/
00

05
04

0v
2 

 5
 J

ul
 2

00
0

DISPERSION RELATIONS IN ULTRADEGENERATE

RELATIVISTIC PLASMAS

Cristina Manuel∗

Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Abstract

The propagation of excitation modes in a relativistic ultradegenerate plasma

is modified by their interactions with the medium. These modifications can

be computed by evaluating their on-shell self-energy, which gives (gauge-

independent) dispersion relations. For modes with momentum close to the

Fermi momentum, the one-loop fermion self-energy is dominated by a dia-

gram with a soft photon in the loop. We find the one-loop dispersion relations

for quasiparticles and antiquasiparticles, which behave differently as a conse-

quence of their very different phase-space restrictions when they scatter with

the electrons of the Fermi sea. In a relativistic system, the unscreened mag-

netic interactions spoil the normal Fermi liquid behavior of the plasma. For

small values of the Fermi velocity, we recover the non-relativistic dispersion

relations of condensed matter systems.
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I. INTRODUCTION

The study of hot relativistic plasmas is nowadays a very active field of research [1]. This

is due to the existence of experimental programs to test the existence of the quark-gluon

plasma phase of QCD. The physics of some astrophysical settings, such as those of neutron

stars and supernovas, also requires knowledge of a different regime of relativistic plasmas,

less hot but still very dense. This cold and ultradegenerate regime of QED and QCD

has been much less explored. However, the fact that matter at very high baryonic densities

behaves as a color superconductor has given us a strong motivation to study ultradegenerate

relativistic plasmas, as several new phenomena occurs in this phase of QCD (see [2] and [3],

and references therein).

One of the central concepts in a plasma is that of a quasiparticle. A particle immersed in a

medium modifies its propagation properties by interacting with the surrounding medium. In

field theoretical language, we would say that the particle is “dressed” by a self-energy cloud.

In the ultradegenerate plasma the relevant degrees of freedom are those of quasiparticles or

quasiholes (absences of particles in the Fermi sea) living close to the Fermi surface. Because

of the exclusion principle, quasiparticles/quasiholes can only live if they are outside/inside

the Fermi sea, respectively. These excitations tend to lower their energy, by undergoing

collisions with the particles in the Fermi sea. They decay, and thus have a finite lifetime.

The concept of quasiparticle, however, only makes sense if its lifetime is long enough, or in

other words, if its damping rate is much smaller than its energy.

Here we will mainly be concerned with electromagnetic plasmas. There is a vast literature

on the quasiparticle properties in non-relativistic cold plasmas [4]. The same does not hold

true for the relativistic ones, though. There are two main differences in these two energy

regimes of a plasma. In the non-relativistic domain, the electric interactions are dominant,

while the magnetic ones are suppressed by a factor (v/c)2, where v is the velocity of the

particle, and c is the velocity of light. Thus, magnetic interactions start to be relevant

only when quasiparticles are fast enough or, in other words, when the Fermi velocity vF

approaches the velocity of light. This is an important difference, as electric interactions are

not long-ranged in the medium, because of Debye screening, while magnetic interactions are.

The relevance of this last point has already been stressed in the condensed matter literature

[5], just noticing that magnetic interactions spoil the normal Fermi liquid behavior of the

plasma. The second main difference is due to the fact that in a relativistic plasma there
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are also antiparticle excitations. Their contribution to any physical process is in general

suppressed, since it takes more energy to excite an antiparticle than a particle of the Fermi-

Dirac sea. Nevertheless, in the context of the color flavor locking phase of QCD [6], some

of the properties of the antiparticles determine the mass spectrum of the Goldstone modes

which arise from the spontaneous breaking of chiral symmetry, so those cannot be neglected.

In this paper we study the quasiparticle and antiquasiparticle dispersion relations in a

full relativistic framework, generalizing the results of a previous publication [9] to the case

where the Fermi velocity vF 6= c. We can thus explore all the energy domains of the system,

and in particular, we can take the non-relativistic limit vF ≪ c, and match the results

obtained in the condensed matter literature [4,5]. The dispersion relations are obtained by

computing the on-shell one-loop self-energy. While the one-loop self-energy is in general

gauge-dependent, it is not when evaluated on the particles mass-shell. For quasiparticles

with momenta close to the Fermi momentum, the one-loop self-energy is dominated by a

diagram in which the photon is soft. When the photon is soft, it also needs to be dressed

to take properly into account the effects of the medium. This can be done by using the

resummation techniques proposed by Braaten and Pisarski [7], and considering hard thermal

loop photon propagators, or hard dense loop (HDL) ones for the ultradegenerate case [8].

We first compute the on-shell imaginary part of the one-loop self-energy for electrons and

positrons, which can be interpreted in terms of their scattering with particles of the Fermi

sea, via an exchange of a soft photon. The on-shell real part of the self-energy can be

reconstructed from the on-shell imaginary part, just by using a Kramers-Kroning relation.

This paper is structured as follows. Section II introduces the notation of the paper. We

work in natural units, c = h̄ = kB = 1, unless otherwise stated. In Sect. IIIA we compute

the on-shell one-loop self-energy of the fermion. We take the non-relativistic limit of our

results in Sect. IIIB, and conclude in Section IV. In Appendix A the spectral functions of

the HDL photon propagators are given for vF 6= c, and in Appendix B Luttinger’s theorem

is recalled.

II. DISPERSION RELATIONS FOR THE QUASIPARTICLES

We consider a plasma with a finite density of electrons, characterized by a chemical

potential µ. In order to guarantee its stability, we assume that the electrons are immersed

in a uniform background of positive charges, of density equal to the average electron density.
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These background charges can be due to positively charged ions, which are very heavy.

In a plasma with chemical potential µ, the propagation properties of the quasiparticles

are modified by medium effects. The dressed fermion propagator S(P ), where P = (p0,p)

is the four momentum, obeys the Schwinger-Dyson equation

S−1(P ) = S−1
0 (P ) + Σ(P ) , (1)

where S−1
0 is the inverse free propagator

S−1
0 (P ) = P/ + µγ0 − m , (2)

with P/ = P µγµ and Σ(P ) is the one-loop self-energy.

Because of the clear asymmetry between electrons and positrons in the electromagnetic

plasma, it is convenient to treat them separately, as their propagation properties will be

modified in different ways. Introducing the positive and negative energy projectors

Λ±

p =
Ep ± (γ0γ · p + mγ0)

2Ep

, (3)

where Ep =
√

p2 + m2, we can rewrite

S−1
0 (P ) = γ0Λ

+
p (p0 + µ − Ep) + γ0Λ

−

p (p0 + µ + Ep) , (4)

Σ(P ) = γ0Λ
+
pΣ+(P ) − γ0Λ

−

pΣ−(P ) . (5)

After inverting (1) one gets

S(P ) = S+(P )Λ+
pγ0 + S−(P )Λ−

pγ0 , (6)

where

S±(P ) =
1

p0 + µ ∓ (Ep − Σ±(P ))
, (7)

and the upper/lower subscripts refer to electrons/positrons, respectively.

Every energy eigenstate can be projected onto states of given helicity, with the projectors

P±(p) =
1 ± γ5γ0γ · p̂

2
. (8)

In principle, the most general structure of the one-loop self-energy contains four unknown

functions, according to the energies and helicities of the quasiparticles. However, the effects

3



which will be discussed in this article do not depend on the helicity of the quasiparticles,

and thus we would not explicitly take into account the helicity projectors.

The value of the one-loop self-energy Σ is gauge-dependent. However, when it is evaluated

on the particles mass-shell, it should be gauge independent. This is so because the poles

of (7) give the physical dispersion relations of electrons and positrons which define their

propagation properties in the plasma.

The dispersion relations obtained from (7) are

ω± = −µ ± (Ep − Re Σ±(ω± + iγ±,p)) , (9)

γ± = ∓ImΣ±(ω± + iγ±,p) , (10)

where ω± and γ± define the energy and damping rates of the electrons/positrons, respec-

tively. For the concept of quasiparticle to make sense, it is necessary that γ± ≪ ω±, so that

the quasiparticles are long-lived enough.

In the remaining part of the paper the dispersion relations for quasiparticles and anti-

quasiparticles with momentum close to the Fermi momentum will be studied. In this case,

the dominant contribution to their one-loop self-energy arises when the photon in the loop

is soft, that is, of order ∼ eµ, where e is the electromagnetic coupling constant. When the

photon is soft it has also to be dressed, in order to take into account properly the medium

effects of Debye screening and Landau damping.

III. THE ON-SHELL FERMION SELF-ENERGY

A. Relativistic Domain

For a plasma at temperature T and chemical potential µ, we compute the one-loop self-

energy Σ using the imaginary time formalism. It is convenient to use the spectral function

representation of the fermion and photon propagators in the computation. The free fermion

propagator is given by

S0(iωn,k) =
∫

∞

−∞

dk0

2π

(K/ + m)ρf (K)

k0 − iωn − µ
, (11)

with

ρf (K) =
π

Ek

(δ(k0 − Ek) − δ(k0 + Ek)) . (12)

4



In (11), ωn = π(2n + 1)T is a fermionic Matsubara frequency. The (resummed) photon

propagator ∆µν(Q), where Q = (iωs,q), and ωs = 2πsT is a bosonic Matsubara frequency,

is written in the Coulomb gauge

∆µν(Q) = δµ0δν0 ∆L(Q) + PT
µν∆T (Q) + ξC

QµQν

q4
, (13)

where PT
ij = (δij − q̂iq̂j), q̂i = qi/|q|, PT

i0 = PT
0i = PT

00 = 0, and ξC is the gauge parameter.

The longitudinal and transverse propagators are written in terms of their spectral functions

∆L(iωs, q) =
∫

∞

−∞

dq0

2π

ρL(q0, q)

q0 − iωs

− 1

q2
, (14a)

∆T (iωs, q) =
∫

∞

−∞

dq0

2π

ρT (q0, q)

q0 − iωs

. (14b)

Analytical expressions for ρL,T can be found in [10,1] for the case of an ultrarelativistic

(m = 0) plasma. At T = 0, it is also possible to derive the spectral functions for m 6= 0 [8].

We present analytical expressions for the spectral functions in this case in Appendix A.

The one-loop self-energy

Σ(P ) = e2T
∑

s

∫

d3q

(2π)3
γµS0(P − Q)γν∆µν(Q) , (15)

when expressed in terms of the spectral functions, reads

Σ(iω, p) = e2T
∑

n

∫

d3q

(2π)3

∫

∞

−∞

dk0

2π
ρf (K) γµ(K/ + m)γν (16)

×
{(

∫

∞

−∞

dq0

2π

δµ0δν0ρL(q0, q) + PT
µνρT (q0, q)

(q0 − iωn) (k0 − iω + iωn − µ)

)

− 1

q2

δµ0δν0

(k0 − iω + iωn − µ)

+ ξC

QµQν

q4

}

.

The sum over Matsubara frequencies is now easily performed. After analytical continuation

iωn +µ → p0 + iη, with η → 0+ to Minkowski space, one can evaluate the on-shell imaginary

part. It is very easy to realize that none of the last two pieces of Eq. (16) contribute to

this on-shell imaginary part. Therefore, the result of the computation is gauge independent.

One finds

Im Σ(p0 + iη, p) = −e2Im
∫

d3q

(2π)3

∫

∞

−∞

dk0

2π
ρf (K)

∫

∞

−∞

dq0

2π

1 + f(q0) − f̃(k0 − µ)

p0 − k0 − q0 + iη
(17)

× γµ(K/ + m)γν

[

δµ0δν0ρL(q0, q) + PT
µνρT (q0, q)

]

.
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In (17), f and f̃ are Bose-Einstein and Fermi-Dirac distribution functions (β = 1/T )

f(q0) =
1

eβq0 − 1
, f̃(k0 − µ) =

1

eβ(k0−µ) + 1
. (18)

The damping rates for the quasiparticles and antiquasiparticles are thus obtained after

multiplying Eq. (17) by the corresponding projectors and taking a Dirac trace, evaluating

the final expression on the particles mass-shell1

γ± = ∓ Im Σ±(p0 + iη ,p)
∣

∣

∣

p0 on−shell
. (19)

To obtain the damping rate of a quasiparticle one has to evaluate the imaginary part of

its self-energy on the pole of the dressed propagator. However, up to corrections of order

e2, it would be enough to consider the above expressions at p0 = ±E, as the corrections

introduced by Σ± only displace these poles by an amount proportional to e2. In this case,

after evaluating the Dirac traces we find, with k = p− q,

γ± = ±πe2

E

∫

d3q

(2π)3

∫

∞

−∞

dk0

2π
ρf (k0)

∫

∞

−∞

dq0

2π
(20)

×
(

1 + f(q0) − f̃(k0 − µ)
)

δ(p0 − k0 − q0)
{

[p0k0 + p · k + m2]

× ρL(q0, q) + 2[p0k0 − (p · q̂)(k · q̂) − m2]ρT (q0, q)
}
∣

∣

∣

p0=±E
.

Equation (20) gives the general expression for the damping rates for any value of T , µ and

m. At very high temperature, these damping rates are infrared (IR) logarithmic divergent,

even after including the screening corrections. This is due to the soft photon contribution,

as f(q0) ∼ T/q0 for q0 ≪ T . Perturbation theory fails to provide the damping rates at high

T [12]. A non-perturbative treatment to resum the leading order divergences was proposed

in [13] to find a non-exponential decay law for the quasiparticles.

In this paper we are concerned with the ultradegenerate limit, when T = 0. In this

case several simplifications occur. The damping rates are IR finite after the inclusion of the

screening effects [9], as opposed to what happens at high T . For T = 0, (1+ f(q0)) = Θ(q0),

where Θ is the step function. For T = 0 the fermion distribution function is f̃(Ek − µ) =

Θ(µ − Ek), while f̃(−Ek − µ) = 1 − f̃(Ek + µ) = 1.

1At this point, one can check that the damping rate of the quasiparticles does not depend on their

helicities, by using the helicity projectors of Eq.(8).
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From this point on, it is convenient to treat separately the electron and positron damping

rates, as different phase-space restrictions arise in the two cases. If we concentrate in the

soft photon region, we can approximate

Ek =
√

|p− q|2 + m2 ≃ E − v · q , (21)

where v = p/E is the velocity of the fermion. We thus find

γ+ ≃ e2

8π2v

∫

q soft
qdq dq0

[

(Θ(q0) − Θ(µ − E + q0))
{

ρL(q0, q) + v2(1 − cos2 θ)ρT (q0, q)
}]

, (22a)

γ− ≃ − e2

8π2v

∫

q soft
qdq dq0

[

Θ(−q0)
{

ρL(−q0, q) + v2(1 − cos2 θ)ρT (−q0, q)
}]

, (22b)

where q0 = qv cos θ.

The damping rates for the electron and the positron thus only differ in the phase-space

restrictions of these two types of particles. One can interpret the above equations as follows.

A particle/antiparticle, with energy ±E is scattered to a state of energy ±Ek, respectively,

creating a particle-hole pair. For the electron, Ek is forced to be above the Fermi energy,

because of Pauli blocking. This last restriction is absent in the case of the positron.

For a quasiparticle with velocity close to the Fermi velocity, we can further approximate

v ≈ vF in Eq. (22a). From the fact that the spectral functions ρL,T in Eqs. (22) are

evaluated for values of q2
0 ≤ q2v2

F , we see that it is only the part of the spectral function

corresponding to Landau damping (the functions βL,T in (A7)), that contributes to the

integrals. Using the explicit values of spectral densities as given in Appendix A, one can

evaluate the above integrals numerically. Analytical expressions can be obtained for the

interesting case |E − µ| ≪ M (so this includes the case of quasiholes). In this regime we

find at leading order

γ+ ∼ e2

24π
|E − µ| + e2

64v2
FM

(E − µ)2 + O(|E − µ|3) , (23)

which generalizes the expressions obtained in Refs. [9,11] for the case vF 6= 1. In the above

equations M =
√

e2µ2vF /π2 is the Debye mass. The first terms in the r.h.s. of Eqs. (23) are

due to scattering processes with exchange of soft magnetic photons, while the second is due

to the exchange of soft electric ones. As can be seen the magnetic contribution is suppressed

with respect to the electric one by a factor v2
F . Therefore, the electric contribution is

dominant for vF ≪ 1. In the ultrarelativistic limit, vF = 1, the damping rate of the electron

is dominated by the magnetic contribution.
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The damping rate of a quasiparticle, or a quasihole, which lives close to the Fermi surface

can then be expressed as a power series in |E − µ|. If this parameter is large, then γ+ is

large, and the lifetime of these excitations is so short, that it does not make sense to talk

about quasiparticles or quasiholes. On the contrary, when the fermion energy approaches

the Fermi energy, its lifetime tends to infinity. In particular, from Eq. (23) one deduces

that the Fermi sea is stable. We should point out also the very different contribution to

the energy dependence of γ+ from the electric and magnetic interactions. The quadratic

dependence on (E − µ) of γ+ can be entirely understood as arising from the short-ranged

character of the electric interactions in the plasma, and also the phase-space restrictions of

electron-electron scattering (see Appendix B). Magnetic interactions are not short-ranged,

but only suffer a weak dynamical screening due to Landau damping. The linear dependence

on (E − µ) is also a product of Landau damping and phase-space restrictions.

We now consider the damping rate of the antiquasiparticle. Let us first stress that for a

positron pair annihilation also contributes to its damping rate. However, this is a process

that occurs at order e4, and it can be computed by taking the imaginary part of a two-loop

correction to the fermion self-energy. In a weak coupling expansion, the damping rate of

the positron is dominated by the scattering of the positron with the electrons of the Fermi

sea. For a positron with velocity v ≈ vF , we can evaluate numerically Eq. (22b). The

only difference with respect to the computation of γ+ comes from the different phase-space

restrictions for antifermions, or in other words, the different domain of integration of the

integrals. We find at leading order

γ− ∼ e2M

(

v2
F

24π
+

1

64

)

, (24)

which agrees for vF = 1 with the result of Ref. [11].

The on-shell real part of the self-energy can be obtained from the general expression

(16), just by using a principal value prescription to evaluate the integral after the analytical

continuation to Minkowski space is done. However, it is much simpler to reconstruct it from

the value of the on-shell imaginary part, using a Kramers-Kroning dispersion relation, which

gives the value of the real part, up to a constant.

If f±(ω) is an analytic function in the upper/lower complex plane, respectively, then

from the Cauchy theorem, its real part is given as a function of its imaginary part as

Ref±(ω) = ±PP

π

∫

∞

−∞

dω′

ω′ − ω
Imf±(ω′) + C∞ , (25)
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where PP denotes the principal value of the integral along the real axis, and C∞ is a

subtraction constant needed in case that f± does not vanish for |ω| → ∞.

Since we have computed the damping rate γ+ for values |E − µ| ≪ M , the only energy

domain where the concept of quasiparticle makes sense, we will use the dispersion relation

using a cutoff which implements this constraint, that is with cutoffs Λ± = µ ± M . We thus

find

ReΣ+(E, p) ∼ ReΣ+(µ, p) +
e2

12π2
(E − µ) ln

M

|E − µ| +
e2

32πv2
F

|E − µ| + O((E − µ)2) . (26)

The value of the energy-independent constant ReΣ+(E = µ, p), which renormalizes the

chemical potential, can only be determined from the explicit evaluation of Eq. (16).

We now use the Kramers-Kroning dispersion relation for the antifermions, also imposing

a cutoff in the dispersion relation that guarantees that the momentum of the particle is not

far away from the Fermi momentum. We thus find

ReΣ−(−E, p) ∼ ReΣ−(−µ, p) +

(

e2v2
F

12π2
+

e2

32π

)

(µ − E) + O((µ − E)2) . (27)

The leading logarithmic behavior of the real part of the one-loop self-energy of a quark

in the high baryonic limit of QCD has been obtained in the ultrarelativistic limit in Ref.

[15]. There the same leading logarithmic dependence in the energy as in Eq. (26) has been

found. We should stress here that this can only be valid for the quark excitations, but not

for the antiquarks ones.

B. Non-Relativistic Limit

In this subsection we take the non-relativistic (nr) limit of the expressions computed

previously, restoring the fundamental constant c in the equations. The nr limit corresponds

to vF ≪ c. The antiparticles then decouple. In such a case, the contribution from the

magnetic sector to the fermion self-energy is suppressed by a factor (vF /c)2 with respect to

the electric sector one. The electric effects are thus dominant.

The lifetime of an electron τ is defined as 1/2γ+. We neglect the magnetic contribution

to the damping rate, and express the electric contribution in terms of the plasma frequency

ω2
p = 1

3
M2v2

F

1

τ
=

√
3π2ωp

32

(

E − µ

µ

)2
c4

v4
F

. (28)
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The relativistic and non-relativistic chemical potentials differ by the rest mass of the

particle, µ2 = µ2
nr + m2c4. For p2 ≪ m2c2, E = mc2 + ǫnr + O( p4

m4c2
), where ǫnr = p2

2m
.

Therefore

1

τ
→

√
3π2ωp

32

(ǫnr − µnr)
2

m2c4

c4

v4
F

=

√
3π2ωp

128

(

ǫnr − µnr

µnr

)2

, (29)

where in the last equality we have used µnr = ǫF = 1
2
mv2

F . The above expression agrees with

the computation of the lifetime of an electron in a non relativistic quantum liquid, using the

random phase approximation (see Eq. (5.134c) of [4]).

Since in the nr limit the difference (E − µ) → (ǫnr − µnr) + O( p4

m4c2
), we also reproduce

the dispersion relations due to magnetic interactions of non relativistic electrons computed

in [5].

IV. CONCLUSIONS

We have derived the one-loop dispersion relations of quasiparticles and antiquasiparticles

with momentum close to the Fermi momentum in a relativistic electromagnetic plasma,

recovering in the non-relativistic limit the results of Refs. [4,5]. As already emphasized

in those papers, the long-ranged character of the magnetic interactions spoils the normal

Fermi liquid behavior of the plasma. This effect is fully dominant when the Fermi velocity

vF is close to the velocity of light. We have also found that the medium modifies in a

different way the propagation properties of particles and antiparticles. This can be simply

understood from their different phase-space restrictions when they scatter with the electrons

of the Fermi sea. We should also emphasize that our results are gauge independent. This

is because we have computed the one-loop self-energy on mass-shell. Off-shell, the one-loop

self-energy (16) is a gauge-dependent function.

While we have concentrated our study to QED plasmas, our results can be easily trans-

ported to QCD, only by replacing the electromagnetic coupling constant by the QCD one

and taking into account some additional color factors. In the superconducting phase of

QCD, the dispersion relations of quarks and antiquarks would be modified in a different way

according to whether or not these form Cooper pairs. The dispersion relation for antiquarks

in the presence of a color gap has not yet been determined, while it is still necessary to

understand how antiquarks propagate in a color superconducting medium.
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APPENDIX A: SPECTRAL FUNCTIONS FOR HDL PHOTON PROPAGATORS

The spectral functions ρL,T for the resummed propagators ∆L,T can be found in [1] for

the case of an ultrarelativistic (m = 0) plasma. In the case of a ultradegenerate plasma,

they can also be determined when m 6= 0 [8]. For completeness, we will present them below.

In this case, the Debye mass is M2 = e2µ2vF /π2, where vF is the Fermi velocity, defined

as the ratio between the Fermi momentum and the Fermi energy, vF = pF /µ. The spectral

functions of the resummed HDL propagators are computed from their imaginary part

ρL,T (q0,q) = 2 Im ∆L,T (q0 + iǫ,q) . (A1)

These functions can be written in terms of a contribution of the poles of the propagators,

plus another one arising from Landau damping:

ρL,T (q0, q)

2π
= ZL,T [δ(q0 − ωL,T (q)) − δ(q0 + ωL,T (q))] + βL,T (q0, q) . (A2)

The poles ωL,T are solutions of the dispersion relations

ω2
L(q) = ω2

p

3 ω2
T (q)

v2
F q2

[

ωT (q)

2vF q
ln

ωT (q) + vF q

ωT (q) − vF q
− 1

]

, 0 ≤ q < qmax , (A3a)

ω2
T (q) = q2 + ω2

p

3 ω2
T (q)

2v2
F q2

[

1 +
1

2

(

vF q

ωT (q)
− ωT (q)

vF q

)

ln
ωT (q) + vF q

ωT (q) − vF q

]

, 0 ≤ q < ∞ , (A3b)

where ω2
p = 1

3
M2v2

F is the plasma frequency, and

qmax =
(

1

2vF

ln
1 + vF

1 − vF

− 1
)

1

2

M , (A4)

in the maximum momentum at which the plasmon can propagate. The above dispersion

relations have to be solved numerically. It is possible to obtain analytically the small q

behavior of their solutions. For q ≪ ωp

ω2
T (q) → ω2

p + q2

(

1 +
v2

F

5

)

, ω2
L(q) → ω2

p +
3

5
v2

F q2 . (A5)

The functions ZL,T are the residues of ∆L,T evaluated at their poles, and are given by
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ZL(q) =
ωL (ω2

L − v2
F q2)

q2
(

3ω2
p − (ω2

L − v2
F q2)

) , (A6a)

ZT (q) =
ωT (ω2

T − v2
F q2)

3ω2
pω

2
T + (ω2

T + q2) (ω2
T − v2

F q2) − 2ω2
T (ω2

T − q2)
. (A6b)

The pole contribution to the spectral functions is only non-vanishing above the light-cone.

The Landau damping pieces of the spectral functions are non-vanishing only for q2
0 ≤ q2v2

F

and are given by

βL(q0, q) =
M2 x Θ(1 − x2)

2
[

q2 + M2
(

1 − x
2
ln
∣

∣

∣

x+1
x−1

∣

∣

∣

)]2
+ M4π2x2

4

, (A7a)

βT (q0, q) =
M2 v2

F x (1 − x2)Θ(1 − x2)
[

2q2(x2v2
F − 1) − M2x2v2

F

(

1 + (1−x2)
2x

ln
∣

∣

∣

x+1
x−1

∣

∣

∣

)]2
+

M4v4

F
π2x2(1−x2)2

4

, (A7b)

where x = q0/qvF .

APPENDIX B: LUTTINGER’S THEOREM

The dependence on (E − µ)2 of the damping rate of a fermion with energy above µ

can be understood completely as arising from phase-space restrictions of fermion-fermion

scattering, in the case where the interactions are short-ranged and repulsive. The argument,

due to Luttinger [14], is simple. We present it below. Let us consider the decay rate of a

fermion with energy E which interacts with a fermion with energy Ek inside the Fermi sea.

As a result, two new particles appear, with energies Ek′ and Ep′, respectively, which are

outside the Fermi sea. The total decay rate is then given by

Γ(E) =
1

E

∫ d3p′

(2π)3

(1 − Θ(µ − Ep′))

2Ep′

∫ d3k

(2π)3

Θ(µ − Ek)

2Ek

∫ d3k′

(2π)3

(1 − Θ(µ − Ek′))

2Ek′

(B1)

× (2π)4δ(4)(P + K − P ′ − K ′)|M|2 ,

where |M|2 is the scattering matrix element squared. After performing the p′ integral

Γ(E) =
2π

E

∫ d3k

(2π)3

Θ(µ − Ek)

2Ek

∫ d3k′

(2π)3

(1 − Θ(µ − Ek′))

2Ek′

(1 − Θ(µ − Ep+k−k′))

2Ep+k−k′

(B2)

× δ(E + Ek − Ep+k−k′ − Ek′)|M|2 .

We now make the change of variables

Ek = µ − tk , Ek′ = µ + tk′ , Ep+k−k′ = µ + tp+k−k′ , (B3)
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where the ti variables are positive quantities. The delta function of energy conservation

imposes

E − µ = tk + tk′ + tp+k−k′ , (B4)

which is only valid for E − µ ≥ 0. The maximum value that each one of the variables ti

can achieve is E − µ, while the minimum is zero. Using the energies of the particles as

integration variables, we see that the integration is always performed over an energy shell

of thickness E −µ. If E −µ ≪ µ, then the values of the energy variables inside the integral

can be substituted by the Fermi energy. One then finally reaches

Γ(E) ∝
∫ µ

µ−(E−µ)
dEk

∫ µ+(E−µ)

µ
dEk′ , (B5)

and thus Γ(E) ∝ (E − µ)2. A similar argument can be applied for a quasihole to get the

energy dependence of its damping rate.

In the case we studied in this article, the electric interactions can be considered as short-

ranged, because of Debye screening; they thus give a contribution to the damping rate of

electrons as expected from Luttinger’s theorem. The above arguments fail in the case of

magnetic interactions, as those are not short-ranged, but rather suffer a weak dynamical

screening, where the energies themselves play the role of infrared cutoffs in the above inte-

grals.
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