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Dispersion relations in ultradegenerate relativistic plasmas

Cristina Manuel*
Theory Division, CERN, CH-1211 Geneva 23, Switzerland
~Received 15 May 2000; published 12 September 2000!

The propagation of excitation modes in a relativistic ultradegenerate plasma is modified by their interactions
with the medium. These modifications can be computed by evaluating their on-shell self-energy, which gives
~gauge-independent! dispersion relations. For modes with momentum close to the Fermi momentum, the
one-loop fermion self-energy is dominated by a diagram with a soft photon in the loop. We find the one-loop
dispersion relations for quasiparticles and antiquasiparticles, which behave differently as a consequence of
their very different phase-space restrictions when they scatter with the electrons of the Fermi sea. In a rela-
tivistic system, the unscreened magnetic interactions spoil the normal Fermi-liquid behavior of the plasma. For
small values of the Fermi velocity, we recover the nonrelativistic dispersion relations of condensed-matter
systems.

PACS number~s!: 11.10.Wx, 12.20.Ds, 12.38.Mh, 52.60.1h
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I. INTRODUCTION

The study of hot relativistic plasmas is nowadays a v
active field of research@1#. This is due to the existence o
experimental programs to test the existence of the qu
gluon plasma phase of QCD. The physics of some as
physical settings, such as those of neutron stars and sup
vas, also requires knowledge of a different regime
relativistic plasmas, less hot but still very dense. This c
and ultradegenerate regime of QED and QCD has been m
less explored. However, the fact that matter at very h
baryonic densities behaves as a color superconductor
given us a strong motivation to study ultradegenerate rela
istic plasmas, as several new phenomena occur in this p
of QCD ~see@2# and @3#, and references therein!.

One of the central concepts in a plasma is that of a q
siparticle. A particle immersed in a medium modifies
propagation properties by interacting with the surround
medium. In field-theoretical language, we would say that
particle is ‘‘dressed’’ by a self-energy cloud. In the ultrad
generate plasma the relevant degrees of freedom are tho
quasiparticles or quasiholes~absences of particles in th
Fermi sea! living close to the Fermi surface. Because of t
exclusion principle, quasiparticles or quasiholes can o
live if they are outside or inside the Fermi sea, respectiv
These excitations tend to lower their energy by undergo
collisions with the particles in the Fermi sea. They dec
and thus have a finite lifetime. The concept of quasiparti
however, only makes sense if its lifetime is long enough,
in other words, if its damping rate is much smaller than
energy.

Here we will mainly be concerned with electromagne
plasmas. There is a vast literature on the quasiparticle p
erties in nonrelativistic cold plasmas@4#. The same does no
hold true for the relativistic ones, though. There are t
main differences in these two energy regimes of a plasma
the nonrelativistic domain, the electric interactions are do
nant, while the magnetic ones are suppressed by a fa
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(v/c)2, wherev is the velocity of the particle, andc is the
velocity of light. Thus, magnetic interactions start to be r
evant only when quasiparticles are fast enough or, in ot
words, when the Fermi velocityvF approaches the velocity
of light. This is an important difference, as electric intera
tions are not long ranged in the medium, because of De
screening, while magnetic interactions are. The relevanc
this last point has already been stressed in the conden
matter literature@5#, just noticing that magnetic interaction
spoil the normal Fermi-liquid behavior of the plasma. T
second main difference is due to the fact that in a relativis
plasma there are also antiparticle excitations. Their contri
tion to any physical process is in general suppressed, sin
takes more energy to excite an antiparticle than a particle
the Fermi-Dirac sea. Nevertheless, in the context of the c
flavor-locking phase of QCD@6#, some of the properties o
the antiparticles determine the mass spectrum of the G
stone modes which arise from the spontaneous breakin
chiral symmetry, so those cannot be neglected.

In this paper we study the quasiparticle and antiquasip
ticle dispersion relations in a full relativistic framework, ge
eralizing the results of a previous publication@9# to the case
where the Fermi velocityvFÞc. We can thus explore all the
energy domains of the system, and in particular, we can t
the nonrelativistic limitvF!c, and match the results ob
tained in the condensed-matter literature@4,5#. The disper-
sion relations are obtained by computing the on-shell o
loop self-energy. While the one-loop self-energy is
general gauge dependent, it is not when evaluated on
particles mass shell. For quasiparticles with momenta cl
to the Fermi momentum, the one-loop self-energy is do
nated by a diagram in which the photon is soft. When
photon is soft, it also needs to be dressed to take prop
into account the effects of the medium. This can be done
using the resummation techniques proposed by Braaten
Pisarski @7#, and considering hard thermal loop photo
propagators, or hard dense loop~HDL! ones for the ultrade-
generate case@8#. We first compute the on-shell imaginar
part of the one-loop self-energy for electrons and positro
which can be interpreted in terms of their scattering w
©2000 The American Physical Society09-1
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CRISTINA MANUEL PHYSICAL REVIEW D 62 076009
particles of the Fermi sea, via an exchange of a soft pho
The on-shell real part of the self-energy can be reconstru
from the on-shell imaginary part, just by using a Krame
Kroning relation.

This paper is structured as follows. Section II introduc
the notation of the paper. We work in natural units,c5\
5kB51, unless otherwise stated. In Sec. III A we compu
the on-shell one-loop self-energy of the fermion. We take
nonrelativistic limit of our results in Sec. III B, and conclud
in Sec. IV. In Appendix A the spectral functions of the HD
photon propagators are given forvFÞc, and in Appendix B
Luttinger’s theorem is recalled.

II. DISPERSION RELATIONS FOR THE
QUASIPARTICLES

We consider a plasma with a finite density of electro
characterized by a chemical potentialm. In order to guaran-
tee its stability, we assume that the electrons are immerse
a uniform background of positive charges, of density eq
to the average electron density. These background cha
can be due to positively charged ions, which are very hea

In a plasma with chemical potentialm, the propagation
properties of the quasiparticles are modified by medium
fects. The dressed fermion propagatorS(P), where P
5(p0 ,p) is the four momentum, obeys the Schwinge
Dyson equation

S21~P!5S0
21~P!1S~P!, ~1!

whereS0
21 is the inverse free propagator

S0
21~P!5P” 1mg02m, ~2!

with P” 5Pmgm andS(P) is the one-loop self-energy.
Because of the clear asymmetry between electrons

positrons in the electromagnetic plasma, it is convenien
treat them separately, as their propagation properties wil
modified in different ways. Introducing the positive an
negative energy projectors

Lp
65

Ep6~g0g•p1mg0!

2Ep
, ~3!

whereEp5Ap21m2, we can rewrite

S0
21~P!5g0Lp

1~p01m2Ep!1g0Lp
2~p01m1Ep!,

~4!

S~P!5g0Lp
1S1~P!2g0Lp

2S2~P!. ~5!

After inverting Eq.~1! one gets

S~P!5S1~P!Lp
1g01S2~P!Lp

2g0 , ~6!

where

S6~P!5
1

p01m7@Ep2S6~P!#
, ~7!
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and the upper or lower subscripts refer to electrons or p
trons, respectively.

Every energy eigenstate can be projected onto state
given helicity, with the projectors

P 6~p!5
16g5g0g•p̂

2
. ~8!

In principle, the most general structure of the one-loop s
energy contains four unknown functions, according to
energies and helicities of the quasiparticles. However,
effects which will be discussed in this paper do not depe
on the helicity of the quasiparticles, and thus we would n
explicitly take into account the helicity projectors.

The value of the one-loop self-energyS is gauge depen-
dent. However, when it is evaluated on the particles m
shell, it should be gauge independent. This is so because
poles of Eq.~7! give the physical dispersion relations o
electrons and positrons which define their propagation pr
erties in the plasma.

The dispersion relations obtained from Eq.~7! are

v652m6@Ep2ReS6~v61 ig6 ,p!#, ~9!

g657Im S6~v61 ig6 ,p!, ~10!

wherev6 andg6 define the energy and damping rates of t
electrons or positrons, respectively. For the concept of q
siparticle to make sense, it is necessary thatg6!v6 , so that
the quasiparticles are long lived enough.

In the remaining part of the paper the dispersion relatio
for quasiparticles and antiquasiparticles with moment
close to the Fermi momentum will be studied. In this ca
the dominant contribution to their one-loop self-energy ari
when the photon in the loop is soft, that is, of order;em,
wheree is the electromagnetic coupling constant. When
photon is soft it has also to be dressed, in order to take
account properly the medium effects of Debye screening
Landau damping.

III. THE ON-SHELL FERMION SELF-ENERGY

A. Relativistic domain

For a plasma at temperatureT and chemical potentialm,
we compute the one-loop self-energyS using the imaginary
time formalism. It is convenient to use the spectral functi
representation of the fermion and photon propagators in
computation. The free fermion propagator is given by

S0~ ivn ,k!5E
2`

` dk0

2p

~K” 1m!r f~K !

k02 ivn2m
, ~11!

with

r f~K !5
p

Ek
@d~k02Ek!2d~k01Ek!#. ~12!

In Eq. ~11!, vn5p(2n11)T is a fermionic Matsubara fre
quency. The~resummed! photon propagatorDmn(Q), where
9-2
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Q5( ivs ,q), and vs52psT is a bosonic Matsubara fre
quency, is written in the Coulomb gauge

Dmn~Q!5dm0dn0 DL~Q!1P mn
T DT~Q!1jC

QmQn

q4
,

~13!

where P i j
T 5(d i j 2q̂i q̂ j ), q̂i5qi /uqu, P i0

T 5P 0i
T 5P 00

T 50,
and jC is the gauge parameter. The longitudinal and tra
verse propagators are written in terms of their spectral fu
tions

DL~ ivs ,q!5E
2`

` dq0

2p

rL~q0 ,q!

q02 ivs
2

1

q2 , ~14a!

DT~ ivs ,q!5E
2`

` dq0

2p

rT~q0 ,q!

q02 ivs
. ~14b!

Analytical expressions forrL,T can be found in@10,1# for the
case of an ultrarelativistic (m50) plasma. AtT50, it is also
possible to derive the spectral functions formÞ0 @8#. We
present analytical expressions for the spectral function
this case in Appendix A.

The one-loop self-energy

S~P!5e2T(
s
E d3q

~2p!3 gmS0~P2Q!gnDmn~Q!,

~15!

when expressed in terms of the spectral functions, reads

S~ iv,p!5e2T(
n
E d3q

~2p!3E
2`

` dk0

2p
r f~K ! gm~K” 1m!gn

3H S E
2`

` dq0

2p

dm0dn0rL~q0 ,q!1P mn
T rT~q0 ,q!

~q02 ivn!~k02 iv1 ivn2m! D
2

1

q2

dm0dn0

~k02 iv1 ivn2m!
1jC

QmQn

q4 J . ~16!

The sum over Matsubara frequencies is now easily p
formed. After analytical continuationivn1m→p01 ih,
with h→01 to Minkowski space, one can evaluate the o
shell imaginary part. It is very easy to realize that none of
last two pieces of Eq.~16! contribute to this on-shell imagi
nary part. Therefore, the result of the computation is ga
independent. One finds

Im S~p01 ih,p!

52e2Im E d3q

~2p!3E
2`

` dk0

2p
r f~K !

3E
2`

` dq0

2p

11 f ~q0!2 f̃ ~k02m!

p02k02q01 ih

3gm~K” 1m!gn@dm0dn0rL~q0 ,q!1P mn
T rT~q0 ,q!#.

~17!
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In Eq. ~17!, f and f̃ are Bose-Einstein and Fermi-Dira
distribution functions (b51/T)

f ~q0!5
1

ebq021
, f̃ ~k02m!5

1

eb(k02m)11
. ~18!

The damping rates for the quasiparticles and antiquasi
ticles are thus obtained after multiplying Eq.~17! by the
corresponding projectors and taking a Dirac trace, evalua
the final expression on the particles mass shell1

g657 Im S6~p01 ih ,p!up0 on-shell. ~19!

To obtain the damping rate of a quasiparticle one has
evaluate the imaginary part of its self-energy on the pole
the dressed propagator. However, up to corrections of o
e2, it would be enough to consider the above expression
p056E, as the corrections introduced byS6 only displace
these poles by an amount proportional toe2. In this case,
after evaluating the Dirac traces we find, withk5p2q,

g656
pe2

E E d3q

~2p!3E
2`

` dk0

2p
r f~k0!E

2`

` dq0

2p

3@11 f ~q0!2 f̃ ~k02m!#d~p02k02q0!

3$@p0k01p"k1m2#rL~q0 ,q!

12@p0k02~p"q̂!~k"q̂!2m2#rT~q0 ,q!%up056E .

~20!

Equation~20! gives the general expression for the dam
ing rates for any value ofT, m andm. At very high tempera-
ture, these damping rates are infrared~IR! logarithmic diver-
gent, even after including the screening corrections. Thi
due to the soft photon contribution, asf (q0);T/q0 for q0
!T. Perturbation theory fails to provide the damping rates
high T @12#. A nonperturbative treatment to resum the lea
ing order divergences was proposed in@13# to find a nonex-
ponential decay law for the quasiparticles.

In this paper we are concerned with the ultradegene
limit, when T50. In this case several simplifications occu
The damping rates are IR finite after the inclusion of t
screening effects@9#, as opposed to what happens at highT.
For T50, @11 f (q0)#5Q(q0), whereQ is the step func-
tion. For T50 the fermion distribution function isf̃ (Ek

2m)5Q(m2Ek), while f̃ (2Ek2m)512 f̃ (Ek1m)51.
From this point on, it is convenient to treat separately

electron and positron damping rates, as different phase-s
restrictions arise in the two cases. If we concentrate in
soft photon region, we can approximate

Ek5Aup2qu21m2.E2v•q, ~21!

1At this point, one can check that the damping rate of the qu
particles does not depend on their helicities, by using the heli
projectors of Eq.~8!.
9-3
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CRISTINA MANUEL PHYSICAL REVIEW D 62 076009
wherev5p/E is the velocity of the fermion. We thus find

g1.
e2

8p2vEq soft
qdq dq0@„Q~q0! 2Q~m2E1q0!…

3$rL~q0 ,q!1v2~12cos2u!rT~q0 ,q!%#, ~22a!

g2.2
e2

8p2vEq soft
qdq dq0@Q~2q0!$rL~2q0 ,q!

1v2~12cos2u!rT~2q0 ,q!%#, ~22b!

whereq05qv cosu.
The damping rates for the electron and the positron t

only differ in the phase-space restrictions of these two ty
of particles. One can interpret the above equations as
lows. A particle or antiparticle, with energy6E is scattered
to a state of energy6Ek , respectively, creating a particle
hole pair. For the electron,Ek is forced to be above the
Fermi energy, because of Pauli blocking. This last restrict
is absent in the case of the positron.

For a quasiparticle with velocity close to the Fermi velo
ity, we can further approximatev'vF in Eq. ~22a!. From the
fact that the spectral functionsrL,T in Eqs.~22! are evaluated
for values ofq0

2<q2vF
2 , we see that it is only the part of th

spectral function corresponding to Landau damping@the
functionsbL,T in Eq. ~A7!#, that contributes to the integrals
Using the explicit values of spectral densities as given
Appendix A, one can evaluate the above integrals num
cally. Analytical expressions can be obtained for the intere
ing caseuE2mu!M ~so this includes the case of quas
holes!. In this regime we find at leading order

g1;
e2

24p
uE2mu1

e2

64vF
2M

~E2m!21O~ uE2mu3!,

~23!

which generalizes the expressions obtained in Refs.@9,11#
for the case vFÞ1. In the above equationsM
5Ae2m2vF /p2 is the Debye mass. The first terms in th
right-hand side of Eqs.~23! are due to scattering process
with exchange of soft magnetic photons, while the secon
due to the exchange of soft electric ones. As can be seen
magnetic contribution is suppressed with respect to the e
tric one by a factorvF

2 . Therefore, the electric contribution i
dominant forvF!1. In the ultrarelativistic limit,vF51, the
damping rate of the electron is dominated by the magn
contribution.

The damping rate of a quasiparticle, or a quasihole, wh
lives close to the Fermi surface can then be expressed
power series inuE2mu. If this parameter is large, theng1 is
large, and the lifetime of these excitations is so short, tha
does not make sense to talk about quasiparticles or qu
holes. On the contrary, when the fermion energy approac
the Fermi energy, its lifetime tends to infinity. In particula
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from Eq. ~23! one deduces that the Fermi sea is stable.
should point out also the very different contribution to t
energy dependence ofg1 from the electric and magneti
interactions. The quadratic dependence on (E2m) of g1 can
be entirely understood as arising from the short-ranged c
acter of the electric interactions in the plasma, and also
phase-space restrictions of electron-electron scattering~see
Appendix B!. Magnetic interactions are not short ranged, b
only suffer a weak dynamical screening due to Land
damping. The linear dependence on (E2m) is also a product
of Landau damping and phase-space restrictions.

We now consider the damping rate of the antiquasip
ticle. Let us first stress that for a positron pair annihilati
also contributes to its damping rate. However, this is a p
cess that occurs at ordere4, and it can be computed by takin
the imaginary part of a two-loop correction to the fermio
self-energy. In a weak-coupling expansion, the damping
of the positron is dominated by the scattering of the posit
with the electrons of the Fermi sea. For a positron with v
locity v'vF , we can evaluate numerically Eq.~22b!. The
only difference with respect to the computation ofg1 comes
from the different phase-space restrictions for antifermio
or in other words, the different domain of integration of th
integrals. We find at leading order

g2;e2M S vF
2

24p
1

1

64D , ~24!

which agrees forvF51 with the result of Ref.@11#.
The on-shell real part of the self-energy can be obtain

from the general expression~16!, just by using a principal
value prescription to evaluate the integral after the analyt
continuation to Minkowski space is done. However, it
much simpler to reconstruct it from the value of the on-sh
imaginary part, using a Kramers-Kroning dispersion relati
which gives the value of the real part, up to a constant.

If f 6(v) is an analytic function in the upper or lowe
complex plane, respectively, then from the Cauchy theor
its real part is given as a function of its imaginary part as

Ref 6~v!56
PP

p E
2`

` dv8

v82v
Im f 6~v8!1C` , ~25!

wherePP denotes the principal value of the integral alo
the real axis, andC` is a subtraction constant needed in ca
that f 6 does not vanish foruvu→`.

Since we have computed the damping rateg1 for values
uE2mu!M , the only energy domain where the concept
quasiparticle makes sense, we will use the dispersion rela
using a cutoff which implements this constraint, that is w
cutoffs L65m6M . We thus find

ReS1~E,p!;ReS1~m,p!1
e2

12p2
~E2m!ln

M

uE2mu

1
e2

32pvF
2

uE2mu1O„~E2m!2
…. ~26!
9-4
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DISPERSION RELATIONS IN ULTRADEGENERATE . . . PHYSICAL REVIEW D 62 076009
The value of the energy-independent constant ReS1(E
5m,p), which renormalizes the chemical potential, can o
be determined from the explicit evaluation of Eq.~16!.

We now use the Kramers-Kroning dispersion relation
the antifermions, also imposing a cutoff in the dispers
relation that guarantees that the momentum of the partic
not far away from the Fermi momentum. We thus find

ReS2~2E,p!;ReS2~2m,p!1S e2vF
2

12p2
1

e2

32p D ~m2E!

1O„~m2E!2
…. ~27!

The leading logarithmic behavior of the real part of t
one-loop self-energy of a quark in the high baryonic limit
QCD has been obtained in the ultrarelativistic limit in Re
@15#. There the same leading logarithmic dependence in
energy as in Eq.~26! has been found. We should stress he
that this can only be valid for the quark excitations, but n
for the antiquarks ones.

B. Nonrelativistic limit

In this subsection we take the nonrelativistic~nr! limit of
the expressions computed previously, restoring the fun
mental constantc in the equations. The nr limit correspond
to vF!c. The antiparticles then decouple. In such a case,
contribution from the magnetic sector to the fermion se
energy is suppressed by a factor (vF /c)2 with respect to the
electric sector one. The electric effects are thus dominan

The lifetime of an electront is defined as 1/2g1 . We
neglect the magnetic contribution to the damping rate,
express the electric contribution in terms of the plasma
quencyvp

25 1
3 M2vF

2

1

t
5

A3p2vp

32 S E2m

m D 2 c4

vF
4

. ~28!

The relativistic and nonrelativistic chemical potentials d
fer by the rest mass of the particle,m25mnr

2 1m2c4. For
p2!m2c2, E5mc21enr1O(p4/m4c2), whereenr5p2/2m.
Therefore,

1

t
→

A3p2vp

32

~enr2mnr!
2

m2c4

c4

vF
4

5
A3p2vp

128 S enr2mnr

mnr
D 2

,

~29!

where in the last equality we have usedmnr5eF5 1
2 mvF

2 .
The above expression agrees with the computation of
lifetime of an electron in a nonrelativistic quantum liqui
using the random-phase approximation@see Eq.~5.134c! of
@4##.

Since in the nr limit the difference (E2m)→(enr2mnr)
1O(p4/m4c2), we also reproduce the dispersion relatio
due to magnetic interactions of nonrelativistic electrons co
puted in@5#.
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IV. CONCLUSIONS

We have derived the one-loop dispersion relations of q
siparticles and antiquasiparticles with momentum close
the Fermi momentum in a relativistic electromagne
plasma, recovering in the nonrelativistic limit the results
Refs.@4,5#. As already emphasized in those papers, the lo
ranged character of the magnetic interactions spoils the
mal Fermi-liquid behavior of the plasma. This effect is ful
dominant when the Fermi velocityvF is close to the velocity
of light. We have also found that the medium modifies in
different way the propagation properties of particles and
tiparticles. This can be simply understood from their diffe
ent phase-space restrictions when they scatter with the e
trons of the Fermi sea. We should also emphasize that
results are gauge independent. This is because we have
puted the one-loop self-energy on mass-shell. Off-shell,
one-loop self-energy~16! is a gauge-dependent function.

While we have concentrated our study to QED plasm
our results can be easily transported to QCD, only by rep
ing the electromagnetic coupling constant by the QCD o
and taking into account some additional color factors. In
superconducting phase of QCD, the dispersion relations
quarks and antiquarks would be modified in a different w
according to whether or not these form Cooper pairs. T
dispersion relation for antiquarks in the presence of a co
gap has not yet been determined, while it is still necessar
understand how antiquarks propagate in a color superc
ducting medium.
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APPENDIX A: SPECTRAL FUNCTIONS FOR HDL
PHOTON PROPAGATORS

The spectral functionsrL,T for the resummed propagator
DL,T can be found in@1# for the case of an ultrarelativistic
(m50) plasma. In the case of a ultradegenerate plasma,
can also be determined whenmÞ0 @8#. For completeness
we will present them below. In this case, the Debye mas
M25e2m2vF /p2, wherevF is the Fermi velocity, defined a
the ratio between the Fermi momentum and the Fermi
ergy, vF5pF /m. The spectral functions of the resumme
HDL propagators are computed from their imaginary par

rL,T~q0 ,q!52 ImDL,T~q01 i e,q!. ~A1!

These functions can be written in terms of a contribution
the poles of the propagators, plus another one arising f
Landau damping:

rL,T~q0 ,q!

2p
5ZL,T@d„q02vL,T~q!…2d„q01vL,T~q!…#

1bL,T~q0 ,q!. ~A2!

The polesvL,T are solutions of the dispersion relations
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vL
2~q!5vp

2
3 vT

2~q!

vF
2q2 FvT~q!

2vFq
ln

vT~q!1vFq

vT~q!2vFq
21G ,

0<q,qmax, ~A3a!

vT
2~q!5q21vp

2
3 vT

2~q!

2vF
2q2 F11

1

2 S vFq

vT~q!
2

vT~q!

vFq D
3 ln

vT~q!1vFq

vT~q!2vFqG ,
0<q,`, ~A3b!

wherevp
25 1

3 M2vF
2 is the plasma frequency, and

qmax5S 1

2vF
ln

11vF

12vF
21D 1/2

M , ~A4!

in the maximum momentum at which the plasmon c
propagate. The above dispersion relations have to be so
numerically. It is possible to obtain analytically the smallq
behavior of their solutions. Forq!vp
07600
n
ed

vT
2~q!→vp

21q2S 11
vF

2

5 D , vL
2~q!→vp

21
3

5
vF

2q2. ~A5!

The functionsZL,T are the residues ofDL,T evaluated at
their poles, and are given by

ZL~q!5
vL~vL

22vF
2q2!

q2~3vp
22~vL

22vF
2q2!!

, ~A6a!

ZT~q!5
vT~vT

22vF
2q2!

3vp
2vT

21~vT
21q2!~vT

22vF
2q2!22vT

2~vT
22q2!

.

~A6b!

The pole contribution to the spectral functions is on
nonvanishing above the light cone. The Landau damp
pieces of the spectral functions are nonvanishing only
q0

2<q2vF
2 and are given by
ng
repulsive.
ergy

s

bL~q0 ,q!5
M2 x Q~12x2!

2Fq21M2S 12
x

2
lnUx11

x21U D G
2

1
M4p2x2

4

, ~A7a!

bT~q0 ,q!5
M2 vF

2 x ~12x2!Q~12x2!

F2q2~x2vF
221!2M2x2vF

2 S 11
~12x2!

2x
lnUx11

x21U D G
2

1
M4vF

4p2x2~12x2!2

4

, ~A7b!

wherex5q0 /qvF .

APPENDIX B: LUTTINGER’S THEOREM

The dependence on (E2m)2 of the damping rate of a fermion with energy abovem can be understood completely as arisi
from phase-space restrictions of fermion-fermion scattering, in the case where the interactions are short-ranged and
The argument, due to Luttinger@14#, is simple. We present it below. Let us consider the decay rate of a fermion with en
E which interacts with a fermion with energyEk inside the Fermi sea. As a result, two new particles appear, with energieEk8
andEp8 , respectively, which are outside the Fermi sea. The total decay rate is then given by

G~E!5
1

EE d3p8

~2p!3

„12Q~m2Ep8!…

2Ep8
E d3k

~2p!3

Q~m2Ek!

2Ek
E d3k8

~2p!3

„12Q~m2Ek8!…

2Ek8

~2p!4d (4)~P1K2P82K8!uMu2,

~B1!

whereuMu2 is the scattering matrix element squared. After performing thep8 integral

G~E!5
2p

E E d3k

~2p!3

Q~m2Ek!

2Ek
E d3k8

~2p!3

@12Q~m2Ek8!#

2Ek8

@12Q~m2Ep1k2k8!#

2Ep1k2k8

d~E1Ek2Ep1k2k82Ek8!uMu2.

~B2!
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We now make the change of variables

Ek5m2tk , Ek85m1tk8 , Ep1k2k85m1tp1k2k8 ,
~B3!

where thet i variables are positive quantities. The delta fun
tion of energy conservation imposes

E2m5tk1tk81tp1k2k8 , ~B4!

which is only valid forE2m>0. The maximum value tha
each one of the variablest i can achieve isE2m, while the
minimum is zero. Using the energies of the particles as in
gration variables, we see that the integration is always p
formed over an energy shell of thicknessE2m. If E2m
!m, then the values of the energy variables inside the in
gral can be substituted by the Fermi energy. One then fin
reaches
.
in

.
,

07600
-

-
r-

-
ly

G~E!}E
m2(E2m)

m

dEkE
m

m1(E2m)

dEk8 , ~B5!

and thusG(E)}(E2m)2. A similar argument can be applie
for a quasihole to get the energy dependence of its dam
rate.

In the case we studied in this paper, the electric inter
tions can be considered as short ranged, because of D
screening; they thus give a contribution to the damping r
of electrons as expected from Luttinger’s theorem. T
above arguments fail in the case of magnetic interactions
those are not short ranged, but rather suffer a weak dyna
cal screening, where the energies themselves play the ro
infrared cutoffs in the above integrals.
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