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The propagation of excitation modes in a relativistic ultradegenerate plasma is modified by their interactions
with the medium. These modifications can be computed by evaluating their on-shell self-energy, which gives
(gauge-independentispersion relations. For modes with momentum close to the Fermi momentum, the
one-loop fermion self-energy is dominated by a diagram with a soft photon in the loop. We find the one-loop
dispersion relations for quasiparticles and antiquasiparticles, which behave differently as a consequence of
their very different phase-space restrictions when they scatter with the electrons of the Fermi sea. In a rela-
tivistic system, the unscreened magnetic interactions spoil the normal Fermi-liquid behavior of the plasma. For
small values of the Fermi velocity, we recover the nonrelativistic dispersion relations of condensed-matter
systems.

PACS numbgs): 11.10.Wx, 12.20.Ds, 12.38.Mh, 52.6¢h

. INTRODUCTION (v/c)?, wherev is the velocity of the particle, and is the
o _ velocity of light. Thus, magnetic interactions start to be rel-
The study of hot relativistic plasmas is nowadays a Veryayant only when quasiparticles are fast enough or, in other
active field of researchl]. This is due to the existence of words, when the Fermi velocitys approaches the velocity
experimental programs to test the existence of the quarkss |ight. This is an important difference, as electric interac-
gluon plasma phase of QCD. The physics of some astroyjong are not long ranged in the medium, because of Debye

physical settings, such as those of neutron stars and SUPeMgseening, while magnetic interactions are. The relevance of

vas, als_o requires knowledge Of. a_different regime of his last point has already been stressed in the condensed-
relativistic plasmas, less hot but still very dense. This col

X atter literaturd 5], just noticing that magnetic interactions
and ultradegenerate regime of QED and QCD has been mucspoil the normal Fermi-liquid behavior of the plasma. The

less explored. However, the fact that matter at very high cond main difference is due to the fact that in a relativistic
baryonic densities behaves as a color superconductor h&? L o . )
asma there are also antiparticle excitations. Their contribu-

given us a strong motivation to study ultradegenerate relativP ) L . .
istic plasmas, as several new phenomena occur in this phal@" t© any physical process is in general suppressed, since it

of QCD (see[2] and[3], and references thergin takes more energy to excite an anti_particle than a particle of
One of the central concepts in a plasma is that of a qualh® Fermi-Dirac sea. Nevertheless, in the context of the color
siparticle. A particle immersed in a medium modifies its flavor-locking phase of QCI6], some of the properties of
propagation properties by interacting with the Surroundindhe antiparticles determine the mass spectrum of the Gold-
medium. In field-theoretical language, we would say that thétone modes which arise from the spontaneous breaking of
particle is “dressed” by a self-energy cloud. In the ultrade- chiral symmetry, so those cannot be neglected.
generate plasma the relevant degrees of freedom are those ofIn this paper we study the quasiparticle and antiquasipar-
quasiparticles or quasihole@bsences of particles in the ticle dispersion relations in a full relativistic framework, gen-
Fermi sealiving close to the Fermi surface. Because of theeralizing the results of a previous publicatif8] to the case
exclusion principle, quasiparticles or quasiholes can onlyhere the Fermi velocity  # c. We can thus explore all the
live if they are outside or inside the Fermi sea, respectivelyenergy domains of the system, and in particular, we can take
These excitations tend to lower their energy by undergoinghe nonrelativistic limitvg<<c, and match the results ob-
collisions with the particles in the Fermi sea. They decaytained in the condensed-matter literat{i#e5]. The disper-
and thus have a finite lifetime. The concept of quasiparticlesion relations are obtained by computing the on-shell one-
however, only makes sense if its lifetime is long enough, oloop self-energy. While the one-loop self-energy is in
in other words, if its damping rate is much smaller than itsgeneral gauge dependent, it is not when evaluated on the
energy. particles mass shell. For quasiparticles with momenta close
Here we will mainly be concerned with electromagneticto the Fermi momentum, the one-loop self-energy is domi-
plasmas. There is a vast literature on the quasiparticle proprated by a diagram in which the photon is soft. When the
erties in nonrelativistic cold plasm&4]. The same does not photon is soft, it also needs to be dressed to take properly
hold true for the relativistic ones, though. There are twointo account the effects of the medium. This can be done by
main differences in these two energy regimes of a plasma. lnsing the resummation techniques proposed by Braaten and
the nonrelativistic domain, the electric interactions are domi-Pisarski [7], and considering hard thermal loop photon
nant, while the magnetic ones are suppressed by a fact@ropagators, or hard dense logDL) ones for the ultrade-
generate casf8]. We first compute the on-shell imaginary
part of the one-loop self-energy for electrons and positrons,
*Email address: Cristina.Manuel@cern.ch which can be interpreted in terms of their scattering with
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particles of the Fermi sea, via an exchange of a soft photorand the upper or lower subscripts refer to electrons or posi-
The on-shell real part of the self-energy can be reconstructetions, respectively.
from the on-shell imaginary part, just by using a Kramers- Every energy eigenstate can be projected onto states of
Kroning relation. given helicity, with the projectors

This paper is structured as follows. Section Il introduces
the notation of the paper. We work in natural unitss 7
=kg=1, unless otherwise stated. In Sec. Ill A we compute
the on-shell one-loop self-energy of the fermion. We take the
nonrelativistic limit of our results in Sec. Il B, and conclude In principle, the most general structure of the one-loop self-
in Sec. IV. In Appendix A the spectral functions of the HDL energy contains four unknown functions, according to the

1% ¥5Y0y P

P=(p)= >

®

photon propagators are given fog #c, and in Appendix B
Luttinger’'s theorem is recalled.

II. DISPERSION RELATIONS FOR THE
QUASIPARTICLES

energies and helicities of the quasiparticles. However, the
effects which will be discussed in this paper do not depend
on the helicity of the quasiparticles, and thus we would not
explicitly take into account the helicity projectors.

The value of the one-loop self-enerdyis gauge depen-
dent. However, when it is evaluated on the particles mass

We consider a plasma with a finite density of electronsghel|, it should be gauge independent. This is so because the

characterized by a chemical potential In order to guaran-

poles of Eq.(7) give the physical dispersion relations of

tee its stability, we assume that the electrons are immersed @ectrons and positrons which define their propagation prop-
a uniform background of positive charges, of density equakties in the plasma.

to the average electron density. These background charges The dispersion relations obtained from Ed) are
can be due to positively charged ions, which are very heavy.

In a plasma with chemical potential, the propagation

w.=—u*[E;—ReS.(w.t+iy.,p)], 9

properties of the quasiparticles are modified by medium ef-

fects. The dressed fermion propagats(P), where P
=(pg,p) is the four momentum, obeys the Schwinger-
Dyson equation

SHP)=S ' (P)+X(P), (1)
whereS; s the inverse free propagator
SoH(P)=P +uyo—m, (2)

with P =P*y, andZ(P) is the one-loop self-energy.

ye=FIM2 . (0 +iy.,p), (10)
wherew.. andy.. define the energy and damping rates of the
electrons or positrons, respectively. For the concept of qua-
siparticle to make sense, it is necessary thak w -, so that

the quasiparticles are long lived enough.

In the remaining part of the paper the dispersion relations
for quasiparticles and antiquasiparticles with momentum
close to the Fermi momentum will be studied. In this case,
the dominant contribution to their one-loop self-energy arises
when the photon in the loop is soft, that is, of ordeeyu,

Because of the clear asymmetry between electrons anaheree is the electromagnetic coupling constant. When the
positrons in the electromagnetic plasma, it is convenient tghoton is soft it has also to be dressed, in order to take into
treat them separately, as their propagation properties will baccount properly the medium effects of Debye screening and

modified in different ways. Introducing the positive and
negative energy projectors

. _Ep=(yoy-p+myo)

AP 2Ep ' (3)
whereE,= JpZ+m?, we can rewrite
So H(P)= oA, (Pot+ = Ep)+ v, (Pot et Ep), “
4
3(P)=yoAp 34 (P) = yoA, S _(P). (5)
After inverting Eq.(1) one gets
S(P)=S,(P)A; yo+S-(P)A, 7o, (6)
where
1
S.(P)= (7)

pO+M‘T‘[Ep_2i(P)] ’

Landau damping.

Ill. THE ON-SHELL FERMION SELF-ENERGY
A. Relativistic domain

For a plasma at temperatufeand chemical potentigk,
we compute the one-loop self-enerfyusing the imaginary
time formalism. It is convenient to use the spectral function
representation of the fermion and photon propagators in the
computation. The free fermion propagator is given by

= d K+ K
So(iwmk):J dko (K+m)p(K)

—2m Ko—lwp—p ' (1)

with
pi(K)= Eik[5<ko—Ek>—6<ko+Ek>]. (12)

In Eq. (11), w,=7(2n+1)T is a fermionic Matsubara fre-
quency. Theresummedl photon propagatoA ,,(Q), where
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Q=(iws,q), and ws=27sT is a bosonic Matsubara fre- In Eq. (17), f andf are Bose-Einstein and Fermi-Dirac
qguency, is written in the Coulomb gauge distribution functions = 1/T)

Q,LQV

A, (Q)=8,08,0AL(Q)+ P, ,Ar(Q)+éc f(qo)= (18)

1 ~ 1
eBflo—1" flko=p)= eBlko—m) y 1"
(13

. R . The damping rates for the quasiparticles and antiquasipar-
where P{=(3;-0;0;), a'=qld, =Ps=Pw=0, ticles are thus obtained after multiplying E€L7) by the
and £c is the gauge parameter. The Iong|tud|nal and transcorresponding projectors and taking a Dirac trace, evaluating

verse propagators are written in terms of their spectral functhe final expression on the particles mass Shell
tions

y-=FImZ . (potin 1p)|poon-shell- (19
A(iw ):fxﬁm_i (143)
Li®@s.4 —w2m Qo—iwg g%’ To obtain the damping rate of a quasiparticle one has to
evaluate the imaginary part of its self-energy on the pole of
) * ddy p1(do,q) the dressed propagator. However, up to corrections of order
Ar(iws,q)= oy m- (140 e?, it would be enough to consider the above expressions at

po= = E, as the corrections introduced By. only displace
Analytical expressions fgs,_ 1 can be found iff10,1] for the ~ these poles by an amount proportionale In this case,
case of an ultrarelativistinf= 0) plasma. AfT=0, itis also  after evaluating the Dirac traces we find, wkk-p—q,
possible to derive the spectral functions for: 0 [8]. We 3
present analytical expressions for the spectral functions in y ”e d°q f 2 (ko) f dQO
27

this case in Appendix A. T (2m)®

The one-loop self-energy _
X[1+f(do) — f(ko—m)]16(Po—ko—0do)

d3q
S-S [ 5t 7S(P-Q17.A,u(Q), *{[poko + prk+ Ml (00.)
(15 +2[ poko— (P+8) (k-G) ~ M2 ]pr(Glo, o)} - -
when expressed in terms of the spectral functions, reads (20)
% Equation(20) gives th | ion for the damp-
2T f K K+ quation(20) gives the general expression for the damp
2(iw,p)= E 27r)3 pf( )7l M7y ing rates for any value of, x andm. At very high tempera-

ture, these damping rates are infraf&gl) logarithmic diver-
gent, even after including the screening corrections. This is
due to the soft photon contribution, &6q,)~T/qq for qq
<T. Perturbation theory fails to provide the damping rates at
Q.Q, high T [12]. A nonperturbative treatment to resum the lead-
Se—— (- (16) ing order divergences was proposed 113] to find a nonex-
q ponential decay law for the quasiparticles.
In this paper we are concerned with the ultradegenerate
limit, when T=0. In this case several simplifications occur.
The damping rates are IR finite after the inclusion of the

f“’ % 5#05V0PL(QO,Q)"‘P,TLVPT(QO,Q)
—2m (Qo—iwp)(kg—iotio,—uw)

X[
i 5/105110
q? (ko= Tw+iw,—pu)

The sum over Matsubara frequencies is now easily per-
formed. After analytical continuation w,+ pw—pgtin,

with »—0" to Minkowski space, one can evaluate the on- i d hat h High
shell imaginary part. It is very easy to realize that none of thecreening e ectf9], as opposed to what happens at hig

last two pieces of Eq(16) contribute to this on-shell imagi- ©7 T=0. [1+1(do)]=0(qo), where® is the step func-
nary part. Therefore, the result of the computation is gaugéon. For T=0 the fermion distribution function i (Ey

independent. One finds —u)=0(u—Ey), whileT(—E,—u)=1-TF(Ex+u)=1.
) From this point on, it is convenient to treat separately the
ImX(po+in,p) electron and positron damping rates, as different phase-space
restrictions arise in the two cases. If we concentrate in the
=—e?lm f 2 o pf( ) soft photon region, we can approximate
=Vlp—q/*+m*=E-v-q, (21)

fw dago 1+ f(do) = T(ko— )
X —_— :
,oo2’7T po_ko_q0+|7]

1At this point, one can check that the damping rate of the quasi-
Xy, (K+m)y,[ 8,08 Q) +P! Q)]. point, ping q
7#( )7l 10 v0P1(%o,q) ’“’pT(qo a)] particles does not depend on their helicities, by using the helicity

(17) projectors of Eq(8).
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wherev=p/E is the velocity of the fermion. We thus find from Eg. (23) one deduces that the Fermi sea is stable. We
should point out also the very different contribution to the
energy dependence of, from the electric and magnetic
- dq dg[(® —O(u—E+qp) interactions. The quadratic d.ependence Br ) of vy, can
Y+ 8 Jq softq 9 dal(©(do) (s %) be entirely understood as arising from the short-ranged char-
24 acter of the electric interactions in the plasma, and also the
X{pL(00.q) +v*(1~cos0) pr(do. )}, (228 jhase-space restrictions of electron-electron scattesiag
Appendix B. Magnetic interactions are not short ranged, but
only suffer a weak dynamical screening due to Landau

eZ

2

e
V== f qdgda[O(—qgo){p.(—d9.9) damping. The linear dependence & w) is also a product
8770 Jq soft of Landau damping and phase-space restrictions.
+02(1—co20) pr(— o, )} (22b) We now consider the damping rate of the antiquasipar-

ticle. Let us first stress that for a positron pair annihilation
also contributes to its damping rate. However, this is a pro-
whereqy=qu cosé. cess that occurs at ordet, and it can be computed by taking
The damping rates for the electron and the positron thuthe imaginary part of a two-loop correction to the fermion
only differ in the phase-space restrictions of these two typeself-energy. In a weak-coupling expansion, the damping rate
of particles. One can interpret the above equations as folef the positron is dominated by the scattering of the positron
lows. A particle or antiparticle, with energy E is scattered with the electrons of the Fermi sea. For a positron with ve-
to a state of energy- E,, respectively, creating a particle- locity v~vg, we can evaluate numerically ER2b). The
hole pair. For the electrorng, is forced to be above the only difference with respect to the computationjof comes
Fermi energy, because of Pauli blocking. This last restrictiorfrom the different phase-space restrictions for antifermions,
is absent in the case of the positron. or in other words, the different domain of integration of the
For a quasiparticle with velocity close to the Fermi veloc-integrals. We find at leading order
ity, we can further approximate~v in Eq.(229. From the
fact that the spectral functiong 1 in Egs.(22) are evaluated )
for values ofgi=<q?Z, we see that it is only the part of the v-~M| 55—+ 52
spectral function corresponding to Landau dampiiige
functions B, 1 in Eq. (A7)], that contributes to the integrals. which agrees fovg=1 with the result of Ref[11].
Using the explicit values of spectral densities as given in  The on-shell real part of the self-energy can be obtained
Appendix A, one can evaluate the above integrals numerifrom the general expressiaii6), just by using a principal
cally. Analytical expressions can be obtained for the interestvalue prescription to evaluate the integral after the analytical
ing case|[E—u|<M (so this includes the case of quasi- continuation to Minkowski space is done. However, it is
holes. In this regime we find at leading order much simpler to reconstruct it from the value of the on-shell
imaginary part, using a Kramers-Kroning dispersion relation,
which gives the value of the real part, up to a constant.
(E— )%+ O(|E—ul?), If f.-(w) is an analytic function in the upper or lower

: (24)

e2 2
Ve~ pa | E-alt

64U|Z:M complex plane, respectively, then from the Cauchy theorem,
(23 its real part is given as a function of its imaginary part as
. . . . . PP (> dw'
which generalizes the expressions obtained in R&f4.1] Ref.(w)=+— Imf.(w')+C., (25
for the case vg#1. In the above equationsM N TJ-xw'—w N

=\e’n?ve/w? is the Debye mass. The first terms in the
right-hand side of Eqs(23) are due to scattering processesWhere PP denotes the principal value of the integral along
with exchange of soft magnetic photons, while the second ighe real axis, an€.. is a subtraction constant needed in case
due to the exchange of soft electric ones. As can be seen tfiat f . does not vanish fofw|—o.
magnetic contribution is suppressed with respect to the elec- Since we have computed the damping ratefor values
tric one by a factov2 . Therefore, the electric contribution is |E—x[<M, the only energy domain where the concept of
dominant forvg<1. In the ultrarelativistic limityz=1, the ~ quasiparticle makes sense, we will use the dispersion relation
damping rate of the electron is dominated by the magnetiélSing a cutoff which implements this constraint, that is with
contribution. cutoffs A .= =M. We thus find

The damping rate of a quasiparticle, or a quasihole, which
lives close to the Fermi surface can then be expressed as a e? M
power series ifE — u/|. If this parameter is large, thep, is ReX . (E,p)~ReX.(u,p)+ T 2(E—,M)|n|E_M|
large, and the lifetime of these excitations is so short, that it &
does not make sense to talk about quasiparticles or quasi- 2
holes. On the contrary, when the fermion energy approaches + 5
the Fermi energy, its lifetime tends to infinity. In particular, 32mvi

|[E—ul+O(E-w)?. (26
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The value of the energy-independent constant>REE IV. CONCLUSIONS
= u,p), which renormalizes the chemical potential, can only

be determined from the explicit evaluation of E6). : : . . . !
. . . . siparticles and antiquasiparticles with momentum close to
We now use the Kramers-Kroning dispersion relation for : ) s .
the Fermi momentum in a relativistic electromagnetic

the gntlfermlons, also imposing a cutoff in the dlsper'S|on_ lasma, recovering in the nonrelativistic limit the results of

relation that guarantees that the momentum of the particle I%efs [4.5]. As already emphasized in those papers, the long-

not far away from the Fermi momentum. We thus find ranged character of the magnetic interactions spoils the nor-
mal Fermi-liquid behavior of the plasma. This effect is fully

We have derived the one-loop dispersion relations of qua-

e? E 2 dominant when the Fermi velocity: is close to the velocity
ReX (—E,p)~ReX_(—u,p)+ o2 " 3om (n—E) of light. We have also found that the medium modifies in a
™ different way the propagation properties of particles and an-
+O(u—E)?). (27)  tiparticles. This can be simply understood from their differ-

ent phase-space restrictions when they scatter with the elec-
trons of the Fermi sea. We should also emphasize that our
one-loop self-energy of a quark in the high baryonic limit of results are gauge independent. This is because we have com-
QCD has been obtained in the ultrarelativistic limit in Ref. ggtee_?oéheszﬂ:f:rp ;l%;_iin:rgguog_g]:s;ﬂﬁl{ fSr]:f(;tsigﬁny the
[15]. There the same leading logarithmic dependence in the Whilef)we have %oncentra?ed %ur StFl)Jd to QED Ias;mas
energy as in Eq(26) has been found. We should stress hereour results can be easily transported to Q%:D only bF))/ replac:
that this can only be valid for the quark excitations, but not. . . ’
for the antiquarks ones. ing the _elegtromagnetlc coupling constant by the QCD one
and taking into account some additional color factors. In the
superconducting phase of QCD, the dispersion relations of
B. Nonrelativistic limit guarks and antiquarks would be modified in a different way
according to whether or not these form Cooper pairs. The

In this subsection we take the nonrelativisti) limit of di . lation f i ks in th ¢ |
the expressions computed previously, restoring the funda2'SPErsion refation for antiquarks in the présence ot a color

mental constant in the equations. The nr limit corresponds gap has not yet been_ determined, while !t Is still necessary to
to ve<<c. The antiparticles then decouple. In such a case, th nderstand how antiquarks propagate in a color supercon-

contribution from the magnetic sector to the fermion self- ucting medium.
energy is suppressed by a factor(c)? with respect to the
electric sector one. The electric effects are thus dominant. ACKNOWLEDGMENTS
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2_1pp2,.2
quencyw,=3zM“vg

The leading logarithmic behavior of the real part of the

1 \/§ 2 E_,\2c4 APPENDIX A: SPECTRAL FUNCTIONS FOR HDL
Zo ﬂ(_") c 28) PHOTON PROPAGATORS
T 32 o 4"
UF The spectral functiong_ 1 for the resummed propagators
o o _ _ A 1 can be found iff1] for the case of an ultrarelativistic
The relativistic and nonrelativistic chemical potentials dif- (m=0) plasma. In the case of a ultradegenerate plasma, they
fer by the rest mass of the particlg?=uj,+m?c®. For  can also be determined when=0 [8]. For completeness,

p2<m?c?, E=mc+ e, + O(p*/m*c?), wheree, =p?/2m.  we will present them below. In this case, the Debye mass is

Therefore, M2=e?u2ve /w2, wherev is the Fermi velocity, defined as
the ratio between the Fermi momentum and the Fermi en-
1 \/57720)p (€n— pnr)? C* \/5772(0p €ni— i\ 2 ergy, ve=pg/u. The spectral functions _of_ the _resummed
—— — = , HDL propagators are computed from their imaginary part
T 32 m2c* vé 128 Mnr
(29 pL1(do,d)=2IMA| 1(qo+ieq). (A1)
2 These functions can be written in terms of a contribution of

where in the last equality we have usgg,=er=3mug.
The above expression agrees with the computation of th
lifetime of an electron in a nonrelativistic quantum liquid,

the poles of the propagators, plus another one arising from
Bandau damping:

using the random-phase approximati@ee Eq.5.1349 of pL1(do,a)

[4]]. TzZL,T[5(QO_wL,T(Q))_5(‘10"’ w,1(9))]
Since in the nr limit the differenceE— w) — (€nr— pnr)

+0O(p*/m?c?), we also reproduce the dispersion relations +BL.1(00,9)- (A2)

due to magnetic interactions of nonrelativistic electrons com- '

puted in[5]. The polesw,_ 1 are solutions of the dispersion relations
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3wi(a)[wr(q)  wr(d)+veg v2 3
200y — 2 T T IT F94 2 2+2+_’2 24> 202 A5
CHD=" 2 | 20ra Mor@—org 1} Ol AT g )o@ ept guEdn (AS)
0=qg< : A3a) _ _
A max (A3q) The functionsZ_ 1 are the residues ok 1 evaluated at
wz(q)=q2+w23 w%(q)[ E( vEQ _wT(Q)) their poles, and are given by
T P 2v,2:q2 2\wr(q) veq
o (02— 0202
cpT @ oed Z(a)= - LZ( - Zqu) —, (A6a)
w7(q) —ved]’ 0*(3wp— (0L —vEQ?))
0=q<=, (A3b)
wr(07—vEq?)
Wherew M is the plasma frequency, and Z+(q)= — . i s _
Swpr+(wT+qz)(wT—quz)—Z(uT(wT—qz)
_ 1 | 1+ug 1 1/2M A4 (A6b)
Umax= 20,: nl_l),: ) ( )

in the maximum momentum at which the plasmon can The pole contribution to the spectral functions is only
propagate. The above dispersion relations have to be solvegwnvanishing above the light cone. The Landau damping
numerically. It is possible to obtain analytically the small pieces of the spectral functions are nonvanishing only for

behavior of their solutions. Far<w), qo q? vF and are given by
M?2x 0 (1—x?)
BL(do.q)= Y112 Me5a (A73)
2/ g?+M?3 1- —In =] +—=

202x(1-x%)0(1—x?)

(1-x%)  |x+ 1‘
In

2x |x—1]

B1(9o,9)= (A7b)

M4 Em?x3(1—x2)?’
4

[Zqz(xzvﬁ 1)—M2%2| 1+

wherex=qq/quE .

APPENDIX B: LUTTINGER’'S THEOREM

The dependence ofE¢ 1)? of the damping rate of a fermion with energy abgvean be understood completely as arising
from phase-space restrictions of fermion-fermion scattering, in the case where the interactions are short-ranged and repulsive.
The argument, due to Lutting¢t4], is simple. We present it below. Let us consider the decay rate of a fermion with energy
E which interacts with a fermion with enerdy, inside the Fermi sea. As a result, two new particles appear, with en&gies
andE, , respectively, which are outside the Fermi sea. The total decay rate is then given by

3n 3 37
=1 fdp a- @u Ep ))f(dk O(u— Ek)f d*k (1-0(u- Ek))(277)45(4)(P+K—P’—K’)|M|2,

(2m)3 2By (2m)3 2E,
(B1)
where| M|? is the scattering matrix element squared. After performingpth@ntegral
2m dsk O(pu—E [ &K' [1-O(u—E)] [1-O(u—Epiy )]
['(E)= > oE f - P S(E+Ex—Epskw—Ex)| M2,
(2m) k (277) 2E 2E . k—k
(B2)
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We now make the change of variables © u+(E-p)
F(E)OCJ’ dEkJ dEkr, (BS)
Ex=p—t, BEv=ptte, Eprew=pn+tpik—k, ro(E-p) "
(B3)

where thet; variables are positive quantities. The delta func-
tion of energy conservation imposes and thud"(E) < (E— w)?. A similar argument can be applied

E— =ttty iy (B4) :g;ea quasihole to get the energy dependence of its damping
which is only valid forE— «=0. The maximum value that In the case we studied in this paper, the electric interac-

each one of the variablggs can achieve i€ — u, while the  tions can be considered as short ranged, because of Debye
minimum is zero. Using the energies of the particles as intescreening; they thus give a contribution to the damping rate
gration variables, we see that the integration is always permf electrons as expected from Luttinger's theorem. The
formed over an energy shell of thickneEs-u. If E—pu above arguments fail in the case of magnetic interactions, as
< pu, then the values of the energy variables inside the intethose are not short ranged, but rather suffer a weak dynami-
gral can be substituted by the Fermi energy. One then finallgal screening, where the energies themselves play the role of
reaches infrared cutoffs in the above integrals.
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