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Abstract
We discuss issues of QCD at the LHC including parton distributions, Monte
Carlo event generators, the available next-to-leading order calculations, re-
summation, photon production, smallx physics, double parton scattering, and
backgrounds to Higgs production.

1. INTRODUCTION

It is well known that precision QCD calculations and their experimental tests at a proton–proton col-
lider are inherently difficult. “Unfortunately”, essentially all physics aspects of the LHC, from particle
searches beyond the Standard Model (SM) to electroweak precision measurements and studies of heavy
quarks are connected to the interactions of quarks and gluons at large transferred momentum. An optimal
exploitation of the LHC is thus unimaginable without the solid understanding of many aspects of QCD
and their implementation in accurate Monte Carlo programs.

This review on QCD aspects relevant for the LHC gives an overview of today’s knowledge, of
ongoing theoretical efforts and of some experimental feasibility studies for the LHC. More aspects related
to the experimental feasibility and an overview of possible measurements, classified according to final
state properties, can be found in Chapter 15 of Ref. [1]. It was impossible, within the time-scale of
this Workshop, to provide accurate and quantitative answers to all the needs for LHC measurements.
Moreover, owing to the foreseen theoretical and experimental progress, detailed quantitative studies of
QCD will have necessarily to be updated just before the start of the LHC experimental program. The aim
of this review is to update Ref. [2] and to provide reference work for the activities required in preparation
of the LHC program in the coming years.

Especially relevant for essentially all possible measurements at the LHC and their theoretical in-
terpretation is the knowledge of the parton (quark, anti-quark and gluon) distribution functions (pdf’s),
discussed in Sect. 2. Today’s knowledge about quark and anti-quark distribution functions comes from
lepton-hadron deep-inelastic scattering (DIS) experiments and from Drell-Yan (DY) lepton-pair pro-
duction in hadron collisions. Most information about the gluon distribution function is extracted from
hadron–hadron interactions with photons in the final state. The theoretical interpretation of a large num-
ber of experiments has resulted in various sets of pdf’s which are the basis for cross section predictions
at the LHC. Although these pdf’s are widely used for LHC simulations, their uncertainties are difficult
to estimate and various quantitative methods are being developed now (see Sects.2.1 − 2.4).

The accuracy of this traditional approach to describe proton–proton interactions is limited by the
possible knowledge of the proton–proton luminosity at the LHC. Alternatively, much more precise in-
formation might eventually be obtained from an approach which considers the LHC directly as a parton–
parton collider at large transferred momentum. Following this approach, the experimentally cleanest
and theoretically best understood reactions would be used to normalize directly the LHC parton–parton



luminosities to estimate various other reactions. Today’s feasibility studies indicate that this approach
might eventually lead to cross section accuracies, due to experimental uncertainties, of about± 1%.
Such accuracies require that in order to profit, the corresponding theoretical uncertainties have to be con-
trolled at a similar level using perturbative calculations and the corresponding Monte Carlo simulations.
As examples, the one-jet inclusive cross section and the rapidity dependence ofW andZ production
are known at next-to-leading order, implying a theoretical accuracy of about 10 %. To improve further,
higher order corrections have to be calculated.

Section 3 addresses the implementation of QCD calculations in Monte Carlo programs, which are
an essential tool in the preparation of physics data analyses. Monte Carlo programs are composed of
several building blocks, related to various stages in the interaction: the hard scattering, the production
of additional parton radiation and the hadronization. Progress is being made in the improvement and
extension of matrix element generators and in the prediction for the transverse momentum distribution in
boson production. Besides the issues of parton distributions and hadronization, another non-perturbative
piece in a Monte Carlo generator is the treatment of the minimum bias and underlying events. One of
the important issue discussed in the section on Monte Carlo generators is the consistent matching of the
various building blocks. More detailed studies on Monte Carlo generators for the LHC will be performed
in a foreseen topical workshop.

The status of higher order calculations and prospects for further improvements are presented in
Sect. 4. As mentioned earlier, one of the essential ingredients for improving the accuracy of theoretical
predictions is the availability of higher order corrections. For almost all processes of interest, containing
a (partially) hadronic final state, the next-to-leading order (NLO) corrections have been computed and
allow to make reliable estimates of production cross sections. However, to obtain an accurate estimate
of the uncertainty, the calculation of the next-to-next-to-leading order (NNLO) corrections is needed.
These calculations are extremely challenging and once performed, they will have to be matched with a
corresponding increase in accuracy in the evolution of the pdf’s.

Section 5 discusses the summations of logarithmically enhanced contributions in perturbation the-
ory. Examples of such contributions occur in the inclusive production of a final-state system which
carries a large fraction of the available center-of-mass energy (“threshold resummation”) or in case of
the production of a system with high mass at small transverse momentum (“pT resummation”). In case of
threshold resummations, the theoretical calculations for most processes of interest have been performed
at next-to-leading logarithmic accuracy. Their importance is two-fold: firstly, the cross sections at LHC
might be directly affected; secondly, the extraction of pdf’s from other reactions might be influenced and
thus the cross sections at LHC are modified indirectly. For transverse momentum resummations, two
analytical methods are discussed.

The production of prompt photons (as discussed in Sect. 6) can be used to put constraints on the
gluon density in the proton and possibly to obtain measurements of the strong coupling constant at LHC.
The definition of a photon usually involves some isolation criteria (against hadrons produced close in
phase space). This requirement is theoretically desirable, as it reduces the dependence of observables on
the fragmentation contribution to photon production. At the same time, it is useful from the experimental
point of view as the background due to jets faking a photon signature can be further reduced. A new
scheme for isolation is able to eliminate the fragmentation contribution.

In Sect. 7 the issue of QCD dynamics in the region of smallx is discussed. For semi-hard strong
interactions, which are characterized by two large, different scales, the cross sections contain large loga-
rithms. The resummation of these at leading logarithmic (LL) accuracy can be performed by the BFKL
equation. Available experimental data are however not described by the LL BFKL, indicating the present
of large sub-leading contributions and the need to include next-to-leading corrections. Studies of QCD
dynamics in this regime can be made not only by using inclusive observables, but also through the study
of final state properties. These include the production of di-jets at large rapidity separation (studying the
azimuthal decorrelation between the two jets) or the production of mini-jets (studying their multiplicity).



An important topic at the LHC is multiple (especially double) parton scattering (described in
Sect. 8), i.e. the simultaneous occurrence of two independent hard scattering in the same interaction.
Extrapolations to LHC energies, based on measurements at the Tevatron show the importance of taking
this process into account when small transverse momenta are involved. Manifestations of double parton
scattering are expected in the production of four jet final states and in the production of a lepton in
association with twob-quarks (where the latter is used as a final state for Higgs searches).

The last section (Sect. 9) addresses the issue of the present knowledge of background for Higgs
searches, for final states containing two photons or multi-leptons. For the case of di-photon final states
(used for Higgs searches with90 < mH < 140 GeV), studies of the irreducible background are per-
formed by calculating the (single and double) fragmentation contributions to NLO accuracy and by
studying the effects of soft gluon emission. The production of rare five lepton final states could provide
valuable information on the Higgs couplings formH > 200 GeV, awaiting further studies on improving
the understanding of the backgrounds.

During the workshop, no studies of diffractive scattering at the LHC have been performed. This
topic is challenging both from the theoretical and the experimental point of view. The study of diffractive
processes (with a typical signature of a leading proton and/or a large rapidity gap) should lead to an im-
proved understanding of the transition between soft and hard process and of the non-perturbative aspects
of QCD. From the experimental point of view, the detection of leading protons in the LHC environment
is challenging and requires adding additional detectors to ATLAS and CMS. If hard diffractive scattering
(leading proton(s) together with e.g. jets as signature for a hard scattering) is to be studied with decent
statistical accuracy at largepT , most of the luminosity delivered under normal running conditions has
to be utilized. A few more details can be found in Chapter 15 of Ref. [1], some ideas for detectors in
Ref. [3]. Much more work remains to be done, including a detailed assessment of the capabilities of the
additional detectors.

1.1 Overview of QCD tools

All of the processes to be investigated at the LHC involve QCD to some extent. It cannot be otherwise,
since the colliding quarks and gluons carry the QCD color charge. One can use perturbation theory to
describe the cross section for an inclusive hard-scattering process,

h1(p1) + h2(p2) → H(Q, {. . .}) +X . (1)

Here the colliding hadronsh1 andh2 have momentap1 and p2, H denotes the triggered hard probe
(vector bosons, jets, heavy quarks, Higgs bosons, SUSY particles and so on) andX stands for any
unobserved particles produced by the collision. The typical scaleQ of the scattering process is set by
the invariant mass or the transverse momentum of the hard probe and the notation{. . .} stands for any
other measured kinematic variable of the process. For example, the hard process may be the production
of aZ boson. ThenQ = MZ and we can take{. . .} = y, wherey is the rapidity of theZ boson. One
can also measure the transverse momentumQT of the theZ boson. Then the simple analysis described
below applies ifQT ∼ MZ . In the casesQT � MZ andMZ � QT , there are two hard scales in the
process and a more complicated analysis is needed. The caseQT �MZ is of particular importance and
is discussed in Sects. 3.3, 3.4 and 5.3.

The cross section for the process (1) is computed by using the factorization formula [4,5]

σ(p1, p2;Q, {. . .}) =
∑
a,b

∫
dx1 dx2 fa/h1

(x1, Q
2) fb/h2

(x2, Q
2) σ̂ab(x1p1, x2p2;Q, {. . .};αS(Q))

+ O ((ΛQCD/Q)p) . (2)

Here the indicesa, b denote parton flavors,{g, u, ū, d, d̄, . . .}. The factorization formula (2) involves
the convolution of the partonic cross sectionσ̂ab and the parton distribution functionsfa/h(x,Q2) of



the colliding hadrons. The termO ((ΛQCD/Q)p) on the right-hand side of Eq. (2) generically denotes
non-perturbative contributions (hadronization effects, multiparton interactions, contributions of the soft
underlying event and so on).

Evidently, the pdf’s are of great importance to making predictions for the LHC. These functions
are determined from experiments. Some of the issues relating to this determination are discussed in
Sect. 2. In particular, there are discussions of the question of error analysis in the determination of the
pdf’s and there is a discussion of the prospects for determining the pdf’s from LHC experiments.

The partonic cross section̂σab is computable as a power series expansion in the QCD coupling
αS(Q):

σ̂ab(p1, p2;Q, {. . .};αS(Q)) = αk
S(Q)

{
σ̂

(LO)
ab (p1, p2;Q, {. . .})

+αS(Q) σ̂(NLO)
ab (p1, p2;Q, {. . .})

+α2
S(Q) σ̂(NNLO)

ab (p1, p2;Q, {. . .}) + · · ·
}
. (3)

The lowest (or leading) order (LO) term̂σ(LO) gives only a rough estimate of the cross section. Thus
one needs the next-to-leading order (NLO) term, which is available for most cases of interest. A list of
the available calculations is given in Sect. 4.1. Cross sections at NNLO are not available at present, but
the prospects are discussed in Sect. 4.2.

The simple formula (2) applies when the cross section being measured is “infrared safe.” This
means that the cross section does not change if one high energy strongly interacting light particle in
the final state divides into two particles moving in the same direction or if one such particle emits a
light particle carrying very small momentum. Thus in order to have a simple theoretical formula one
does not typically measure the cross section to find a single high-pT pion, say, but rather one measures
the cross section to have a collimated jet of particles with a given total transverse momentumpT . If,
instead, a single high-pT pion (or, more generally, a high-pT hadronH) is measured, the factorization
formula has to include an additional convolution with the corresponding parton fragmentation function
da/H(z,Q2). An example of a case where one needs a more complicated treatment is the production of
high-pT photons. This case is discussed in Sect. 6.

As an example of a NLO calculation, we display in Fig. 1 the predicted cross sectiondσ/dET dy at
the LHC for the inclusive production of a jet with transverse energyET and rapidityy averaged over the
rapidity interval−1 < y < 1. The calculation uses the program in Ref. [6] and the pdf set CTEQ5M [7].
As mentioned above, the “jets” must be defined with an infrared safe algorithm. Here we use thekT

algorithm [8,9] with a joining parameterR = 1. ThekT algorithm has better theoretical properties than
the cone algorithm that has often been used in hadron collider experiments.

In Eq. (2) there are integrations over the parton momentum fractionsx1 andx2. The values of
x1 andx2 that dominate the integral are controlled by the kinematics of the hard-scattering process. In
the case of the production of a heavy particle of massM and rapidityy, the dominant values of the
momentum fractions arex1,2 ∼ (Me±y)/

√
s, wheres = (p1 + p2)2 is the square of the centre-of-mass

energy of the collision. Thus, varyingM andy at fixed
√
s, we are sensitive to partons with different

momentum fractions. Increasing
√
s the pdf’s are probed in a kinematic range that extends towards larger

values ofQ and smaller values ofx1,2. This is illustrated in Fig. 2. At the LHC,x1,2 can be quite small.
Thus smallx effects that go beyond the simple formula (2) could be important. These are discussed in
Sect. 7.

In Fig. 3 we plot NLO cross sections for a selection of hard processes versus
√
s. The curves for

the lower values of
√
s are forpp̄ collisions, as at the Tevatron, while the curves for the higher values

of
√
s are forpp collisions, as at the LHC. An approximation (based on an extrapolation of a standard

Regge parametrization) to the total cross section is also displayed. We see that the cross sections for
production of objects with a fixed mass or jets with a fixed transverse energyET rise with

√
s. This is



Fig. 1: Jet cross section at the LHC, averaged over the rapidity interval−1 < y < 1. The cross section is calculated at NLO

using CTEQ5M partons with the renormalization and factorization scales set toµR = µF = ET /2. Representative values at

ET =0.5, 1, 2, 3 and 4 TeV are(6.2× 103, 8.3× 101, 4.0× 10−1, 5.1× 10−3, 5.9× 10−5) fb/GeV with about 3% statistical

errors.

because the importantx1,2 values decrease, as discussed above, and there are more partons at smallerx.
On the other hand, cross sections for jets with transverse momentum that is a fixed fraction of

√
s fall

with
√
s. This is (mostly) because the partonic cross sectionsσ̂ fall with ET like E−2

T .

The perturbative evaluation of the factorization formula (2) is based on performing power series
expansions in the QCD couplingαS(Q). The dependence ofαS on the scaleQ is logarithmic and it is
given by the renormalization group equation [4]

Q2dαS(Q)
dQ2

= β(αS(Q)) = −b0 α2
S(Q) − b1 α

3
S(Q) + · · · , (4)

where the first two perturbative coefficients are

b0 =
33 − 2Nf

12π
, b1 =

153 − 19Nf

24π2
, (5)

andNf is the number of flavours of light quarks (quarks whose mass is much smaller than the scaleQ).
The third and fourth coefficientsb2 andb3 of theβ-function are also known [11,12]. If we include only
the LO term, Eq. (4) has the exact analytical solution

αS(Q) =
1

b0 ln(Q2/Λ2
QCD)

, (6)

where the integration constantΛQCD fixes the absolute size of the QCD coupling. From Eq. (6) we can
see that a change of the scaleQ by an arbitrary factor of order unity (say,Q→ Q/2) induces a variation
in αS that is of the order ofα2

S. This variation in uncontrollable because it is beyond the accuracy at
which Eq. (6) is valid. Therefore, in LO of perturbation theory the size ofαS is not unambiguously
defined.

The QCD couplingαS(Q) can be precisely defined only starting from the NLO in perturbation
theory. To this order, the renormalization group equation (4) has no exact analytical solution. Different
approximate solutions can differ by higher-order corrections and some (arbitrary) choice has to be made.
Different choices can eventually be related to the definition of different renormalization schemes. The
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most popular choice [13] is to use theMS-scheme to define renormalization and then to use the following
approximate solution of the two loop evolution equation to defineΛQCD:

αS(Q) =
1

b0 ln(Q2/Λ2

MS
)

[
1 −

b1 ln [ ln(Q2/Λ2

MS
)]

b0 ln(Q2/Λ2

MS
)

+ O
(

ln2 [ ln(Q2/Λ2

MS
)]

ln2(Q2/Λ2

MS
)

)]
. (7)

Here the definition ofΛQCD (ΛQCD = ΛMS) is contained in the fact that there is no term proportional

to 1/ ln2(Q2/Λ2
QCD). In this expression there areNf light quarks. Depending on the value ofQ, one

may want to use different values for the number of quarks that are considered light. Then one must match
between different renormalization schemes, and correspondingly change the value ofΛMS as discussed
in Ref. [13]. The constantΛMS is the one fundamental constant of QCD that must be determined from
experiments. Equivalently, experiments can be used to determine the value ofαS at a fixed reference
scaleQ = µ0. It has become standard to chooseµ0 = MZ . The most recent determinations ofαS

lead [13] to the world averageαS(MZ) = 0.119 ± 0.002. In present applications to hadron collisions,
the value ofαS is often varied in the wider rangeαS(MZ) = 0.113 − 0.123 to conservatively estimate
theoretical uncertainties.

The parton distribution functionsfa/h(x,Q2) at any fixed scaleQ are not computable in pertur-
bation theory. However, their scale dependence is perturbatively controlled by the DGLAP evolution
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Fig. 3: Cross sections for hard scattering versus
√
s. The cross section values at

√
s = 14 TeV are:σtot = 99.4 mb, σb =

0.633 mb,σt = 0.888 nb,σW = 187 nb,σZ = 55.5 nb,σH(MH = 150 GeV) = 23.8 pb,σH(MH = 500 GeV) = 3.82 pb,

σjet(E
jet
T > 100 GeV) = 1.57 µb, σjet(E

jet
T >

√
s/20) = 0.133 nb,σjet(E

jet
T >

√
s/4) = 0.10 fb. All except the first of

these are calculated using the latest MRST pdf’s [10].

equation [14–17]

Q2d fa/h(x,Q2)
dQ2

=
∑

b

∫ 1

x

dz

z
Pab(αS(Q2), z) fa/h(x/z,Q2) . (8)

Having determinedfa/h(x,Q2
0) at a given input scaleQ = Q0, the evolution equation can be used to

compute the pdf’s at different perturbative scalesQ and larger values ofx.

The kernelsPab(αS, z) in Eq. (8) are the Altarelli–Parisi (AP) splitting functions. They depend
on the parton flavoursa, b but do not depend on the colliding hadronh and thus they are process-
independent. The AP splitting functions can be computed as a power series expansion inαS:

Pab(αS, z) = αSP
(LO)
ab (z) + α2

SP
(NLO)
ab (z) + α3

SP
(NNLO)
ab (z) + O(α4

S) . (9)

The LO and NLO termsP (LO)
ab (z) andP (NLO)

ab (z) in the expansion are known [18–24]. These first two
terms (their explicit expressions are collected in Ref. [4]) are used in most of the QCD studies. Partial
calculations [25, 26] of the next-to-next-to-leading order (NNLO) termP (NNLO)

ab (z) are also available
(see Sects. 2.5, 2.6 and 4.2).



As in the case ofαS, the definition and the evolution of the pdf’s depends on how many of the
quark flavors are considered to be light in the calculation in which the parton distributions are used.
Again, there are matching conditions that apply. In the currently popular sets of parton distributions
there is a change of definition atQ = M , whereM is the mass of a heavy quark.

The factorization on the right-hand side of Eq. (2) in terms of (perturbative) process-dependent
partonic cross sections and (non-perturbative) process-independent pdf’s involves some degree of arbi-
trariness, which is known as factorization-scheme dependence. We can always ‘re-define’ the pdf’s by
multiplying (convoluting) them by some process-independent perturbative function. Thus, we should
always specify the factorization-scheme used to define the pdf’s. The most common scheme is theMS
factorization-scheme [4]. An alternative scheme, known as DIS factorization-scheme [27], is sometimes
used. Of course, physical quantities cannot depend on the factorization scheme. Perturbative corrections
beyond the LO to partonic cross sections and AP splitting functions are thus factorization-scheme de-
pendent to compensate the corresponding dependence of the pdf’s. In the evaluation of hadronic cross
sections at a given perturbative order, the compensation may not be exact because of the presence of
yet uncalculated higher-order terms. Quantitative studies of the factorization-scheme dependence can be
used to set a lower limit on the size of missing higher-order corrections.

The factorization-scheme dependence is not the only signal of the uncertainty related to the com-
putation of the factorization formula (2) by truncating its perturbative expansion at a given order. Trun-
cation leads to additional uncertainties and, in particular, to a dependence on the renormalization and
factorization scales. The renormalization scaleµR is the scale at which the QCD couplingαS is evalu-
ated. The factorization scaleµF is introduced to separate the bound-state effects (which are embodied
in the pdf’s) from the perturbative interactions (which are embodied in the partonic cross section) of the
partons. In Eqs. (2) and (3) we tookµR = µF = Q. On physical grounds these scales have to be of the
same order asQ, but their value cannot be unambiguously fixed. In the general case, the right-hand side
of Eq. (2) is modified by introducing explicit dependence onµR, µF according to the replacement

fa/h1
(x1, Q

2) fa/h2
(x2, Q

2) σ̂ab(x1p1, x2p2;Q, {. . .};αS(Q))
↓

fa/h1
(x1, µ

2
F ) fa/h2

(x2, µ
2
F ) σ̂ab(x1p1, x2p2;Q, {. . .};µR, µF ;αS(µR)) . (10)

The physical cross sectionσ(p1, p2;Q, {. . .}) does not depend on the arbitrary scalesµR, µF , but parton
densities and partonic cross sections separately depend on these scales. TheµR, µF -dependence of the
partonic cross sections appears in their perturbative expansion and compensates theµR dependence of
αS(µR) and theµF -dependence of the pdf’s. The compensation would be exact if everything could
be computed to all orders in perturbation theory. However, when the quantities entering Eq. (10) are
evaluated at, say, then-th perturbative order, the result exhibits a residualµR, µF -dependence, which is
formally of the(n + 1)-th order. That is, the explicitµR, µF -dependence that still remains reflects the
absence of yet uncalculated higher-order terms. For this reason, the size of theµR, µF dependence is
often used as a measure of the size of at least some of the uncalculated higher-order terms and thus as an
estimator of the theoretical error caused by truncating the perturbative expansion.

As an example, we estimate the theoretical error on the predicted jet cross section in Fig. 1. We
vary the renormalization scaleµR and the factorization scaleµF . In Fig. 4, we plot

∆(µR/ET , µF/ET ) =
〈dσ(µR/ET , µF /ET ) /dET dy〉

〈dσ(0.5, 0.5)/dET dy〉 (11)

versusET for four values of the pair{µR/ET , µF /ET }, namely{0.25, 0.25}, {1.0, 0.25} {0.25, 1.0},
and{1.0, 1.0}. We see about a 10% variation in the cross section. This suggests that the theoretical
uncertainty is at least 10%.

The issue of the scale dependence of the perturbative QCD calculations has received attention in
the literature and various recipes have been proposed to choose ‘optimal’ values ofµ (see the references



Fig. 4: Variation of the jet cross section with renormalization and factorization scale. We show∆ defined in Eq. (11) versus

ET for four choices of{µR/ET , µF /ET }.

in [13]). There is no compelling argument that shows that these ‘optimal’ values reduce the size of
the yet unknown higher-order corrections. These recipes may thus be used to get more confidence on
the central value of the theoretical calculation, but they cannot be used to reduce its theoretical uncer-
tainty as estimated, for instance, by scale variations aroundµ ∼ Q. The theoretical uncertainty ensuing
from the truncation of the perturbative series can only be reduced by actually computing more terms in
perturbation theory.

We have so far discussed the factorization formula (2). We should emphasize that there is another
mode of analysis of the theory available, that embodied in Monte Carlo event generator programs. In
this type of analysis, one is limited (at present) to leading order partonic hard scattering cross sections.
However, one simulates the complete physical process, beginning with the hard scattering and proceeding
through parton showering via repeated one parton to two parton splittings and finally ending with a model
for how partons turn into hadrons. This class of programs, which simulate complete events according to
an approximation to QCD, are very important to the design and analysis of experiments. Current issues
in Monte Carlo event generator and other related computer programs are discussed in Sect. 3.

2. PARTON DISTRIBUTION FUNCTIONS 1

Parton distributions (pdf’s) play a central role in hard scattering cross sections at the LHC. A precise
knowledge of the pdf’s is absolutely vital for reliable predictions for signal and background cross sec-
tions. In many cases, it is the uncertainty in the input pdf’s that dominates the theoretical error on the
prediction. Such uncertainties can arise both from the starting distributions, obtained from a global fit
to DIS, DY and other data, and from DGLAP evolution to the higherQ2 scales typical of LHC hard
scattering processes.

To predict LHC cross sections we will need accurate pdf’s over a wide range ofx andQ2 (see
Fig. 2). Several groups have made significant contributions to the determination of pdf’s both during
and after the workshop. The MRST and CTEQ global analyses have been updated and refined, and
small numerical problems have been corrected. The ‘central’ pdf sets obtained from these global fits
are, not surprisingly, very similar, and remain the best way to estimate central values for LHC cross
sections. Specially constructed variants of the central fits (exploring, for example, different values ofαS

or different theoretical treatments of heavy quark distributions) allow the sensitivity of the cross sections
to some of the input assumptions.

A rigorous and global treatment of pdfuncertaintiesremains elusive, but there has been significant
progress in the last few years, with several groups introducing sophisticated statistical analyses into quasi-
global fits. While some of the more novel methods are still at a rather preliminary stage, it is hoped that
over the next few years they may be developed into useful tools.

One can reasonably expect that by LHC start-up time, the precision pdf determinations will have
improved from NLO to NNLO. Although the complete NNLO splitting functions have not yet been

1Section coordinators: R. Ball, M. Dittmar and W.J. Stirling.
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calculated, several studies have made use of partial information (moments,x→ 0, 1 limiting behaviour)
to assess the impact of the NNLO corrections.

At the same time, accurate measurements of Standard Model (SM) cross sections at the LHC will
further constrain the pdf’s. The kinematic acceptance of the LHC detectors allows a large range ofx
andQ2 to be probed. Furthermore, the wide variety of final states and high parton-parton luminosities
available will allow an accurate determination of the gluon density and flavour decomposition of quark
densities.

All of the above issues are discussed in the individual contributions that follow. Lack of space
has necessarily restricted the amount of information that can be included, but more details can always be
found in the literature.

2.1 MRS: pdf uncertainties andW andZ production at the LHC 2

There are several reasons why it is very difficult to derive overall ‘one sigma’ errors on parton distri-
butions of the formfi ± δfi. In the global fit there are complicated correlations between a particular
pdf at differentx values, and between the different pdf flavours. For example, the charm distribution is
correlated with the gluon distribution, the gluon distribution at lowx is correlated with the gluon at high
x via the momentum sum rule, and so on. Secondly, many of the uncertainties in the input data or fitting
procedure are not ‘true’ errors in the probabilistic sense. For example, the uncertainty in the high–x
gluon in the MRST fits [28] derives from a subjective assessment of the impact of ‘intrinsickT ’ on the
prompt photon cross sections included in the global fit. Despite these difficulties, several groupshave
attempted to extract meaningful±δfi pdf errors (see [29, 30] and Sects. 2.3,2.4). Typically, these anal-
yses focus on subsets of the available DIS and other data, which are statistically ‘clean’, i.e. free from
undetermined systematic errors. As a result, various aspects of the pdf’s that are phenomenologically
important, the flavour structure of the sea and the sea and gluon distributions at largex for example, are
either only weakly constrained or not determined at all.

Faced with the difficulties in trying to formulateglobalpdf errors, one can adopt a more pragmatic
approach to the problem by making a detailed assessment of the pdf uncertainty for aparticular cross
section of interest. This involves determining which partons contribute and at whichx andQ2 values,
and then systematically tracing back to the data sets that constrained the distributions in the global fit.
Individual pdf sets can then be constructed to reflect the uncertainty in the particular partons determined
by a particular data set.

2Contributing authors: A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne.
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We have recently performed such an analysis forW andZ total cross sections at the Tevatron
and LHC [10]. The theoretical technology for calculating these is very robust. The total cross sections
are known to NNLO in QCD perturbation theory [31–33], and the input electroweak parameters (MW,Z ,
weak couplings, etc.) are known to high accuracy. The main theoretical uncertainty therefore derives
from the input pdf’s and, to a lesser extent, fromαS .3

For the hadro-production of a heavy object like aW boson, with massM and rapidityy, leading-
order kinematics givex = M exp(±y)/√s andQ = M . For example, aW boson (M = 80 GeV)
produced at rapidityy = 3 at the LHC corresponds to the annihilation of quarks withx = 0.00028 and
0.11, probed atQ2 = 6400 GeV2. Notice thatu, d quarks with thesex values are already more or less
directly ‘measured’ in deep inelastic scattering (at HERA and in fixed–target experiments respectively),
but at much lowerQ2, see Fig. 2. Therefore the first two important sources of uncertainty in the pdf’s
relevant toW production are

(i) the uncertainty in the DGLAP evolution, which except at highx comes mainly from the gluon and
αS ;

(ii) the uncertainty in the quark distributions from measurement errors on the structure function data
used in the fit.

This is illustrated in Fig. 5.4 Only 75% of the totalW cross section at the LHC arises from the scattering
of u andd (anti)quarks. Therefore also potentially important is

(iii) the uncertainty in the input strange (s) and charm (c) quark distributions, which are relatively
poorly determined at lowQ2 scales.

3The two are of course correlated, see for example [28].
4The ‘feed-down’ error represents a possible anomalously large contribution atx ≈ 1 affecting the evolution at lowerx. It

is not relevant, however, forW production at the Tevatron or LHC.
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In order to investigate these various effects we have constructed ten variants of the standard
MRST99 distributions [10] that probe approximate±1σ variations in the gluon,αS , the overall quark
normalisation, and thes andc pdf’s. The corresponding predictions for theW total cross section at the
LHC are shown in Fig. 6. Evidently the largest variation comes from the effect of varyingαS(M2

Z),
in this case by±0.005 about the central value of0.1175. The higher the value ofαS , the faster the
(upwards) evolution, and the larger the predictedW cross section. The effect of a±2.5% normalisa-
tion error, as parameterised by theq l pdf’s, is also significant. The uncertainties in the inputs andc
distributions get washed out by evolution to highQ2, and turn out to be numerically unimportant.

In conclusion, we see from Fig. 6 that±5% represents a conservative error on the prediction of
σ(W ) at LHC. We arrive at this result without recourse to complicated statistical analyses in the global
fit. It is also reassuring that the latest (corrected) CTEQ5 prediction [7] is very close to the central
MRST99 prediction, see Fig. 8 below. Finally, it is important to stress that the results of our analysis
represent a ‘snap-shot’ of the current situation. As further data are added to the global fit in coming years,
the situation may change. However it is already clear that LHCW andZ cross sections can already be
predicted with high precision, and their measurement will therefore provide a fundamental test of the
SM.

2.2 CTEQ: studies of pdf uncertainties5

Status of Standard Parton Distribution Functions

The widely used pdf sets all have been updated recently, driven mainly by new experimental inputs.
Largely due to differences in the choices of these inputs (direct photon vs. jets) and their theoretical
treatment, the latest MRST [10] and CTEQ [7] distributions have noticeable differences in the gluon
distribution forx > 0.2. Details are described in the original papers.

The accuracy of modern DIS measurements and the expanding(x,Q) range in which pdf’s are
applied require accurate QCD evolution calculations. Previously known differences in the QCD evolution
codes have now been corrected; all groups now agree with established results [34] with good precision.
The differences between updated pdf’s obtained with the improved evolution code and the original ones
are generally small; and the differences between the physical cross sections based on the two versions
of pdf’s are insignificant , by definition, since both have been fitted to the same experimental data sets.
However, accurate predictions for physical processes not included in the global analysis, especially at
values of(x,Q) beyond the current range, can differ and require the improved pdf’s. Figs. 7a,b compare
the pdf sets CTEQ5M (original) and CTEQ5M1 (updated) at scalesQ = 5 and80 GeV respectively.

A comparison of the predictedW production cross sections at the Tevatron and at LHC, using the his-
torical CTEQ parton distribution sets, as well as the most recent MRST sets are given in Figs. 8. We see

5Contributing authors: R. Brock, D. Casey, J. Huston, J. Kalk, J. Pumplin, D. Stump and W.K. Tung.
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that the predicted values ofσW agree very well. However, the spread ofσW from different “best fit” pdf
sets does not give a quantitative measure of the uncertainty ofσW !

Studies of pdf Uncertainties

It is important to quantify the uncertainties of physics predictions due to imprecise knowledge of
the pdf’s at future colliders (such as the LHC): these uncertainties may strongly affect the error estimates
in precision SM measurements as well as the signal and backgrounds for new physics searches.

Uncertainties of the pdf’s themselves are strictly speaking unphysical, since pdf’s are not directly
measurables. They are renormalization and factorization scheme dependent; and there are strong corre-
lations between different flavours and different values ofx which can compensate each other in physics
predictions. On the other hand, since pdf’s are universal, if one can obtain meaningful estimates of their
uncertainties based on global analysis of existing data, they can then be applied to all processes that are
of interest for the future.

An alternative approach is to assess the uncertainties onspecific physical predictionsfor the full
range (i.e. the ensemble) of pdf’s allowed by available experimental constraints which are used in current
global analyses, without explicit reference to the uncertainties of the parton distributions themselves.
This clearly gives more reliable estimates of the range of possible predictions on the physical variable
under study. The disadvantage is that the results are process-specific; hence the analysis has to be carried
out for each process of interest.

In this short report, we present first results from a systematic study of both approaches. In the
next section we focus on theW± production cross section, as a proto-typical case of current interest.
A technique of Lagrange multiplier is incorporated in the CTEQ global analysis to probe its range of
uncertainty at the Tevatron and the LHC. This method is directly applicable to other cross sections of
interest, e.g. Higgs production. We also plan to extend it for studying the uncertainties ofW -mass
measurements in the future. In the following section we describe a Hessian study of the uncertainties of
the non-perturbative pdf parameters in general, followed by application of these to theW± production
cross section study and a comparison of this result with that of the Lagrange-multiplier approach.

First, it is important to note the varioussources of uncertaintyin pdf analysis.

• Statistical errors of experimental data. These vary over a wide range, but are straightforward to treat.

• Systematic experimental errorswithin each data set typically arise from many sources, some of which
are highly correlated. These errors can be treated by standard methodsprovidedthey are precisely known,
which unfortunately is often not the case – either because they are not randomly distributed or their
estimation may involve subjective judgements. Since strict quantitative statistical methods are based
on idealized assumptions, such as random errors, one faces an important trade-off in pdf uncertainty
analysis. If emphasis is put on the “rigor” of the statistical method, then most experimental data sets
can not be included the analysis (see Sect. 2.3). If priority is placed on using the maximal experimental
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constraints from available data, then standard statistical methods need to be supplemented by physical
considerations, taking into account existing experimental and theoretical limitations. We take the latter
tack.

• Theoretical uncertaintiesarise from higher-order PQCD corrections, resummation corrections near the
boundaries of phase space, power-law (higher twist) and nuclear target corrections, etc.

• Uncertainties of pdf’s due to theparametrization of the non-perturbative pdf’s , fa(x,Q2
0), at some

low energy scaleQ0. The specific functional form used introduces implicit correlations between the
variousx-ranges, which could be as important, if not more so, than the experimental correlations in the
determination offa(x,Q2) for all Q.

In view of these considerations, the preliminary results reported here can only be regarded as
the beginning of a continuing effort which will be complex, but certainly very important for the next
generation of collider programs.

The Lagrange multiplier method

Our work uses the standard CTEQ5 analysis tools and results [7] as the starting point. The “best
fit” is the CTEQ5M1 set. There are 15 experimental data sets, with a total of∼ 1300 data points; and
18 parametersai, i = 1, . . . , 18 for the non-perturbative initial parton distributions. A natural way to
find the limits of a physical quantityX, such asσW at

√
s = 1.8 TeV, is to takeX as one of the search

parameters in the global fit and study the dependence ofχ2 for the 15 base experimental data sets onX.

Conceptually, we can think of the functionχ2 that is minimized in the fit as a function of{a1-
a17,X} instead of{a1-a18}. This idea could be implemented directly in principle, but Lagrange’s
method of undetermined multipliers does the same thing in a more efficient way. One minimizes

F (λ) = χ2 + λX(a1, . . . , a18) (12)

for fixedλ. By minimizingF (λ) for many values ofλ, we map outχ2 as a function ofX.

Figs. 9a,b show theχ2 for the 15 base experimental data sets as a function ofσW at the Teva-
tron and the LHC energies respectively. Two curves with points corresponding to specific global fits are
included in each plot6: one obtained with all experimental normalizations fixed; the other with these
included as fitting parameters (with the appropriate experimental errors). We see that theχ2’s for the
best fits corresponding to various values of theW cross section are close to being parabolic, as expected.
Indicated on the plots are 3% and 5% ranges forσW . The two curves for the Tevatron case are far-
ther apart than for LHC, reflecting the fact that theW -production cross section is more sensitive to the
quark/anti-quark distributions and these are tightly constrained by existing DIS data.

The important question is: how large an increase inχ2 should be taken to define the likely range of
uncertainty inX. The elementary statistical theorem that∆χ2 = 1 corresponds to 1 standard deviation

6The third line in Figs. 9a refers to results of the next section.



of the measured quantityX relies on assuming that the errors are Gaussian, uncorrelated, and with
their magnitudes correctly estimated. Because these conditions do not hold for the full data set (of
1300 points from 15 different experiments), this theorem cannot be naively applied quantitatively.7 We
plan to examine in some detail how well the fits along the parabolas shown in Fig.9a,b compare with
the individual precision experiments included in the global analysis, in order to arrive at reasonable
quantitative estimates on the uncertainty range for theW cross section. In the meantime, based on past
(admittedly subjective) experience with global fits, we believe aχ2 difference of 40-50 represents a
reasonable estimate of current uncertainty of parton distributions. This implies that the uncertainty of
σW is about 3% at the Tevatron, and 5% at the LHC. These estimates certainly need to be put on a firmer
basis by the on-going detailed investigation mentioned above.

The Hessian matrix method

The Hessian matrix is a standard procedure for error analysis. At the minimum ofχ2, the first
derivatives with respect to the parametersai are zero, so near the minimumχ2 can be approximated by

χ2 = χ2
0 +

1
2

∑
i,j

Fijyiyj (13)

whereyi = ai − a0i is the displacement from the minimum, andFij is the Hessian, the matrix of
second derivatives. It is natural to define a new set of coordinates using the complete orthonormal set
of eigenvectors of the symmetric matrixFij . These vectors can be ordered by their eigenvaluesei.
The eigenvalues indicate the uncertainties for displacements along the eigenvectors. For uncorrelated
Gaussian statistics, the quantity`i = 1/

√
ei is the distance in the 18 dimensional parameter space that

gives a unit increase inχ2 in the direction of eigenvectori.

From calculations of the Hessian we find the eigenvalues vary over a wide range. There are “steep”
directions ofχ2 – combinations of parameters that are well determined – e.g. parameters foru andd,
which are well-constrained by DIS data. There are also “flat” directions whereχ2 changes little over
large distance inai space, some of them associated with the gluon distribution. These flat directions
are inevitable in global fitting, because as the data improve it makes sense to maintain enough flexibility
for fa(x,Q2

0) to be determined by the available experimental constraints. The Hessian method gives an
analytic picture of the region in parameter space around the minimum, hence allows us to identify the
particular degrees of freedom which need further experimental input in future global analyses.

We have calculated how theW cross sectionσW varies along the eigenvectors of the Hessian.
Details will be described elsewhere. This provides another way to calculate the relation between the
minimum χ2 for the base experimental data sets and the value ofσW . The results are shown as the
third line in Fig. 9a. We see that there is approximate agreement between this method and the Lagrange
multiplier method. Armed with the Hessian, one can in principle make similar calculations on other
physical cross sections without having to do repeated global fits as in the Lagrange multiplier method.
The latter, however, gives more reliable bounds for each individual process.

Conclusion

We have just begun the task of determining quantitative uncertainties for the parton distribution
functions and their physics predictions. The methods developed so far look promising. Related work
reported in this Workshop (see [10, 35–37] and Sects. 2.1,2.3,2.4) share the same objectives, but have
rather different emphases, some of which are briefly mentioned in the text. These complementary ap-
proaches should lead to eventual progress which is critical for the high-energy physics program at LHC,
as well as at other colliders.

7As shown by Gieleet.al.[35], taken literally, only one or two selected experiments satisfy the standard statistical tests.



2.3 Pdf uncertainties8

Introduction

The goal of our work is to extract pdf’s from data with a quantitative estimation of the uncer-
tainties. There are some qualitative tools that exist to estimate the uncertainties, see e.g. [28]. These
tools are clearly not adequate when the pdf uncertainties become important. One crucial example of a
measurement that will need a quantitative assessment of the pdf uncertainty is the planned high precision
measurement of the mass of theW -vector boson at the Tevatron.

The method we have developed in [35] is flexible and can accommodate non-Gaussian distribu-
tions for the uncertainties associated with the data and the fitted parameters as well as all their correla-
tions. New data can be added in the fit without having to redo the whole fit. Experimenters can therefore
include their own data into the fit during the analysis phase, as long as correlation with older data can be
neglected. Within this method it is trivial to propagate the pdf uncertainties to new observables, there is
for example no need to calculate the derivative of the observable with respect to the different pdf param-
eters. The method also provides tools to assess the goodness of the fit and the compatibility of new data
with current fit. The computer code has to be fast as there is a large number of choices in the inputs that
need to be tested.

It is clear that some of the uncertainties are difficult to quantify and it might not be possible to
quantify all of them. All the plots presented here are for illustration of the method only, our results are
preliminary. At the moment we are not including all the sources of uncertainties and our results should
therefore be considered as lower limits on the pdf uncertainties. Note that all the techniques we use are
standard, in the sense that they can be found in books and papers on statistics [38,39] and/or in Numerical
Recipes.

Outline of the Method

We only give a brief overview of the method in this section. More details are available in [35].
Once a set of core experiments is selected, a large number of uniformly distributed sets of parameters
λ ≡ λ1, λ2, . . . , λNpar (each set corresponds to one pdf) can be generated. The probability of each set,
P (λ), can be calculated from the likelihood (the probability) that the predictions based onλ describe the
data, assuming that the initial probability distribution of the parameters is uniform, see [38,39].

Knowing P (λ), the probability of the possible values of any observable (quantity that depends
on λ) can be calculated using a Monte Carlo integration. For example, the average value and the pdf
uncertainty of an observablex are given by:

µx =
∫ Npar∏

i=1

dλi


 x(λ)P (λ), σ2

x =
∫ Npar∏

i=1

dλi


 (x(λ) − µx)2P (λ)

Note that the average value and the standard deviation represents the distribution only if the latter is a
Gaussian. The above is correct but computationally inefficient, instead we use a Metropolis algorithm to
generateNpdf unweighted pdf’s distributed according toP (λ). Then:

µx ≈ 1
Npdf

Npdf∑
j=1

x (λj) , σ2
x ≈ 1

Npdf

Npdf∑
j=1

(x (λj) − µx)2 .

This is equivalent to importance sampling in Monte Carlo integration techniques and is very efficient.
Given the unweighted set of pdf’s, a new experiment can be added to the fit by assigning a weight (a new
probability) to each of the pdf’s, using Bayes’ theorem. The above summations become weighted. There
is no need to redo the whole fitif there is no correlation between the old and new data. If we know how
to calculateP (λ) properly, the only uncertainty in the method comes from the Monte-Carlo integrations.

8Contributing authors: W.T. Giele, S. Keller and D.A. Kosower.



Fig. 10: Plot of the distribution (histogram) of four of the parameters. The first one isαS, the strong coupling constant at the

mass of theZ-boson. The line is a Gaussian distribution with same average and standard deviation as the histogram.

Calculation ofP (λ)
Given a set of experimental points{xe} = xe

1, x
e
2, . . . , x

e
Nobs

the probability of a set of pdf is
proportional to the likelihood, the probability of the data given that the theory is derived from that set
of pdf: P (λ) ≈ P ({xe}|λ). If all the uncertainties are Gaussian distributed, then it is well known that:

P (xe|λ) ≈ e−
χ2

2 , whereχ2 is the usual chi-square. It is only in this case that it is sufficient to report
the size of the uncertainties and their correlation. When the uncertainties are not Gaussian distributed,
it is necessary for experiments to report the distribution of their uncertainties and the relation between
these uncertainties the theory and the value of the measurements. Unfortunately most of the time that
information is not reported, or difficult to extract from papers. This is a very important issue that has
been one of the focus of the pdf working group at a Fermilab workshop in preparation for run II [40].
In other words, experiments should always provide a way to calculate the likelihood of their data given
a theory prediction for each of their measured data point (P ({xe}|λ)). This was also the unanimous
conclusion of a recent workshop on confidence limits held at CERN [41]. This is particularly crucial
when combining different experiments together: the pull of each experiment will depend on it and, as a
result, so will the central values of the deduced pdf’s. Another problem that is sometimes underestimated
is the fact that some if not all systematic uncertainties are in fact proportional to the theory. Ignoring this
fact while fitting for the parameters can lead to serious bias.

Sources of uncertainties

There are many sources of uncertainties beside the experimental uncertainties. They either have
to be shown to be small enough to be neglected or they need to be included in the pdf uncertainties. For
examples: variation of the renormalization and factorization scales; non-perturbative and nuclear binding
effects; the choice of functional form of the input pdf at the initial scale; accuracy of the evolution;
Monte-Carlo uncertainties; and the theory cut-off dependences.

Current fit

Draconian measures were needed to restart from scratch and re-evaluate each issue. We fixed the
renormalization and factorisation scales, avoided data affected by nuclear binding and non-perturbative
effects, and use a MRS-style parametrization for the input pdf’s. The evolution of the pdf is done by
Mellin transform method, see [42, 43]. All the quarks are considered massless. We imposed a positivity
constraint onF2. A positivity constraint on other “observables” could also be imposed.

At the moment we are using H1 and BCDMS(proton) measurement ofF p
2 for our core set. The full

correlation matrix is taken into account.Assuming that all the uncertainties are Gaussian distributed9

we calculate theχ2(λ) andP (λ) ≈ exp(−χ2/2). We generated 50000 unweighted pdf’s according to
the probability function. For 532 data points, we obtained a minimumχ2 = 530 for 24 parameters.
We have plotted in Fig. 10, the probability distribution of some of the parameters. Note that the first

9No information being given about the distribution of the uncertainties.



Fig. 11: The relative uncertainties for selected set of parton luminosities (full lines: experimental errors (stat+syst); short-

dashed lines: RS; dotted-dashed lines: TS; sparse-dotted lines: DC; dense-dotted lines: MC; long-dashed lines: SS). HereLGG

is gluon-gluon luminosity;Lqq = Luu + Ldd + Ldu; Lqq̄ = Lud̄ + Ldū; L(q+q̄)G = LuG + LūG + LdG + Ld̄G.

parameter isαS. The value is smaller than the current world average. However, it is known that the
experiments we are using prefer a lower value of this parameter, see [44], and as already pointed out,
our current uncertainties are lower limits. Note that the distribution of the parameter is not Gaussian,
indicating that the asymptotic region is not reached yet. In this case, the blind use of a so-called chi-
squared fitting technique is not appropriate. From this large set of pdf’s, it is straightforward to plot,
for example, the correlation between different parameters and to propagate the uncertainties to other
observables.

2.4 Uncertainties on pdf’s and parton-parton luminosities10

An important quantity for LHC physics is the uncertainty of pdf’s used for the cross section calculations.
The modern widely used pdf’s parametrizations do not contain complete estimate of their uncertainties.
This estimate is difficult partially due to the lack of experimental information on the data points correla-
tions, partially due to the fact that the theoretical uncertainties are conventional, and partially due to the
fundamental problem of restoring the distribution from the finite number of measurements. These prob-
lems are not completely solved at the moment and a comprehensive estimate of the pdf’s uncertainties
is not available so far. The study given below is based on the NLO QCD analysis of the world charged
leptons DIS data of Refs. [45–51] for proton and deuterium targets11. The analysed data span the region
x = 10−4 ÷ 0.75, Q2 = 2.5÷ 5000 GeV2,W ∼> 2 GeV and allows for precise determination of pdf’s at
low x, which is important for LHC since the most of accessible processes are related to smallx. The data
are accompanied by the information on point-to-point correlations due to systematic errors. This allows
the complete inference of systematic errors, that was performed using the covariance matrix approach, as
in Ref. [36]. The pdf’s uncertainties due to the variation of the strong coupling constantαS and the high
twists (HT) contribution are automatically accounted for in the total experimental uncertainties since
αS and HT are fitted12. Other theoretical errors on pdf’s were estimated as the pdf’s variation after the
change of different fit ansatzes:

RS – the change of renormalization scale in the evolution equations fromQ2 to 4Q2. This uncertainty
is evidently connected with the influence of NNLO corrections.

10Contributing author: S. Alekhin.
11More details of the analysis can be found in Ref. [29].
12The value ofαS(MZ) = 0.1165 ± 0.0017(stat + syst) is obtained, that is compatible with the world average.



Fig. 12: The ratios of the experimental pdf’s errors calculated with some fitted parameters fixed to the pdf’s errors calculated

with all parameters released (αS fixed – a); HT fixed – b)). The similar ratio for the systematic errors omitted/included is also

given – c). Full lines correspond to gluons, dashed ones – to total sea, dotted ones – to d-quarks, dashed-dotted ones – to

u-quarks.

TS – the change of threshold value ofQ2 for the QCD evolution loops with heavy quarks fromm2
Q to

6.5m2
Q. The variation is conventional and was chosen following the arguments of Ref. [52].

DC – the change of correction on nuclear effects in deuterium from the ansatz based on the Fermi mo-
tion model of Ref. [53] to the phenomenological formula from Ref. [54]. Note that this uncertainty
may be overestimated in view of discussions [55,56] on the applicability of the model of Ref. [54]
to light nuclei.

MC – the change of c-quark mass by 0.25 GeV (the central value is 1.5 GeV).

SS – the change of strange sea suppression factor by 0.1, in accordance with recent results by the
NuTeV collaboration [57] (the central value is 0.42).

One can see that the scale of the theoretical errors is conventional and can change with improvements in
the determination of the fit input parameters and progress in theory. Moreover, the uncertainties can be
correlated with the uncertainties of the partonic cross sections, e.g. the effect of RS uncertainty on pdf’s
can be compensated by the NNLO correction to parton cross section. Thus the theoretical uncertainties
should not be applied automatically to any cross section calculations, contrary to experimental ones.

The pdf’s uncertainties have different importance for various processes. The limited space does
not allow us to review all of them. We give the figures for the most generic ones only. The uncertainties
of a specific cross section due to pdf’s are entirely located in the uncertainties of the parton-parton
luminosityLab, that is defined as

Lab(M) =
1
s

∫ 1

τ

dx

x
fa(x,M2)fb(τ/x,M2),

whereM is the produced mass andτ = M2/s. In Fig. 11 the uncertainties for selected set of parton
luminosities calculated using the pdf’s from Ref. [29] are given. The upper bound ofM was chosen so
that the corresponding luminosity is∼ 0.01 pb. One can see that in general atM ∼> 1 TeV experimental
uncertainties dominate, while atM ∼< 1 TeV theoretical ones dominate. Of the latter the most important
are the RS uncertainty for the gluon luminosity and MC uncertainty for the quark luminosities. At the
largestM the DC uncertainty for quark-quark luminosity is comparable with the experimental one. In
the whole the uncertainties do not exceed 10% atM ∼< 1 TeV. As for the quark-quark luminosity, its
uncertainty is less than 10% in the wholeM range. The uncertainties are not so large in view of the fact
that only a small subset of data relevant for the pdf’s extraction was used in the analysis. Adding data on
prompt photon production, DY process, and jet production can improve the pdf’s determination at large
x. Meanwhile it is worth to note that high order QCD corrections are more important for these processes
than for DIS and the decrease of experimental errors due to adding data points can be accompanied by
the increase of theoretical errors.



Fig. 13: The pdf’s correlation coefficients.

stat+syst RS TS SS MC DC
∆LW(%) 1.9 0.4 0.9 1.3 2.9 0.3
∆LZ(%) 1.6 0.5 0.9 1.3 2.9 0.6

∆LW/Z(%) 0.5 – – – – 0.3

Table 1: The uncertainties of the parton luminosities forW/Z production cross sections and their ratios. HereLW = Lud̄+Ldū,

LZ = Luū + Ldd̄, andLW/Z = (Lud̄ + Ldū)/(Luū + Ldd̄).

As it was noted above, the experimental pdf’s errors by definition include the statistical and sys-
tematical errors, as well as errors due toαS and HT. To trace the effect ofαS variation on the pdf’s
uncertainties the latter were re-calculated withαS fixed at the value obtained in the fit. The ratios of
obtained experimental pdf’s errors to the errors calculated withαS released are given in Fig. 12. It is
seen that theαS variation takes some effect on the gluon distribution errors only. Similar ratios for the
HT fixed are also given in Fig. 12. One can conclude, that the account of HT contribution have signifi-
cant impact on the pdf’s errors. Meanwhile it is evident that these ratios hardly depend on the scale of
pdf’s error and are specific for the analysed data set. For instance, in the analysis of CCFR data on the
structure functionF3 no significant influence of HT on the pdf’s was observed [58,59]. The contribution
of systematic errors to the total experimental pdf’s uncertainties is also given in Fig. 12: the systematic
errors are most essential for the u- and d-quark distributions.

Except uncertainties itself the pdf correlation are also important (see Fig. 13). The account of
correlations can lead to cancellation of the pdf’s uncertainties in the calculated cross section. The lumi-
nosities uncertainties can also cancel in the ratios of cross sections. An example of such cancellation is
given in Table 2.4, where the uncertainties of luminosities for theW/Z production cross sections and
their ratios are given.

The pdf set discussed in this subsection can be obtained by the code [60]. The pdf’s are DGLAP
evolved in the rangex = 10−7 ÷ 1, Q2 = 2.5 ÷ 5.6 · 107 GeV2. The code returns the values of
u-, d-, s-quark, and gluon distributions Gaussian-randomized with accordance of their dispersions and
correlations including both experimental and theoretical ones.



2.5 Approximate NNLO evolution of parton densities13

In order to arrive at precise predictions of perturbative QCD for the LHC, for example for the total
W -production cross section discussed in Sects. 2.1 and 2.2, the calculations need to be extended beyond
the NLO. Indeed, the NNLO coefficient functions for the above cross section have been calculated some
time ago [32, 33]. The same holds for the structure functions in DIS [61–64] which form the backbone
of the present information on the parton densities. On the other hand, the corresponding NNLO splitting
functions have not been computed so far. Partial results are however available, notably the lowest four
and five even-integer moments, respectively, for the singlet and non-singlet combinations [25,26]. When
supplemented by results on the leadingx→0 terms [65–69] derived from small-x resummations, these
constraints facilitate effective parametrisations [70,71] which are sufficiently accurate for a wide range in
x (and thus a wide range of final-state masses at the LHC). In this section, we compile these expressions
and take a brief look at their implications. For detailed discussions the reader is referred to refs. [70,71].

In terms of the flavour non-singlet (NS) and singlet (S) combinations of the parton densities (here
fqf

≡ q andfg ≡ g),

q±NS,ik = qi ± q̄i − (qk ± q̄k) , qV
NS =

Nf∑
r=1

(qr − q̄r) , qS =
(

Σ
g

)
(14)

with Σ =
∑Nf

r=1(qr + q̄r), the evolution equations (8) consist of2Nf−1 scalar non-singlet equations and
the2×2 singlet system. The LO and NLO splitting functionsP (LO)(x) andP (NLO)(x) in Eq. (9) are
known for a long time. For each of the NNLO functionsP (2)(x) = (4π)3P (NNLO)(x) two approximate
expressions (denoted by ‘A’ and ‘B’) are given below in theMS scheme, which span the estimated
residual uncertainty. The central results are represented by the average1/2 (P (2)

A + P
(2)
B ).

The NS+ parametrisations [70] read, usingδ ≡ δ(1−x), L1 ≡ ln(1−x) andL0 ≡ lnx,

P
(2)+
NS,A(x) =

1137.897
(1 − x)+

+ 1099.754 δ − 2975.371x2 − 125.243 − 64.105L2
0 + 1.580L4

0 (15)

−Nf

(
184.4098
(1 − x)+

+ 180.6971 δ + 98.5885L1 − 205.7690x2 − 6.1618 − 5.0439L2
0

)
+ P

(2)

NS,N2
f
,

P
(2)+
NS,B(x) =

1347.207
(1 − x)+

+ 2283.011 δ − 722.137L2
1 − 1236.264 − 332.254L0 + 1.580 (L4

0 − 4L3
0)

−Nf

(
184.4098
(1 − x)+

+ 180.6971 δ + 98.5885L1 − 205.7690x2 − 6.1618 − 5.0439L2
0

)
+ P

(2)

NS,N2
f

with

P
(2)

NS,N2
f
(x) =

1
81

(
− 64

(1 − x)+
− [204 + 192 ζ(3) − 320 ζ(2)] δ(1 − x) + 64

+
x lnx
1 − x

(96 lnx+ 320) + (1 − x)(48 ln2 x+ 352 ln x+ 384)
)
. (16)

Hereζ(l) denotes Riemann’sζ-function. Equation (16) is an exact result, derived from large-Nf methods

[72]. The corresponding expressions forP (2)−
NS are

P
(2)−
NS,A(x) = P

(2)+
NS,A(x) + 20.687x2 − 18.466 + 66.866L2

0 − 0.148L4
0

+Nf

(
0.0163L1 − 0.402x2 + 0.4122 − 1.4965L2

0

)
, (17)

P
(2)−
NS,B(x) = P

(2)+
NS,B(x) − 0.101L2

1 + 1.508 + 4.775L0 − 0.148 (L4
0 − 4L3

0)

+Nf

(
0.0163L1 − 0.402x2 + 0.4122 − 1.4965L2

0

)
.

13Contributing authors: W.L. van Neerven and A. Vogt.
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Fig. 14: Left: The LO, NLO and approximate NNLO predictions for the logarithmic derivativesq̇/q ≡ d ln q/d lnµ2
f of the

singlet quark and gluon densities,q = Σ andq = g, atµ2
f ' 30 GeV2. Right: The relative scale uncertainty∆µr q̇ (defined in

the text) of these NLO and NNLO results. The number of flavours isNf = 4.

The difference betweenP (2)−
NS andP (2)V

NS is unknown, but expected to have a negligible effect (� 1%).

The effective parametrisations for the singlet sector are given in Ref. [71]. Besides the1/x lnx
terms ofP (2)

qq , P (2)
qg andP (2)

gg [66, 67], only theN2
f contribution∝ 1/[1 − x]+ to P (2)

gg is exactly known
here [73].

The evolution equations (8) are written for a factorization scaleµf = Q. Their form can be
straightforwardly generalized to include also the dependence on the renormalization scaleµr.

The expansion of Eq. (8) is illustrated in the left part of Fig. 14 forµr = µf , αS = 0.2 and
parton densities typical forµ2

f ' 30 GeV2. Under these conditions, the NNLO effects are small (<2%)
at medium and largex. This also holds for the non-singlet evolution not shown in the figure. The
approximate character of the our results forP (2) does not introduce relevant uncertainties atx ∼> 2·10−3.
The third-order corrections increase with decreasingx, reaching(12±4)% and(−6±3)%, respectively,
of the NLO predictions foṙΣ andġ atx = 10−4.

The renormalization-scale uncertainty of these results is shown in the right part of Fig. 14 in terms
of ∆µr q̇ ≡ (q̇max − q̇min)/[2 q̇average], as determined over the range0.5µf ≤ µr ≤ 2µf . Note that
the spikes slightly belowx = 0.1 arise fromq̇average ' 0 and do not represent enhanced uncertainties.
Thus the inclusion of the third-order terms in Eq. (8), already in its approximate form, leads to significant
improvements of the scale stability, except for the gluon evolution belowx = 10−3.

2.6 The NNLO analysis of the experimental data forxF3 and the effects of high-twist power
corrections14

During the last few years there has been considerable progress in calculations of the perturbative QCD
corrections to characteristics of DIS. Indeed, the analytic expressions for the NNLO perturbative QCD
corrections to the coefficient functions of structure functionsF2 [61, 62, 64] andxF3 [63, 74] are now

14Contributing authors: A.L. Kataev, G. Parente and A.V. Sidorov.



known. However, to perform the NNLO QCD fits of the concrete experimental data it is also necessary to
know the NNLO expressions for the anomalous dimensions of the moments ofF2 andxF3. At present,
this information is available in the case ofn = 2, 4, 6, 8, 10 moments ofF2 [25, 26]. The results of
Refs. [61–64,25,26,74] are forming the theoretical background for the study of the effects, contributing
to scaling violation at the level of new theoretical precision, namely with taking into account the effects
of the NNLO perturbative QCD contributions.

In the process of these studies it is rather instructive to include the available theoretical information
on the effects of high-twist corrections, which could give rise to scaling violation of the form1/Q2. The
development of the infrared renormalon (IRR) approach (for a review see Ref. [75]) and the dispersive
method [76] (see also [77,78]) made it possible to construct models for the power-suppressed corrections
to DIS structure functions (SFs). Therefore, it became possible to include the predictions of these models
to the concrete analysis of the experimental data.

In this part of the Report the results of the series of works [58, 59, 79, 80] will be summarized.
These works are devoted to the analysis of the experimental data ofxF3 SF of νN DIS, obtained by
the CCFR collaboration [81]. They have the aim to determine the NNLO values ofΛ(4)

MS
andαS(MZ)

with fixation of theoretical ambiguities due to uncalculated higher-order perturbative QCD terms and
transitions from the case off = 4 number of active flavours to the case off = 5 number of active
flavours. The second task was to extract the effects of the twist-4 contributions toxF3 [58, 80] and
compare them with the IRR-model predictions of Ref. [82]. Some estimates of the influence of the twist-
4 corrections to the constants of the initial parametrization ofxF3 [59] are presented. These constants
are related to the parton distribution parameters.

The analysis of Refs. [58, 59, 79, 80] is based on reconstruction of the non-singlet (NS) SFxF3

from the finite number of its momentsMn(Q2) =
∫ 1
0 x

n−1F3(x,Q2)dx using the Jacobi polynomial
method, proposed in Ref. [83] and further developed in Refs. [84–87]. Within this method one has

xF3(x,Q2) = xα(1 − x)β
Nmax∑
n=0

Θα,β
n (x)

n∑
j=0

c
(n)
j (α, β)MTMC

j+2 (Q2) (18)

whereΘα,β
n are the Jacobi polynomials,c(n)

j (α, β) are combinatorial coefficients given in terms of Euler
Γ-functions and theα, β-weight parameters. In view of the reasons, discussed in Ref. [58] they were
fixed to 0.7 and 3 respectively, whileNmax = 6 was taken. Note, that the expressions for Mellin
moments were corrected by target mass contributions (TMC), taken into account asMTMC

n (Q2) =
Mn(Q2) + (n(n + 1)/(n + 2))(M2

nucl/Q
2)Mn+2(Q2). The QCD evolution of the moments is defined

by the solution of the corresponding renormalization group equation

Mn(Q2)
Mn(Q2

0)
= exp

[
−
∫ As(Q2)

As(Q2
0)

γ
(n)
NS(x)
β(x)

dx

]
C

(n)
NS(As(Q2))

C
(n)
NS(As(Q2

0))
(19)

The QCD running coupling constant enters this equation throughAs(Q2) = αS(Q2)/(4π) and is defined

as the expansion in terms of inverse powers ofln(Q2/Λ(4) 2

MS
)-terms in the LO, NLO and NNLO. The

NNLO approximation of the coefficient functions of the momentsC
(n)
NS(As(Q2)) = 1+C(1)(n)As(Q2)+

C(2)(n)A2
s(Q2) were determined from the results of Ref. [63, 74]. The related anomalous dimension

functions are defined as

µ
∂lnZNS

n

∂µ
= γ

(n)
NS(As) =

∑
i≥0

γ
(i)
NS(n)Ai+1

s (20)

whereZNS
n are the renormalization constants of the corresponding NS operators. The expression for the

QCDβ-function in theMS-scheme is known analytically at the NNLO [11,88]. However, as was already
mentioned, the NNLO corrections toγ(n)

NS are known at present only in the case ofn = 2, 4, 6, 8, 10 NS



Order Λ(4)

MS
A b c γ A

′
2[GeV 2] χ2/points

LO 264± 36 4.98± 0.23 0.68± 0.02 4.05± 0.05 0.96± 0.18 – 113.1/86
433± 51 4.69± 0.13 0.64± 0.01 4.03± 0.04 1.16±0.12 -0.33± 0.12 83.1/86
331±162 5.33±1.33 0.69±0.08 4.21±0.17 1.15±0.94 h(x) in Fig. 15 66.3/86

NLO 339±35 4.67±0.11 0.65±0.01 3.96±0.04 0.95±0.09 – 87.6/86
369±37 4.62±0.16 0.64±0.01 3.95±0.05 0.98±0.17 -0.12±0.06 82.3/86
440±183 4.71±1.14 0.66±0.08 4.09±0.14 1.34±0.86 h(x) in Fig. 15 65.7/86

NNLO 326±35 4.70±0.34 0.65±0.03 3.88±0.08 0.80±0.28 – 77.0/86
327±35 4.70±0.34 0.65±0.03 3.88±0.08 0.80±0.29 -0.01±0.05 76.9/86
372±133 4.79±0.75 0.66±0.05 3.95±0.19 0.96±0.57 h(x) in Fig. 15 65.0/86

Table 2: The results of the fits of the CCFR’97 data with the cutQ2 > 5 GeV 2. The parametersA, b, c, γ are normalized at

Q2
0 = 20 GeV 2, which is initial scale of the QCD evolution. Statistical errors are indicated.

moments ofF2 SF ofeN DIS [25, 26]. Keeping in mind that in these cases the difference between the
NLO expressions forγ(1)

NS,F2
andγ(1)

NS,xF3
is rather small [79], it was assumed that the similar feature is

true at the NNLO also. ThexF3 fits of Refs. [58, 59, 79, 80] were done within this approximation. The
one more approximation, entering onto these analysis, was the estimation of the anomalous dimensions
of odd moments withn = 3, 5, 7, 9 by means of smooth interpolation of the results of Refs. [25, 26],
originally proposed in Ref. [89]. In view of the basic role of the NNLO corrections to the coefficient
functions ofxF3 moments, revealed in the process of the concrete fits [58,59,79,80], it is expected that
neither the calculations of the NNLO corrections toxF3 odd anomalous dimensions (which are now in
progress [90]) and further interpolation to even values ofn, nor the fine-tuning of the reconstruction
method of Eq. (18), which depends on the values ofα, β andNmax, will not affect significantly the
accuracy of the main results of Refs. [58,59,80].

The power corrections were included in the analysis using two different approaches. First, follow-
ing the ideas of Ref. [91], the termh(x)/Q2 was added onto the r.h.s. of Eq. (18). The functionh(x)
was parameterized by a set of free constantshi for eachx-bin of the analysed data. These constants were
extracted from the concrete LO, NLO and NNLO fits. The resulting behaviour ofh(x) is presented in
Fig. 15, taken from Ref. [58]. Secondly, the IRR model contributionM IRR

n = C̃(n)Mn(Q2)A
′
2/Q

2

was added into the reconstruction formula of Eq. (18), whereA
′
2 is the free parameter and was estimated

in Ref. [82]. The factorMn(Q2
0) in the l.h.s. of Eq. (19) was defined at the initial scaleQ2

0 using the
parametrizationxF3(x,Q2

0) = A(Q2
0)x

b(Q2
0)(1 − x)c(Q

2
0)(1 + γ(Q2

0)x). In Table 2 the combined results
of the fits of Refs. [58, 59] of CCFR’97 data are presented. The twist-4 terms were switched off and
retained following the discussions presented above.

The comments on the extracted behaviour ofh(x) (see Fig. 15) are now in order. Itsx-shape, ob-
tained from LO and NLO analysis of Ref. [58] is in agreement with the IRR-model formula of Ref. [82].
Note also, that the combination of quark counting rules [92,93] with the results of Ref. [94,95] predict the
following x-shape ofh(x): h(x) ∼ A

′
2(1−x)2. Taking into account the negative values ofA

′
2, obtained

in the process of LO and NLO fits (see Table 2), one can conclude, that the related behaviour ofh(x) is
in qualitative agreement with these predictions. Though a certain indication of the twist-4 terms survives
even at the NNLO, the NNLO part of Fig. 15 demonstrates that thex-shape ofh(x) starts to deviate from
the IRR model of Ref. [82]. Notice also, that within the statistical error bars the NNLO value ofA

′
2 is

indistinguishable from zero (see Table 2). This feature might be related to the interplay between NNLO
perturbative and1/Q2 corrections. Moreover, at the used reference scaleQ2

0 = 20 GeV 2 the high-twist
parameters cannot be defined independently from the effects of perturbation theory, which at the NNLO
can mimic the contributions of higher-twists provided the experimental data is not precise enough and
the value ofQ2

0 is not too small (for the recent discussion of this subject see Refs. [29,30]).
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Fig. 15:h(x) extracted from CCFR’97 data forxF3

The results of Table 2 demonstrate, that despite the correlation of the NLO valuesΛ(4)

MS
with the

values of the twist-4 coefficientA
′
2, the parameters of the adopted model forxF3(x,Q2

0) remain almost
unaffected by the inclusion of the1/Q2-term via the IRR-model of Ref. [82]. Thus, the corresponding

parton distributions are less sensitive to twist-4 effects, than the NLO value ofΛ(4)

MS
. At the NNLO level

the similar feature is related to already discussed tendency of the effective minimization of the1/Q2-
contributions toxF3 (see also NNLO part of Fig. 15).

For the completeness the NLO and NNLO values ofαS(MZ), obtained in Ref. [58] from the
results of Table 2 with twist-4 terms modelled through the IRR approach are also presented:

NLO αS(MZ) = 0.120 ± 0.003(stat) ± 0.005(syst)+0.009
−0.007 (21)

NNLO αS(MZ) = 0.118 ± 0.003(stst) ± 0.005(syst) ± 0.003

The systematical uncertainties in these results are determined by the pure systematical uncertainties of
the CCFR’97 data forxF3 [81]. The theoretical errors are fixed by variation of the factorization and
renormalization scales [58]. The incorporation into theMS-matching formula forαS [96–98] of the
proposal of Ref. [52] to vary the scale of smooth transition to the world withf = 5 number of active
flavours fromm2

b to (6.5mb)2 was also taken into account. The theoretical uncertainties, presented in
Eq. (22) are in agreement with the ones, estimated in Ref. [70] using the DGLAP equation. The NNLO
value ofαS(MZ) is in agreement with another NNLO resultαS(MZ) = 0.1172 ± 0.0024, which was
obtained in Ref. [99] from the analysis of SLAC, BCDMS, E665 and HERA data forF2 with the help of
the Bernstein polynomial technique [100].

2.7 Measuring Parton Luminosities and Parton Distribution Functions at the LHC15

The traditional approach for cross section calculations and measurements at hadron colliders uses the
proton–proton luminosity,Lproton−proton, and the “best” known quark, anti-quark and gluon parton–
distribution functions,PDF (x1, x2, Q

2) to predict event ratesNevents for a particular parton parton
process with a calculable cross sectionσtheory(q, q̄, g → X), using:

Nevents(pp→ X) = Lproton−proton × PDF (x1, x2, Q
2) × σtheory(q, q̄, g → X). (22)

The possible quantitative accuracy of such comparisons depends not only on the statistical errors, but
also on the knowledge ofLproton−proton, thePDF (x1, x2, Q

2) and the theoretical and experimental
uncertainties for the observed and predicted event rates for the studied process.

15Contributing authors: M. Dittmar, K. Mazumdar and N. Skachkov.
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Fig. 16: a) The detected charged lepton cross section ratio,
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and MRS(A) structure function parametrisation. b) The rela-

tive changes for the charged lepton distributions between the

MRS(H) and MRS(A) parametrisations forW+, W− and for

Z0 production [101].

Fig. 17: The inclusive muonpt spectrum in selected

photon–jet events originating from light and heavy

quarks [105]. Assuming standard b–lifetime tagging ex-

pectations from ATLAS or CMS one should reduce the

b–flavoured jets by about a factor of 2, the charm–jets

by a factor of 10 and the light quarks by roughly a fac-

tor of 50.

For many interesting reactions at the LHC one finds that statistical uncertainties become quickly
negligible when compared to today’s uncertainties. Besides the technical difficulties to perform higher
order calculations, limitations arise from the knowledge of the proton–proton luminosity and the parton
distribution functions. Estimates for proton–proton luminosity measurements at the LHC assign typically
uncertainties of±5%. Similar uncertainties are expected from the limited knowledge of parton distribu-
tion functions. Consequently, the traditional approach to cross section predictions and the corresponding
measurements will be limited to uncertainties of at best±5%.

A more promising method [101], using only relative cross section measurements, might lead even-
tually to accuracies of±1%. The new approach starts from the idea that for highQ2 processes one should
consider the LHC as a parton–parton collider instead of a proton–proton collider. Consequently, one
needs to determine the different parton–parton luminosities from experimentally clean and theoretical
well understood reactions.

The production of the vector bosonsW± andZ0 with their subsequent leptonic decays fulfil these
requirements. Taking today’s experimental results, the vector boson masses are precisely known and
their couplings to fermions have been measured with accuracies of better than 1%. Furthermore,W±

andZ0 bosons with leptonic decays have 1) huge cross sections (several nb’s) and 2) can be identified
over a large rapidity range with small backgrounds.

From the known mass and the number of “counted” events as a function of the rapidityY one can
use the relationsM2 = sx1x2 andY = 1

2 ln
x1
x2

to measure directly the corresponding quark and anti-
quark luminosities over a widex range (see fig.2). Simulation studies indicate that the leptonicW and
Z decays can be measured with good accuracies up to lepton pseudorapidities|η| < 2.5, corresponding
roughly to quark and anti-quarkx ranges between 0.0003 to 0.1. The sensitivity ofW andZ production
data at the LHC even to small variations of the pdf’s is indicated in Figure 16.

Once the quark and anti-quark luminosities are determined from theW andZ data over a widex



range, SM event rates of high mass Drell–Yan lepton pairs and other processes dominated by quark–anti-
quark scattering can be predicted. The accuracy for such predictions is only limited by the theoretical
uncertainties of the studied process relative to the one forW andZ production.

The approach can also be used to measure the gluon luminosity with unprecedented accuracies.
Starting from gluon dominated “well” understood reactions within the SM, one finds that the cleanest
experimental conditions are found for the production of high massγ–Jet,Z0–Jet and perhaps,W±–Jet
events. However, the identification of these final states requires more selection criteria and includes an
irreducible background of about 10–20% from quark–anti-quark scattering. Some experimental observ-
ables to constrain the gluon luminosity from these reactions have been investigated previously [102]. The
study, using rather restrictive selection criteria to select the above reactions with well defined kinematics,
indicated the possibility to extract the gluon luminosity function with negligible statistical errors and
systematics which might approach errors of about±1% over a widex range.

Furthermore, the use of the different rapidity distributions for the Vector bosons and the associated
jets has been suggested in [103]. The proposed measurement of the rapidity asymmetry improves the
separation between signals and backgrounds and should thus improve the accuracies to extract the gluon
luminosity.

For this workshop, previous experimental simulations of photon–jet final states have been repeated
with much larger Monte Carlo statistics and more realistic detector simulations [104]. These studies
select events with exactly one jet recoiling against an isolated photon with a minimumpt of 40 GeV.
With the requirement that, in the plane transverse to the beam direction the jet is back–to–back with the
photon, only the photon momentum vector and the jet angle needs to be measured. Using the selected
kinematics, the mass of the photon–jet system can be reconstructed with good accuracy. These studies
show that several million of photon–jet events with the above kinematics will be detected for a typical
LHC year of 10 fb−1 and thus negligible statistical errors for the luminosity andx between 0.0005 to
≈ 0.2. Thisx range seems to be sufficient for essentially all highQ2 reactions involving gluons. In
addition, it might however be possible using dedicated trigger conditions, to select events with photonpt

as low as 10–20 GeV, which should enlarge thex range to values as low as 0.0001. The above reactions
are thus excellent candidates to determine accurately the parton luminosity for light quarks, anti-quarks
and gluons.

To complete the determination of the different parton luminosities one needs also to constrain the
luminosities for the heaviers,c and b quarks. The charm and beauty quarks can be measured from a
quark flavour tagged subsample of the photon–jet final states. One finds that the photon–jet subsamples
with charm or beauty flavoured jets are produced dominantly from the heavy quark–gluon scattering
(c(b)g → c(b)γ). For this additional study of photon–jet final states, the jet flavour has been identified
as being a charm or beauty jet, using inclusive highpt muons and in additionb-jet identification using
standard lifetime tagging techniques [105]. The simulation indicates that clean photon–charm jet and
photon–beauty jet event samples with highpt photons (>40 GeV) and jets with inclusive highpt muons.
The muonpt spectrum from the different initial quark flavours is shown in Figure 17.

Assuming that inclusive muons with a minimumpt of 5–10 GeV can be clearly identified, a
PYTHIA Monte Carlo simulation shows that a few 105 c–photon events and about 105 b–photon events
per 10 fb−1 LHC year should be accepted. These numbers correspond to statistical errors of about± 1%
for a xc andxb range between 0.001 and 0.1. However, without a much better understanding of charm
and beauty fragmentation functions such measurements will be limited to systematic uncertainties of
± 5–10%.

Finally, the strange quark luminosity can be determined from the scattering ofsg → Wc. The
events would thus consist ofW± charm–jet final states. Using inclusive muons to tag charm jets and
the leptonic decays ofW ’s to electrons and muons we expect about an accepted event sample with a
cross section of 2.1 pb leading to about 20k tagged events per 10 fb−1 LHC year. Again, it seems that
the corresponding statistical errors are much smaller than the expected systematic uncertainties from the



charm tagging of± 5–10%.

In summary, we have identified and studied several final states which should allow to constrain
the light quarks and anti-quarks and the gluon luminosities with statistical errors well below 1% for anx
range between 0.0005 to at≈ 0.2. However, experimental systematics for isolated charged leptons and
photons, due to the limited knowledge of the detector acceptance and selection efficiencies will be the
limiting factor which optimistically limit the accuracies to perhaps±1% for light quarks and gluons. The
studied final states with photon–jet events with tagged charm and beauty jets should allow to constrain
experimentally the luminosities ofs, c andb quarks and anti-quarks over a similarx range and systematic
uncertainties of perhaps 5–10%.

These promising experimental feasibility studies need now to be combined with the corresponding
theoretical calculations and Monte Carlo modelling. In detail one has to study how well uncertainties
from scale dependence,αS and higher order corrections change expected cross section ratios. Figure 6
gives an example of today’s uncertainties forW andZ cross sections at the LHC [10]. Similar estimates
for all studied processes need to be done during the coming years in order to know the real potential of
this approach to precision cross section measurements and their interpretation at the LHC.

2.8 Lepton Pair Production at the LHC and the Gluon Density in the Proton16

The production of lepton pairs in hadron collisionsh1h2 → γ∗X; γ∗ → ll̄ proceeds through an inter-
mediate virtual photon viaqq̄ → γ∗, and the subsequent leptonic decay of the virtual photon. Interest
in this DY process is usually focused on lepton pairs with large massQ which justifies the application
of perturbative QCD and allows for the extraction of the anti-quark density in hadrons [106]. Prompt
photon productionh1h2 → γX can be calculated in perturbative QCD if the transverse momentumQT

of the photon is sufficiently large. Because the quark-gluon Compton subprocess is dominant,gq → γX,
this reaction provides essential information on the gluon density in the proton at largex [28]. Alterna-
tively, the gluon density can be constrained from the production of jets with large transverse momentum
at hadron colliders [7].

In this report we exploit the fact that, along prompt photon production, lepton pair production
is dominated by quark-gluon scattering in the regionQT > Q/2. This realization means that new
independent constraints on the gluon density may be derived from DY data in kinematical regimes that
are accessible at the LHC but without the theoretical and experimental uncertainties present in the prompt
photon case.

At LO, two partonic subprocesses contribute to the production of virtual and real photons with non-
zero transverse momentum:qq̄ → γ(∗)g andqg → γ(∗)q. The cross section for lepton pair production
is related to the cross section for virtual photon production through the leptonic branching ratio of the
virtual photonα/(3πQ2). The virtual photon cross section reduces to the real photon cross section in
the limitQ2 → 0.

The NLO corrections arise from virtual one-loop diagrams interfering with the LO diagrams and
from real emission diagrams. At this order2 → 3 partonic processes with incident gluon pairs(gg),
quark pairs(qq), and non-factorizable quark-anti-quark(qq̄2) processes contribute also. An important
difference between virtual and real photon production arises when a quark emits a collinear photon.
Whereas the collinear emission of a real photon leads to a1/ε singularity that has to be factored into a
fragmentation function, the collinear emission of a virtual photon yields a finite logarithmic contribution
since it is regulated naturally by the photon virtualityQ. In the limitQ2 → 0 the NLO virtual photon
cross section reduces to the real photon cross section if this logarithm is replaced by a1/ε pole. A more
detailed discussion can be found in Ref. [107,108].

The situation is completely analogous to hard photo-production where the photon participates in
the scattering in the initial state instead of the final state. For real photons, one encounters an initial-

16Contributing authors: E. L. Berger and M. Klasen.
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dominates in the regionQT > Q/2.

state singularity that is factored into a photon structure function. For virtual photons, this singularity is
replaced by a logarithmic dependence on the photon virtualityQ [109].

A remark is in order concerning the interval inQT in which our analysis is appropriate. In
general, in two-scale situations, a series of logarithmic contributions will arise with terms of the type
αn

S lnn(Q/QT ). Thus, if eitherQT >> Q or QT << Q, resummations of this series must be consid-
ered. For practical reasons, such as event rate, we do not venture into the domainQT >> Q, and our
fixed-order calculation should be adequate. On the other hand, the cross section is large in the region
QT << Q. In previous papers [107, 108], we compared our cross sections with available fixed-target
and collider data on massive lepton-pair production, and we were able to establish that fixed-order per-
turbative calculations, without resummation, should be reliable forQT > Q/2. At smaller values ofQT ,
non-perturbative and matching complications introduce some level of phenomenological ambiguity. For
the goal we have in mind, viz., constraints on the gluon density, it would appear best to restrict attention
to the regionQT ≥ Q/2, but belowQT >> Q.

We analyze the invariant cross sectionEd3σ/dp3 averaged over the rapidity interval -1.0< y <
1.0. We integrate the cross section over various intervals of pair-massQ and plot it as a function of
the transverse momentumQT . Our predictions are based on a NLO calculation [110] and are evaluated
in theMS renormalization scheme. The renormalization and factorization scales are set toµ = µR =

µF =
√
Q2 +Q2

T . If not stated otherwise, we use the CTEQ4M parton distributions [111] and the
corresponding value ofΛ in the two-loop expression ofαS with four flavours (five ifµ > mb). The DY
factorα/(3πQ2) for the decay of the virtual photon into a lepton pair is included in all numerical results.

In Fig. 18 we display the NLO cross section for lepton pair production at the LHC as a function of
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QT for four regions ofQ chosen to avoid resonances,i.e. from threshold to2.5 GeV, between theJ/ψ
and theΥ resonances, above theΥ’s, and a high mass region. The cross section falls both with the mass
of the lepton pairQ and, more steeply, with its transverse momentumQT . The initial LHC luminosity is
expected to be 1033 cm−2 s−1, or 10 fb−1/year, and to reach the design luminosity of 1034 cm−2 s−1 after
three or four years. Therefore it should be possible to analyze data for lepton pair production to at least
QT ' 100 GeV where one can probe the parton densities in the proton up toxT = 2QT /

√
s ' 0.014.

The UA1 collaboration measured the transverse momentum distribution of lepton pairs at
√
s = 630

GeV toxT = 0.13 [112], and their data agree well with our expectations [107,108].

The fractional contributions from theqg andqq̄ subprocesses through NLO are shown in Fig. 19. It
is evident that theqg subprocess is the most important subprocess as long asQT > Q/2. The dominance
of the qg subprocess increases somewhat withQ, rising from over 80 % for the lowest values ofQ to
about 90 % at its maximum forQ ' 30 GeV. Subprocesses other than those initiated by theqq̄ andqg
initial channels are of negligible import.

The full uncertainty in the gluon density is not known. We estimate the sensitivity of LHC ex-
periments to the gluon density in the proton from the variation of different recent parametrizations. We
choose the latest global fit by the CTEQ collaboration (5M) as our point of reference [7] and compare
results to those based on their preceding analysis (4M) [111] and on a fit with a higher gluon density
(5HJ) intended to describe the CDF and D0 jet data at large transverse momentum. We also compare to
results based on global fits by MRST [28], who provide three different sets with a central, higher, and
lower gluon density, and to GRV98 [113]1.

1In this set a purely perturbative generation of heavy flavours (charm and bottom) is assumed. Since we are working
in a massless approach, we resort to the GRV92 parametrization for the charm contribution [114] and assume the bottom
contribution to be negligible.



In Fig. 20 we plot the cross section for lepton pairs with mass between theJ/ψ andΥ resonances
at the LHC in the region betweenQT = 50 and 100 GeV (xT = 0.007 . . . 0.014). For the CTEQ
parametrizations we find that the cross section increases from 4M to 5M by 5 % and does not change
from 5M to 5HJ in the wholeQT -range. The largest differences from CTEQ5M are obtained with
GRV98 (minus 18 %).

The theoretical uncertainty in the cross section can be estimated by varying the renormalization

and factorization scaleµR = µF about the central value
√
Q2 +Q2

T . In the region between theJ/ψ

andΥ resonances, the cross section drops from±39% (LO) to ±16% (NLO) whenµ is varied over

the interval interval0.5 < µ/
√
Q2 +Q2

T < 2. TheK-factor ratio (NLO/LO) is approximately 1.3 at

µ/
√
Q2 +Q2

T = 1.

We conclude that the hadroproduction of low mass lepton pairs is an advantageous source of
information on the parametrization and size of the gluon density. With the design luminosity of the
LHC, regions ofxT ' 0.014 should be accessible. The theoretical uncertainty has been estimated from
the scale dependence of the cross sections and found to be small at NLO.

3. MONTE CARLO EVENT GENERATORS 2

The event generation package is the first link of the event simulation/reconstruction software suite which
is central to any experimental data analysis. Physics results are obtained by a direct comparison of sim-
ulated and observed data. Therefore, precision analyses rely on an accurate and detailed implementation
of the underlying physics model in the generation of signal as well as background processes.

An event generator is built from various pieces whose object and nature are quite different. Some
are perturbative: the hard-scattering matrix element (ME) which can be calculated exactly, the parton
shower (PS) which approximates, through the evolution equations, the initial parton conditions and final-
state jet structure, and some are non-perturbative and probabilistic like the parton distribution in the
composite initial particles and the fragmentation of the final partons. The main difficulty in writing event
generator programs lies on the consistent matching of those different components.

Several multi-process parton shower event generators (PSEG) have been developed to cover the
physics programme ate+e−, pp or pp̄ colliders: PYTHIA [115], HERWIG [116–118], ISAJET [119,
120]. These Monte Carlo programs provide an accurate description of jet physics at existing high-energy
colliders, which allow the simulation of a large variety of final-state processes within and beyond the
SM. These programs have been essential to demonstrate the impressive LHC potential on many different
and detailed physics questions, to develop new analysis strategies and also to optimize the performance
of the LHC experiments.

Nevertheless, the increasing potential of very accurate measurements at the LHC and the sensi-
tivity to exotic physics processes using specific and rare kinematics demand for the implementation of
higher-order processes and thus a rethinking of the organisation and probably an extensive rewriting of
many specific Monte Carlo generators.

In the first section, we list the major points of concern or pending issues in the development of
event generators for the LHC physics. The next section discusses the present treatments of minimum
bias and underlying events. The following two contributions address the implementation of transverse
momentum effects in boson production. The last three sections present a short description of some of the
currently available ME generators.

2Section coordinator: D. Perret-Gallix.



3.1 QCD event generators: major issues3

3.11 Multi-particle final states

Matrix element

PSEG are essentially limited to the simulation of2 → 2 processes4 based on analytic matrix element
expressions. However, the LHC center of mass energy is large enough to open many high multiplicity
channels. In addition, new particle searches in the Higgs and Susy sectors require the simulation of
2 → 4, 2 → 6 or even2 → 10 jet processes5 for which a precise knowledge of the SM background
processes is mandatory.

QCD multi-jets eventspp → n1 jets andpp → Z/W + n2 jets have been computed at LO, for
n1 ≤ 6 by using the SPHEL approximation [121] (i.e. assuming all helicity amplitudes give similar
contributions), and forn1 ≤ 6 (NJETS) [122] andn2 ≤ 4 (VECBOS) [123] by using exact recurrence
relations [124].

In the PSEG, partonic final states are mimicked through the PS mechanism based on the leading
logarithmic (LL) approximation. It properly describes parton radiations only in the soft and collinear
region leading to a crude estimate of the multi-parton dynamics of the event. The remedy for a better
multi-parton event generator is two-fold: (i) to improve the simulation of the PS by introducing ME
corrections (see Sects. 3.3 and 3.4), (ii ) to implement the complete multi-parton hard scattering ME
process.

The evaluation of ME for multi-particle QCD processes has been reviewed in [125]. A powerful
technique is the use of helicity amplitudes in the massless limit [126–128]. Recent developments in
this direction were done in [129] where the Weyl-van-der-Waarden spinor calculus was generalized to
the massive fermions. At this level of complexity where so many sub-processes must be calculated, the
analytic hand-made approach becomes literally intractable unless stringent approximations are imposed,
as the narrow width approximation, massless fermions, averaging/summing over initial/final helicity state
or selecting only a subset of gauge invariant diagrams.

A more systematic approach is needed: (i) to provide all required channels, (ii ) to allow for a detail
study of finite width effects and helicity and color correlations, (iii ) to generate complete ME expressions
in order to match the experimental precision. For example, the LHC statistics will allow to measure the
top quark mass with negligible uncertainty. This implies that both top quark andW finite widths must
be taken into account in the evaluation of the interference between signal and background diagrams.

The automatic Feynman diagram generator packages, largely used for thee+e− physics analysis,
generate complete and approximation-free tree-level ME codes, in principle, for any final state multiplic-
ity and with a higher reliability level than hand written procedures6. They are gradually upgraded topp
physics. GRACE [130–132], MADGRAPH [133], ALPHA [134] and PHACT [135, 136] are based on tree
level helicity amplitude algorithms in arbitrary massive gauge theories. The evaluation is purely numer-
ical and the code size scales linearly with the number of external particles. In ALPHA (see Sect. 3.7),
an iterative algorithm, based on Green functional methods, evaluates the amplitudes for any given La-
grangian and leads to more compact expressions allowing, for example, the generation ofgg/qq̄ → n
with n ≤ 9 [137]. The COMPHEP [138, 132] package is based on the squared amplitude technique.
Here, the size of the ME code grows exponentially with the number of external particles, but it produces
more powerful symbolic expressions. This method has shown good efficiency for the evaluation2 → 3, 4
processes, comparable to the helicity amplitude algorithms.

However, the completeness of the automatically produced matrix elements and the poor optimiza-
tion of the code (when compared to hand coding) often translate into computationally intensive and

3Contributing authors: V.A. Ilyin, D. Perret-Gallix and A.E. Pukhov.
4n→ m represents processes wheren initial particles decays or scatter to producem particles in the final state.
5In R-parity non-conserving models.
6The packages automatically generate checks for gauge invariance and gauge independence.



memory hungry expressions, sometimes reaching the limit of computability on conventional worksta-
tions.

The development effort is focused on two directions: (i) to improve the code efficiency by the in-
troduction of new computational algorithm, by a better optimization and by the “automated” introduction
of approximations, (ii ) to develop code taking advantage of massively parallel systems [139,140].

Multi-dimensional integration

The cross section computation and the event generation stage are based on the multi-dimensional in-
tegration procedure. It needs to be focused to the phase space region where the amplitude is large.
The amplitude behavior on those regions can be sharp and multi-variate due to complex singularity pat-
terns. Integration packages including VEGAS [141, 142], BASES/SPRING [143, 144], MILXY [145],
FOAM [146] use self-adapting techniques based onimportanceand/orstratified sampling. However, a
faster integration convergence is obtained by providing the integration algorithm with information on
the location and behavior of the singularities. This is usually done by the so-called “kinematics” rou-
tine performing the mapping of the integration variables to the physics parameters. Not yet fully auto-
mated [147], it is aiming by appropriate variable transforms at smoothing the singularities and reducing
their dimensionality.

For many important processes, it is impossible to match all singularities within a single set of
variable transforms (e.g.pp → uūdd̄ with W ,Z decays andt-channel singularities). In those cases,
one relies on amultichannelalgorithm [148, 149] where each peaking structure has its own appropriate
mapping.

Interface to the PSEG package

The implementation of automatically-produced hard-process ME in PSEG is a delicate but essential task
to benefit from the implementation of the complex QCD machinery reproducing the initial and final
states.

The ultimate goal is to embed the full ME with its appropriate kinematics mapping into the kernel
of the PSEG through some automated procedure. Although some progress has been achieved toward this
end, a simpler approach is to generate parton level event sample using a program dedicated to a given ME,
then let them fragment through the PS and hadronization scheme of the selected PSEG. For example, in
PYTHIA the routinesPYUPINandPYUPEVare available for the implementation of externally produced
event processes. Similar facilities exist or can be implemented in other PSEG. This technique already
used by the LHC experiments (see section 3.5) may raise consistent parameter and parton distribution
bookkeeping issues.

3.12 Heavy-quark production and parton shower

Keeping the fermion masses at their on-shell value, although making the expressions more complex, is
always a good practice to get rid of the propagator pole divergence. At LHC, from a phenomenological
point of view, lightu, d ands quark masses can be neglected, but heavyc, b and t quark should be
implemented not only to reproduce threshold effects, but also for a correct treatment of spin correlation
and NLO corrections. Beside the basict-quark physics studies, the heavy-quark event generation plays
an important role as the dominant background to the Higgs search (W/Zbb̄, tt̄ + 2jets andtt̄tt̄, bb̄bb̄,
bb̄tt̄). Those computations require the use of multi-particle massive ME as developed in the automatic
approach.

The simulation of the PS developed by a massive quark is similar to the massless case above an
angular cut-off ofθ = mq/Eq, while below no radiation is emitted. This is true only in the soft and
collinear region, if the physics observable is sensitive to high-pT effects (e.g. top mass reconstruction)
full massive radiative heavy-quark decay ME (i.e.t → bWg) must be embedded in the PS code [150,



151].

3.13 Color and helicity implementation

Color and spin effects are important at LHC. Color correlations beside driving the fragmentation of
partons lead to color reconnection effects acting on the local event multiplicity. Spin effects in the top
physics, for example, provide a useful handle on the nature of the couplings [152].

The procedure to assign helicity and color to the initial/final partons requires similar implemen-
tations in an event generator. For2 → 2 processes, the number of possible color flows is small and
can be handled easily through an overall factor for the single diagram case and through a slightly more
elaborated treatment when dealing with the interference of 2 diagrams with different color flows [153].
For higher multiplicity [154], in the super-symmetric QCD [155] and in theR-parity violated pro-
cesses [156], the selection of the color final state is more involved. In the helicity amplitude approach,
each diagram must be decomposed over a color flow reference base. The cross sections for all possible
color/helicity combinations (8ng × 3nq × 2ng+nq ) are then evaluated. Adding more final-state particles
drastically increases the number of cross section computations.

3.14 NLO and NNLO corrections

In QCD, talking about corrections concerning the NLO and NNLO contributions is an understatement.
Higher-order computations are very important not only due to the rather large coupling constantαs induc-
ing substantial corrections, but mainly because they reduce the renormalization and factorization scale
dependence. Furthermore, analysis or experimental-cut dependencies (like the cone-size dependence in
jet analysis) are better reproduced when higher-order corrections are included. Roughly speaking if one
can say that NLO is the first order giving a sensible perturbative result, NNLO can be seen as the error
estimate on this result.

In principle, computing NLO matrix elements is straightforward using loop integral reduction
techniques, but the number of involved diagrams and their complexity have lead to the development
of automatic coding programs like FeynArt/FeynCalc Formcalc/Looptools [157–159] or GRACE (see
Sect. 3.6). The latter is geared to provide 1-loopn-body final-state ME while, in practice, a maximum
of n = 4 and further approximations are imposed by computational limitations.

But the main problem lies in the cancellation of soft and collinear infinities present at NLO preci-
sion. Fully inclusive computations generate the so-calledK-factor as a global scaling factor, but detailed
analyses need phase-space dependent corrections. Two techniques (see the general discussion in Sect. 4.)
have been developed to handle the cancellations: the phase-space slicing method [160] and the subtrac-
tion method [161, 162]. In the former, the cancellation is performed by approximate integration within
regions delimited by some unphysical cut-off (the approximation becomes better as the cut-off becomes
smaller), in the latter the divergent terms are replaced by a suitable analytically-integrable expression
plus its finite difference with the original expression. For these two approaches, Monte-Carlo integra-
tion techniques are used, allowing for a precise implementation of the experimental cuts. These NLO
programs (see Sect. 4.) can be seen as “pseudo-event generators”. Phase space points (pseudo-events)
after being tested against the cuts have their corresponding weights accumulated to form the observable.
Single or multi differential distributions can be built in one go. But two issues prevent the use of these
packages as true event generators:(i) the handling of negative weighted events and(ii) the interface to
the PS and fragmentation stage. No definite scheme currently exists to properly implement LO+NLO
processes in a stochastic event generator.

The negative weighted events arise from the virtual corrections cancelling the soft and collinear
divergences. Several attempts are on trial. One approach is to treat those events as the usual positive
weighted events and to observe the cancellation only after the reconstruction stage where the experimen-
tal resolution will have introduced a natural cut-off. This implies the generation, the simulation and the



reconstruction of many events which finally cancel, not contributing to the statistical significance and
therefore leads to unstable results. More advanced attempts have been based on a re-weighting of event
generated by showering from the LO matrix elements [163–166, 150, 151]. Recently, a modified sub-
traction method is exercised to built NLO event generators [167, 168] by point-by-point cancellation of
the singularities. This approach looks quite encouraging although final implementations have not been
realized yet.

The second problem is the matching of a NLO ME to the PS. A consistent approach would be to
interface a NLO ME to next-to-leading logarithmic (NLL) order parton shower, but no such algorithm
exist yet (see Sect. 3.15) and therefore one has to find the least damaging approach to connect NLO ME
and LL PS and final hadronization. Basically the ordered evolution PS variable should be matched to
the ME regularization parameter. Remaining double counting effects will be removed by the rejection
algorithm for each event topology [167].

3.15 Parton shower

In hadronic collision, the parton showering occurs both in the initial and in the final state. In the latter,
the high-virtuality partons are evolved using the DGLAP equations down to quasi-real objects ready to
undergo final hadronization. The initial partons selected from the parton distribution functions with a
relative momentum fractionx and virtualityQ2 follow a backward evolution [169–171] to bring back
the virtuality down to values compatible with the confinement of partons in a fast hadron (cloud of quasi-
real particles). In this process, gluons and quarks are emitted (absorbed in the backward-evolution time
frame) by quark radiation or gluon splitting. This radiation contributes to the final-state multiplicity
(beam remnants). In addition, the parton acquires a transverse momentum and the full kinematic of the
initial centre-of-mass of the hard scattering will be uniquely defined (see Sects. 3.3 and 3.4).

The parton shower model implemented in the PSEG is essentially a LL approximation, even if
some NLL corrections have been added through exact energy-momentum conservation, angular ordering
and ‘optimal scheme’ definition forαS [172]. The dominant logarithmic singularities are resummed in
the Sudakov form factors.

As seen in the previous section, the need for a NLL parton shower is high. The problem is that
resumming higher-order correction breaks one major “raison d’ˆetre” of the PS: the universality. At LL
level, the hard scattering and the parton showering are 2 independent processes (factorization between
the short an the long range) and the success of the PSEG is based on this feature. Incorporating higher-
order corrections may break universality and each type of hard scattering process may require a specific
NLL PS evaluation (see also the last paragraph in Sect. 3.6).

3.16 Multi-parton scattering

PSEG for rare events usually include single-scattering processes only. At the LHC, one expect, due to the
unitary bound, multi-parton interactions to give important contributions to several processes [173, 174].
As an example the cross section for the production of four jets with double-parton collisions dominates
the single-scattering process when the minimum of the produced jets transverse momenta isptmin <
20 GeV (see Sect. 8.). These processes, observed by CDF [175, 176], are largely discussed in Sect. 8.,
in the Bottom Production Chapter of this Report and in the ATLAS TDR [1]. Information related to
the PSEG implementation of multi-parton scattering can be found in the PYTHIA [115] and HERWIG

V6.1 [118] manuals.

Under the simplifying assumptions of no correlation between the longitudinal-momentum frac-
tions of the initial partons, and of the process-independence of parton correlations in transverse-momentum
space, double-parton interactions are easyly implementable into PSEG codes, in terms of a single uni-
versal parameterσeff (see Sect. 8.). However, none of those hypotheses can be taken for granted. It is
therefore important to implement those effects in PSEG programs by using different dynamical models.



In addition to their contributions to the background to new particle searches, the multi-parton interactions
at the LHC can provide insights on the dynamical structure of the hadrons [177–179].

3.17 Standardization and language issues

The availability of several independent event generation packages although aiming at similar scopes is
a big advantage for the experimental community. It makes possible comparative checks and leads to a
deeper understanding of the various approximations used and implementation dependent issues.

However, one must strongly stress that the definition of a common interface scheme between the
event generators and the simulation/analysis experimental packages would be extremely valuable. Such
a standardization would cover the following issues: (i) parameter naming convention, (ii ) parameter
database management, (iii ) event output format, (iv) event sample database.

Although the standardization scheme can already be exercised on the existing Fortran PSEG, it
takes its full meaning with the current transition to the object oriented (OO) methodology. The main-
tenance issue7 of those large and complex packages over the long expected lifetime of the LHC experi-
ments is the main reason for using the OO technology, but the built-in object modularity opens the door
to a finer grained standardization at least to the level of the interfaces of the main procedures (random
number generator, diagram generation, diagram display, matrix element code, integrator, parton shower,
fragmentation, structure functions). This would allow the building of event generators using procedures
from various origins. Most of the PSEG package developers have endorsed C++ as the language for the
future developments. Design and implementation studies are already in progress [180–182].

On these last issues, the setting up of a dedicated working group with all concerned authors and
users would be quite timely.

3.2 Minimum bias and underlying events8

A crucial area of physics for the LHC is the structure of finals states in soft minimum-bias collisions and
the soft underlying event in hard processes. At present very little is understood about these matters on the
basis of QCD starting from first principles. The three principal event generators in use for LHC physics,
ISAJET, HERWIG and PYTHIA , use quite different models for this type of physics, although each uses
basically the same model to generate both minimum-bias and underlying events.

Simulation of minimum-bias events starts with a parametrization of the total cross section. HER-
WIG and PYTHIA both use the Donnachie-Landshoff fit [183]

σtot = 21.70s0.0808 + 56.08s−0.4525

(whereσ is in mb and
√
s in GeV), whereas ISAJET uses alog2 s form:

σtot = 25.65
[
1 + 0.0102 log2(s/1.76)

]
.

Notice (see Fig. 21) that, although smaller asymptotically, the ISAJET value is larger at LHC energies.

To model soft final states, HERWIG uses the UA5 minimum-bias Monte Carlo [184], adapted to
its own cluster fragmentation model. See the HERWIG manuals [118] for further details. The model is
based on a negative binomial parametrization of the overall charged multiplicity. This has the property
of generating large multiplicity fluctuations with long range in rapidity, in addition to short-range corre-
lations due to cluster decay. For true minimum-bias simulation, the soft events generated by HERWIG

should be mixed with an appropriate fraction of QCD hard-scattering events. For the underlying event in

7Maintenance here means much more than a mere bug correcting process, it refers to the ability to implement new physics
models, processes or features on request.

8Contributing author: B.R. Webber.



Fig. 21: Thepp total cross section according to the parametrizations used in HERWIG, PYTHIA and ISAJET.

hard collisions, the same model is used to simulate a soft collision between beam clusters containing the
spectator partons.

The minimum-bias/underlying event model used in ISAJET is based on a mechanism of multiple
Pomeron exchange [185], with a fluctuating number of ‘cut Pomerons’ acting as sources of final-state
hadrons. Each cut Pomeron fragments directly into hadrons according to the ISAJET independent frag-
mentation model, with the fragmentation axis along the beam direction. The model again produces
large long-range multiplicity fluctuations, but short-range correlations are weak due to the absence of
clustering.

In PYTHIA a multiple interaction model is used to generate hard, soft and underlying events in a
unified manner. Multiple interactions are discussed in more detail below. The numbern and distribution
P (n) of interactions per event is controlled by the minimum transverse momentum allowed in each
interaction and, optionally, by a model for the impact parameter profile. Long-range fluctuations may
be somewhat weaker in this model, with short-range correlations somewhere between the two other
generators. In minimum-bias events the choicen = 0 can occur, in which case a two-string fragmentation
model linking a quark in each beam proton to a diquark in the other is used.

A study of energy-flow correlations between well-separated phase-space regions would be helpful
in understanding the underlying event and in separating its contribution from that of the hard subprocess
[186]. Such a study is currently being undertaken by the CDF Collaboration.

3.3 Matrix-element corrections to vector boson production and transverse-momentum distribu-
tions9

Vector boson production will be a fundamental process to test QCD and the SM of the electroweak
interactions. Monte Carlo event generators [115–117] simulate the initial-state radiation in vector boson
production processes in the soft/collinear approximation, but can have ‘dead zones’ in phase space,
where no parton emission is allowed. The radiation in the dead zone is physically suppressed, since
it is not soft or collinear logarithmically enhanced, but not complete absent as nevertheless happens in
standard PS algorithms. Matrix-element corrections to the HERWIG simulation of Drell–Yan processes
have been implemented in [164] following the method described in [163]: the dead zone is populated by
the using of the exact first-order amplitude and the cascade in the already-populated phase-space region
is corrected using the exact matrix element every time an emission is capable of being the hardest so
far. A somewhat different procedure is followed to implement matrix-element corrections to the PYTHIA

9Contributing authors: G. Corcella and M.H. Seymour.



Fig. 22:W transverse momentum distribution at the LHC,

according to HERWIG before (dotted line) and after matrix-

element corrections (solid).

Fig. 23: Comparison of the DØ data with HERWIG 6.1 for

qT int = 0 (solid) and 1 GeV (dashed).

Fig. 24: Comparison of the CDF data onZ production with

HERWIG 5.9 (dotted line) and HERWIG 6.1 for qT int = 0

(solid), 1 GeV (dashed) and 2 GeV (dash-dotted).

Fig. 25: Ratio of theW and theZ qT distributions, accord-

ing to HERWIG 6.1 for qT int = 0 (solid), 1 GeV (dashed)

and 2 GeV (dotted).

event generator [165, 166]: the PS probability distribution is applied over the whole phase space, the
previous algorithm having a cutqT < mV on the vector bosonV transverse momentum to avoid double
counting, and the exactO(αS) matrix element is used only to generate the closest branching to the
hard vertex. Referring hereinafter to the HERWIG event generator, in Fig. 22 the distribution of theW
transverse momentumqT is plotted at the LHC by running HERWIG 5.9, the latest public version, and
HERWIG 6.1 [118], the new version including matrix-element corrections to vector boson production, for
an intrinsic transverse momentumqT int = 0, its default value. A big difference can be seen at largeqT ,
where the 6.1 version has many more events which are generated via the exactO(αS) amplitude. In the
PS soft/collinear approximation, on the contrary,qT is constrained to beqT < mW . A suppression can
be seen at smallqT , due to the fact that, even though we are providing the Monte Carlo shower with the
tree-levelO(αS) matrix-element corrections, virtual contributions are missing and, by default, we still
get the total leading-order cross section. No next-to-leading order parton shower algorithm is presently
available.

In Fig. 23 some recent DØ data [187] on theW qT spectrum at the Tevatron is compared with the
HERWIG 6.1 results, which are corrected for detector smearing effects. A good agreement is found after
hard and soft matrix-element corrections; the optionsqT = 0 and 1 GeV are investigated, but no relevant
effect is visible after detector corrections, which have been shown in [164] to be pretty strong.

In Fig. 24, we compare HERWIG with some CDF data [188] onZ production, already corrected for
detector effects, which are however much smaller than theW case. We consider the optionsqT int = 0,



Fig. 26: TheW qT distribution in the lowqT range at the

Tevatron, according to HERWIG 6.1, for qT int = 0 (solid

histogram) and 1 GeV (dashed histogram), compared with

the resummed results of [190] inqT - (solid line) andb-space

(dotted line) and of [191] in theqT -space.

Fig. 27: As in Fig. 26, but over the wholeqT spectrum.

1 and 2 GeV. The overall agreement is good, with a crucial role of matrix-element corrections to fit
in with the data at largeqT . At low qT , the best fit is the one corresponding toqT int = 2 GeV. Even
though, as can be seen from Fig. 24, theZ distribution is strongly dependent on the intrinsic transverse
momentum at lowqT , in [189] and in Fig. 25 it is shown that the ratio of theW andZ differential
cross sections, both normalized to one, is roughly independent ofqT int, which means that the effect of a
non-zeroqT int is approximately the same for bothW andZ spectra. This ratio is one of the main inputs
for the experimental analyses and the fact that it is not strongly dependent on unknown non-perturbative
effects is good news for studies on theW mass measurement.

It is also worthwhile comparing the HERWIG 6.1qT distributions with some available calculations
which resum the logarithmsl = log(mV /qT ), mV being the vector boson mass, in a Sudakov-like ex-
ponential form factor (see Sect. 5. for a review of theoretical aspects of Sudakov resummation). Such
logarithms are large in the lowqT range. In [164] the Monte Carlo results are compared with the re-
summation approaches of [190], where all terms down to the next-to-leading logarithmic order≈ αn

Sl
n

are kept in the Sudakov exponent, both inqT - and impact parameterb-space, and of [191], where the
authors expand the Sudakov exponent and keep in the differential cross section all terms down to the
order≈ αn

Sl
2n−3, which are next-to-next-to-leading logarithms after the expansion of the form factor.

Such resummations are also matched to the exact first-order result in [164]. In Figs. 26 and 27 theW
qT distributions are plotted according to HERWIG 6.1 and the resummed calculations at smallqT and
over the wholeqT range respectively. The overall agreement at lowqT is reasonable and the HERWIG

plots lie well within the range of the resummed approaches. At largeqT the matching of the resummed
calculations to the exactO(αS) result works well only for the approach of [190] in theqT -space, as
we have a continuous distribution at the pointqT = mW , the other distributions showing a step due to
uncompensated contributions of orderα2

S or higher.

In [164], it is also shown that matrix-element corrections to vector boson production have a negli-
gible effect on rapidity distributions, the latest version HERWIG 5.9 agreeing well with the CDF data on
theZ rapidity. The implemented hard and large-angle gluon radiation has nevertheless a marked impact
on jet distributions both at the Tevatron and LHC, as many more events with high transverse energy jets
are now generated. While these analyses are performed assuming that the produced vector boson decays
into a lepton pair, the implementation of matrix-element corrections to the HERWIG simulation of the
hadronicW decayW → qq̄′ is in progress, however it is expected to be a reasonably straightforward
extension of the corrections already applied to the processZ → qq̄. Furthermore, the method applied to
improve the initial-state shower forW/Z production could be extended to many other processes which



are relevant for the LHC. Among these, we expect that the implementation of matrix-element corrections
to top and Higgs production may have a remarkable phenomenological effect at the LHC. This is in
progress as well.

3.4 A comparison of the predictions from Monte Carlo programs and transverse momentum
resummation10

For many physical quantities, the predictions from PS Monte Carlo programs should be nearly as precise
as those from analytic theoretical calculations. This is expected, among others, for calculations which re-
sum logs with the transverse momentum of partons initiating the hard scattering (resummed calculations
are described in Sect. 5.). In the recent literature, most calculations of this kind are either based on or
originate from the formalism developed by J. Collins, D. Soper, and G. Sterman [192], which we choose
as the analytic ‘benchmark’ of this Section. In this case, both the Monte Carlo and analytic calculations
should accurately describe the effects of the emission of multiple soft gluons from the incoming partons,
an all orders problem in QCD. The initial state soft gluon emission can affect the kinematics of the final
state partons. This may have an impact on the signatures of physics processes at both the trigger and
analysis levels and thus it is important to understand the reliability of such predictions. The best method
for testing the reliability is the direct comparison of the predictions to experimental data. If no experi-
mental data is available for certain predictions, then some understanding of the reliability may be gained
from the comparison of the predictions from the two different methods.

Parton showering resums primarily the leading logarithms, which are universal, i.e. process in-
dependent, and depend only on the given initial state. In this lies one of the strengths of Monte Carlos,
since parton showering can be incorporated into a wide variety of physical processes. As discussed in
Sect. 5., an analytic calculation, in comparison, can resum all large logarithms, since all (in principle)
are included in the Sudakov exponent given in Eq. (46).

If we try to interpret parton showering in the same language as resummation, which is admittedly
risky, then we can say that the Monte Carlo Sudakov exponent always contains terms analogous toA(1)

andB(1) in Eq. (47). It was shown in Ref. [172] that a suitable modification of the Altarelli–Parisi
splitting function, or equivalently the strong coupling constantαs, also effectively approximates theA(2)

coefficient.11

Both Monte Carlo and analytic calculations describe the effects of the emission of multiple soft
gluons from the incoming partons, an all orders problem in QCD. The initial state soft gluon emission
affects the kinematics of the final state partons, which, in turn, may have an impact on the signatures of
physics processes at both the trigger and analysis levels. Thus it is important to understand the reliability
of such predictions. The best method for testing the reliability is the direct comparison of the predictions
to experimental data. If no experimental data is available for certain predictions, then some understanding
of the reliability may be gained from the comparison of the predictions from the two different methods.

In particular, one quantity which should be well–described by both calculations is the transverse
momentum (pT ) of the final state electroweak boson in a subprocess such asqq → WX, ZX or
gg → HX, where most of thepT is provided by initial state parton showering. The parton shower-
ing supplies the same sort of transverse kick as the soft gluon radiation in a resummation calculation.
This correspondence between the Sudakov form factors in resummation and Monte Carlo approaches
may seem trivial, but there are many subtleties in the relationship between the two approaches relating
to both the arguments of the Sudakov factors as well as the impact of sub–leading logs [166,188,164].

At a point in its evolution corresponding to (typically) the virtuality of a few GeV2, the parton
shower is cut off and the effects of gluon emission at softer scales must be parameterized and inserted

10Contributing authors: C. Bal´azs, J. Huston and I. Puljak.
11Reference [172] deals only with the high-x (or

√
τ ) region, but the same results apply to the small-pT region in transverse

momentum distributions.



Fig. 28: TheZ0 pT distribution (at lowpT ) from CDF for Run 1 compared to predictions from ResBos and from PYTHIA . The

two PYTHIA predictions use the default (rms) value for the non–perturbativekT (0.44 GeV) and the value that gives the best

agreement with the shape of the data (2.15 GeV).

by hand. This is similar to the (somewhat arbitrary) division between perturbative and non–perturbative
regions in a resummation calculation. The parametrization is typically done with a Gaussian smearing
similar to that used for the non–perturbativekT in a resummation program. In general, the value for the
non–perturbative〈kT 〉 needed in a Monte Carlo program will depend on the particular kinematics being
investigated.12

A value for the average non–perturbativekT greater than 1 GeV does not imply that there is an
anomalous intrinsickT associated with the parton size; rather, this amount of〈kT 〉 needs to be supplied
to provide what is missing in the truncated parton shower. If the shower is cut off at a higher virtuality,
more of the ‘non–perturbative’kT will be needed.

3.41 Vector boson production and comparison withPYTHIA andRESBOS

The (resolution corrected)pT distribution forZ0 bosons (in the lowpT region) for the CDF experiment
[188] is shown in Figure 28 [193], compared to both the resummed prediction from ResBos [194], and to
two predictions from PYTHIA (version 6.125). One PYTHIA prediction uses the default (rms)13 value of
intrinsic kT of 0.44 GeV and the second a value of 2.15 GeV per incoming parton. The latter value was
found to give the best agreement for PYTHIA with the data.14 All of the predictions use the CTEQ4M
parton distributions [111]. Good agreement is observed between ResBos, PYTHIA and the CDF data.

3.42 Higgs boson production and comparison withPYTHIA

A comparison of the HiggspT distribution at the LHC [193]15, for a Higgs mass of 150 GeV, is shown
in Figure 29, for ResBos [195] and the two recent versions of PYTHIA . PYTHIA has been rescaled to
agree with the normalization of ResBos to allow for a better shape comparison. Note that the peak of the

12Note that this is unlike the case of the resummation calculations in Refs. [192,194,195], where the non–perturbative physics
is determined from fits to fixed target data and then automatically evolved to the kinematic regime of interest.

13For a Gaussian distribution,krms
T = 1.13〈kT 〉.

14See Sect. 3.3 and Fig. 24 for comparisons of the CDFZ0 pT data with HERWIG.
15A more complete comparison of Monte Carlo and resummation treatments of Z and Higgs production at both the Tevatron

and the LHC can be found in Ref. [196].
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Fig. 29: A comparison of predictions for the HiggspT distribution at the LHC from ResBos and from two recent versions of

PYTHIA . The ResBos and PYTHIA predictions have been normalized to the same area.

resummed distribution is atpT ≈ 11 GeV (compared to about 3 GeV forZ0 production at the Tevatron).
This is partially due to the larger mass (150 GeV compared to 90 GeV), but is primarily because of the
larger color factors associated with initial state gluons (CA = 3) rather than quarks (CF = 4/3), and
also because of the larger phase space for initial state gluon emission at the LHC. The newer version
of PYTHIA agrees well with ResBos at low to moderatepT , but falls below the resummed prediction
at highpT . This is easily understood: ResBos switches to the NLO Higgs + jet matrix element [197]
at highpT while the default PYTHIA can generate the HiggspT distribution only by initial state gluon
radiation, using as maximum virtuality the Higgs mass squared. HighpT Higgs production is another
example where a2 → 1 Monte Carlo calculation with parton showering can not completely reproduce
the exact matrix element calculation, without the use of matrix element corrections as already discussed
in section 3.3. The highpT region is better reproduced if the maximum virtualityQ2

max is set equal
to the squared partonic center of mass energy,s, rather thanm2

H . This is equivalent to applying the
PS to all of phase space. However, this has the consequence of depleting the lowpT region as ‘too
much’ showering causes events to migrate out of the peak. The appropriate scale to use in PYTHIA

(or any Monte Carlo) depends on thepT range to be probed. If matrix element information is used
to constrain the behavior, the correct highpT cross section can be obtained while still using the lower
scale for showering. The incorporation of matrix element corrections to Higgs production (involving the
processesgq → qH,qq → gH, gg → gH) is the next logical project for the Monte Carlo experts, in
order to accurately describe the highpT region.

The older version of PYTHIA produces too many Higgs events at moderatepT (in comparison to
ResBos). Two changes have been implemented in the newer version. The first change is that a cut is
placed on the combination ofz andQ2 values in a branching:̂u = Q2 − ŝ(1 − z) < 0, whereŝ refers
to the subsystem of the hard scattering plus the shower partons considered to that point. The association
with û is relevant if the branching is interpreted in terms of a2 → 2 hard scattering. The corner of
emissions that do not respect this requirement occurs when theQ2 value of the space-like emitting
parton is little changed and thez value of the branching is close to unity. This effect is mainly for the
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Fig. 30: A comparison of predictions for the HiggspT distribution at the LHC from ResBos, two recent versions of PYTHIA

and HERWIG. The ResBos, PYTHIA and HERWIG predictions have been normalized to the same area.

hardest emission (largestQ2). The net result of this requirement is a substantial reduction in the total
amount of gluon radiation [198]16. In the second change, the parameter for the minimum gluon energy
emitted in space-like showers is modified by an extra factor roughly corresponding to the1/γ factor for
the boost to the hard subprocess frame [198]. The effect of this change is to increase the amount of gluon
radiation. Thus, the two effects are in opposite directions but with the first effect being dominant.

This difference in thepT distribution between the two versions, 5.7 and 6.1, of PYTHIA could
have an impact on the analysis strategies for Higgs searches at the LHC [199]. For example, for the
CMS simulation of the Higgs search and the decay into two photons it is envisaged to optimize the
efficiency and the mass resolution for the high-luminosity running phase using charged particles with
relatively largept, which balance the HiggspT spectrum. These associated charged particles will allow
to distinguish the Higgs event vertex from other vertices of unrelated proton–proton interactions with
good accuracy. The efficiency of such an analysis strategy depends obviously on the knowledge of the
HiggspT spectrum and is thus somewhat sensitive to the used Monte Carlo parametrisation.

3.43 Comparison withHERWIG

The variation between versions 5.7 and 6.1 of PYTHIA gives an indication of the uncertainties due to the
types of choices that can be made in Monte Carlos. The requirement thatû be negative for all branchings
is a choice rather than an absolute requirement. Perhaps the better agreement of version 6.1 with ResBos
is an indication that the adoption of theû restrictions was correct. Of course, there may be other changes
to PYTHIA which would also lead to better agreement with ResBos for this variable.

Since there are a variety of choices that can be made in Monte Carlo implementations, it is instruc-
tive to compare the predictions for thepT distribution for Higgs production from ResBos and PYTHIA

16Such branchings are kinematically allowed, but since matrix element corrections would assume initial state partons to have
Q2 = 0, a non-physical̂u results (and thus no possibility to impose matrix element corrections). The correct behavior is beyond
the predictive power of LL Monte-Carlos.



with that from HERWIG (version 5.6, also using the CTEQ4M parton distribution functions). The HER-
WIG prediction is shown in Figure 30 along with the PYTHIA and ResBos predictions, all normalized to
the ResBos prediction17. In all cases, the CTEQ4M parton distribution was used. The predictions from
HERWIG and PYTHIA 6.1 are very similar, with the HERWIG prediction matching the ResBos shape
somewhat better at lowpT . An understanding of the signature for Higgs boson production at either the
Tevatron or LHC depends upon the understanding of the details of soft gluon emission from the initial
state partons. This soft gluon emission can be modelled either in a Monte Carlo or in a resummation
calculation, with various choices possible in both implementations. A comparison of the two approaches
is useful to understand the strengths and weaknesses of each. The data from the Tevatron that either
exists now, or will exist in Run 2, will be extremely useful to test both approaches.

In contrast to the case for Z production at the Tevatron, the Higgs cross section at the LHC is
not particularly sensitive to the non–perturbativekT added at the scaleQ0. In the evolution to the hard
scatter scaleQ, thekT is ‘radiated away’, given the enhanced gluon radiation probability present for a
gg initial state. For a more thorough discussion of the comparison between analytic methods and parton
showers, see Ref. [193].

3.5 COMPHEP for LHC 18

The COMPHEP package is available from:http://theory.npi.msu.su/˜comphep/ . A ver-
sion adapted to the LHC physics COMPHEP V.33 [138], including executable Linux modules is available
at CERN from:/afs/cern.ch/cms/physics/COMPHEP-Linux .

The current COMPHEP version performs all calculation at tree level (LO). Three issues must be
discussed as they open several setting options: a) the parton distributions, b) the QCD scale, and c) the
running strong coupling.

In COMPHEP v.33, the following parton distribution sets are implemented: MRS(A’) and MRS(G)
[200], CTEQ4l and CTEQ4m [111]. Note that CTEQ4l is a LO parametrization, while in all others the
evolution of parton distributions is treated at NLO. Dedicated routines are available to allow the addition
of any other defined parton distribution (e.g. CTEQ5).

As discussed in Sect. 1., the factorization theorem states that the parton distribution depends not
only on Bjorken variablex but also on its virtualityQ2 or, equivalently, on the factorization scale. This
parameter is related to the energy (or momentum) scale which characterizes the hard subprocess, but it
cannot be unambiguously fixed (see Sect. 1.). Therefore it can be experimentally tuned. It can be set
by the user for each specific QCD process as eitherfixedor running. In the latter case,Q2 can be set
to any linear combination squared of the external particles momenta (e.g.(p1 − p3)2, (p1 − p3 − p4)2,
(p3 + p4)2 . . . where initial and outgoing momenta enter with opposite signs).

In COMPHEP V.33, the QCD couplingαS can be computed at LO, NLO or NNLO precision. All
the corresponding formulas are written in terms ofΛ(6)

MS
, the fundamental QCD scale forNf = 6 flavours

of massless quarks (see Sect. 1. and [13]). In COMPHEP, to evaluate a QCD process, one first fixes the
αS normalization point (e.g. a popular normalization point is the mass ofZ boson,Q = MZ ) to which

correspond an experimental fit (e.g.αNLO
S (MZ) = 0.118). Then, the correspondingΛ(Nf )

MS
(Nf = 5 at

Q = MZ ) can be deduced from theαS expression at the selected precision order. The COMPHEP input

parameterΛ(6)

MS
is then obtained fromΛ(Nf )

MS
. Finally, the choice of the QCD scaleQ determinesαS and

the factorization scale for the pdf’s. Therefore, complete LO calculations of LHC processes are made
available for a consistent phenomenological analysis of the influence of higher order contributions.

17The normalization factors (ResBos/Monte Carlo) are PYTHIA (both versions)(1.61) and HERWIG (1.76). Figures of the
absolutely normalized predictions from ResBos, PYTHIA and HERWIG for thepT distribution of the Higgs at the LHC can be
found in Ref. [193].

18Contributing authors: V.A.Ilyin and A.E.Pukhov.



3.51 COMPHEP-PYTHIA interface

An interface between COMPHEP and PYTHIA can be found in:
/afs/cern.ch/cms/physics/COMPPYTH .

A library of COMPHEP based partonic event generators for LHC processes has been initiated
and various samples of event are available at:/afs/cern.ch/cms/physics/PEVLIB for Zbb̄,
Wbb̄, tt̄bb̄ and some others. Unweighted event sample files, located in the corresponding directories
(see the filesREADME for details) when handled by the COMPHEP-PYTHIA interface code, generate
complete LHC events, ready to be fed to the detector simulation software. For example, theZbb̄ process
can be found in:/afs/cern.ch/cms/physics/PEVLIB/Z b b. The file pevZbb contains about 200K
unweighted events. Each event is represented by the Lorentz momenta of all external particles. In the
current version of the package, there is no color information associated to the events. Thus, only the
Independent Fragmentation Modelcan be invoked. One can always require the Lund model option for
the fragmentation, as long as the corresponding color strings have been set by an external algorithm in the
routinePYUPEV. The same remark applies also to the final state radiations (FSR), which are, by default,
switched off in COMPHEP-PYTHIA interface although initial state radiations (ISR) are switched on. In
the upcoming version of the COMPHEP package [201] color strings will be generated from the matrix
element factors allowing for the use of the Lund fragmentation model.

3.6 GRACE for LHC 19

The URL of web page for the GRACE system ishttp://www-sc.kek.jp/minami/ where the
latest information, the reports and manuals [130, 131], the GRACE version.2 and the other products are
available.

The automated system allows us to create event generators for complicated processes which are
hard to calculate by hand. For instance the processgg → bb̄bb̄ has been calculated without any approxi-
mation (e.g. accounting for massive fermions) by use of the GRACE system [130,131].

The intrinsic function of the GRACE system is to generate the amplitude for a specified parton
interaction. The system has been tested for many reactions and it was confirmed to be able to manage
2-body to 6-body final state processes. The interface with the pdf’s, PS and the fragmentation tools
will be implemented in the coming versions (see for example GRAPE for ep → `¯̀X [202]). For the
parton showering and the fragmentation, two kinds of approach can be followed. The first is, like in
GRAPE a 2 step procedure: the BASES/SPRING package including pdf’s is used for the integration over
the phase space and for the generation of unweighted events. If the “kinematics” code is appropriate,
SPRING generates events with high efficiency and writes the four-vectors of the final-state particles on
a temporary file. Then the generated momenta are passed to PYTHIA for PS and fragmentation. The
other approach is more convenient but more complex. Here the code including the kinematics and the
generated matrix element is prepared so that PYTHIA can drive them directly. This type of interface is
tested till now only for the processes whose final state consist of 2-, 3- and 4-bodies.

The GRACE system can automatically deal with one-loop processes (NLO) for the electroweak
and QED-like QCD interactions. For the final two-body processes the performance has been shown to be
good. The application to the multi-body final states, however, would be limited because of the huge CPU
time required when the code is used as event generators. For such cases a practical use of the generated
code will be to evaluate the cross sections and to give the distribution of several physical quantities rather
than providing event generators.

As mentioned the contributions beyond LO are crucial for a detailed QCD study. Since the PS
method is based on the renormalization group equation, it works as a bridge between the “hard” parton
collision and the fragmentation. This bridge is built on the solid and reliable ground of perturbative QCD.
In other words the parton shower provides an unambiguous theoretical understanding ofpp(p) interac-

19Contributing author: K. Kato.



tions except for the “soft” component which cannot be controlled by the perturbative QCD. However,
the PS in LL order is not enough. One of the shortcomings is as follows. The pdf’s for the initial state,
products of elaborated works, are parameterized according to the NLO QCD formulas. On the other hand
the corresponding PS, implemented in the existing programs like PYTHIA , is evolved using only the LL
algorithm at least in their current status. Then the systematic summation of large logarithms up to NLL
order must solve this annoying situations. Though the basic technology has been already established and
known for many years [203–205], its implementation is not a trivial task as simply imagined. First it
is process-dependent. Once the idea evolves and is realized as one of the environments of GRACE, it
should allow more precise prediction for LHC. Thus this must be the biggest issue to us.

3.7 ALPHA for LHC 20

As discussed in the introduction to this Section, the ability to evaluate production rates for multi-jet final
states will be fundamental at the LHC to study a large class of processes, within and beyond the SM. As
was also discussed in the Sect. 3.1, a necessary feature of any multi-jet calculation is the possibility to
properly evolve the purely partonic final state, for which exact fixed-order perturbative calculations can
be performed, into the observable hadronic final state. This evolution is best performed using shower
Monte Carlo calculations. The accurate description of color-coherence effects, furthermore, requires
as noticed in the introduction a careful bookkeeping of the contribution to the matrix elements of all
possible color configurations. The goal of the algorithm [137] described in this Section is to allow the
effective calculation of multi-parton matrix elements, allowing the separation, to the leading order in
1/N2

c (Nc = 3 being the number of colors), of the independent color configurations. This technique
allows an unweighting of the color configurations, and allows the merging of the parton level calculation
with the HERWIG Monte Carlo.

The key element of the strategy is the use of the algorithmALPHA, introduced in Ref. [134] for
the evaluation of arbitrary multi-parton matrix elements. This algorithm determines the matrix elements
from a (numerical) Legendre transform of the effective action, using a recursive procedure which does
not make explicit use of Feynman diagrams. The algorithm has a complexity growing like a power
in the number of particles, compared to the factorial-like growth that one expects from naive diagram
counting. This is a necessary feature of any attempt to evaluate matrix elements for processes with large
numbers of external particles, since the number of Feynman diagrams grows very quickly beyond any
reasonable value. For example, this calculation allowed [137] the evaluation of the matrix elements for
the production of 8-gluon final states. The number of Feynman diagrams which describe this process
exceeds 7 billion.

The interface of the parton level scattering matrix element with the PS requires the capability to
reconstruct the appropriate color flow for a given event. The strategy to deal with this issue is described
in detail in [137]. The following points have to be noticed:

1. Dual amplitudes [206–208] can be easily evaluated using theALPHAalgorithm. Since the dual
amplitudesA are independent of the numberNc of colors, they can be calculated exactly by taking
Nc sufficiently large.

2. With an appropriate choice for the color of the external partons, the full amplitude is proportional
to a single dual amplitude.

We explicitly calculatedn-gluon dual amplitudes using the large-Nc Lagrangian. The correctness
of the calculation was checked forn up to 11 by comparing the results for maximally helicity violating
(MHV) amplitudes [209] (e.g.g+g+ → g+ · · · g+) with the analytic expressions known exactly for
arbitrary n [206–208, 124]. The input of the numerical evaluation of the matrix element is a string
containing the total number of gluons, their helicity state, and their momenta. From these data, the
amplitude is evaluated automatically.

20Contributing authors: M.L. Mangano and M. Moretti.



The prescription to correctly generate the parton-shower associated to a given event in the large-Nc

limit is therefore the following:

1. Calculate the(n− 1)! dual amplitudes corresponding to all possible planar color configurations.

2. Extract themost likelycolor configuration for this event on a statistical basis, according to the
relative contribution of the single configurations to the total event weight21. Since each dual
amplitude is gauge invariant, the choice of color-configurations is also a gauge-invariant operation.

3. Develop the PS out of each initial and final-state parton, starting from the selected color config-
uration. This step can be carried out by feeding the generated event to a Monte-Carlo program
such as HERWIG, which is precisely designed toturn partons into jetsstarting from an assigned
color-ordered configuration.

Notice that, if the dual amplitudes are evaluated for a specific helicity configuration, HERWIG will also
include spin-correlation effects in the evolution of the parton shower [210,211,171,116,117].

As a result, use of the dual-amplitude representation of a multi-gluon amplitude allows to ac-
curately describe not only the large-angle correlations in multi-jet final states, but also the full shower
evolution of the initial- and final-state partons with the same accuracy available in HERWIG for the de-
scription of 2-jet final states.

In alternative to the above prescription, one can useALPHAto calculate the matrix elements for
external states with assigned colors. Since these states are all orthogonal, such an approach is particularly
efficient if one wants to use a Monte Carlo approach to the summation over all possible color states. The
program will then extract through a standard unweighting (at the leading order in1/N2

c ) a specific color
flow from all possible color flows contributing to a given orthogonal color state. This color flow is then
suitable as an initial condition for the shower evolution. Further details can be found in [137]. At this
time, the program is only available in its parton-level form, and allows the calculation of matrix elements
for gg → g . . . g andqq → g . . . g processes, with up to 8 final-state gluons. A full version including the
interface with HERWIG is being prepared.

4. AVAILABLE NLO CALCULATIONS AND PROSPECTS AT NNLO 22

4.1 Available NLO calculations of multijet processes23

QCD calculations of multijet24 processes beyond LO in the strong coupling constantαS are quite in-
volved. Nowadays we know (see below) how to perform in general calculations of the NLO corrections
to multijet processes, and almost every process of interest has been computed to that accuracy. Instead,
the calculation of the NNLO corrections is still at an organisational stage and represents a main challenge.
Why should we perform calculations which are technically so complicated ?

The general motivation is that the calculation of the NLO corrections allows us to estimate reliably
a given production rate, while the NNLO corrections allow us to estimate the theoretical uncertainty on
the production rate. That comes about because higher-order corrections reduce the dependence of the
cross section on the renormalization scale,µR, and for processes with strongly-interacting incoming
particles the dependence on the factorization scale,µF , as well.

An example is the determination ofαS from event shape variables ine+e− → 3 jets [212–215].
The calculation of the NNLO contributions to this process would be needed to further reduce the theo-
retical uncertainty in the determination ofαS. An additional motivation for performing calculations at
NNLO is to obtain a more accurate theoretical determination of signal and QCD background to Higgs
production (for further details, see Sect. 9.).

21Definingwi = |Ai|2 for each color flowi, andWi =
∑

k=1,...,i wk/
∑

k=1,...,n wk, the j-th color structure will be
selected ifWj−1 ≤ ξ < Wj , for a random numberξ uniformly distributed over the interval[0, 1].

22Section coordinators: V. Del Duca, D. Soper and W.J. Stirling.
23Contributing authors: V. Del Duca and S. Frixione.
24For the sake of brevity, in this section we will term as multijet any kind of (partly) hadronic final state.



In recent years it has become clear how to construct general-purpose algorithms for the calcu-
lation of multijet processes at NLO accuracy. The crucial point is to organise the cancellation of the
infrared (i.e. collinear and soft) singularities of the QCD amplitudes in a universal, i.e. process- and
observable-independent, way. The universal terms in a NLO calculation are given by the tree-level
collinear [14,216,16,17] and soft [217–219] functions, and by the universal structure of the poles of the
one-loop amplitudes [160,220,221]. The universal NLO terms and the process-dependent amplitudes are
combined into effective matrix elements, which are devoid of singularities. The various NLO algorithms
(phase-spaceslicing [160, 222–224] andsubtractionmethod [161, 225, 227, 226, 162]) provide different
methods to construct the effective matrix elements. These can be integrated in four dimensions, in prac-
tice almost always numerically, due to the complexity of the integrand. The integration can be performed
with arbitrary experimental acceptance cuts.

We now outline how to perform a NLO calculation of a generic physical observable. As is well
known from Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems, QCD (like QED) does not have
an infinite-resolution power; any attempt to compute the kinematical properties of a fixed number of final-
state quarks and gluons results in an infrared-divergent cross section. In order to obtain finite quantities,
all the partonic subprocesses which contribute to the same order inαS to the squared amplitude have to
be included in the computation, regardless of the number of final-state particles. In addition, one is forced
to consider variables which are inclusive enough to beinfrared safe. Roughly speaking, an observable is
said to be infrared safe when its value, computed with the kinematical variables of the final-state partons,
does not change abruptly when a soft gluon is emitted, or a parton splits almost collinearly into a pair
of partons. More technically, an infrared-safe observable must have a smooth limit (that is, must behave
continuously) in the following three configurations:a) when a gluon in the final state gets soft;b) when
two partons in the final state tend to get collinear to each other;c) when an initial-state parton emits
collinearly another parton.

At NLO (assuming that the LO cross section gets contributions from then-parton amplitudes),
this implies that one has simply to consider two contributions, denoted as virtual and real. The former is
the product of then-parton one-loop amplitudes with then-parton tree amplitudes, while the latter is the
square of the(n + 1)-parton tree amplitudes. In order to deal with finite quantities in the intermediate
steps of the calculation, we adopt dimensional regularization – i.e. we change the dimensionality of
space-time tod = 4−2ε. Thus, we can schematically write the virtual and real contributions to the cross
section as follows: (

dσ

dx

)
V

=
1
2ε
δ(1 − x) ,

(
dσ

dx

)
R

=
1

1 − x
; (23)

here,1 − x represents the radiated energy. So,x = 1 means no radiation, andx = 0 is the maximum of
radiation. The relevant physical quantity will be the average value< F > of a certain functionF (x); for
example, we can think ofF as being the product of theta functions representing a histogram bin. Then,
the NLO contribution to< F > is

< F >NLO =
∫ 1

0
dx

(
dσ

dx

)
V

F (x) +
∫ 1

0
dx (1 − x)−2ε

(
dσ

dx

)
R

F (x) (24)

=
1
2ε

∫ 1

0
dx δ(1 − x)F (x) +

∫ 1

0
dx (1 − x)−1−2ε F (x) (25)

=
1
2ε
F (1)+ < F >R . (26)

The factor(1−x)−2ε in the real contribution comes from the necessity of performing the computation in
d dimensions, in order to regulate the divergences arising when performing the integration over the phase
space. As it is apparent from eq. (25), the most difficult task is the computation of the real contribution.
In practice, the form ofF (x) is too complicated to perform an analytical integration. On the other
hand, we cannot proceed straightforwardly, and compute the integral numerically; in fact, the integral is



divergent in the limitε→ 0, and the pole in1/ε will exactly cancel that explicitly displayed in the virtual
contribution (provided thatF describes an infrared-safe quantity).

Two strategies have been developed to tackle this problem. In the framework of theslicingmethod,
the real contribution is rewritten as follows:

< F >R=
∫ 1−δ

0
dx

F (x)
(1 − x)1+2ε

+
∫ 1

1−δ
dx

F (x)
(1 − x)1+2ε

, (27)

whereδ is an arbitrary parameter,0 < δ ≤ 1. The first term on the right hand side of this equation
is free of divergences (F (x) is regular in the limitx → 1); in this term, one can therefore setε = 0,
and compute the integral with standard numerical methods. On the other hand, the second term is still
divergent forε → 0; however, ifδ is small enough, one can approximateF (x) with F (1) (that is, with
the first term of its Taylor expansion aroundx = 1). Therefore

< F >R =
∫ 1−δ

0
dx

F (x)
1 − x

+ F (1)
∫ 1

1−δ
dx

1
(1 − x)1+2ε

+ O(δ) (28)

=
∫ 1−δ

0
dx

F (x)
1 − x

− δ−2ε

2ε
F (1) + O(δ) . (29)

Eq. (29) can now be substituted into eq. (26). Expanding eq. (29) in powers ofε, keeping only the terms
which do not vanish in the limitε → 0, and neglecting the contributions of the terms ofO(δ), we see
that the pole terms in1/ε cancel, and one is left with a finite result:

< F >slicing
NLO =

∫ 1−δ

0
dx

F (x)
1 − x

+ F (1) log δ. (30)

At a first glance, this expression is seemingly puzzling: the parameterδ is arbitrary, and the physical
results should not depend on it. However, it is easy to see that the upper bound of the integral gives a
contribution behaving (approximately) like−F (1) log δ. It has to be stressed that the slicing method is
based on the approximation performed in eq. (28); for this approximation to hold, it is crucial thatδ is as
small as possible; otherwise, the terms collectively denoted withO(δ) in eq. (29) are not negligible. On
the other hand, in practical computations, the integral in eq. (30) is performed numerically; due to the
divergence of the integrand forx→ 1, δ cannot be taken too small, because of the loss of accuracy of the
numerical integration. Thus, the value ofδ is a compromise between these two opposite requirements,
being neither too small nor too large. Of course, “small” and “large” are meaningful only when referred
to a specific computation. Therefore, when using the slicing method, it is mandatory to check that the
physical results are stable against the variation of the value ofδ, chosen in a suitable range. In principle,
this check would have to be performed for each observableF computed; in practice, only one observable
is checked, generally chosen to be rather inclusive (such as a total rate).

Another possibility to compute< F >R is given by thesubtractionmethod. One writes

< F >R=
∫ 1

0
dx

F (x) − F (1)θ(x− 1 + xc)
(1 − x)1+2ε

+ F (1)
∫ 1

0
dx

θ(x− 1 + xc)
(1 − x)1+2ε

, (31)

wherexc is an arbitrary parameter0 < xc ≤ 1. The first term on the right hand side of this equation is
convergent, and we can setε = 0. The second term is formally identical to the one appearing in eq. (28).
Notice, however, that no approximation has been made in eq. (31); the price to pay is a more complicated
expression for the first integral. Proceeding as before, we get:

< F >subt
NLO=

∫ 1

0
dx

F (x) − F (1)θ(x− 1 + xc)
1 − x

+ F (1) log xc. (32)

This equation has to be compared to eq. (30); although the two are quite similar, there are two important
differences that have to be stressed. Firstly, the parameterxc introduced in the subtraction method does



not need to be small (actually, in the original formulation of the methodxc was not even introduced,
which corresponds to setxc = 1 here). This is due to the fact that in the subtraction method no approxi-
mation has been performed in the intermediate steps of the computation. This in turn implies the second
point: there is no need to check that the physical results are independent of the value ofxc, since this is
true by construction.

The universal algorithms previously mentioned allow the computation of any infrared-safe observ-
able in a straightforward manner; the matrix elements do not need any algebraic manipulation, and can
be computed in four dimensions. It is therefore relatively easy to construct computer codes, accurate to
NLO in QCD, that are flexible enough to become a useful tool in the analysis of the experimental data. In
the following, we will list the codes which are of direct interest for the physics of high-energy hadronic
collisions. We do not intend to give a complete list of references to the papers relevant for the calculation
of a given production process25, but rather only to quote the computer codes which will have a chance
to be used by the experimental collaborations at the LHC. Most of the codes listed here are available as
free software.

• Jets
– S.D. Ellis, Z. Kunszt and D.E. Soper [220, 6],subtraction, computes one- and two-jet ob-

servables.

– W.T. Giele, E.W.N. Glover and D.A. Kosower (JETRAD) [222],slicing, computes one- and
two-jet observables.

– S. Frixione [227],subtraction, computes one- and two-jet observables.

– W. Kilgore and W.T. Giele [228],slicing, computes three-jet observables.

• Single Isolated Photon (plus one jet)
– H. Baer, J. Ohnemus and J.F. Owens [229],slicing, fragmentation contribution computed to

LO accuracy.

– L.E. Gordon and W. Vogelsang [230], analytical integration over the variables of the recoiling
partons: no information on the accompanying jet; dependence on the isolation variables
treated to logarithmic approximation.

– S. Frixione [231],subtraction, only effective with the isolation prescription of ref. [232].

– M. Werlen (PHONLL) [http://home.cern.ch/˜monicaw/phonll.html],slicing, based on ref. [234,
233].

• Isolated-Photon Pairs
– B. Bailey, J.F. Owens and J. Ohnemus [235],slicing, fragmentation contributions computed

to LO accuracy.

– C. Balazs, E.L. Berger, S. Mrenna and C.P. Yuan [236],slicing, resummation effects in-
cluded, fragmentation contributions computed with parton shower methods.

– T.Binoth, J.Ph. Guillet, E. Pilon and M.Werlen (DIPHOX) [237],slicing, all contributions
computed to NLO accuracy.

• Single Heavy Vector Boson (plus one jet)
– W.T. Giele, E.W.N. Glover and D.A. Kosower (DYRAD) [222],slicing.

• Single Heavy Vector Boson plus one photon
– U. Baur, T. Han, J. Ohnemus [238,239],slicing.

– D. de Florian and A. Signer [240],subtraction, includes spin correlations in the decay of the
bosons; fragmentation contributions computed to LO accuracy.

• Heavy Vector Boson Pairs
– U. Baur, T. Han, J. Ohnemus and J.F. Owens [241–245],slicing.

25Further details on codes involving the production of a single vector boson and of a Higgs boson can be found in Sect. 6.
and 9., respectively.



– S. Frixione, B. Mele, P. Nason and G. Ridolfi [246–248],subtraction.

– J.M. Campbell and R.K. Ellis (MCFM) [249],subtraction, includes spin correlations in the
decay of the bosons.

– L. Dixon, Z. Kunszt and A. Signer [250],subtraction, includes spin correlations in the decay
of the bosons.

• Higgs Boson at large transverse momentum (plus one jet)
– D. de Florian and M. Grazzini and Z. Kunszt [197],subtraction, computes Higgs-boson

production in the infinite top-quark-mass limit.

• Heavy Quarks
– M. Mangano, P. Nason and G. Ridolfi [251],subtraction, computes single-inclusive distribu-

tion and correlations betweeenQ andQ.

Since the universal algorithms accomplish the task of cancelling the infrared divergences of the
virtual and real contributions in a process-independent way, the remaining work that has to be performed
to calculate a production rate at NLO is the computation of the appropriate tree and one-loop amplitudes.
As we said previously, to computen-jet production at NLO, two sets of amplitudes are required:a)
n-particle production amplitudes at tree level and one loop;b) (n + 1)-particle production amplitudes
at tree level. If the one-loop amplitudes are regularised through dimensional regularisation, it suffices at
NLO to compute them toO(ε0).

Efficient methods based on the color decomposition [125, 252–254] of an amplitude in color-
ordered subamplitudes, which are then projected onto the helicity states of the external partons, have
largely enhanced the ability of computing tree [125] and one-loop [255] amplitudes. Accordingly, tree
amplitudes with up to seven massless partons [125, 256, 257] and with a vector boson and up to five
massless partons [258] have been computed analytically. In addition, efficient techniques to evaluate
numerically tree multi-parton amplitudes have been introduced [259, 137] (see Sect. 3. for a descrip-
tion of available numerical codes), and have been used to compute tree amplitudes with up to eleven
massless partons [137]. The calculation of one-loop amplitudes can be reduced to the calculation of
one-loopn-point scalar integrals [260–262]. The reduction method [260] allowed the computation of
one-loop amplitudes with four massless partons [263] and with a vector boson and three massless par-
tons [264]. However, one-loop scalar integrals present infrared divergences, induced by the massless ex-
ternal legs. For one-loop multi-parton amplitudes, the infrared divergences hinder the reduction methods
of ref. [260–262]. This problem has been overcome in ref. [265,266]. Accordingly, one-loop amplitudes
with five massless partons [267, 269, 268] and with a vector boson and four massless partons [270–274]
have been computed analytically. The reduction procedure of ref. [265, 266] has been generalised in
ref. [275], where it has been shown that any one-loopn-point scalar integral, withn > 4, can be reduced
to box scalar integrals. The calculation of one-loop multi-parton amplitudes thus can be pushed a step
further in the near future.

4.2 Prospects for NNLO calculations26

Eventually, a procedure similar to the one followed at NLO will permit the construction of general-
purpose algorithms at NNLO accuracy. It is mandatory then to fully investigate the infrared structure of
the matrix elements at NNLO. The universal pieces needed to organise the cancellation of the infrared
singularities are given by the tree-level triple-collinear [276, 277, 253], double-soft [219, 278] and soft-
collinear [276,278] functions, by the one-loop splitting [271,279–281] and eikonal [271] functions, and
by the universal structure of the poles of the two-loop amplitudes [282]. These universal pieces have yet
to be assembled together, to show the cancellation of the infrared divergences at NNLO.

Then to computen-jet production at NNLO, three sets of amplitudes are required:a) n-particle
production amplitudes at tree level, one loop and two loops;b) (n + 1)-particle production amplitudes

26Contributing authors: V. Del Duca and G. Heinrich.



at tree level and one loop;c) (n + 2)-particle production amplitudes at tree level. In dimensional regu-
larisation at NNLO, the two-loop amplitudes need be computed toO(ε0), while the one-loop amplitudes
must be evaluated toO(ε2) [271, 283]. The main challenge is the calculation of the two-loop ampli-
tudes. At present, the only amplitude known at two loops is the one forV ↔ qq [284, 285, 32], with
V a massive vector boson, which depends only on one kinematic variable. It has been used to evaluate
the NNLO corrections to Drell-Yan production [32,33] and to deeply inelastic scattering (DIS) [64,63].
Two-loop computations for configurations involving two kinematic variables, which are needed in the
case of parton-parton scattering, exist only in the special cases of maximal supersymmetry [286], and of
maximal helicity violation [287]. The latter contributes only beyond NNLO. One of the main obstacles
for configurations involving two kinematic variables is the analytic computation of the two-loop four-
point functions with massless external legs, where significant progress has just been achieved. These
consist of planar double-box integrals [288, 289], non-planar double-box integrals [290], single-box in-
tegrals with a bubble insertion on one of the propagators [291] and single-box integrals with a vertex
correction [292]. Finally, processes such ase+e− → 3 jets andp p → H jet sport configurations in-
volving three kinematic variables and require the analytic computation of two-loop four-point functions
with a massive external leg. Some of the required two-loop four-point functions of this kind have been
derived recently [293]. Another obstacle is the color decomposition of two-loop amplitudes, which is not
generally known yet. Substantial progress is expected in the near future on all the issues outlined above,
which should make the present note soon outdated.

Finally, we mention that in the factorization of collinear singularities for strongly-interacting in-
coming particles, the evolution of the pdf’s in the jet cross section should be determined to an accuracy
matching the one of the parton cross section. For hadroproduction of jets computed at NLO, one needs
the NLO AP splitting functions for the evolution of the pdf’s (see Eqs. (8) and (9)). Accordingly, for
hadroproduction at NNLO the evolution of the pdf’s should be computed using the NNLO AP splitting
functions. Except for the lowest five (four) even-integer moments of the NNLO non-singlet (singlet) AP
splitting functions [25, 26], no calculation of the NNLO evolution of the pdf’s exists yet. Some NNLO
analyses based on the finite set of known moments have been performed for the DIS structure functions
xF3 andF2 (see Sects. 2.5 and 2.6 and Ref. [99]). Furthermore, in ref. [70] a quantitative assessment of
the importance of the yet unknown higher-order terms has been performed, with the conclusion that they
should be numerically significant only for Bjorkenx smaller than10−2.

The computation of the evolution kernels of the pdf’s at NNLO accuracy is a major challenge in
QCD. The NLO computation was performed with two different methods, one using the operator product
expansion (OPE) in a covariant gauge [18–21,24], the other using the light-cone axial (LCA) gauge with
principal value prescription [22,23]. However, the prescription used in ref. [22,23] has certain shortcom-
ings. Accordingly, the calculation has been repeated in the LCA gauge using a prescription [294, 295]
which makes it amenable to extensions beyond NLO, whereas the principal value prescription does not
seem to be applicable beyond NLO [296]. On the other hand, using the OPE method, there had been a
problem with operator mixing in the singlet sector, which has been fixed [297–299] only recently, and
the result finally coincides with the one obtained in the LCA gauge in ref. [23]. Thus the result for the
AP splitting functions at NLO accuracy is fully under control. Recent proposals for their calculation
beyond NLO include extensions of the OPE technique, which have been used to recompute the NNLO
corrections to DIS [300], and a computation based on combining universal gauge-invariant collinear
pieces [301].



5. SUMMATIONS OF PERTURBATION THEORY 27

5.1 Summations of logarithmically-enhanced contributions28

The calculation of hard–scattering cross sections in hadron collisions requires the knowledge of partonic
cross sectionŝσ, as well as that of parton densities (see the factorization formula in Eq. (2)). The
partonic cross sectionŝσ(p1, p2;Q, {Q1, . . .};µ2) are usually computed by truncating their perturbative
expansion at a fixed order inαS, as in Eq. (3). However, fixed–order calculations are quantitatively
reliable only when all the kinematical scalesQ, {Q1, . . .} are of the same order of magnitude. When
the hard–scattering process involves two (or several) very different scales, sayQ � Q1, then-th term
in Eq. (3) can contain double– and single–logarithmic contributions of the type(αSL

2)n and(αSL)n

with L = ln(Q/Q1) � 1. These terms spoil the reliability of the fixed–order expansion and have to be
summed to all orders, systematically improving on the logarithmic accuracy of the expansion.

Typical examples of such large logarithms are the termsL = lnQ/Q0 related to the evolution of
parton densities (and parton fragmentation functions) from a low input scaleQ0 to the hard–scattering
scaleQ. These logarithms are produced by collinear radiation from the colliding partons and givesingle–
logarithmic contributions. They never explicitly appear in the calculation of the partonic cross sec-
tion, because they are systematically (LO, NLO and so forth) resummed in the evolved parton densities
fa/h(x,Q2) and parton fragmentation functionsda/H(x,Q2) by using DGLAP equations (8).

A different sort of large logarithm,L = ln
√
s/Q, arises when the centre–of–mass energy

√
s of

the collision is much larger than the hard scaleQ. These small–x (x = Q/
√
s) logarithms are produced

by multiple gluon radiation over the wide rapidity range that is available at large energy. For sufficiently
inclusive processes in singlet channels these givesingle–logarithmic(LLx) contributions that can be cal-
culated by using the BFKL equation [302–306]. The subleading (NLLx) contributions have also been
calculated recently [67,307] and turn out to be very large. This is understood to be due to contamination
by collinear logarithms ofQ2/Q2

0, which must be simultaneously resummed to obtain reliable predic-
tions at smallx [308, 309]. Various resummation procedures have been suggested, and will be briefly
discussed in Sects. 5.4 and 7. Unfortunately there are as yet no substantial phenomenological analyses
which use these resummations. The resummation of small–x logarithms will be important for the accu-
rate determination of the behaviour of singlet parton densitiesfa/h(x,Q2) at small values of the parton
momentum fractionx, and thus for making reliable predictions of any process that is sensitive to the
hard–scattering of low–momentum partons (for exampleb–quark production29 and inclusive production
of low–ET jets and prompt photons at the LHC). The BFKL equation is however also relevant for un-
derstanding the structure of final states, for example when there are jets with large rapidity intervals,
or diffractive processes with large rapidity gaps. These more general aspects of small–x physics are
discussed in Sect. 7.

Yet another class of large logarithms is associated to the bremsstrahlung spectrum of soft gluons.
Since soft gluons can be radiated collinearly, they give rise todouble–logarithmiccontributions to the
partonic cross section, which takes the form

σ̂ ∼ αk
S σ̂

(LO)

{
1 +

∞∑
n=1

αn
S

(
C

(n)
2n L

2n + C
(n)
2n−1L

2n−1 + C
(n)
2n−2L

2n−2 + . . .
)}

. (33)

Double–logarithmic terms due to soft gluons arise in all the kinematic configurations where the contri-
butions of real and virtual partons are highly unbalanced (see Ref. [218] and references therein).

When partons (particles or jets) with low momentum fractionz are directly triggered in the final
state, the rˆole of (real) soft radiation is evidently enhanced. The low–momentum region of the fragmen-
tation spectra of particles and subjets in jet final–states is thus particularly sensitive to the resummation

27Section coordinator: L. Magnea.
28Contributing author: S. Catani.
29See the Bottom Production Chapter of this Report.



of small–z logarithms. The calculations based on the resummation of these logarithms are probably the
perturbative predictions that are most sensitive to the coherence properties [218, 310] of QCD. Detailed
studies of fragmentation processes have been performed ine+e− annihilation, DIS and at the Tevatron
(see the recent review in Ref. [311]). Although this topic is not included in these proceedings, similar
studies at the LHC would certainly be valuable.

In different kinematic configurations, (real) radiation in the final state can instead be strongly
inhibited. For instance, this happens in the case of transverse momentum distributions at low transverse
momentum, in the case of hard–scattering production near threshold or when the structure of the final
state is investigated with high resolution (internal jet structure, shape variables).

Soft–gluon resummation for jet shapes has extensively been studied and applied to hadronic final
states produced bye+e− annihilation [312,214,313]. Applications to hadron–hadron collisions have just
begun to appear [314–316] and have a large, yet uncovered, potential (fromαS determinations to studies
of non–perturbative dynamics). Future studies of this topic are certainly warranted.

Threshold logarithms,L = ln(1 − x), occur when the tagged final state produced by the hard
scattering is forced to carry a very large fractionx (x → 1) of the available centre–of–mass energy

√
s.

Outstanding examples of hard processes near threshold are DIS at largex (herex is the Bjorken variable),
production of DY lepton pairs or di-jets with large total invariant massQ = Mll or Mjj (x = Q/

√
s),

production ofW , Z and Higgs bosons (x = MW,Z,H/
√
s), production of heavy quark–anti-quark pairs

(x = 2mQ/
√
s), inclusive production of single jets and single photons at large transverse energyET

(x = 2ET /
√
s).

Transverse–momentum logarithms,L = lnQ2/p2
T , occur in the distribution of transverse mo-

mentumpT of systems with high massQ (Q � pT ) that are produced with a vanishingpT in the LO
subprocess. Examples of such systems are DY lepton pairs, lepton pairs produced byW andZ decay,
heavy quark–anti-quark pairs, photon pairs and Higgs bosons.

Studies of soft–gluon resummation for transverse–momentum distributions at low transverse mo-
mentum and hard–scattering production near threshold were pioneered two decades ago [317–327]. The
physical bases for a systematic all–order summation of the soft–gluon contributions are dynamics and
kinematics factorizations [328,329]. The first factorization follows from gauge invariance and unitarity:
in the soft limit multigluon amplitudes fulfil factorization formulae given in terms of universal (process
independent) soft contributions. The second factorization regards kinematics and strongly depends on
the actual cross section to be evaluated. When phase–space kinematics is factorizable, resummation is
analytically feasible in the form of ageneralized exponentiationof the universal soft contributions that
appear in the factorization formulae of QCD amplitudes.

Typically, phase–space factorization does not occur in the space of the kinematic variables where
the cross section is defined. It is thus necessary to introduce a conjugate space to overcome phase
space constraints. This is the case for hard–scattering production near threshold, where the relevant
kinematical constraint is (one–dimensional) energy conservation, which can be factorized performing
a Laplace (or Mellin) transformation (see Sect. 5.2). Analogously, the relevant kinematical constraint
for pT –distributions is (two–dimensional) transverse–momentum conservation and it can be factorized
by performing a Fourier transformation (see Sect. 5.3). In the conjugate space, the logarithmsL of the
relevant ratio of momentum scales are replaced by logarithmsL̃ of the conjugate variable.

The resummed cross section is thus typically of the form

σ̂res. = αk
S

∫
inv.

σ̂(LO) · C · S , (34)

where the integral
∫
inv. denotes the inverse transformation from the conjugate space where resummation

is actually carried out. The factorC contains all constant contributions in the limitL̃→ ∞. The singular



dependence oñL is entirelyexponentiatedin the effective form factorS:

S = exp
{
L̃ g1(αS(µ)L̃) + g2(αS(µ)L̃;µ2) + αS(µ) g3(αS(µ)L̃;µ2) + . . .

}
. (35)

The structure of the exponent is formally analogous to that of the fixed–order expansion of the partonic
cross sections (see Eq. (3)). The functionLg1 resums all the leading logarithmic (LL) contributions
αn

SL
n+1, while g2 contains the next–to–leading logarithmic (NLL) termsαn

SL
n and so forth. Note that

the NLL terms are formally suppressed by a power ofαS with respect to the LL ones, and the same is
true for the successive classes of logarithmic terms30. Thus, this logarithmic expansion is as systematic
as the fixed–order expansion in Eq. (3).

In general, a resummed expression such as Eq. (34) must be properly combined with the best
available fixed–order result. Using a shorthand notation, this is achieved by writing the partonic cross
sectionσ̂ as

σ̂ = σ̂res. + σ̂rem. . (36)

The termσ̂res. embodies the all–order resummation, while the remainderσ̂rem. contains no large loga-
rithmic contributions. The latter has the form

σ̂rem. = σ̂(f.o.) − [ σ̂res. ](f.o.) , (37)

and it is obtained from̂σ(f.o.), the truncation of the perturbative expansion forσ̂ at a given fixed order
(LO, NLO, . . . ), by subtracting the corresponding truncation[σ̂res.]

(f.o.) of the resummed part. Thus,
the expression on the right–hand side of Eq. (36) includes soft–gluon logarithms to all orders and it
is matchedto the exact (with no logarithmic approximation) fixed–order calculation. It represents an
improved perturbative calculation that is everywhere as good as the fixed–order result, and much bet-
ter in the kinematics regions where the soft–gluon logarithms become large (αSL ∼ 1). Eventually,
whenαSL ∼> 1, the resummed perturbative contributions are of the same size as the non–perturbative
contributions and the effect of the latter has to be implemented in the resummed calculation.

Using a matched NLL+NLO calculation as described above, we can consistently introduce a pre-
cise definition (sayMS) of αS(µ) and investigate the theoretical accuracy of the calculation by studying
its dependence on the renormalization/factorization scaleµ.

Resummed calculations for hadron collisions near threshold and forpT –distributions are discussed
in Sects. 5.2 and 5.3, respectively. Some overviews can also be found in Ref. [196]. We refer the reader
to Sects. 3.3 and 3.4 for comparisons of resummed calculations with parton shower event generators.

5.2 Threshold resummations31

Large logarithms arise in any inclusive cross section for the production of an object with a large massQ,
whenever the partonic energy

√
ŝ available for the process is close toQ, the production threshold. The

physical mechanism responsible for these logarithms is simple. Close to threshold the phase space for
the emission of gluon radiation in the final state is kinematically restricted; soft real radiation is, however,
responsible for the cancellation of infrared divergences associated with virtual gluon exchange; when-
ever radiation is inhibited, the cancellation is partially spoiled: finite but large contributions are left over,
in the form of logarithms of the ratio of the two relevant energy scales,ln[(ŝ−Q2)/ŝ]. Close to partonic
threshold these logarithms become large and must be resummed. Processes for which this resummation

30This has to be contrasted with the tower expansion sketched on the right–hand side of Eq. (33). Within the framework
of the tower expansion that sums the double-logarithmic terms(αSL

2)n, then the termsαn
SL

2n−1 ∼ αSL(αSL
2)n−1 and so

forth, the ratio of two successive towers is, roughly speaking, of the order ofαSL. More precisely, the tower expansion allows
us to formally extend the applicability of perturbative QCD to the regionαSL

2

∼< 1, and the exponentiation in Eq. (35) extends
it to the wider regionαSL ∼< 1.

31Contributing author: L. Magnea.



is relevant are ubiquitous, as noted in the previous subsection. Techniques to perform threshold resum-
mations have been developed and progressively extended for well over a decade; references in which
these techniques are explained is some detail include [330–337]; here we will briefly review the basic
theoretical issues, and sketch the status of phenomenological applications of relevance to the LHC.

As described in the introduction to the present Section, the resummation of threshold logarithms in
performed in Mellin space. To illustrate the structure of a typical resummation of threshold logarithms,
let us concentrate on the simplest and best known example: the DY cross section. In this case the
resummed formula for the Mellin transform of the partonic cross section, in the DIS factorization scheme,
takes the form [330,331]

σ̂res.(N,Q2) = C(αS(Q2)) exp
[
E(N,Q2)

]
, (38)

where the functionC collects terms independent of the Mellin variableN , while the exponent can be
written as

E(N,Q2) = − 2
∫ 1

0
dz

zN − 1
1 − z

[
B(αS((1 − z)Q2)) +

∫ (1−z)Q2

(1−z)2Q2

dq2

q2
A(αS(q2))

]
. (39)

Equations (38) and (39) resum, in principle, all logarithms ofN to all orders in perturbation theory,
in the sense that all such logarithms exponentiate and are calculable from the functionsA andB, for
which Feynman rules can be derived. In practice, the functionsA andB are known only to two loops,
so that the resummation can explicitly be performed only for leading and next–to–leading logarithmsin
the exponent. Performing the integrals inE(N,Q2), after expansion of the running couplings in terms
of αS(Q2) to the desired accuracy, yields in general an expression of the form

E(N,Q2) = lnN g1(αS lnN) + g2(αS lnN) +
∞∑

k=1

αk
S gk+2(αS lnN) , (40)

where the functionsg1 andg2 are known in terms of the coefficientsA(1),A(2) andB(1) of the perturba-
tive expansion of the functionsA andB, together with the one– and two–loop coefficients of the QCD
β function. The (unknown) functiong3, giving the NNL logarithms, would require the determination of
A(3), as well asB(2) and the three–loopβ function.

Several comments are necessary in order to introduce the practical applications of resummed for-
mulas such as Eq. (39).

• At the present level of accuracy (NLL) the dependence on the renormalization scale and on the
factorization scheme is under control. A change in renormalization scale shifts the functiong2
by an amount proportional to the derivative of the functiong1. A change in factorization scheme
changes bothg1 andg2, because it affects the way in which the DIS process is subtracted from DY
to construct a finite cross section, however the change is well understood and both functions can
be translated from one scheme to another [172,335].

• To understand the effects of resummation, one should keep in mind that it is performed at the level
of the partonic cross section. One consequence of this fact is that resummation genericallyen-
hancesthe cross section, although one might expect a Sudakovsuppression, since the probability
of having a nearly radiation-less hard scattering is exponentially suppressed. This is easily under-
stood in the DIS scheme: there one computes the (factorized) partonic DY cross section by taking
the ratio of the DY process to the square of the DIS process, since there are two partons in the DY
initial state. In this ratio, the denominator is Sudakov suppressed twice as much as the numerator,
resulting in an overall Sudakov enhancement.

• The fact that the resummed partonic cross section must be folded with parton distributions to
extract a physical prediction also means that the effects of resummation are felt quite far away from



the hadronic threshold. In fact, given a hadronic centre–of–mass energyS, the typical partonic
energy available for the production process will be< ŝ >=< x1x2 > S, wherex1 andx2 are the
momentum fractions of the scattered partons. Clearlyŝ becomes close to threshold long beforeS
does.

• The resummed partonic cross section by construction contains a subset of the finite order perturba-
tive calculations available for the process at hand. One should then work with a “matched” cross
section, as described in the previous subsection (see Eqs. (36) and (37)).

• The alert reader will have noticed that Eq. (39), although well–defined order by order if the run-
ning couplings depending on variable arguments are re-expanded in terms of a fixed large scale,
is actually ill–defined in the leading–logarithm (ofQ2) approximation, because the integration
contour runs over the Landau pole. This is a general feature of most known resummations of per-
turbation theory: in fact, perturbation theory is pointing us to its own limitations, and to the need
to include information concerning the non–perturbative structure of QCD [75]. This fact has two
consequences. On the one hand, it is possible to exploit partial resummations such as Eq. (39)
to estimate the size of the first relevant non–perturbative corrections: in the case of the DY pro-
cess, two independent approaches [338, 76] lead to the conclusion that the first power correction
to Eq. (38) isO((N/Q)2). On the other hand, experience has shown that the necessary inversion
of the Mellin transform back to momentum space can generate unjustified (and stronger) power
corrections that are not present in the original resummed expression. Methods to circumvent this
problem have been developed [334], so that Eq. (38) can be used confidently, with a definite un-
derstanding of the size of expected corrections.

• In the general case of colored final states, a comparatively simple expression for the resummed
cross section, such as Eq. (39), is not available to all logarithmic orders, because the correspond-
ing evolution equations are in matrix form, and their solution involves a scale–dependent mixing of
color tensors. To NLL accuracy, however, a simple exponentiation can still be achieved, by diago-
nalizing a matrix of anomalous dimensions in the space of available color configurations [336,337].
This results in a matrix of exponentials, each similar to Eq. (39), with two new color–dependent
functions of the running coupling. These new functions also carry the necessary dependence on
the angles between incoming and outgoing colored partons.

• It should be emphasized that further improvements are possible, and in some cases have already
been achieved. In the case of the DY process, the terms independent ofN contained in the factor
C in Eq. (38) can also be resummed: in the DIS scheme, they contain the absolute value of the
ratio of the time-like to the space-like Sudakov form factor, which is known to exponentiate [339].
Methods to resum classes of terms of the formlnN/N have recently been suggested [340]. Fi-
nally, a technique to resum simultaneously threshold logarithms and recoil enhancements in single
particle inclusive cross sections has been introduced [341].

Turning to practical applications, we observe that resummations of threshold logarithms have been
performed to NLL accuracy for most of the processes of interest at the LHC, ranging from DIS and
DY [330, 331, 342, 172, 335, 343] to Higgs boson [340] production, to include more recently studies of
processes with hard colored particles in the final states, such as heavy quark [336,337,344], prompt pho-
ton [345–348],W boson [349] and di-jet [350] production; applications of the formalism to quarkonium
production have been proposed [351]. Detailed phenomenological calculations, however, are presently
available only for a subset of these processes.

It is important to note that at the LHC threshold resummation can be important for two reasons. On
one side, it can directly be applied to LHC processes through the corresponding partonic cross sections.
On the other side, it can be applied to the lower–energy processes that are typically used to determine
the parton densities, and thus it can indirectly affect LHC predictions through the use of (evolved) parton
distributions reevaluated in this manner.

We shall illustrate the phenomenological effects of the application of these techniques with few ex-



Fig. 31: Scale dependence ofdσ/dET for single prompt–photon production inpN collisions. The solid lines represent the

NLO result for different choices ofµ = µR = µF (µ = ET /2 and2ET ), normalized to the result forµ = ET . The dashed

lines represent the NLO+NLL results for different choices ofµ, normalized to NLO result forµ = ET . See Ref. [347] for

details.

amples, which will serve to point out another relevant feature of NLO+NLL calculations: their increased
stability with respect to scale variations.

As discussed in Sect. 2., present data and NLO calculations do not constrain very well the determi-
nation of the parton distributions at large values of the parton momentum fractionx. This is particularly
true for the gluon densityfg(x,Q2) at x ∼> 10−1 andQ ∼ 5 − 10 GeV. The uncertainty onfg in
this kinematic region propagates (although with a reduced overall size) to smaller values ofx and larger
values ofQ2 in LHC processes. Threshold resummation can help to extract parton distributions at large
x with more confidence than is at present in NLO analyses. Consider, for instance, the production of
prompt photons with high transverse energyET at fixed–target experiments. This process is very sensi-
tive to the behaviour of the gluon density at largex (x ∼ xT = 2ET /

√
s). The corresponding theoretical

calculations at fixed perturbative order, however, are not very accurate, as can be argued by studying their
dependence on the factorization/renormalization scaleµ. When NLL resummation is applied [347], the
scale dependence of the calculation is highly reduced and the resummed NLL contributions lead to large
corrections at highxT (and smaller corrections at lowerxT ). The scale dependence of the theoretical
cross section inpN collisions is shown in Fig. 31 as a function ofEbeam, the energy of the proton
beam. FixingµR = µF = µ and varyingµ in the rangeET /2 < µ < 2ET with ET = 10 GeV and
Ebeam = 530 GeV (this corresponds to the largest value ofxT that is reachable by the E706 kinemat-
ics [352]), the cross section varies by a factor of∼ 6 at LO (the result of the LO calculation is not shown
in the plot), by a factor of∼ 4 at NLO and by a factor of∼ 1.3 after NLL resummation. The central value
(i.e. withµ = ET ) of the NLO cross section increases by a factor of∼ 2.5 after NLL resummation. As
expected, the size of these effects is reduced by decreasingxT (e.g. by increasing

√
s at fixedET ). This

(extreme) example clearly illustrates how NLO+NLL resummed calculations can improve the present
NLO determinations of parton distributions. The method of Ref. [341] can also be applied to investigate
the relevance of recoil effects in prompt-photon production.

NLL resummations of threshold logarithms are now available for all the most important processes
(DIS, DY, and prompt–photon production) used to determine the parton densities via global fits. It is thus
possible to consistently [346,353] take into account all threshold effects affecting the different hadronic
cross sections. Preliminary studies [353–355] suggest that NLO+NLL fits are not likely to make drastic
differences in the parton densities that are strongly constrained by DIS data, at least so long as the region



of smallQ (Q ∼ few GeV) is avoided at very largex. At the same time, they suggest that resummed
fits can make some difference where the pdf’s are not so well known (gluon density at largex and
quark densities at larger values ofx). In particular, NLO+NLL fits, if implemented, are likely to reduce
scale dependence, and thus further improve our confidence in the theoretical predictions for LHC cross
sections.

As for direct effects of NLL threshold resummation at the LHC, we briefly discuss top pair produc-
tion, which is currently the best studied process in LHC kinematics [337]. One could argue that threshold
resummation effects in this case should not be expected, since at the LHC we havex = 2mt/

√
s ∼ 0.03.

This would however be incorrect since, as explained above, partonic threshold can be, on average, quite
far from hadronic threshold. In the case of top production at the LHC, the dominant partonic subprocess
is gluon fusion. The gluon density is steeply falling at largex and quite large at smallx, so that the av-
erage momentum fraction of gluons entering the partonic hard subprocess is relatively small andŝ � s.
As a consequence, the effect of NLL resummation is still visible at the LHC: the NLO+NLL resummed
cross section is larger than the NLO estimate by about5%. Moreover, NLL resummation reduces the
scale dependence of the cross section by approximately a factor of two (from about10% to about5%).
This can be relevant, because the uncertainty due to the present knowledge of the parton densities is
estimated to be twice as large. We refer the reader to the Top Physics Chapter of this Report for full
details.

Other topical LHC processes are Higgs production, DY production ofW,Z and lepton pairs, as
well as production of high–ET jets. Since the Higgs massMH is expected to be of the same order as
the top-quark mass, Higgs production will be dominated by gluon fusion. Thus, the effects of threshold
resummation on this process should be at least as important as for top-pair production. The results of
Ref. [340], based on the expansion at NNLO of threshold resummation, support this conclusion. Com-
plete quantitative studies to NLL accuracy are not yet available and would be valuable. The production
of W andZ at the LHC is less close to threshold than top production. Moreover, its dominant partonic
subprocess isqq annihilation. The large–x behaviour of the quark densities is less steep than that of the
gluon density, and soft–gluon radiation from initial–state quarks is depleted by the colour charge factor
CF /CA ∼ 1/2 with respect to radiation from gluons. Thus, the effects of threshold resummation on
W,Z production should be small. Their size could however increase in the case of production of high–
mass (say,Q ∼> 1 TeV) DY lepton pairs. The inclusive production of high–ET jets and di-jets with large
invariant mass at the Tevatron and at the LHC can be sensitive to threshold logarithmic contributions.
Nonetheless, phenomenological analyses to NLL accuracy are not available for these processes. An im-
portant conceptual reason for that is the fact that the cone algorithms used so far to experimentally define
jets are not infrared and collinear safe [315,356]. Although their unsafety may show up only at some high
order in perturbation theory, it prevents all–order summations. The future use [357] of safe algorithms,
such as thek⊥-algorithm [8, 9] and the improved cone algorithm studied at the Workshop on Physics
at the Tevatron in Run II, will overcome this problem. For the definition of different jet algorithms, we
refer the reader to Ref. [357].

5.3 Resummation of transverse momentum distributions32

The description of vector and scalar boson production properties, in particular their transverse momen-
tum (pT ) distribution, is likely to be one of the most investigated topics at the LHC, especially in the
context of Higgs searches. To obtain a reliable theoretical prediction for thepT distribution, the cor-
rections due to soft gluon radiation have to be taken into account. At small transverse momentum the
pT distribution is dominated by large logarithmsln(Q2/p2

T ), which are directly related to the emission
of gluons by the incoming partons. Therefore, at sufficiently smallpT , fixed–order perturbation theory
breaks down and the logarithms must be resummed. The origin of the large logarithms is visible already
at leading–order: in fact, the contribution from real emission diagrams forqq −→ V g contains a term of

32Contributing authors: A. Kulesza and W. J. Stirling.



the formαSCF ln
(
Q2/p2

T

)
/(πp2

T ). When more gluons are emitted, the logarithmic divergence becomes
stronger. It can be shown that in the approximation ofsoft and collineargluons with strongly ordered
transverse momentakT , i.e.

k2
T,1 � k2

T,2 � . . .� k2
T,n ∼< p2

T � Q2 (41)

the dominant contributions to theqq −→ V X cross section can be resummed, giving a so–called Su-
dakov factor [319], of the form

1
σ0

dσ

dp2
T

=
αSA

2πp2
T

ln
(
Q2

p2
T

)
exp

(
−αSA

4π
ln2

(
Q2

p2
T

))
, (42)

whereA = 2CF , andσ0 is the total LOqq −→ V cross section. This approximation is commonly
known as theDouble Leading Logarithm Approximation(DLLA).

The resummation in Eq. (42) gives a finite but unphysicallysuppressedresult in the smallpT

limit. This suppression is caused by the vanishing of strongly–ordered phase space, in which overall
transverse momentum conservation is ignored. The result in (42) corresponds to a configuration in which
a singlesoft gluon balances the vector boson transverse momentum, giving the overallln(Q2/p2

T )/p2
T

term, while all other gluons have transverse momenta� pT . This is not the dominant configuration
in the smallpT limit. Equally important are non–strongly–ordered contributions corresponding to the
emission of soft (∼ pT ) gluons whose transverse momenta add vectorially to give the overallpT of the
vector boson. Although such contributions are formally sub-leading order–by–order, they do dominate
the cross section in the region where the Sudakov form factor suppresses the (formally) leading DLLA
contributions. The non–leading ‘kinematical’ logarithms are correctly taken into account by imposing
transverse momentum conservation (rather than strong ordering), and this is most easily achieved by
means of a Fourier transform to impact parameter (b–)space.

We next discuss analytic methods for resumming large logarithms inb–space andpT –space. As
already mentioned, comparisons of resummed calculations with the predictions coming from parton
shower Monte Carlo approaches are presented in Sects. 3.3 and 3.4.

5.31 Analytic methods:b–space

In the b–space method [317] one imposes transverse momentum conservation by Fourier transforming
thepT distribution to impact parameter space and using the identity

δ(2)

(
N∑

i=1

kTi
− pT

)
=

1
4π2

∫
d2be−ib·pT

N∏
i=1

eib·kTi . (43)

This allows for the derivation of a general expression resumming all terms of the perturbation series
which are at least as singular as1/p2

T whenpT → 0 [192,358,359]. The resummed expression is of the
form

dσ(AB −→ V (−→ ll′)X)
dp2

T dQ
2 dy d cos θ dφ

=
1

256πNcs

Q2

(Q2 −M2
V )2 +M2

V Γ2
V

× [
Yr(p2

T , Q
2, y, θ) + Yf (p2

T , Q
2, y, θ, φ)

]
, (44)

whereMV andΓV are the mass and the width of the vector boson, andθ andφ stand for the lepton
polar and azimuthal angles in the Collins–Soper frame [192, 358, 359].Yr denotes the resummed part
of the cross section, whileYf is the remainder (that is, the fixed–order expression minus terms which
are already taken into account inYr, as in Eq. (36)). The exact expression forYf can be found in [360],



whereas

Yr(p2
T , Q

2, y, θ) = Θ(Q2 − p2
T )

1
2π

∫ ∞

0
db b J0(pT b)

∑
a,b

FNP
ab (Q, b, xA, xB)

× Hab(θ) f ′a/A(xA,
b0
b∗

) f ′b/B(xB ,
b0
b∗

) exp [S(b,Q)] . (45)

Heref ′ denotes a modified parton distribution,Hab(θ) includes coupling factors and the angular depen-
dence of the lowest order cross section [360], andb∗ andFNP

ab are discussed below. The Sudakov factor
has the form

S(b,Q2) = −
∫ Q2

b2
0

b2

dµ2

µ2

[
ln
(
Q2

µ2

)
A(αS(µ2)) +B(αS(µ2))

]
, (46)

A(αS) =
∞∑
i=1

(αS

2π

)i
A(i) , B(αS) =

∞∑
i=1

(αS

2π

)i
B(i) , (47)

with b0 = 2exp(−γE). The form in Eq. (46) is equally valid for processes initiated byqq-annihilation
(e.g. production of DY lepton pairs,W andZ) and bygg-fusion (e.g. Higgs production). The coefficients
A(1), A(2) andB(1) in each series (47) were computed in Ref. [361] forqq-annihilation and in Ref. [362]
for gg-fusion. These coefficients33 can also be obtained [363] from the exact fixed–order perturbative
calculation in the highpT region by comparing the logarithmic terms therein with the corresponding
logarithms generated by the first three terms of the expansion ofexp(S(b,Q2)) in Eq. (45).

Although theb–space method succeeds in recovering a finite, positive result in thepT → 0 limit,
there are drawbacks associated with the need to work in impact parameter space. The first is the difficulty
of matching the resummed and fixed–order predictions. Since the resummation is performed inb–space
one loses control over which logarithmic terms (inpT –space) are taken into account. Therefore there is
no unambiguous prescription for matching; existing prescriptions require switching from resummed to
fixed–order calculation at some value ofpT . Secondly, since the integration in (45) extends from 0 to
∞, it is impossible to make predictions foranypT without having a prescription for how to deal with
the non–perturbative regime of largeb. One prescription is to artificially preventb from reaching large
values by replacing it with a new variableb∗ and by parametrising the non–perturbative large–b region
in terms of the form factorFNP

ab . The ‘freezing’ ofb at b∗ is achieved by

b∗ =
b√

1 + (b/b lim)2
, b∗ < b lim ,

with the parameterb lim ∼ 1/ΛQCD separating perturbative and non–perturbative physics. The de-
tailed form of the non–perturbative functionFNP

ab remains a matter of theoretical dispute (for a review
see [360]), although it is assumed to have the general form [192,358,359]

FNP
ab (Q, b, xA, xB) = exp

{
−
[
hQ(b) ln

(
Q

2Q0

)
+ ha(b, xA) + hb(b, xB)

]}
.

In a very simple model in which the non–perturbative contribution arises from a Gaussian ‘intrinsic’
kT distribution, one would haveF ∼ exp(−κb2). The data are not inconsistent with such a form, but
suggest that the parameterκ may have some dependence onQ andx.

Phenomenological studies and numerical calculations based on theb–space formalism are pre-
sented in Refs. [364, 365, 110, 194, 360] (for DY lepton pair,W andZ production) and in Refs. [366–
368,195] (for Higgs production).

33In Ref. [363] the coefficientB(2) for qq-annihilation was also computed. The coefficientB(2) for gg-fusion is not yet
known.



5.32 Analytic methods:pT –space

The difficulties mentioned above could in principle be overcome if one had a method of performing the
calculations directly in transverse momentum space. Given an insight into which logarithmic terms are
resummed, it should be fairly straightforward to perform matching with the fixed–order result. Moreover,
the non–perturbative input would be required in (and would affect) only the smallpT region.

Three techniques have been proposed for carrying out resummation inpT –space [191, 190, 369].
The main difference lies in the selection of subsets of logarithmic terms which each method resums; for
a detailed discussion the reader is referred to [370]. The starting point for all techniques is the general
expression in impact parameter space for the vector boson transverse momentum distribution in the DY
process [192, 358, 359], at the quark level. To illustrate the results, we consider the approach of [369],
and we give the expression for the resummed part of the cross sectionqq −→ γ∗X, in the simplest case,
with fixed couplingαS, at the parton level, and retaining only the leading coefficientA(1) in the series of
Eq. (47). It is of the form

1
σ0

dσ

dp2
T

=
λ

p2
T

e−
λ
2
L2

∞∑
N=1

(−2λ)(N−1)

(N − 1)!

N−1∑
m=0

(
N − 1
m

)
LN−1−m

[
2τN+m + LτN+m−1

]
.

(48)

HereL = ln(Q2/p2
T ), λ = αSCF/π, and the numbersτm are defined by

τm ≡
∫ ∞

0
dyJ1(y) lnm(

y

b0
) . (49)

Theτm can be calculated explicitly using a generating function [369] so that e.g.τ0 = 1, τ1 = τ2 = 0,
τ3 = −1

2ζ(3), etc. Notice that by setting allτm coefficients (exceptτ0) to zero one would immediately
recover the DLLA form (48). Since there are no explicit sub-leading logarithms in (48), other than those
related to kinematics, the presence of theτm coefficients must correspond to relaxing the strong–ordering
condition. This can be checked explicitly by performing the ‘exact’O(α2

S) calculation in transverse
momentum space. One finds∫
d2kT1d

2kT2

[
ln(Q2/k2

T1)
k2

T1

]
+

[
ln(Q2/k2

T2)
k2

T2

]
+

δ(2)(kT1 + kT2 − pT) =
π

p2
T

(−L3 + 4ζ(3)
)
. (50)

Strong ordering is equivalent to replacing theδ function byδ(2)(kT1 − pT)× θ(k2
T1 − k2

T2) +(1 ↔ 2).
This gives only the leadingL3 term on the right–hand side. Theζ(3) term represents the first appearance
of the (kinematic)τ3 coefficient of Eq. (48).

In principle the formalism presented above allows for an inclusion ofany number of such sub-
leading kinematic logarithms. In practice, we use Eq. (48) with a finite number of terms by introducing
Nmax as the upper limit of the first summation.Nmax corresponds to the number of towers of logarithms
which are fully resummed. Figure 32 shows that for small values ofpT the approximation of theb–space
result improves with increasingNmax. Therefore by retaining sufficiently many terms one can obtain a
good approximation (i.e. adequate for phenomenological purposes) to theb–space result by summing
logarithms directly inpT space.34

The technique developed so far can be extended to include sub-leadingA andB coefficients, the
running coupling and parton distributions, thus yielding a ‘realistic’ expression for the hadron–level cross
section. The result is too lengthy to reproduce here, but can be found in [369,371].

34Notice however that, due to the lack of knowledge ofA(3), B(3), etc., it is only possible to obtain the complete result
for the first four ‘towers’ of logarithms; subsequent towers can be included only in the approximations leading to Eq. (48),
see [369].



Fig. 32: Theb–space result (parton level, fixed coupling, onlyA(1)) compared to the expression (48), calculated for various

values ofNmax. Hereη = p2
T /Q

2 andNmax is the upper limit of the first summation in Eq. 48.

Although thepT –space method provides a simple matching prescription, the form of the non–
perturbative function in this approach (as well as inb–space approach) remains an open theoretical issue.
In particular, the current lack of understanding of thex andQ2 dependence of the non–perturbative con-
tribution is a limiting factor in predicting thepT → 0 behaviour of the distribution at the LHC. However,
it seems that the dependence on the amount of non–perturbative smearing weakens with increasingQ
(see Ref. [193] and the discussion in Sect. 3.4). It has also been shown [370] that the quality of the
approximation to theb–space result achieved by various resummation approaches inpT –space changes
significantly only for small values ofp2

T/Q
2. This in turn would suggest that the differences between

these approaches may become relevant for obtaining an accurate theoretical description of very heavy
boson (e.g. Higgs) production in the smallpT regime.

5.4 Small–x resummations35

If we are to make accurate predictions for LHC ‘background’ processes with partonic centre–of–mass
energy below 1 TeV, we need to extrapolate cross sections measured at HERA and the Tevatron forward
by between one and three orders of magnitude inQ2, and back by between one and three orders of
magnitude inx. Since away from thresholds these cross sections are generally rather smooth functions
of x andQ2 one might try to do this by simply extrapolating parametric fits [372, 373]. However the
uncertainties in such extrapolations are very difficult to quantify. Adding an assumption that the dominant
singularities are Regge poles is not very helpful, since even with current data more than one ‘Pomeron’
singularity is needed for a satisfactory fit [374,375]. Moreover in this kind of approach it is not possible
to relate all the various cross sections of interest, or for example calculate heavy quark production, or
jet cross sections: each must be fitted individually. Clearly we need more dynamics. Strong interaction
dynamics at high energies inevitably means perturbative QCD, and it is the current understanding of
perturbative QCD at smallx that we summarise here.

Provided there is a hard scale in the process, strong interaction processes may generally be fac-
torized into a hard partonic cross section, computable in perturbative QCD, and parton densities which
must be determined empirically. At large scalesQ2 and not too small but fixedx the QCD evolution
equations [14, 376, 377, 216, 16] provide a reliable framework for the extrapolation of these parton den-
sities from some initial scaleQ2

0 to higher values ofQ2. The complete AP splitting functions have been
computed in perturbation theory at orderαS (LO) andα2

S (NLO). For the first few moments the AP

35Contributing author: R.D. Ball.



splitting functions at orderα3
S (NNLO) are also known [25, 26]. Once we have the parton distributions,

it is straightforward to compute hadronic cross sections at LO or NLO: potentially large contributions of
the form(αS lnQ2/Q2

0)
n (LLQ), αS(αS lnQ2/Q2

0)
n (NLLQ), . . . , have been resummed by solving the

evolution equations, so all that is necessary is the convolution of the evolved parton densities with the
hard partonic cross section.

If we start with initial parton distributions that rise less steeply than a power in1/x asx decreases,
then fixed order evolution to higherQ2 inevitably leads to distributions that become progressively steeper
in 1/x asQ2 increases [378], in agreement with the rise in theF2 data from HERA. More significantly
the specific form and steepness of the rise is precisely [379–381] as predicted. This is a major triumph
for perturbative QCD, since it can be interpreted as direct evidence for asymptotic freedom [382]: the
coefficientβ0 which determines the slope of the rise is the first coefficient of the QCDβ–function. This
has now been confirmed many times by successful NLO fits (see [383,384] and Sect. 2.) to increasingly
precise HERAF2 datasets. From these fits a gluon distribution may be extracted, and predictions made
for F c

2 , di-jet production, andFL, all of which have now been confirmed by direct measurements [385,
386]. Clearly fixed order perturbative QCD works well at HERA: none of these predictions is trivial, and
all are successful. Extrapolation to the LHC region, and the calculation of relevant NLO cross sections,
can then be performed in the same way as at largex, with the added bonus that besides extrapolating up
in Q2 one can simultaneously extrapolate backwards inx. The errors in such predictions are the usual
mix of experimental and parametrization uncertainties (see the discussion in Sects. 2.3, 2.4 and in [387]),
and theoretical errors predominantly due to missing sub-leading corrections, which may be estimated by
partial calculations of NNLO terms [388,70] (see also Sect. 2.5).

However to obtain truly reliable predictions for processes at the LHC it is not sufficient to confirm
NLO QCD within errors at HERA: we must also be convinced that new sources of theoretical uncertainty
do not arise as the kinematic region is extended. In particular, as one goes to smaller values ofx it is not
clear that retaining only the first few terms in the expansion (9) of the splitting functions in powers of
αS will be and remain a good approximation: as soon asξ = ln 1/x is sufficiently large thatαSξ ∼ 1,
terms of orderαS(αSξ)n (LLx), α2

S(αSξ)n (NLLx), . . . must also be considered in order to achieve a
result which is reliable up to terms of orderα3

S. In fact αSξ ∼> 1 throughout much of the kinematic
region available at both HERA and the LHC, so one might naively expect these effects to be significant
when extrapolating from one to the other. The fact that at HERA they seem to be small empirically is a
mystery which must be solved if reliable predictions are to be made for the LHC.

Using the BFKL kernelK(Q2, k2) [303, 302, 304–306] (see also Sect. 7.) calculated toO(αS)
(LO) it is possible [389–391] to deduce the coefficients of the LLx singularities of the AP splitting
function to all orders in perturbation theory. Summing these up, the splitting function (and thus the
structure function) is predicted to grow asx−λ asx → 0, where (at LLx)λ = λ0 ≡ (12αS ln 2)/π.
This procedure may be extended to NLLx singularities, using calculations of the coefficient function
and gluon normalization [392, 66] and of the NLLx kernel [67, 393–400, 307, 401–403, 271], to give
all the NLLx terms in the splitting function [404–410]. It was known some time ago that reconciling
these summed logarithms with the HERA data was going to be difficult [379–381, 411–413], simply
because there is no evidence in the data for a rise with a fixed powerλ0. Once all the NLLx corrections
were known it became clearer why: the expansion in summed anomalous dimensions at LLx,NLLx,...
is unstable [414, 69, 415], the ratio of NLLx to LLx contributions growing without bound asx → 0.
It follows that the previous theoretical estimates [404–413] of the size of the effects of the smallx
logarithms based on the fixed order BFKL equation, either at LO or NLO, were all hopelessly unreliable.
Indeed any calculation which resums LO and NLO logs ofQ2, but sums up only LO and NLO logarithms
of x is seen to be insufficient: some sort of all order resummation of the smallx logarithms is necessary.
Clearly there are many ways in which such a resummation might be attempted: what are needed are
guiding principles to keep it under control.

There are two distinct strands to this problem. The first is the stability of the BFKL equation



itself (see the discussion in Sect. 7.3). Various proposals have been put forward: for example a partic-
ular choice of the renormalization scale [416], or a different identification of the large logs which are
resummed [417,418]. However the root of the problem [308] is that the perturbative contributions to the
kernelK(Q2, k2) contain unresummed logarithms of the formαS(αSt)n (LLQ), α2

S(α
n
St)

n (NLLQ),. . . ,
wheret ≡ lnQ2/k2, which destabilise the fixed order expansion both in the ultraviolet regionQ2 � k2

and in the infraredQ2 � k2. These logarithmic contributions turn out to be so large that the fixed order
expansion is useless, even in the smallx region, unlessαS is unrealistically small. In order to obtain a
realistic approximation to the kernel, the large logarithms ofQ2 must be resummed to all orders in per-
turbation theory. Fortunately the ultraviolet logarithms not associated with the running of the coupling
may be determined at LLQ and NLLQ from the LO and NLO Altarelli–Parisi splitting functions [419].
Summing them up, longitudinal momentum is automatically conserved: the relevant part of the kernel
then satisfies the all order sum rule [419]

∫∞
−∞dtK(t) = 1. Furthermore, it turns out that when the LLQ

and NLLQ contributions to the LO and NLO BFKL kernels are resummed, the expansion stabilises in the
perturbative (Q2 >> k2) region, and the residual part of the kernel which resums the remaining smallx
logarithms is relatively small.

However before we can use this resummed BFKL kernel to compute smallx resummation cor-
rections we need to resolve a second issue: the inherent perturbative instability of the LLx and NLLx
contributions to the splitting functions first noted in [414, 69]. This is quite distinct from the previous
problem: it can be shown (see [415] and Sect. 7.3) to follow inevitably from the shift in the value of
λ from its LLx valueλ0 to λ0 + ∆λ at NLLx. This shift must be accounted for exactly if a sensible
resummed perturbative expansion is to be obtained. Since in practice the correction∆λ is of the same
order asλ0, it seems probable thatλ = λ0 +∆λ is not calculable in perturbation theory: rather the value
of λ may be used to parameterise the uncertainty in the value of the kernelK(Q2, k2) whenQ2 ∼ k2.

Putting together the two principles of momentum conservation and perturbative stability, we can
compute fully resummed NLO splitting functions [419]. The result depends on the unknown parameter
λ. Providedλ ∼< 0, the corrections to conventional NLO evolution in the HERA region are tiny: this in
itself is sufficient to explain the success of NLO evolution in describing the HERA data, and furthermore
means that effect of resummed smallx logarithms on the extrapolation upwards inQ2 from HERA to the
LHC should also be rather small. More significant effects might be expected in the extrapolation down
to smallerx, particularly ifQ2 is also small andλ is positive. It should now be possible to quantify such
uncertainties by a phenomenological analysis, using available HERA data to constrainλ.

One might have hoped that eventually it would be possible to computeλ perturbatively. The main
uncertainty in current calculations is due to the unresummed infrared logarithms in the kernelK(Q2, k2),
which destabilise the fixed order perturbative expansion in the regionQ2 � k2. In Refs. [309,420,421]
an attempt is made to resum these logarithms through a symmetrization ofK(Q2, k2) in Q2 andk2:
the idea is to deduce the infrared logarithms from the ultraviolet ones. The main shortcoming of this
approach is that it makes implicit assumptions about the validity of perturbation theory whenQ2 is very
small: symmetrization only works when running coupling effects are included, but making the coupling
run with Q2 or k2 is not only very model dependent but seems inevitably to destabilise the smallx
evolution [422–427], suggesting that effects beyond the reach of the usual perturbative expansion become
important in this region.

It seems that to make further progress we require either genuine nonperturbative input, or a sub-
stantial extension of the perturbative domain. A possible way in which this might be done through a new
factorization procedure was explored in Ref. [428], from which the main conclusion was that at small
x the coupling should run not withQ2, but withW 2 ∼ Q2/x. Preliminary calculations [429] suggest
that this is not phenomenologically unacceptable. An alternative approach to factorization in high energy
QCD based on Wilson lines may be found in Refs. [430,431]. Clearly much work remains to be done.



6. PROMPT PHOTON PRODUCTION 36

6.1 General features of photon production37

When mentioning the photon in the framework of high-energy collider physics, one is immediately led
to think – with good reasons – to Higgs searches through the gold-plated channelH → γγ. However,
the production of photons also deserves attention on its own. Firstly, a detailed understanding of the
continuum two-photon production is crucial in order to clearly disentangle any Higgs signals from the
background. Secondly, in hadronic collisions, where a very large number of strong-interacting particles is
produced, photon signals are relatively clean, since the photon directly couples only to quarks. Therefore,
prompt-photon data can be used to study the underlying parton dynamics, in a complementary way with
respect to analogous studies performed with hadrons or jets. For the same reason, these data represent
a very important tool in the determination of the gluon density in the proton,fg(x). Indeed, in recent
years almost all thedirect information (that is, not obtained through scaling violations as predicted by
the DGLAP equations) on the intermediate- and high-x behaviour offg(x) came from prompt-photon
production,pp → γX andpN → γX, in fixed-target experiments. The main reason for this is that, at
LO, a photon in the final state is produced in the reactionsqg → γq andqq → γg, with the contribution
of the former subprocess being obviously sensitive to the gluon and usually dominant over that of the
latter. It is the ‘point-like’ coupling of the photon to the quark in these subprocesses that is responsible
for a much cleaner signal than, say, for the inclusive production of aπ0, which proceeds necessarily
through a fragmentation process.

There is, however, a big flaw in the arguments given above. In fact, photons can also be produced
through a fragmentation process, in which a parton, scattered or produced in a QCD reaction, fragments
into a photon plus a number of hadrons. The problem with the fragmentation component in the prompt-
photon reaction is twofold: first, it introduces in the cross section a dependence upon non-perturbative
fragmentation functions, similar to those relevant in the case of single-hadron production, which are not
calculable in perturbative QCD: they depend on non-perturbative initial conditions [432, 433], and only
their asymptotic behavior at very large scales is perturbatively calculable [434]. These functions are, at
present, very poorly determined by the sparse LEP data available. Secondly,all QCD partonic reactions
contribute to the fragmentation component; thus, when addressing the problem of the determination of
the gluon density, the advantage of having a priori only one partonic reaction (qq → γg) competing with
the signal (qg → γq) is lost, even though some of the subprocesses relevant to the fragmentation part at
the same time result from a gluon in the initial state.

The relative contribution of the fragmentation component with respect to the direct component
(where the photon participates in the short-distance, hard-scattering process) is larger the larger the
centre-of-mass energy and the smaller the final-state transverse momentum38: at the LHC, for trans-
verse momenta of the order of few tens of GeV, it can become dominant. However, here the situation is
saved by the so-called ‘isolation’ cut, which is imposed on the photon signal in experiments. Isolation
is an experimental necessity: in a hadronic environment the study of photons in the final state is com-
plicated by the abundance ofπ0’s, eventually decaying into pairs ofγ’s. The isolation cut simply serves
to improve the signal-to-noise ratio: if a given neighbourhood of the photon is free of energetic hadron
tracks, the event is kept; it is rejected otherwise. Fortunately, by requiring the photon to be isolated,
one also severely reduces the contribution of the fragmentation part to the cross section. This is because
fragmentation is an essentially collinear process: therefore, photons resulting from parton fragmentation
are usually accompanied by hadrons, and are therefore bound to be rejected after the imposition of an
isolation cut.

36Session coordinators: M. Fontannaz, S. Frixione and S. Tapprogge.
37Contributing authors: P. Aurenche, M. Fontannaz and S. Frixione.
38Actually, in the fixed-targetpp→ γX reaction, one can see the fragmentation component increasing relatively to the direct

one also at verylarge pTγ , because of the direct cross section dying out very quickly at such momenta. This effect is of no
phenomenological relevance at the LHC.



It has to be stressed that, at fixed-target energies, the size of the average transverse momentum
allows to resolve the two photons coming fromπ0 decay and therefore to identify theπ0. It seems
therefore appropriate to recall some fixed target results before turning to prompt photon production at the
LHC. A recent review on the comparisons between data and theory may be found in [435]. Theory means
NLO predictions including the direct and the bremsstrahlung contributions [234, 233, 436, 229, 437]. A
Fortran code which puts together both contributions and allows simple changes of parameters is now
available [438]. The conclusion reached in ref. [435] is that some data sets are incompatible with each
other, or that theory must be modified. A modification proposed in ref. [352] consists in introducing
transverse momentum of initial partons with a large average value< κ⊥ >∼ 1.4 GeV. If this average
value varies with

√
s, then it is possible to adjust theory to data. The resummation of threshold effects

[347] (see also Sect. 5.) increases the cross section at largex⊥ = 2p⊥/
√
s, but it cannot remove the

discrepancy between theory and data. Clearly an unsettled problem remains in this fixed target energy
range, which questions the possibility to determine the gluon contents of the proton from prompt photon
data (see Sect. 2.).

We now turn to the case of photon production at high-energy colliders; after some general in-
troductory remarks, we will present phenomenological predictions relevant to the LHC; we remind the
reader that the production of prompt photons at LHC was first studied at the Aachen workshop [2]. No
NLO corrections to the bremsstrahlung terms were available at that time, and the isolation prescriptions
were implemented only at LO accuracy. Since then, theoretical computations progressed toward a fully
consistent NLO framework, which we will discuss in the following.

6.2 Isolation prescriptions39

As mentioned before, the fragmentation contribution, that threatened to spoil the cleanliness of the pho-
ton signals at colliders, is relatively well under control in the case of isolated-photon cross sections.
There is of course a price to pay for this gain: the isolation condition poses additional problems in the
theoretical computations, which are not present in the case of fully-inclusive photon cross sections. To
be specific, we write the cross section for the production of a single isolated photon in hadronic collisions
as follows40:

dσh1h2(p1, p2; pγ) =∫
dx1dx2fa/h1

(x1, µF )fb/h2
(x2, µF )dσ̂isol

ab,γ(x1p1, x2p2; pγ ;µR, µF , µγ)

+
∫
dx1dx2dzfa/h1

(x1, µF )fb/h2
(x2, µF )dσ̂isol

ab,c(x1p1, x2p2; pγ/z;µR, µF , µγ)dγ/c(z, µγ), (51)

whereh1 andh2 are the incoming hadrons, with momentap1 andp2 respectively, and a sum over the
parton indicesa, b andc is understood. In the first term on the right hand side of eq. (51) (the direct
component) the subtracted partonic cross sectionsdσ̂isol

ab,γ get contributions from all the diagrams with a

photon leg. On the other hand, the subtracted partonic cross sectionsdσ̂isol
ab,c appearing in the second term

on the right hand side of eq. (51) (the fragmentation component), get contribution from the pure QCD
diagrams, with one of the partons eventually fragmenting in a photon, in a way described by the parton-
to-photon fragmentation functiondγ/c. As the notation in eq. (51) indicates, the isolation condition is
embedded into the partonic cross sections.

It is a well-known fact that, in perturbative QCD beyond LO, and for all the isolation prescriptions
known at present, with the exception of that of ref. [232], neither the direct nor the fragmentation com-
ponents areseparatelywell defined at any fixed order in perturbation theory: only their sum is physically

39Contributing author: S. Frixione
40The production of pairs of isolated photons can be described in the very same manner; we will consider this case later.

Here we stick to a simpler case in order to have as simple as notation as possible.



meaningful. In fact, the direct component is affected by quark-to-photon collinear divergences, which are
subtracted by the bare fragmentation function that appears in the unsubtracted fragmentation component.
Of course, this subtraction is arbitrary as far as finite terms are concerned. This is formally expressed in
eq. (51) by the presence of the same scaleµγ in both the direct and fragmentation components: a finite
piece may be either included in the former or in the latter, without affecting the physical predictions.
The need for introducing a fragmentation contribution is physically better motivated from the fact that a
QCD hard scattering process may produce, again through a fragmentation process, aρ meson that has
the same quantum numbers as the photon and can thus convert into a photon, leading to the same signal.

As far as the isolation prescriptions are concerned, here we will restrict to those belonging to
the class that can be denoted as ‘cone isolations’ [229, 439–442, 230]. In the framework of hadronic
collisions, where the need for invariance under longitudinal boosts (which is necessary for collinear
factorizability) suggests not to define physical quantities in terms of angles, the cone is drawn in the
pseudorapidity–azimuthal angle plane, and corresponds to the set of points

CR =
{

(η, φ) |
√

(η − ηγ)2 + (φ− φγ)2 ≤ R

}
, (52)

whereηγ andφγ are the pseudorapidity and azimuthal angle of the photon, respectively, andR is the
aperture (or half-angle) of the cone. After having drawn the cone, one has to actually impose the isolation
condition. We consider here two sub-classes of cone isolation, whose difference lies mainly in the
behaviour of the fragmentation component. Prior to that, we need to define the total amount of hadronic
transverse energy deposited in a cone of half-angleR as

ET,had(R) =
n∑

i=1

ET iθ(R−Rγi), (53)

where
Rγi =

√
(ηi − ηγ)2 + (φi − φγ)2, (54)

and the sum runs over all the hadrons in the event (or, alternatively,i can be interpreted as an index
running over the towers of a hadronic calorimeter). For both the isolation prescriptions we are going to
define below, the first step is to draw a cone of fixed half-angleR0 around the photon axis, as given in
eq. (52). We will denote this cone as the isolation cone.

Definition A. The photon is isolated if the total amount of hadronic transverse energy in the isolation
cone fulfils the following condition:

ET,had(R0) ≤ εcpTγ , (55)

whereεc is a fixed (generally small) parameter, andpTγ is the transverse momentum of the photon.

Definition B. The photon is isolated if the following inequality is satisfied:

ET,had(R) ≤ εγpTγY(R), (56)

for all the cones lying inside the isolation cone, that is for anyR ≤ R0. The functionY is arbitrary
to a large extent, but must at least have the following property:

lim
R→0

Y(R) = 0, (57)

and being different from zero everywhere except forR = 0.

Definition A was proven to lead to an infrared-safe cross section at all orders of perturbation theory
in ref. [443]. The smallerεc, the tighter the isolation. Loosely speaking, for vanishingεc the direct



component behaves likelog εc, while the fragmentation component behaves likeεc log εc. Thus, for
εc → 0 eq. (51) diverges. This is obvious since the limitεc → 0 corresponds to a fully-isolated-photon
cross section, which cannot be a meaningful quantity, whether experimentally (because of limited energy
resolution) or theoretically (because soft-particle emission inside the cone cannot be forbidden without
spoiling the infrared safety of the cross section).

Definition B was proposed and proven to lead to an infrared-safe cross section at all orders of
perturbation theory in ref. [232]. Eq. (57) implies that the energy of a parton falling into the isolation
coneCR0 is correlated to its distance (in theη–φ plane) from the photon. In particular, a parton becoming
collinear to the photon is also becoming soft. When a quark is collinear to the photon, there is a collinear
divergence; however, if the quark is also soft, this divergence is damped by the quark vanishing energy.
When a gluon is collinear to the photon, then either it is emitted from a quark, which is itself collinear
to the photon – in which case, what was said previously applies – or the matrix element is finite. Finally,
it is clear that the isolation condition given above does not destroy the cancellation of soft singularities,
since a gluon with small enough energy can be emitted anywhere inside the isolation cone. The fact that
this prescription is free of final-state QED collinear singularities implies that the direct part of the cross
section is finite. As far as the fragmentation contribution is concerned, in QCD the fragmentation mech-
anism is purely collinear. Therefore, by imposing eq. (56), one forces the hadronic remnants collinear to
the photon to have zero energy. This is equivalent to saying that the fragmentation variablez is restricted
to the rangez = 1. Since the parton-to-photon fragmentation functions do not contain anyδ(1 − z),
this means that the fragmentation contribution to the cross section is zero, because an integration over a
zero-measure set is carried out. Therefore, only the first term on the right hand side of eq. (51) is different
from zero, and it does not contain anyµγ dependence.

We stress again that the functionY can be rather freely defined. Any sufficiently well-behaved
function, fulfilling eq. (57), could do the job, the key point being the correlation between the distance
of a parton from the photon and the parton energy, which must be strong enough to cancel the quark-to-
photon collinear singularity. Throughout this paper, we will use

Y(R) =
(

1 − cosR
1 − cosR0

)n

, n = 1. (58)

We also remark that the traditional cone-isolation prescription, eq. (55), can be formally recovered from
eq. (56) by settingY = 1 andεγ = εc.

6.3 Single isolated photons at the LHC41

In this section, we will present results for isolated-photon cross sections inpp collisions at 14 TeV.
These results have been obtained with the fully-exclusive NLO code of ref. [231], and are relevant to the
isolation obtained with definition B; the actual parameters used in the computation are given in eq. (58),
together withεγ = 1. We setR0 = 0.4. We will comment in the following on the outcome of definition
A. Benchmark rates for isolated photons over different ranges of rapidity are given in Fig. 33.

Any sensible perturbative computation should address the issue of the perturbative stability of its
results. A rigorous estimate of the error affecting a cross section at a given order can be given if the
next order result is also available. If this is not the case, it is customary to study the dependence of
the physical observables upon the renormalization (µR) and factorization (µF ) scales. It is important to
stress that the resulting spread should not be taken as the ‘theoretical error’ affecting the cross section;
to understand this, it is enough to say that the range in whichµR andµF are varied is arbitrary. Rather,
one should compare the spread obtained at the various perturbative orders; only if the scale dependence
decreases when including higher orders the cross section can be regarded as perturbatively stable and
sensibly compared to data.

41Contributing author: S. Frixione



Fig. 33: Benchmark cross sections for isolated-photon production: differential spectrum (left) and integrated spectrum (right).

Usually,µR andµF are imposed to have the same value,µ, which is eventually varied. However,
this procedure might hide some problems, because of a possible cancellation between the effects induced
by the two scales. It is therefore desirable to varyµR andµF independently. Here, an additional problem
arises at the NLO. The expression of any cross section in terms ofµ (that is, whenµR = µF ) is not
ambiguous, whileit is ambiguous ifµR 6= µF . In fact, whenµR 6= µF , the cross section can be written
as the sum of a term corresponding to the contribution relevant to the caseµR = µF , plus a term of the
kind:

αS(µA)B(αS(µR)) log
µR

µF
, (59)

whereB has the same power ofαS as the LO contribution, sayαk
S. The argument of theαS in front of

eq. (59),µA, can be chosen either equal toµR or equal toµF , since the difference between these two
choices is of NNLO. Thus, it follows that the dependence uponµR or µF of a NLO cross section reflects
the arbitrariness of the choice made in eq. (59), which is negligible only if the NNLO (αk+2

S ) corrections
are much smaller than the NLO ones (αk+1

S ). This leads to the conclusion that a study of the dependence
uponµR or µF only can be misleading. In other words:B in eq. (59) is determined through DGLAP
equations in order to cancel the scale dependence of the parton densities up to terms of orderαk+2

S .
This happens regardless of the choice made forµA in eq. (59). However, here we are not discussing the
cancellation to a given perturbative order of the effects due to scale variations; we are concerned about
the coefficient in front of theO(αk+2

S ) term induced by such variations, whose size is dependent upon
the choice made forµA and therefore, to some extent, arbitrary. We have to live with this arbitrariness,
if we decide to varyµR or µF only. However, we can still varyµR andµF independently, but eventually
putting together the results in some sensible way, that reduces the impact of the choice made forµA. In
this section, we will consider the quantities defined as follows:

(
δσ

σ

)
±

= ±
{ [

σ(µR = µ0, µF = µ0) − σ(µR = a±µ0, µF = µ0)
σ(µR = µ0, µF = µ0) + σ(µR = a±µ0, µF = µ0)

]2

+
[
σ(µR = µ0, µF = µ0) − σ(µR = µ0, µF = a±µ0)
σ(µR = µ0, µF = µ0) + σ(µR = µ0, µF = a±µ0)

]2
} 1

2

, (60)

wherea+ anda− = 1/a+ are two numbers of order one, which we will take equal to 1/2 and 2 re-
spectively; the± sign in front of the right hand side of eq. (60) is purely conventional. We can evaluate
(δσ/σ)± by usingµA = µR or µA = µF in eq. (59). The reader can convince himself, with the help of
the renormalization group equation (4), that the difference between these two choices is of orderα4

S in
the expansion ofthe contribution to(δσ/σ)2± due to eq. (59); on the other hand, this difference is only of
orderα3

S in each of the two terms under the square root in the right hand side of eq. (60). This is exactly



MRST99 CTEQ5
1 2 3 4 5 M HJ (δσ/σ)±

NLO, |ηγ | < 2.5 23.78 23.20 24.19 22.07 25.49 25.10 24.61 +0.068
−0.057

LO, |ηγ | < 2.5 10.34 10.07 10.52 9.875 10.78 10.91 10.66 +0.090
−0.072

NLO, |ηγ | < 1.5 14.59 14.23 14.88 13.66 15.53 15.35 15.01 +0.068
−0.056

LO, |ηγ | < 1.5 6.457 6.270 6.583 6.212 6.657 6.771 6.596 +0.091
−0.073

Table 3: Isolated-photon cross sections (nb), with40 < pTγ < 400 GeV, in two different rapidity ranges, for various MRST

(MRST99-1/5) and CTEQ (CTEQ5M/HJ) parton densities. The scale dependence, evaluated according to eq. (60) and with the

MRST99-1 set, is also shown.

what we wanted to achieve: a suitable combination of the cross sections resulting from independentµR

andµF variations is less sensitive to the choice forµA made in eq. (59) than the results obtained by
varyingµR or µF only.

In table 3 we present the results for the total isolated-photon rates, both at NLO and at LO. The
latter cross sections have been obtained by retaining only the LO terms (O(αemαS)) in the short-distance
cross section, and convoluting them with NLO-evolved parton densities. Also, a two-loop expression for
αS has been used. There is of course a lot of freedom in the definition of a Born-level result. However,
we believe that with this definition one has a better understanding of some issues related to the stability of
the perturbative series. To obtain the rates entering table 3, we required the photon transverse momentum
to be in the range40 < pTγ < 400 GeV, and we considered the rapidity cuts|ηγ | < 1.5 and|ηγ | < 2.5,
in order to simulate a realistic geometrical acceptance of the LHC detectors. We first consider the scale
dependence of our results (last column), evaluated according to eq. (60). We see that the NLO results
are clearly more stable than the LO ones; this is reassuring, and implies the possibility of a sensible
comparison between NLO predictions and the data. Notice that the size of the radiative corrections (K
factor, defined as the ratio of the NLO result over the LO result) is quite large. From the table, we see
that the cross sections obtained with different parton densities differ by 6% at the most (relative to the
result obtained with MRST99-1 [10], which we take as the default set). MRST99 sets 2 and 3 are meant
to give an estimate of the effects due to the current uncertainties affecting the gluon density (see sect. 2.),
whereas sets 4 and 5 allow to study the sensitivity of our predictions to the value ofαS(MZ) (sets 1,

4 and 5 haveΛ(5)
MS

=220, 164 and 288 MeV respectively). On the other hand, the difference between
MRST99-1 and CTEQ5M [7] results is due to the inherent difference between these two density sets
(CTEQ5M hasΛ(5)

MS
=226 MeV, and therefore the difference in the values ofαS(MZ) plays only a very

minor role).

From inspection of table 3, we can conclude that isolated-photon cross section at the LHC is under
control, both in the sense of perturbation theory and of the dependence upon non-calculable inputs, like
αS(MZ) and parton densities. The relatively weak dependence upon the parton densities, however, is
not a good piece of news if one aims at using photon data to directly access the gluon density. On the
other hand, the expected statistics is large enough to justify attempts of a direct measurement of such a
quantity. In the remainder of this section, we will concentrate on this issue. We will consider

Rx =
dσ0/dx− dσ/dx

dσ0/dx+ dσ/dx
, (61)

wherex is any observable constructed with the kinematical variables of the photon and, possibly, of the
accompanying jets.σ andσ0 are the cross sections obtained with two different sets of parton densities, the
latter of which is always the default one (MRST99-1). We can imagine a gedanken experiment, where
it is possible to change at will the parton densities; in this way, we can assume the relative statistical
errors affectingσ andσ0 to decrease as1/

√
N and1/

√
N0,N andN0 being the corresponding number

of events. It is then straightforward to calculate the statistical error affectingRx; by imposingRx to be



Fig. 34: Dependence of isolated-photon and isolated-photon-plus-jet cross section upon parton densities, as a function ofpTγ

andxγj .

larger than its statistical error, one gets

Rx > (Rx)min ≡ 1√
2Lεσ(x,∆x)

, (62)

whereL is the integrated luminosity,ε ≤ 1 collects all the experimental efficiencies, and

σ(x,∆x) =
∫ x+∆x/2

x−∆x/2
dx

dσ

dx
(63)

is the total cross section in a range of width∆x aroundx.

In fig. 34 we present our predictions forRx. In the left panel of the figure we have chosenx = pTγ ,
while in the right panel we havex = xγj , where

xγj =
pTγ exp(ηγ) + pTj exp(ηj)√

s
. (64)

In this equation
√
s is the centre-of-mass energy of the colliding hadrons, andpT j andηj are the trans-

verse momentum and rapidity of the hardest jet recoiling against the photon. In order to reconstruct the
jets, we adopted here ak⊥-algorithm [8], in the version of ref. [9] withD = 1. Notice thatxγj exactly
coincides at the LO with the longitudinal momentum fractionx of the partons in one of the incoming
hadrons; NLO corrections introduce only minor deviations. For all the density sets considered, the de-
pendence ofR uponpTγ is rather mild. The values in the low-pTγ region could also be inferred from
table 3, since the cross section is dominated by smallpTγ ’s. Analogously to what happens in the case of
total rates, the sets MRST99-4 and MRST99-5 give rise to extreme results forRpTγ

, since the value of
αS(MZ) is quite different from that of the default set. From the figure, it is apparent that, by studying
the transverse momentum spectrum, it will not be easy to distinguish among the possibleshapesof the
gluon density. On the other hand, it seems that, as far as the statistics is concerned, a distinction between
any two sets can be performed. Indeed, the symbols in the figure display the quantity defined in eq. (62),
for L = 100 fb−1, ∆pTγ = 10 GeV andε = 1. Of course, the latter value is not realistic. However, a
smaller value (leading to a larger(R)min), can easily be compensated by enlarging∆pTγ and by the fact
that the total integrated luminosity is expected to be much larger than that adopted in fig. 34.

Turning to the right panel of fig. 34, we can see a much more interesting situation. Actually,
it can be shown that the pattern displayed in the figure is rather faithfully reproduced by plotting the
analogous quantity, where one uses the gluon densities instead of the cross sections. This does not come
as a surprise. First,xγj is in an almost one-to-one correspondence with thex entering the densities.



Secondly, photon production is dominated by the gluon-quark channel, and therefore the cross section
has a linear dependence uponfg(x), which can be easily spotted. It does seem, therefore, to be rather
advantageous to look at more exclusive variables, like photon-jet correlations (this is especially true if
one considers the procedure of unfolding the gluon density from the data: in the case of single-inclusive
variables, the unfolding requires a de-convolution, which is not needed in the case of correlations). Of
course, there is a price to pay: the efficiencyε will be smaller in the case of photon-jet correlations, with
respect to the case of single-inclusive photon observables, mainly because of the jet-tagging. However,
from the figure it appears that there should be no problem with statistics, except in the very largexγj

region.

Finally, we would like to comment on the fact that, for the case of single-inclusive photon ob-
servables, we also computed the cross section by isolating the photon according to definition A, using
εc = 2 GeV/pTγ . The two definitions return apTγ spectrum almost identical in shape, with definition B
higher by a factor of about 9%. It is only at the smallestpTγ values that we considered, that definition
B returns a slightly steeper spectrum. The fact that such different definitions produce very similar cross
sections may be surprising. This happens because, prior to applying the isolation condition, partons tend
to be radiated close to the photon; therefore, most of them are rejected when applying the isolation, no
matter of which type. This situation has already been encountered in the production of photons at much
smaller energies. The reader can find a detailed discussion on this point in ref. [444].

In the previous paragraphs, we concentrated on the possibility that isolated-photon data can be
used to constrain or measure the gluon density in the proton. However, it is well known thatfg(x) is
rather strongly correlated toαS. This is not a problem if one is interested in observables that only depend
upon the quantityαSfg(x). On the other hand, the determination of the gluon density alone is important
in many respects. Thus, one has to assume an accurate knowledge ofαS to extractfg(x) from the data.
It is of course possible to turn this argument the other way round: that is, to assume a good knowledge of
fg(x) to measureαS. The sensitivity of the isolated-photon cross section at the LHC upon the value of
αS can be inferred from table 3 and fig. 34, looking at the results obtained with the sets MRST99-4 and
MRST99-5. Unfortunately, since the gluon-initiated processes dominate the cross section, and the gluon
is the least known among the parton densities, this procedure will probably result in sizeable systematic
errors; on the other hand, thanks to the size of the production rate, we should expect a precise result on
a statistical basis. These considerations should encourage us to find alternative ways of measuringαS

by using photon data. Since the main problem is in the dependence of the cross section uponfg(x),
the guide line is that of considering observables that are less sensitive to the parton densities than the
isolated-photon cross section.

In what follows, we will argue that an observable of this kind is given by the ratio

X (pT ) =
dσj

dpT j
(pT )

/ dσγ

dpTγ
(pT ) . (65)

Here,dσj/dpT j is the single-inclusive jet transverse momentum spectrum, whiledσγ/dpTγ is the trans-
verse momentum spectrum of the isolated photon.

It is immediate to see that, at the LO,X is proportional toαS. In the ratio that definesX , one
expects that the dependence upon the parton densities cancel to a good extent, thus giving an observable
suited to measureαS, regardless of the precision to whichfg(x) is known. In hadronic physics, the trick
of considering ratios of cross sections (instead of the cross sections themselves) in order to reduce the
dependence on the parton densities is frequently used. In particular, for the measurement ofαS at hadron
colliders, one can think to theW +1-jet overW +0-jet ratio (A), and to the 3-jet over 2-jet ratio (B). We
have to stress an important difference between these two quantities andX : in the ratio that definesA and
B, the numerator requires the definition (through final-state cuts) of an hard object in addition to those
already present in the denominator. This implies that the kinematical configurations in the numerator
and denominator can be sizably different. Therefore, one faces the following problem: even ifA and



pmin
T (GeV) 40 100 200

|ηγ | < 1.5
MRST99-2 1.006 ± 0.009 1.003 ± 0.025 0.991 ± 0.051
MRST99-3 1.002 ± 0.009 1.009 ± 0.023 1.007 ± 0.048

|ηγ | < 2.5
MRST99-2 1.003 ± 0.008 1.002 ± 0.023 0.998 ± 0.042
MRST99-3 1.009 ± 0.008 1.009 ± 0.023 0.999 ± 0.046

Table 4: NLO predictions for the double ratioD defined in eq. (66), for variouspmin
T and two ranges in rapidity.

pmin
T (GeV) 40 100 200

|ηγ | < 1.5
MRST99-2 0.974 ± 0.003 0.966 ± 0.010 0.984 ± 0.027
MRST99-3 1.019 ± 0.003 1.016 ± 0.010 1.012 ± 0.025

|ηγ | < 2.5
MRST99-2 0.976 ± 0.002 0.973 ± 0.008 0.987 ± 0.019
MRST99-3 1.017 ± 0.002 1.010 ± 0.008 1.010 ± 0.018

Table 5: NLO predictions for the ratio defined in eq. (68). This table has to be compared to table 4.

B are formally proportional (at the LO) toαS, it is not straightforward to determine the scale at which
αS is calculated. Furthermore, since the numerator and the denominator have different hard scales, the
parton densities appearing in these two quantities will be probed at different momenta: this of course
will partially destroy the cancellation that one is willing to achieve when considering such ratios. One
the other hand, this problem does not affectX : both the isolated-photon and the single-inclusive cross
sections are dominated by two-body, back-to-back configurations: it is therefore pretty intuitive thatαS

will be evaluated at a scale equal to the transverse momentum of the observed photon and jet. On the
other hand, the partonic subprocesses contributing to the numerator and the denominator ofA andB are
basically the same. This is not true forX , because of the different hard production processes involved.
Therefore, one might argue that in the latter case the cancellation of the dependence on parton densities
will not take place. We can however observe the following: at the LHC, and if one does not consider
too large values inpT , the average momentum fractionx probed is small: thus, the quark densities
are dominated by the sea, which is in turn related tofg(x). In this way, we can expect to recover the
cancellation.

Of course, there is no way to tell beforehand which observable displays the smallest dependence
upon the parton density choice. In order to study this issue in the case ofX , we will consider in the
following the double ratio

D(pmin
T ) = X (pmin

T ) /X 0(pmin
T ), (66)

where

X (pmin
T ) =

∫ pmax
T

pmin
T

dpT j
dσj

dpT j

/∫ pmax
T

pmin
T

dpTγ
dσγ

dpTγ
. (67)

In eq. (66),X 0 is computed with our default parton density set (MRST99-1), whileX is computed with
the other sets. Notice that we consideredX instead ofX just because we collected a limited amount
of statistics in the MC runs performed so far, andX stands a better chance thanX to be insensitive
to fluctuations. Notice, however, that the relevant transverse momentum spectra are quite steep, and
thereforeX (pmin

T ) is dominated byX (pmin
T ). In eq. (67), the upper limitpmax

T can be chosen at will. A
possible choice is to set it equal to the kinematical limit; in the results presented in this section, we have
setpmax

T = 400 GeV.



Our NLO predictions for the double ratioD are presented in table 4. By inspection of the table, we
can see thatD is remarkably stable with respect to the choice of the density set; it has to be stressed, how-
ever, that an increase of the statistics is mandatory at the highestpmin

T considered. In the table, we limited
ourselves to considering only the sets MRST99-2 and MRST99-3. The reason is the following: by con-
struction, these sets gauge the current uncertainty affecting the determination offg(x), with MRST99-1
being assumed to return the “true” densities. Thus, sinceD is compatible with one, we are indeed check-
ing that the dependence upon the parton densities inX (actually,X ) almost perfectly cancels. If we
were considering other sets, like MRST99-4, we would expectD ' αS(ΛMRST99−4)/αS(ΛMRST99−1).
However, the strong correlation betweenαS andfg(x) might spoil this naive expectation. The same can
be said when considering the sets of the CTEQ group: in this case, a further bias can be introduced by
the fact that MRST and CTEQ use different parametrizations and evolution codes. We postpone a more
careful analysis of this problem to a forthcoming work.

It can be argued that the results displayed in table 4 are due to the fact that the densities used are
actually not that different in thex range of interest. This, however, is not true. In fact, at the level of
cross sections, the differences between the predictions obtained with the default set or with the other sets
are much larger. This can be seen from table 3. More precisely, we can consider the ratio

∫ pmax
T

pmin
T

dpTγ
dσγ

dpTγ

/∫ pmax
T

pmin
T

dpTγ
dσ0γ

dpTγ
, (68)

wheredσ0γ is calculated using MRST99-1, anddσγ with all the other density sets. The results for this
quantity are presented in table 5. Each entry of this table has to be compared with the corresponding
entry in table 4. From this exercise, it is indeed evident thatX is much less sensitive than the isolated-
photon cross section to the choice of the density set, at least at smallpmin

T . Whenpmin
T approaches larger

values, no firm conclusion can be reached, given the statistics collected; as mentioned before, one can
suspect that, the higherpmin

T , the larger the dependence ofX upon the densities. One the other hand, it
can be observed that smaller momenta allow an easier observation of the running ofαS.

6.4 Pairs of isolated photons: infrared sensitivity with standard cone isolation42

In the discussion given before, we restricted to the case of the production of a single isolated photons. Of
course, the considerations we made can be extended with obvious modification in eq. (51) to the case of
the production of photon pairs. In such a case, the cross section splits naturally in threeunphysicalcom-
ponents: direct, single-fragmentation and double-fragmentation, corresponding to the processes where
both photons, one photon and none of the photons are directly entering the hard subprocess. As far as the
isolation prescription is concerned, things are unchanged: this cut has to be imposed on both photons,
and possibly supplemented by the requirement that the photons be isolated from each other.

In Sect. 9., the production of photon pairs is described with a special emphasis on its role as a
background to Higgs searches. Here we would like to concentrate on a different, more technical aspect,
which is more relevant to pure-QCD studies. We investigate appearance of infrared divergencesinsidethe
physical spectrum. An example of such divergences appears in the transverse momentum (qT ) spectrum
of a pair of isolated photons - or of a jet+isolated photon system. This can be seen in Fig. 35, which
showsdσ/dqT vs. qT for isolated photon pairs, computed at NLO accuracy [237]. The rather large value
of isolation cut used here ,ETmax = 15 GeV, is not motivated by any phenomenological consideration:
it instead allows to split the well known infrared issue in the vicinity ofqT → 0 from the new one at
qT → ETmax.

The trouble comes from the “single fragmentation” contribution (the contribution where only one
photon comes from the fragmentation of a hard parton, the other being emitted by the partonic sub-
process). In the QCD improved parton model framework, the fragmentation is a strictly collinear pro-

42Contributing authors: T. Binoth, J.P. Guillet and E. Pilon.



Fig. 35: Di-Photon differential cross sectiondσ/dqT at LHC,
√
s = 14 TeV, with the kinematic cutspT (γ1) ≥ 40 GeV,

pT (γ2) ≥ 25 GeV, |y(γ1,2)| ≤ 2.5, and with isolation criterionETmax = 15 GeV inR = 0.4. The scale choice for initial

state factorization scale (M ), fragmentation scale (Mf ) and renormalization scale (µ) isM = Mf = µ = mγγ/2.

cess, hence all the hadronic debris of the parton-to-photon fragmentation fall inside the cone of the
photon from fragmentation. At LO, both photons are back-to-back in the transverse plane, so, due to
transverse momentum conservation,qT = Ehad

T . Since the transverse hadronic energy deposited in the
isolation cone has to be less thatET max, the LO “single fragmentation” contribution of theqT distri-
bution has a stepwise behavior. Then, as shown in [445], at NLO such an observable gets an infrared
double logarithmic divergence at the critical pointqT = ET max. The details of this infrared structure
are very sensitive to the kinematic constraints and the observable considered. In the case at hand, the
NLO contribution todσ/dqT gets a double logarithm below the critical point, which is produced by the
convolution of the lowest order stepwise term with the probability distribution for emitting a soft and
collinear gluon, yielding:(

dσ

dqT

)
NLO

∼ −
(
dσ

dqT

)
LO

Θ (ET max − qT ) × αS ln2

(
1 − q2T

E2
T max

)
+ · · · (69)

More generally, at each order inαs, up to two powers of such logarithms will appear, making any fixed
order calculation diverge atqT = ET max, so that the spectrum computed by any fixed order calculation
is unreliable in the vicinity of this critical value. In principle, an all order resummation has to be carried
out if possible, in order to restore any predictability. In practice, the phenomenologically relevant values
of ET max are fairly lower than 15 GeV, so that this problem may affect only the very first bins of theqT
distribution.

6.41 Mismatch theory/experiment with very severe isolation cuts

Another issue deserves some care, when isolated photons are selected by mean of the above standard
cone criterion. In an actual prompt photon event the transverse energy deposited inside the isolation
cone has several physical origins. One is when hadrons coming from the hadronization of hard partons
involved in the subprocess fall into the cone. A second one is given by the debris of the fragmentation
producing the photon, when the latter comes from such a mechanism. A third source of accompanying
transverse energy is provided by “minimum bias”. Moreover at high luminosity, piled-up events may
also contaminate the hadronic environment of a previous photon event. From an experimental point of



view, the value ofET max has to be as low as possible in order to suppress background events and events
with photons from fragmentation, while retaining most of the “true” direct photons. The goal is thus to
use an experimental value ofET max basically saturated by “minimum bias” - and pile-up. For example
this is nearly achieved by CDF at the Tevatron requiringET max = 1 GeV in R = 0.4. In partonic
calculations, the first two sources of accompanying transverse energy are taken into account, whereas
the last two are ignored. However if the accompanyingEhad

T is to be saturated by “minimum bias” and
pile-up, then in a partonic calculation, this leaves almost no room for accompanying partonicET coming
from the hard subprocess itself. Therefore, a partonic calculation meant to incorporate the effect of such
an experimental cut should use an effective value forET max in the calculation, which is much smaller
than the one experimentally used, e.g. at most a few hundred MeV for CDF. The correspondence between
the values used in experiments, or full Monte Carlo simulations (which model the “minimum bias”), and
their counterparts in higher order partonic calculations has to be further studied. Such a comparison is
worthwhile especially because the actual isolation cuts used by colliders experiments are more exclusive
and sophisticated than the schematic criterion defined above.

However when the experimental value ofET max is nearly saturated by “minimum bias”, such a
study is complicated by an infrared problem. Indeed, an infrared divergence appears in partonic calcu-
lations, when photons are required to be absolutely isolated, i.e. accompanied by avanishing amountof
partonic transverse energy inside a cone of finite size, because this amputation of gluon phase space pre-
vents the cancellation of the infrared singularities associated with soft gluon emission. With a finite value
ET max, this would translate into the appearance ofln(ET max/Q) (whereQ is some large scale, of the
order of the photon’spT ) which would become large with a tinyET max. Whereas the “fragmentation”
contribution to, e.g. thepT distribution of direct photons [230,446], or the invariant mass distribution of
photon pairs, is roughly

σfragm ∼ ε
(
ln2 ε+ ln ε lnR+ · · ·) (70)

(with ε = ET max/Q), the “direct” contribution behaves as

σdir ∼ R2 ln ε+ O(1) (71)

The theoretical partonic calculation would then become unstable and unreliable, whenε� 1 with finite
R. Moreover, this problem is not localized in the sole vicinity of some isolated point, at the border of or
inside the spectrum, but in principle it plagues the calculation over the whole spectrum - at least some
extended range of it - for observables such as, e.g., thepT distribution of direct photons, or the invariant
mass distribution of photon pairs. The dependence of theoretical partonic calculations on the isolation
parameters, especially onET max, has still to be studied in detail [447] in order to fix this puzzle.

7. SMALL X PHYSICS 43

7.1 Jet physics at large rapidity intervals and the BFKL equation44

The LHC offers a unique opportunity to explore semi-hard strong-interaction processes, which are char-
acterized by two large and disparate kinematic scales. In inclusive jet production, jets of transverse
energyE⊥ = 50 GeV can span a kinematic range of up to 11 units of rapidity. Processes with two
large and disparate kinematic scales typically lead to cross sections containing large logarithms. Exam-
ples of this type of process are di-jet production in hadron collisions at large rapidity intervals [448],
forward jet production in DIS [449–451], andγ∗γ∗ collisions in double-tag events,e+e− → e+e−+
hadrons [452]. In large-rapidity di-jet production the large logarithm is the rapidity interval between the
jets,∆y ' ln(ŝ/|t̂|), with ŝ the squared parton center-of-mass energy and|t̂| of the order of the squared
jet transverse energy. In forward jet production in DIS the large logarithm isln(x/xbj), wherexbj is the
Bjorken scaling variable andx the momentum fraction of the parton entering the hard scattering. These

43Section coordinators: R. Ball, V. Del Duca and A. de Roeck.
44Contributing authors: V. Del Duca and W.J. Stirling.



logarithms will arise in a perturbative calculation at each order in the coupling constantαS. Alternatively,
if the logarithms are large enough, it is possible to include them through an all-order resummation in
the leading logarithmic (LL) approximation performed by means of the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [304–306].

In the high-energy limit,̂s � |t̂|, the BFKL theory assumes that any scattering process is domi-
nated by gluon exchange in the crossed channel45 which for a given scattering occurs atO(α2

S). This
constitutes the leading-order (LO) term of the BFKL resummation. The corresponding QCD amplitude
factorizes into a gauge-invariant effective amplitude formed by two scattering centers, the LO impact
factors, connected by the gluon exchanged in the crossed channel. The impact factors are characteris-
tic of the scattering process at hand. The BFKL equation then resums the universal LL corrections, of
O(αn

S lnn(ŝ/|t̂|)), to the gluon exchange in the crossed channel. These are obtained in the limit of a
strong rapidity ordering of the emitted gluon radiation, i.e. forn gluons produced in the scattering,

y1 � y2 � . . .� yn−1 � yn . (72)

Di-Jet production in hadron collisions at large rapidity intervals is the simplest process to which to
apply the BFKL resummation, and one of the topical BFKL processes at the LHC, thus we shall use it as
the paradigm process. Since di-jet production at large rapidity intervals is dominated by gluon exchange
in the crossed channel, the functional form of the QCD amplitudes for gluon-gluon, gluon-quark or
quark-quark scattering at LO is the same; they differ only by the colour strength in the parton-production
vertices. We can then write the cross section in the following factorized form [458–460]

dσ

d2pa′⊥d2pb′⊥dya′dyb′
= x0

afeff(x0
a, µ

2
F )x0

bfeff(x0
b , µ

2
F )

dσ̂gg

d2pa′⊥d2pb′⊥
, (73)

whereµF is the factorisation scale,a′ andb′ label the forward and backward outgoing jet, respectively,
andp⊥ are two-dimensional vectors in the plane transverse to the collision axis, theazimuthalplane.
x0

a, x
0
b are the parton momentum fractions in the high-energy limit,

x0
a =

|pa′⊥|√
s
eya′ x0

b =
|pb′⊥|√

s
e−yb′ , (74)

and the effective parton distribution functions are [461]

feff(x, µ2
F ) = fg(x, µ2

F ) +
4
9

∑
f

[
fqf

(x, µ2
F ) + fqf

(x, µ2
F )
]
, (75)

where the sum is over the quark flavours. In the high-energy limit, the gluon-gluon scattering cross
section becomes [458]

dσ̂gg

d2pa′⊥d2pb′⊥
=
[
CAαS

p2
a′⊥

]
f(qa⊥, qb⊥,∆y)

[
CAαS

p2
b′⊥

]
, (76)

with CA = Nc = 3, ∆y = ya′−yb′ andqi⊥ the momenta transferred in thet-channel, withqa⊥ = −pa′⊥
andqb⊥ = pb′⊥, and where we use the shorthand for the magnitude squared,|p⊥|2 ≡ p2

⊥. The quan-
tities in square brackets are the LO impact factors for jet production. The functionf(qa⊥, qb⊥,∆y) is
the Green’s function associated with the gluon exchanged in the crossed channel. It is process inde-
pendent and given in the LL approximation by the solution of the BFKL equation. This equation is a

45The crossed-channel gluon dominance is also used as a diagnostic tool for discriminating between different dynamical
models for parton scattering. In the measurement of di-jet angular distributions, models which feature gluon exchange in the
crossed channel, like QCD, predict a characteristicsin−4(θ?/2) di-jet angular distribution [453–455], while models featuring
contact-term interactions, which do not have gluon exchange in the crossed channel, predict a flattening of the di-jet angular
distribution at largês/|t̂| [456,457].



two-dimensional integral equation which describes the evolution in transverse momentum of the gluon
propagator exchanged in the crossed channel. If we transform to moment space via

f(qa⊥, qb⊥,∆y) =
∫

dω

2πi
eω∆y fω(qa⊥, qb⊥) (77)

we can write the BFKL equation as

ω fω(qa⊥, qb⊥) =
1
2
δ2(qa⊥ − qb⊥) +

αS

π
K [fω(qa⊥, qb⊥)] , (78)

with αS = αSNc/π, and where the kernelK is given by

K [fω(qa⊥, qb⊥)] =
∫
d2k⊥
k2
⊥

[
fω(qa⊥ + k⊥, qb⊥) − q2a⊥

k2
⊥ + (qa⊥ + k⊥)2

fω(qa⊥, qb⊥)
]
. (79)

The first term in the kernel accounts for the emission of a real gluon of transverse momentumk⊥ and
the second term accounts for the virtual radiative corrections, whichreggeisethe gluon exchanged in the
crossed channel. The solution to the BFKL equation is,

f(qa⊥, qb⊥,∆y) =
1

(2π)2
√
q2a⊥q

2
b⊥

∞∑
n=−∞

einφab

∫ ∞

−∞
dν eω(ν,n)∆y

(
q2a⊥
q2b⊥

)iν

, (80)

with φab the azimuthal angle betweenqa⊥ andqb⊥, andω(ν, n) the eigenvalue of the BFKL equation

ω(ν, n) = −αS

[
ψ

( |n| + 1
2

+ iν

)
+ ψ

( |n| + 1
2

− iν

)
+ 2γE

]
, (81)

with ψ the digamma function,γE = −ψ(1) the Euler constant, and with maximum atω(0, 0) ≡ λ =
4αS ln 2. Thus the solution of the BFKL equation resums powers of∆y. The resulting gluon-gluon
cross section grows with∆y asf(qa⊥, qb⊥,∆y) ∼ exp(λ∆y) [305, 306], in contrast to the leading-
order (O(α2

S)) cross section which is constant at large∆y.

In order to detect evidence of a BFKL-type behaviour in a scattering process, we need to have
∆y as large as possible. In di-jet production it can be done by minimizing the jet transverse energy,
and maximizinĝs. Sinceŝ = x0

ax
0
bs, in a fixed-energy collider this is achieved by increasing the parton

momentum fractionsxa,b, and then measuring e.g. the di-jet production ratedσ/d∆y. However, as the
x’s grow the parton luminosity falls off, making it difficult to disentangle the eventual BFKL-driven rise
of the parton cross section from the pdf’s fall off [459, 460]. One way to circumvent this problem is
to use a variable-energy collider: the increase inŝ can then be achieved by fixing thex’s (and hence
the pdf’s) and by letting the hadron center-of-mass energys grow. The advantage of this set-up is that
variations in the pdf’s are minimised, while variations in the parton dynamics, and thus in the eventual
underlying BFKL behaviour, are stressed [458, 462]. The D0 collaboration have recently attempted to
uncover BFKL behavior in this way by comparing di-jet cross sections measured at

√
s = 630 GeV

and1.8 TeV [463]. In a contribution to this Workshop [464], the possibility of testing for BFKL-type
behaviour by comparing di-jet cross sections at the Tevatron (2 TeV) and the LHC (14 TeV) has been
investigated. The difficulty here is that one is comparing jets measured in two very different detectors,
with resulting systematic uncertainties in the relative cross sections. One could also, of course, con-
template running the LHC at a lower collision energy. Note that a variable-energy configuration can be
more easily realised: in forward-jet production in DIS, since a fixed-energyep collider is nonetheless a
variable-energy collider in the photon-proton frame [465–470]; inγ∗γ∗ collisions in double-tag events,
e+e− → e+e−+ hadrons, by varying the energy in the photon-photon frame [471,472].

As a more practical alternative to varying the collider energy, one can study less inclusive observ-
ables. In particular, the correlation between the tagging jets, which at LO are supposed to be back to back,



is smeared by gluon radiation induced by parton showers and by hadronization. However, if we look at
the correlation also as a function of∆y, we expect the (BFKL) gluon radiation in the rapidity interval be-
tween the jets to further blur the information on the mutual position in transverse momentum space, and
thus the decorrelation to grow with∆y. Accordingly, the transverse momentum imbalance [459, 473],
and the azimuthal angle decorrelation [459, 460, 474–476] have been proposed as BFKL observables.
In particular, it is straightforward to derive from (80) the prediction for the dependence of〈cos φab〉 on
∆y:46 〈cos φab〉 ≈ 0. One finds [459, 460, 474–476] that〈cos φab〉 decreases rapidly from 1 at small
∆y (back-to-back jets), and approaches zero as∆y → ∞. Such an azimuthal angle decorrelation has
indeed been observed at the Tevatron Collider [448]. However, the LL BFKL formalism predicts a much
stronger decorrelation than that observed in the data. On the other hand a NLO partonic Monte Carlo
generator (JETRAD [222, 477]), in which the exact2 → 2 and2 → 3 matrix elements are taken into
account, predicts too little decorrelation. In fact the data are well described by the HERWIG Monte Carlo
generator [171,211,116], which ‘dresses’ the basic2 → 2 parton scattering with parton showers and also
includes hadronization. Thus the present conclusion is that at least for di-jets with transverse momenta
> 20 GeV and with rapidity intervals< 6 units, as analysed by the D0 Collaboration at the Tevatron,
there is no evidence for LL BFKL-induced gluon radiation in the azimuthal angle decorrelation.

A possible explanation of the failure of the LL BFKL prediction to describe the Tevatron data
is that the sub-leading corrections are large. There are various sources of such corrections: next-to-
leading order corrections to the BFKL kernel in (79), which have recently been calculated (see Sect. 7.3),
related running coupling effects47, and finally kinematic corrections that take into account the limited
phase space available for BFKL-type gluon emission. In the derivation leading to the result (80), the
transverse momentum of each emitted gluon is unbounded, and it is this unrestricted emission of gluons
with transverse momenta∼ |pa′⊥|, |pb′⊥| that leads to the strong decorrelation in azimuthal angle.

In an attempt to go beyond the analytic LL BFKL results, a Monte Carlo approach has been
adopted [478,476,462]. By solving the BFKL equation (78) by iteration, which amounts to ‘unfolding’
the summation over the intermediate radiated gluons and making their contributions explicit, it is possible
to include the effects of both the running coupling and the overall kinematic constraints. It is also
straightforward to implement the resulting iterated solution in an event generator.

The first step in this procedure is to separate thek⊥ integral in (78) into ‘resolved’ and ‘unresolved’
contributions, according to whether they lie above or below a small transverse energy scaleµ. The scale
µ is assumed to be small compared to the other relevant scales in the problem (the minimum transverse
momentumpmin

⊥ for example). The virtual and unresolved contributions are then combined into a single,
finite integral. The BFKL equation becomes

ω fω(qa⊥, qb⊥) =
1
2
δ2(qa⊥ − qb⊥) +

αS

π

∫
k2
⊥>µ2

d2k⊥
k2
⊥

fω(qa⊥ + k⊥, qb⊥)

+
αS

π

∫
d2k⊥
k2
⊥

[
fω(qa⊥ + k⊥, qb⊥) θ(µ2 − k2

⊥) − q2a⊥ fω(qa⊥, qb⊥)
k2
⊥ + (qa⊥ + k⊥)2

]
. (82)

The combined unresolved/virtual integral can be simplified by noting that sincek2
⊥ � q2a⊥, q

2
b⊥ by

construction, thek⊥ term in the argument offω can be neglected, giving

(ω − ω0) fω(qa⊥, qb⊥) =
1
2
δ2(qa⊥ − qb⊥) +

αS

π

∫
k2
⊥>µ2

d2k⊥
k2
⊥

fω(qa⊥ + k⊥, qb⊥) , (83)

where

ω0 =
αS

π

∫
d2k⊥
k2
⊥

[
θ(µ2 − k2

⊥) − q2a⊥
k2
⊥ + (qa⊥ + k⊥)2

]
= αS ln

(
µ2

q2a⊥

)
. (84)

46In practice one integrates the di-jet transverse momenta above some threshold,|pa′⊥|, |pb′⊥| > pmin
⊥ .

47Note that the solution given in (80) assumes a fixed value forαS.



The virtual and unresolved contributions are now contained inω0 and we are left with an integral over
resolved real gluons. We can now solve (83) iteratively, and performing the inverse transform we have

f(qa⊥, qb⊥,∆y) =
∞∑

n=0

f (n)(qa⊥, qb⊥,∆y) . (85)

where

f (0)(qa⊥, qb⊥,∆y) =
[
µ2

q2a⊥

]αS∆y 1
2
δ2(qa⊥ − qb⊥)

f (n≥1)(qa⊥, qb⊥,∆y) =
[
µ2

q2a⊥

]αS∆y
{

n∏
i=1

∫
d2ki⊥ dyi Fi

}
1
2
δ2(qa⊥ − qb⊥ −

n∑
i=1

ki⊥)

Fi =
αS

πk2
i⊥
θ(k2

i⊥ − µ2) θ(yi−1 − yi)

[
(qa⊥ +

∑i−1
j=1 kj⊥)2

(qa⊥ +
∑i

j=1 kj⊥)2

]αSyi

(86)

Thus the solution to the BFKL equation is recast in terms of phase space integrals for resolved gluon
emissions, with form factors representing the net effect of unresolved and virtual emissions. Unlike in the
case of DGLAP evolution, there is no strong ordering of the transverse momentaki⊥. Strictly speaking,
the derivation given above only applies for fixed coupling because we have leftαS outside the integrals.
The modifications necessary to account for a running couplingαS(k2

⊥) are straightforward [476].

The expression forf in (85,86) above is amenable to numerical integration, and one can for ex-
ample reproduce the analytic result given in (80). More importantly, having made explicit the BFKL
gluon emission phase space, we can impose overall energy and momentum conservation. In particular
the parton momentum fractions in the presence of BFKL gluon emission become

xa =
eya′√
s

(
|pa′⊥| + |pb′⊥|e−∆y +

∑
i

|ki⊥|eyi−ya′

)
,

xb =
e−yb′√
s

(
|pb′⊥| + |pa′⊥|e−∆y +

∑
i

|ki⊥|e−yi+yb′

)
. (87)

The momentum fractions in the high-energy limit given in (74) are recovered by imposing strong rapidity
ordering, eq. (72). Note that the requirementxa, xb ≤ 1 effectively imposes an upper limit on the
transverse momentum (ki⊥) integrals. This in turn means that the analytic result (80) isnot reproduced
in the presence of such a constraint, since they require the internal transverse momenta integrals to
extend to infinity. Formally, the kinematic constraintsxa, xb ≤ 1 induce an infinite sequence of sub-
leading logarithmsαn

S∆yn−1, αn
S∆yn−2, . . . that suppress the growth of the parton scattering cross

section with∆y.

Applying kinematic constraints and including the running coupling suppresses the emission of
energetic BFKL gluons, and therefore weakens the azimuthal decorrelation predicted at LL level [478,
476]. As a result, reasonable agreement with the D0 decorrelation data is recovered. It is clear, therefore,
that one needs a higher-energy collider such as the LHC in order to discriminate between the BFKL and
parton shower (DGLAP) dynamics.

Figure 36 shows the mean value ofcos ∆φ in di-jet production in an improved BFKL MC ap-
proach [479] that includes kinematic constraints and running couplings (upper curves). The jets are
completely correlated (i.e. back-to-back in the azimuthal plane) at∆y = 0, and as∆y increases we see
the characteristic BFKL decorrelation, followed by a flattening out and then an increase in〈cos ∆φ〉 as
the kinematic limit is approached48. Not surprisingly, the kinematic constraints have a much stronger

48For any given transverse momentum threshold, there is some∆y at which the jet pair (a′, b′)alone saturates the kinematic
limit, and emission of additional (real) gluons is completely suppressed and the azimuthal correlation returns. As we approach
that limiting value of∆y we therefore expect to see a transition back towards correlated jets.



Fig. 36: The azimuthal angle decorrelation in di-jet production at the Tevatron (
√
s = 1.8 GeV) and LHC (

√
s = 14 TeV) as

a function of di-jet rapidity difference∆y [479]. The upper curves are computed using the improved BFKL MC with running

αS; they are: (i) Tevatron,pT > 20 GeV (dotted curve), (ii) LHC,pT > 20 GeV (solid curve), and (iii) LHC,pT > 50 GeV

(dashed curve). The lower curves are for di-jet production in the processqq → qqH for pT > 20 GeV (solid curve) and

pT > 50 GeV (dashed curve).

effect when thepmin
⊥ threshold is set at50 GeV (dashed curve) than at20 GeV (solid curve); in the latter

case more phase space is available to radiate gluons. We also show for comparison the decorrelation
for di-jet production at the Tevatron forpT > 20 GeV. There we see that the lower collision energy
(1.8 TeV) limits the allowed rapidity difference and substantially suppresses the decorrelation at large
∆y. Note that the larger center-of-mass energy compared to transverse momentum threshold at the LHC
would seem to give it a significant advantage as far as observing BFKL effects is concerned.

The lower set of curves in Fig. 36 refer to Higgs production via theWW, ZZ fusion process
qq → qqH, and are included for comparison [479]. This process automatically provides a ‘BFKL-like’
di-jet sample with large rapidity separation, although evidently the jets are significantly less correlated
in azimuthal angle.

In summary, the LHC offers an important test of BFKL dynamics in the production of relatively
low transverse momentum jet pairs with a large rapidity separation. In this section we have given an
overview of the relevant theory. An important next step is to include the effects of the next-to-leading
order contributions to the BFKL kernel, and to consider other related processes with gluon exchange in
the crossed channel49. On the experimental side, it remains a challenge to trigger on such lowp⊥ jets in
the far forward regions of the detector.

7.2 Small-x Effects in Final States50

To understand the special features of QCD dynamics at smallx, it will be essential not only to study the
fully inclusive cross sections for small-x processes at the LHC, such as the Drell-Yan process at dilepton
mass-squaredQ2 much smaller than the c.m. energy-squared, but also to investigate the structure of
the associated final states. One important aspect of the final state is the number of mini-jets produced.
By mini-jets we mean jets with transverse momenta above some resolution scaleµR, whereµ2

R � Q2.
Thus the mini-jet multiplicity at smallx involves not onlylnx � 1 but also another large logarithm,
T = ln(Q2/µ2

R), which needs to be resummed. The results presented below include all terms of the
form (αS lnx)nTm where1 ≤ m ≤ n. Terms withm = n are called double-logarithmic (DL) while
those with1 ≤ m < n give single-logarithmic (SL) corrections. The DL contributions to the mini-jet
multiplicity have been obtained in [480], and the SL terms have been included in [481, 482]. In these

49Examples includeqg →Wqg, gg → bbg etc.
50Contributing authors: C. Ewerz and B.R. Webber.



calculations the BFKL formalism [302, 306] has been used, but the results are expected to hold [483]
also in the CCFM formalism [484,485,390,391] based on angular ordering of gluon emissions.

We start by considering the gluon structure function at the momentum scaleQ2,F (x,Q2). It is the
sum of contributionsF (r jet)(x,Q2, µ2

R) in which different numbersr of final-state mini-jets are resolved
with transverse momentum greater thanµR,

F (r jet)(x,Q2, µ2
R) = F (x, µ2

R) ⊗G(r)(x, T ) ≡
∫ 1

x

dz

z
F (z, µ2

R)G
(r)(x/z, T ) . (88)

To determine the coefficient functionG(r) to leading logarithmic order inx, it is convenient to apply a
Mellin transformation,

fω(. . .) =
∫ 1

0
dxxωf(x, . . .) . (89)

In ω-space the evolution of the structure function isFω(Q2) = exp[γL(αS/ω)T ]Fω(µ2
R), whereγL is the

Lipatov anomalous dimension, i.e. the solution obtained from eq. (81) by settingn = 0 andγ = 1/2+iν,

ω = −αS [ψ(γ) + ψ(1 − γ) + 2γE] ≡ αS χ(γ) . (90)

The Lipatov anomalous dimension can be written as an expansion in powers ofαS/ω,

γL(αS/ω) =
αS

ω
+ 2ζ(3)

(
αS

ω

)4

+ 2ζ(5)
(
αS

ω

)6

+ . . . . (91)

In [482] it has been shown that the generating functionGω(u, T ) =
∑∞

r=0 u
rG

(r)
ω (T ) can be written as

Gω(u, T ) =
Iω(u, 0)
Iω(u, T )

, (92)

where

Iω(u, T ) =
∫

Γ

dγ

γ
e−γT+φω(u,γ) , (93)

Γ being a contour parallel to the imaginary axis on the left of all singularities of the integrand, and

φω(u, γ) =
u

u− 1

∫ γ

1
2

dγ′
[
ω

αSu
− χ(γ′)

]
. (94)

One can obtain the moments of the jet multiplicity distribution from the generating function as follows:

r(r − 1) . . . (r − s+ 1)ω = exp[−γL(αS/ω)T ]
∂sGω

∂us

∣∣∣∣
u=1

. (95)

Using the expressions (92)-(94) we thus find for the mean number of jets

rω = − 1
χ′

(
1
γL

+
χ′′

2χ′ + χ

)
T − 1

2χ′T
2 (96)

whereχ′ means the derivative ofχ(γ) evaluated atγ = γL. The corresponding expression for the
variance in the number of jets,σ2

ω ≡ r2ω − r2ω, is more complicated [482]. Interestingly, the variance is
a polynomial of third degree inT . This implies that the distribution in the number of jets remains narrow
for largeT in the sense that its width grows slower than its mean.

Considered as functions ofω the coefficients of the powers ofT in eq. (96) and in the corre-
sponding expression forσ2

ω [482] exhibit bad behaviour at large values ofαS/ω. This is associated
with the singularity of the leading-order Lipatov anomalous dimensionγL at αS/ω = (4 ln 2)−1. We



would expect this behaviour to be modified strongly by higher order corrections. Although the next-to-
leading corrections toγL are known [67, 400, 307] a full calculation of the corresponding corrections to
the associated jet multiplicity has not been performed and would appear very difficult.

For practical purposes it is necessary to determine the multiplicity moments as functions ofx.
This can be done using (90) and the perturbative expansion (91) of the anomalous dimension. The
inverse Mellin transformation can then be applied to this series term by term using

1
2πi

∫
C
dω x−ω−1

(
αS

ω

)n

=
αS

x

[αS ln(1/x)]n−1

(n− 1)!
. (97)

In this way one easily finds a series for the inverse Mellin transformr(x) of rω, for example. We note
that the factorial in the denominator makes the resulting series inx-space converge very rapidly. It is then
straightforward to compute the mini-jet multiplicity associated with point-like scattering on the gluonic
component of the proton at smallx using

n(x) =
F (x,Q2) ⊗ r(x)

F (x,Q2)
. (98)

To illustrate the effects of BFKL resummation we compute the number of associated jets in central
Higgs production at the LHC. The dominant production process for a SM Higgs boson at the LHC is
expected to be gluon-gluon fusion. The production cross section for a Higgs boson of massMH and
rapidity y by gluon-gluon fusion in proton-proton collisions at centre-of mass energy

√
s takes the form

dσ

dy
= F (x1,M

2
H)F (x2,M

2
H)C(M2

H) , (99)

where for central production of the Higgs (y = 0) we havex1 = x2 = MH/
√
s, and for LHC

√
s =

14 TeV. C represents thegg → H vertex, which is perturbatively calculable as an intermediate top-
quark loop. A more careful treatment would involve replacing the Higgs production vertexC(M2

H) by
an impact factorC(M2

H , k
2
1 , k

2
2) and convoluting it with unintegrated gluon densities taken at the off-

shell gluon virtualitiesk2
1 andk2

2 , respectively. The dependence of the impact factorC(M2
H , k

2
1 , k

2
2) on

these virtualities is expected to be weak, and we have neglected it to arrive at eq. (99). ThenC cancels
in the mean number of mini-jets and its dispersion, and we do not need to know its detailed form.

Since the gluon emissions in the regions of positive and negative rapidity are independent, we can
simply add the numbersn1 = n(x1) andn2 = n(x2) of mini-jets produced in these regions. The mean
multiplicity N of associated mini-jets becomes51

N(x) = n1 + n2 = 2n(x) , (100)

wheren(x) can be calculated as in (98) after replacingQ2 byM2
H . Similarly, the variance is

σ2
N (x) = σ2

n(x1) + σ2
n(x2) = 2σ2

n(x) . (101)

The varianceσ2
n can be obtained in a similar way as the mean (for details, see ref. [482]).

We have calculated the dependence ofN andσN on the Higgs massMH using the leading-order
MRST gluon distribution [28]. Our numerical results are shown in fig. 37. The DL results, obtained by
keeping only the first term in eq. (91), give an excellent approximation and the SL terms are less signif-
icant. We see that the mini-jet multiplicity and its dispersion are rather insensitive to the Higgs mass at
the energy of the LHC. The mean number of associated mini-jets is rather low, such that the identifica-
tion of the Higgs boson should not be seriously affected by them. In view of the rapid convergence of
the perturbative series inx-space we do not expect the result for the mini-jet multiplicity to be strongly
modified by higher order corrections.

51We do not count any jets emerging from the proton remnants.
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7.3 The next-to-leading corrections52

As has already been discussed, in practically all experimental contexts, the LL BFKL equations fails
to reproduce the data. It is likely that the problem is due to the presence of significant sub-leading
corrections.

The next-to-leading logarithmic (NLL) correction termsαS(αS ln s)n are therefore of particular
interest. Such terms can arise for example from configurations containing a pair of particles which are
close in rapidity, or due to the running of the coupling. We write the kernel of the BFKL equation (78)
as

K [fω(qa⊥, qb⊥)] = K0[fω(qa⊥, qb⊥)] + αS K1[fω(qa⊥, qb⊥)] + O (α2
S

)
, (102)

whereK0 is the LL kernel (79), andK1 contains the NLL corrections. A number of different pieces
contribute toK1: the emission of two close-in-rapidity partons (two gluons [486,401] or aqq pair [487,
488,398,402,399]) from the gluon ladder; the one-loop corrections [395–397,489,490] to the emission
of a gluon from the ladder; the NLL corrections to a reggeised gluon [393, 394, 491, 492]. The various
pieces were put together in [67,400,307].

The resulting corrections have a number of interesting features, such as the fact that they imply
the emitted transverse momentum as being the appropriate scale forαS, and certain parts of the resulting
kernel can be associated with physical contributions such as the finite-z part of the DGLAP splitting
functions. However from the point of view of their direct use in phenomenology, the NLL corrections
present problems: applying the NLL kernel to the LL eigenfunctions,(k2

⊥)γ , with γ as in eq. (90), the
BFKL exponent becomes [67,307]

λ ' 4 ln 2αS(1 − 6.2αS) , (103)

and inserting a value ofαS = 0.2 relevant for many BFKL studies leads to a negative power. A detailed
study of the resummation of the kernel reveals the even worse property that forαS > 0.05 the NLL
corrections lead to negative cross sections [493].

7.31 Beyond NLL

At first sight one might therefore conclude that the NLL corrections remove all predictive power from
BFKL physics. Various groups have however proposed rather different approaches for the inclusion and

52Contributing author: G.P. Salam.



resummation of higher-order terms with a view to stabilising the perturbative series. Three basic strate-
gies have been suggested: BLM resummation together with an appropriate scheme change, a rapidity
veto, and resummation of collinearly enhanced terms.

A standard approach in situations where the perturbative series converges slowly is to apply a
scale change. One such procedure is BLM scale setting [494], where it is argued that for any given
observable, some of the NLL corrections come from the natural scale being different fromQ2, and
that the appropriate scale can be deduced from the coefficient of theNf -dependent part of the NLL
correction. In [416] the procedure is applied to the BFKL NLL corrections. The authors find that in the
MS scheme, BLM scale setting makes little difference to the poor convergence of the series. They then
show that in certain other schemes, notably the MOM (based on the symmetric triple-gluon vertex) and
Υ (based onΥ → ggg decay) schemes, the coefficient of theNf dependence is significantly modified —
the BLM resummation then has a much larger effect leading to an estimate for the exponent,λ ' 0.15
fairly independently ofQ2. The problem of negative cross sections still persists however, albeit to a
lesser extent. There are also questions regarding the naturalness of the particular scheme choices that are
required in order to obtain a stable answer, there being arguments both for and against.

The rapidity veto approach has been studied in detail in [417]. The background of this approach
is that the BFKL kernel is formally valid only for branchings separated by a large rapidity — but to
obtain the high-energy power-growth one then normally integrates over all possible rapidity intervals
between successive branchings, including small rapidities. One can equally well place a rapidity veto,
i.e. integrate only over rapidities beyond some cut,∆y, of order 1 or 2. This corresponds to introducing
a set of corrections at NLL and beyond, and one argues that part of the actual NLL corrections may
come from something akin to such a rapidity veto. One then studies the effect of the rapidity veto at
all orders (while fixing the NLL corrections). This was done in [417] where it was found that for large
rapidity vetoes (∆y > 2.2) the exponentλ is quite stable against variations in∆y and that the problems
of negative cross sections disappear. But for smaller rapidity vetoes, the usual problems persist.

The two above approaches conjecture some new physical effect (natural non-Abelian scheme,
rapidity veto). The third approach is a little different in that it takes the small-x kernel and supplements it
in such a way as to render it consistent with DGLAP evolution in the collinear and anti-collinear limits,
i.e. where one of the interacting objects has a much larger transverse scale than the other. The motivation
for doing this comes from the observation that while the convergence of the small-x expansion is poor
for normal high-energy scattering (both objects of the same transverse scale), for (anti)collinear high-
energy scattering the expansion becomes far worse and somustbe resummed: technically speaking, the
LL characteristic function53 χ0(γ) diverges as1/γ in the collinear limitγ → 0, while the NLL function,
χ1(γ), diverges as1/γ3. Since the structure of these divergences is governed by collinear physics, it can
be calculated at all orders. It turns out that there are double and single collinear logs and alone they are
responsible for most of the NLL correction even outside the collinear region. They have been resummed
respectively in [308,495] and [309,420], leading to a stable result for the exponentλ, free of the problem
of negative cross sections. The dependence ofλ onαS is shown in figure 38, together with the leading
and next-to-leading results, for comparison. There is relatively little dependence on changes of scheme
and scale [420] and on the additional introduction of a rapidity veto [418]. This approach therefore seems
to be the most likely candidate for practical phenomenology.

7.32 Spin-offs from the NLL results: understanding running coupling

One of the spin-offs of the NLL corrections was that they identified the correct scale to be used in the
kernel: αS(q2), whereq is the emitted transverse momentum. However to understand the effects of
running coupling in high-energy cross sections it is necessary to understand theiteration of the kernel

53In the notation of Sect. 7.1 and generalising eq. (90),ω(ν, 0) = αSχ0(1/2 + iν) + α2
Sχ1(1/2 + iν) + . . .. Higher

azimuthal componentsω(ν, n ≥ 1) are not included. However, they contribute only to azimuthal angle correlations such as
those discussed in Sect. 7.1.
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with running coupling. The two contexts of interest are for quantities such as Mueller-Navelet jets, and
for anomalous dimensions.

In the former, one has a situation where diffusion takes place both above and below the scale set
by the jets. The running of the coupling causes diffusion below the typical scaleE2

t of the jets to be en-
hanced compared to that above — as a result, as the rapidity separation increases and diffusion increases,
evolution belowE2

t is increasingly favoured, and the cross section grows faster thaneλ(E2
t )Y : an extra

term appears in the exponent, proportional toα5
S(E2

t )Y 3 [426, 496]. This causes the effective power
growth to increase gradually. A second, recently hypothesised effect calledtunneling[421], should at a
certain point cause a sudden increase in the observed power growth, as the contribution from very-low-
scale evolution becomes larger than that from evolution at scales of orderE2

t . This happens at a rapidity
of Y ' lnQ2/λP , whereλP is the exponent characteristic of low scales. It remains to be seen whether
such an effect will be phenomenologically observable.

Another quantity for which running coupling effects turn out to be very important is anomalous
dimensions, or equivalently small-x splitting functions. Very schematically, anomalous dimensions at a
scaleQ2 seem to involve small-x branching only aboveQ2: branching below that scale has already been
factorized out. Consequently they sample a region where the running coupling is smaller thanαS(Q2).
Thus the observed small-x exponent of the anomalous dimension,λγ(Q2), is smaller than the exponent
λ(Q2) relevant in say Mueller-Navelet jets with scaleE2

t = Q2 [420, 421, 497]. An alternative point of
view [415,419] is discussed in Sect. 5.4.

8. DOUBLE PARTON SCATTERING 54, 55

8.1 Introduction

The large flux of partons, which becomes available for hard collisions at high energies, justifies the
expectation, at the LHC, of sizeable effects due to the unitarization of the hard component of the inter-
action. In fact it is not difficult to foresee hard collision processes with a cross section larger than the
total cross section itself [498, 499]. Such a result is not inconsistent, if one keeps into account that the
inclusive cross section, described by the single scattering expression of the QCD-parton model, includes
a multiplicity factor which keeps into account the possibility of having several partonic interactions in
the same hadronic inelastic event [500, 501]. The possibility of hard processes with multiple parton in-

54Section coordinator: D. Treleani.
55Contributing authors:A. Del Fabbro and D. Treleani.



Fig. 39: Double parton scattering. Fig. 40: Graphical representation of Eq. 104.

teractions, namely different pair of partons interacting independently with a large momentum transfer in
the same hadronic collision, was on the other hand foreseen long ago by several authors [502–514]. In
a multi-parton interaction the different pairs of interacting partons are separated in transverse space by a
distance of the order of the hadron radius. As a consequence the transverse momenta have to be balanced
independently in the different partonic collisions, giving in this way a well defined characterization to the
process. The simplest event of that kind, the double parton scattering, has been a topic of experimental
search of all high energy hadron collider experiments since several years [515–517]. While initially the
results have been sparse and not very consistent, recently CDF has reported the observation of a large
number of events with double parton scatterings [175,176].

8.2 Cross section for double parton scattering

The inclusive cross section of a double parton scattering has a simple probabilistic expression. Interfer-
ence effects between the two partonic collisions are in fact negligible, since the partonic interactions are
localized in a much smaller region, with a size of the order of the inverse of the momentum transfer,
as compared to the distance in transverse space between the different partonic interactions. The non-
perturbative component of the process gets factorized, as a consequence, into a function which depends
on the fractional momenta of the partons taking part the interaction and on their distance in transverse
space, which has to be the same for both the target and the projectile partons, in order to have the align-
ment which is needed for the interaction to occur. One obtains therefore for the double parton scattering
cross section the expression (see fig. 40)

σD =
1
2

∫
pcut

T

ΓA(x1, x2; b)σ̂(x1, x
′
1)σ̂(x2, x

′
2)ΓB(x′1, x

′
2; b)dx1dx

′
1dx2dx

′
2d

2b , (104)

where the non perturbative input is the two-body parton distributionΓ(x1, x2; b), whose arguments are
the two fractional momenta,x1 andx2, and the distance of the two partons in transverse spaceb. The
partonic cross sections,σ̂(x, x′), are integrated on the momentum transfer, at a fixed value of the partonic
center of mass energy, and the cutoffpcut

T is introduced to regularize the singularity at smallpT and at
smallx values. The two-body parton distributionsΓ(x1, x2; b) represent the new property of the hadron
structure which becomes accessible through the observation of the double parton collision processes. It
is a non perturbative quantity which is independent on the one-body parton distributions, namely on the
non-perturbative input to the largepT processes usually considered. The two-body parton distributions
are in fact related directly to the two-body parton correlations in the hadron structure.

If the two pairs of partons undergoing the hard interactions are not correlated inx and if the
dependence onb can be factorized, the two-body parton distributions are nevertheless expressed as
Γ(x1, x2; b) = f(x1)f(x2)F (b), wheref(x) is the usual one-body parton distribution, appearing in



largepT inclusive processes, andF (b) is a function which describes the distribution of the partons in
transverse space. With these assumptions the cross section for a double parton collision leads, in the case
of two indistinguishable parton interactions, to the simplest factorized expression

σD(pcut
T ) =

[σS(pcut
T )]2

2σeff
, (105)

whereσS is the usual inclusive cross section of the perturbative QCD, i.e. the convolution of parton
distributions with the partonic cross section,pcut

T is the lower integration threshold andσeff is a scale
factor, with dimensions of a cross section. It is the result of the integration on the transverse distance
b, actually1/σeff =

∫
d2bF 2(b). All the information on the parton correlation in transverse space is

summarized inσeff [518]. The geometrical origin ofσeff justifies the expectation that its value is both
a energy and cutoff independent quantity.

The double parton scattering process has been measured at Fermilab by CDF by looking at final
states with three mini-jets and one photon [175,176]. The measured value of the scale factor is:

σeff = 14.5 ± 1.7+1.7
−2.3 mb. (106)

In the limited range ofx experimentally accessible,σeff does not show evidence of dependence on the
fractional momenta, which indicates that the simplest hypotheses above are not in contradiction with the
experiment.

The qualitative features of the double parton scattering process are easily read in the factorized
expression in Eq. (105). As a consequence of the proportionality ofσD with σ2

S , the double parton
scattering cross section is characterized by a rapid decrease forpT → ∞ and by a rapid growth for
pT → 0. As for the energy behavior,σD increases faster withs as compared to the single scattering
cross section (it goes asσ2

S). Multiple parton collisions are therefore enhanced at the LHC.

8.3 Four jet production

The most obvious case where multiple parton collisions play a role at high energy is in the production
of jets, since the integrated cross section can easily exceed the unitarity limit at large energies and with
a fixed value ofpcut

T . One has in fact that, for any value ofpcut
T , whens is sufficiently largeσS > σinel.

The simplest case to consider is the production of four largepT jets, where one can compare the leading
(2 → 4) process with the power suppressed(2 → 2)2 double parton collision.

In fig. (41) we show the expected rates of production of four largepT jets in the central rapidity
region (|y| < 3) with the two different production mechanisms, as a function of the lowest value of the
transverse momenta of the produced jetspmin

T . The continuous curve is the expected cross section as
from the leading QCD production mechanism(2 → 4) [519,122]. The dashed curve is the double parton
collisions(2 → 2)2 cross section. The curve representing the double parton collision in fig. (41) has to be
regarded as a lower limit, rather than as the expected rate of the double parton collision process, since no
factorK, accounting for higher order correction terms inαS , has been included in the evaluation. Notice
that higher order corrections inαS will contribute with a factorK2 in the double parton collision cross
section. The overall qualitative feature is that, at the LHC, the double parton collision dominates, with
respect to the leading QCD single scattering interaction, when one of the jets has a transverse momentum
which becomes as low as20 GeV.

8.4 l + bb production

Although multi-parton collisions have been mostly considered to describe the multiplicity distributions
in high energy hadronic interactions (for a discussion of multi-parton interactions at LHCb, we refer
the reader to the Bottom Production Chapter of this Report), the role of multi-parton collisions is not
limited to the case of production of large or relatively largepT jets. One may find in fact various other
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Fig. 41: Integrated cross section for production of four jets with|y| < 3 as a function of the lowest transverse momentum of

the jetspmin
T . The continuous curve is the expected cross section as from the leading QCD production mechanism2 → 4, the

dashed curve is the expected cross section due to the contribution of double parton collisions(2 → 2)2.

processes of interest at the LHC where multiple parton collisions are relevant [173,174]. Whileσeff may
depend in principle on the different species of partons involved in the interaction,σeff should not vary
much in the different processes and one would expect that it is, to a large extent, a process independent
quantity [178]. We will therefore consider it, in the following, as a universal quantity and we will use for
σeff the value which has been measured in the CDF experiment. The cross section of a double parton
interaction, resulting from the two distinguishable parton collisionsA andB, is therefore expressed as

σD =
σAσB

σeff
. (107)

As a meaningful example we have considered the production of an isolated lepton and of abb pair
[520], which represents an interesting channel to detect the Higgs boson production at the LHC in the
intermediate Higgs mass range,80GeV < MH < 150GeV. A background to the processp + p →
WH +X, withW → lνl andH → bb, is represented by the double parton scattering interaction where
the intermediate vector bosonW and thebb pair are created in two independent parton interactions. If one
usesσ(W )×BR(W → lνl) ' 40nb [10] andσ(bb) ' 5× 102µb, one obtains for the double collision
cross section the value of1.4 nb. The Higgs production cross sections,p+p→WH+X, withW → lνl

andH → bb, has been estimated to be rather of order of1 pb [521, 522]. Obviously the three orders of
magnitude of difference in the integrated cross section are mainly due to the configurations where thebb
pair is produced with an invariant mass close to the threshold ofbb production. The expected background
to the Higgs production signal, caused by the double parton collision process, is shown in fig. (42) as a
function of the invariant mass of thebb pair.

In fig. (42) we have plotted the expected signal in thebb invariant mass due to the Higgs boson
production for three possible values of the Higgs mass, 80, 100 and 120 GeV. The dashed line is the
double parton scattering background at the LO in perturbation theory. The continuous line is the result
for the double parton scattering background when computing thebb cross section at orderα3

S [251].

In fig. (43) we compare the signal and the background after applying all the typical cuts considered
to select the Higgs signal in this channel [521]:

- - for the lepton we require:pl
T > 20 GeV, |ηl| < 2.5 and isolation from theb’s, ∆Rl,b > .7
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Fig. 43: The backgrounds to Higgs boson production is

compared with the signal after the cuts (see main text). Dot-

ted line: single scattering contribution to theWbb channel.

Dashed line: double parton scattering background. Contin-

uous line: total estimated background.

- - for the twob partons:pb
T > 15 GeV, |ηb| < 2 and∆Rb,b > .7

As in the previous figure the Higgs signal in thebb invariant mass corresponds to three possible
values for the mass of the Higgs boson,80, 100 and120 GeV. The dotted line is the single parton scatter-
ing background, where theWbb state is created directly in a single partonic interaction. The dashed line
is the expected background originated by the double parton scattering process, evaluated by estimating
thebb production cross section atO(α3

S). The continuous line is the total expected background. In the
calculations of the background and signal we used, for the LO matrix elements, the packages MadGraph
[133] and HELAS [523]. The integration was performed by VEGAS [141] with the parton distributions
MRS99 [10].

Also after using the more realistic cuts just described, the double parton scatterings process re-
mains a rather substantial component of the background, as one may see by comparing in fig. (43) the
total background estimate (continuous curve) with the more conventional single scattering background
estimate (dotted curve).

8.5 Summarizing remarks

At the LHC one has to expect large effects from multiple parton collisions in various processes of interest.
To the purpose of illustration, we have presently studied the production of abb pair in association with
a W boson, followed by the decayW → lν, in the mass rangeMbb ' 100 GeV. The channel is of
interest for the observation of the Higgs boson production when the Higgs mass is below the threshold of
W+W− production. We find that, if one applies the standard cuts to the final state usually considered to
isolate the Higgs signal in this channel, the background due to double parton scatterings (bb pair andW
boson produced in two different partonic interactions) is comparable to the more traditional background,
where thebb pair and theW boson are produced in a single parton collision. A similar situation can be
expected with several other final states:



• Zbb,

• W + jets,Wb+ jets andWbb+ jets,
• tt→ llbb,

• tb→ bblν,

• bb+ jets,
• final states with many jets whenpmin

T ' 20, 30 GeV.

The well definite characterization of the states produced by the multiple parton scattering processes
allows nevertheless one to figure out more efficient selection criteria to get rid of this further background
source, or to measure it in a precise way. The present analysis however points out that, as a consequence
of the enhanced role of multiple parton collisions at high energy, a detailed and systematic study of the
expected rates and backgrounds, due to multiple parton collision processes, is of great importance at the
LHC and it represents one of the topics which have to be addressed seriously in the next future.

9. BACKGROUNDS TO NEUTRAL HIGGS BOSONS SEARCHES56, 57

9.1 Introduction

The most important goal of the physics programme of the LHC experiments ATLAS [1] and CMS [524]
is to perform measurements which lead to the understanding of the mechanism of electroweak symmetry
breaking. In the framework of the SM, as well as its extensions, e.g. super-symmetric (SUSY), it
translates into the major topic of Higgs boson searches. The SM assumes one doublet of scalar fields,
implying the existence of one neutral scalar particle. In SUSY models, the Higgs sector is extended
to contain at least two doublets of scalar fields leading to the prediction of five Higgs particles, three
electrically neutral and two charged. The following discussion focuses on neutral bosons.

The Higgs boson mass remains largely unconstrained in the SM. From perturbative unitarity ar-
guments an upper limit of∼ 1 TeV can be derived. The requirements of stability of electroweak vac-
uum, and of perturbative validity of the SM seen as an effective theory, allow to set upper and lower
bounds depending on the cut-off value chosen for the energy scale up to which the SM is assumed to
be valid [525–535]. If the cut-off is assumed to be about the Planck mass, which means that no new
physics appears up to that scale, the Higgs boson is predicted to be in the range 130 -190 GeV. This
bound becomes weaker if new physics appears at a lower mass scale. A global fit to all electroweak data
in the SM framework seems to favour a rather light Higgs boson:mH = 76+85

−47 GeV [536]. Moreover,
SUSY extensions of the SM generically predict the existence of one rather light neutral Higgs boson (e.g.
roughlymH ≤ 130 GeV in the minimal SUSY extension). The LEP2 experiments are searching Higgs
bosons with masses up to about 110 GeV [537]. Assuming that no Higgs boson will be found at LEP, the
above indications raise even more interest in the Higgs boson searches at LHC in the intermediate mass
range from 95 GeV to2mZ .

The Higgs boson searches scenarios prepared by the ATLAS [1] and CMS [524] Collaborations
cover a large spectrum of final state signatures in this mass range. The rareH → γγ decay mode
is expected to be accessible in inclusive Higgs production in the mass range 90 -140 GeV already for
an integrated luminosity of100 fb−1. This observability can be also complemented by looking at an
additional jet (production in association with jets) or lepton in the final state (ttH,WH, ZH associated
production). The additional isolated lepton in the final state will also allow to access the dominant
H → bb decay mode, and such observability has been established in the ATLAS searches scenarios for
thettH production channel. Higgs decay intoWW in inclusive or associated production lead to the clean
signature of 2 or 3 leptons in the final state. A signature with even higher lepton multiplicity is provided
by theH → ZZ∗ channel in the inclusive and associated production. The possible observability of

56Section coordinators: J.-P. Guillet, E. Pilon and E. Richter-Was.
57Contributing authors: T. Binoth, D. de Florian, M. Grazzini, J.-P. Guillet, J. Huston, V. Ilyin, Z. Kunszt, Ph. Min´e, E. Pilon,

E. Richter-Was and M. Werlen.



the latest one is still under investigation, as presented below. A rich spectrum of final state signatures
was proposed recently, which exploredWW andZZ fusion mechanisms producing a Higgs boson
in association with two forward/backward jets. The observability of theH → γγ, H → τ+τ− and
H →WW ∗ as established so far in [538–541] at the particle level seems very promising.

Given the very large spectrum of final state signatures which have become of interest in the inter-
mediate mass range, this section will be focused on recent progress in the evaluation of backgrounds to
two-photon and multi-lepton signatures, and in the observability of the latter in associated production.
Recent results concerning the two-photon background in the mass range 90 - 140 GeV, together with
the NLO contribution to the signal of associated productionH + jet, are given in Sect. 9.2. A recent
investigation onWH associated production formH ≥ 140 GeV is presented in Sect. 9.3.

9.2 The two-photon channel in the mass range 90 - 140 GeV

In this range, the most promising channel isH → γγ. The branching ratio is however small58 , typically
B(H → γγ) ∼ O(10−3), and initially the background is eight orders of magnitude larger than the
signal. This background is splitted into two components, calledirreducibleandreducible.

9.21 Irreducible background: prompt photon pairs.

This class of background comes from prompt photon pair production, where “prompt” means that the
photons do not come from the decay of high-pT π0 or η, but from hard partonic interactions. A large
amount of this background, which we therefore callirreducible, passes the photon isolation cuts. Further
kinematic cuts have to be used to suppress it. Regarding the efficiency of background rejection, one
may distinguish between the signal processes ofinclusiveproduction, and ofassociatedproduction (and
corresponding backgrounds). The first class yields higher rates than the second one. On the other hand,
kinematical cuts are more efficient in the case of associated production, and the background may be
theoretically better controlled than in the inclusive case. These issues are discussed in the following.

Mechanisms of prompt photon pair production.
Schematically, three mechanisms produce prompt photon pairs with a large invariant mass: the “direct”
mechanism produces both photons directly from the hard subprocess; the “single-fragmentation” mech-
anism, instead, involves precisely one photon resulting from the fragmentation of a hard parton; the
“double-fragmentation” mechanism yields both photons by fragmentation. Topologically, a photon from
fragmentation is most probably accompanied by a jet of hadrons, therefore will be more strongly rejected
by the isolation criterion. From a calculational point of view, this schematic classification emerges from
the QCD factorization procedure described in Sect. 1. (see [237] for more details). Although this classi-
fication is convenient, one has to keep in mind that the splitting between these different contributions is
arbitrary: none of these contributions is separately measurable, only their sum is. Due to the high gluon
density at LHC, “single-fragmentation” dominates the inclusive production of prompt photon pairs. Be-
yond NLO, a new process of the “direct” type appears, the so-called boxgg → γγ contribution. Strictly
speaking, it is a NNLO contribution. However, the large gluon luminosity at LHC magnifies it to a size
comparable with the Born termqq → γγ in the invariant mass range 90 - 140 GeV. Therefore it is usually
included in LHC phenomenological studies [237,544,545,235,546,547,236,548].

Recent improvements
Early calculations [544, 545] of photon-pair production were not suitable to estimate the background
to Higgs boson production. A first improvement [235, 546, 547] implemented these results in a more
flexible way by combining analytical and Monte-Carlo techniques. Following a similar approach, recent
work goes further along two directions.

58The cross section for the production of a SM Higgs boson at the Tevatron in this range is∼ 1pb, not enough to allow a
search in this mode given its small branching ratio. A search for a non SM Higgs Boson in this mode has been carried out by
both CDF and D60 with negative conclusions [542,543].



In [236, 548], multiple soft gluons effects in the “direct” contribution are summed to next-to-
leading logarithmic accuracy in the Collins-Soper framework. This provides a prediction for semi-
inclusive observables such as the transverse momentum (qT ) distribution of photon pairs that extends
over the whole spectrum, thanks to a matching between the resummed part (suited for the lowqT peak)
and a fixed order calculation for the highqT tail. These features are encoded in the computer program
RESBOS[236, 548]. In this calculation, the “single-fragmentation” contribution is evaluated at LO and
“double-fragmentation” is neglected.

Another recent improvement is the computation of the NLO corrections to both fragmentation
contributions (using the set of NLO fragmentation functions of [433]), which provides a consistent NLO
approximation suitable for inclusive observables. This calculation, also implemented in a computer
codeDIPHOX of Monte Carlo type, is described in [237]. No soft gluon summation has so far been
implemented in [237].

Effects of isolation
Actually, the isolation requirements, imposed experimentally to suppress the reducible background,
severely reduce the fragmentation components, too (which, properly speaking, are thus not really ir-
reducible59). The isolation criterion commonly used is schematically the following60. A photon is called
isolated if, inside a cone about the photon, defined in rapidity and azimuthal angle by(η − ηγ)2 +
(φ − φγ)2 ≤ R2, the deposited transverse hadronic energyEhad

T is less than some specified value
ET max. Severe isolation requirements, asET max = 5 GeV inside a cone of radiusR = 0.4, sup-
press the ”single-fragmentation” component by a factor 20 to 50, and kill the “double-fragmentation”
contribution, so that the production ofisolatedphoton pairs is dominated by the “direct” mechanism61.
Isolation implies however that one is not really dealing with inclusive quantities anymore. Although the
factorization property of collinear singularities still holds in this case [443,446], infrared divergences can
appearinsidethe physical spectrum for some distributions calculated at fixed order, e.g. NLO, accuracy,
due to isolation. The appearance and the pattern of these singularities depend strongly on the kinematics
and on the type of isolation criterion used. Moreover, potential infrared instabilities may affect the reli-
ability of the predictions, when a very low value ofET max compared to thepT of the isolated photon,
is used. A better understanding of these problems is required ( see [237] and Sect. 6. for a more detailed
discussion).

Phenomenology
Our understanding of photon pair production is already tested at the Tevatron [553–555]. A compari-
son of the CDF di-photon cross section to NLO and resummed predictions is shown in Fig. 44 (for a
recent comparison with D60 data see, e.g., [237]). Measured inclusive observables, such as the invariant
mass distribution, each photon’spT distribution, the azimuthal angle (φγγ) distribution of pairs, agree
reasonably well with NLO calculations [544,545,235,546,547,237]. However, the measured di-photon
qT distribution is noticeably broader than the NLO prediction, but it is in agreement with the resummed
prediction of [236, 548]. This is expected since theqT distribution is particularly sensitive to soft gluon
effects62 [196].

59This misleading terminology sometimes [549, 550] leads to call irreducible only the “direct” component, and reducible
the π0, η, etc plus the “fragmentation” components. Although it seems intuitive at LO, this alternative classification is ill
defined beyond LO, as the splitting between “fragmentation” components and higher order corrections to the “direct” one is
theoretically ambiguous.

60This isolation criterion for single prompt photon production is discussed in the theoretical literature in Refs. [442,551,552,
443] (e+e− collisions) and in Refs. [229, 439, 440, 230, 446] (hadronic collisions). An alternative criterion has been recently
proposed in [232]. More discussion on the issue of isolation can be found in Sects. 6.

61The situation is essentially the same for a less severe cut asET max = 10 GeV. Note however that such a partonic
calculation ignores the hadronic transverse energy splashed in by underlying events. The value ofET max used in this type of
calculation may then be considered as an effective parameter, smaller than the actual value used experimentally. This issue has
still to be clarified, especially when the experimental value is nearly saturated by underlying events and pile-up effects.

62Infrared sensitive distributions, such as theqT distribution nearqT → 0, and theφγγ distribution nearφγγ → π, can be
reliably estimated only with resummed calculations. Note that, for theφγγ distribution nearφγγ → π, not only the “direct”



Fig. 44: A comparison of the NLO and ResBos predictions for di-photon production at the Tevatron for the di-photon mass, the

di-photon azimuthal angle (denoted here by∆φ) and the di-photon transverse momentum (denoted here byKT ).

Fig. 45: Top: di-photon differential cross sectiondσ/dmγγ vs. mγγ at LHC, with isolation criterionET max = 5 GeV in

R = 0.4, for the scale choiceM = µ = mγγ/2. Bottom: factorization (M ) and renormalization (µ) scale dependences of the

NLO cross sectiondσ/dmγγ vs.mγγ , normalized bydσ/dmγγ |M=µ=mγγ /2.

component diverges order by order and requires a soft gluon summation, but also both fragmentation contributions. This much
more complicated case has not been treated yet.



The results from Run 1 at the Tevatron were obtained with less than 100pb−1 of data. During
Run 2, a data sample approximately 20 times as large will be available, allowing both the di-photon
signal and its background to be studied in detail. In particular, the di-photonqT distribution will be
measured to much greater precision, allowing a study of theqT resummation techniques for agg initial
state, necessary for both Higgs and di-photon production at the LHC [196].

On the theoretical side, scale ambiguities as well as the uncertainties from unknown beyond NLO
corrections plague the predictions. A study of scale uncertainties has been performed [237] for inclusive
observables such as the invariant mass distribution of photon pairs at LHC in the range 90 - 140 GeV,
(Fig. 45). In the isolated case withET max = 5 GeV inside a cone withR = 0.4, the scale uncertain-
ties are dominated by the dependences on the factorization and renormalization scalesM andµ; while
the fragmentation scale (Mf ) dependence is negligible due to the strong suppression of the fragmen-
tation contribution. The scale uncertainties are rather small (less than 5%) when the factorization and
renormalization scales are set to be equal and are varied betweenmγγ/2 and2mγγ . On the other hand,
anti-correlated variations ofM andµ in the same range lead to still rather large (up to 20%) uncertainties.
In summary, the higher order corrections in prompt photon pair production arenot fully under control yet.
The consistent calculation at full NNLO accuracy would involve, in particular, two-loopqq → γγ am-
plitudes and the NNLO evolution of the parton distributions. Despite recent progress [288,290,289,70]
in this direction63, such a NNLO description is not yet available. Furthermore, the box contribution
gg → γγ is the lowest order term of a new subprocess. Reducing its scale dependence would involve the
calculation of N3LO corrections64. Meanwhile, preliminary numerical comparisons have been initiated
between these new NLO (and resummed) partonic calculations, and Monte Carlo event generators [196].
They have to be pushed further.

9.22 Reducible background

Before any cut is applied, most of theH → γγ background comes from large-pT π0, η or ω, decaying
into photons. It can be severely reduced by imposing combined geometric and calorimetric isolation
criteria. A small fraction of this huge background, consisting in large-pT isolatedπ0 or η may still pass
such cuts. Earlier estimations of this background rely on Monte Carlo event generators, in which the
tails of fragmentation distributions near the end point are rather poorly known. An improvement can
be provided by using isolatedπ0 pairs andγπ0 Tevatron data, compared with Monte-Carlo type NLO
calculations, such as [556], to improve NLO fragmentation functions at largez.

Like continuum di-photon production, its background fromγπ0 andπ0π0 production has been ex-
tensively studied at the Tevatron [553–555]. This study can serve as a useful benchmark for the reducible
background prediction, as well as for very useful tests of QCD. The inclusiveπ0π0 andγπ0 cross sec-
tions are orders of magnitude larger than theγγ cross sections, making an extraction of the latter difficult,
unless additional selection criteria are applied. As in essentially all collider photon measurements, an
isolation cut needs to be applied to each of the di-photon candidates65. In the case of CDF (in Run 1B),
the isolation cut requires that any additional energy in a cone of radius R = 0.4 (R =

√
∆η2 + ∆φ2)

around the photon direction be less than 1 GeV. This requirement is basically saturated by the energy
deposited by the di-photon underlying event and any additional minimum bias interactions that may have
occurred during the same crossing. Such a strict isolation requirement rejects the majority of theγπ0

andπ0π0 backgrounds while retaining the true di-photon events with 80% efficiency66.

The isolation cut suppresses the di-photon backgrounds to the point where they are comparable

63For more details, see also Sect. 4.
64Although incomplete, the N3LO corrections to solegg initiated subprocesses, especially the first correction to the box,

might already reduce the scale uncertainties. A complete N3LO calculation goes beyond the scope of available techniques.
65Other cuts are applied as well but the main impact on the background is from the isolation cut.
66For the sake of compactness, onlyπ0 backgrounds are listed, but other backgrounds, for example, fromη andω production,

are also considered.



to the di-photon signal. One still needs a technique that allows for the separation of the di-photon
signal from the background, in a Monte Carlo independent manner. CDF uses two such techniques:
a measurement of the electro-magnetic shower width using a wire chamber placed at the EM shower
maximum position, and a measurement of the fraction of the photon candidates that have converted
in the magnet coil. The two photons from theπ0 can not be separately reconstructed given the tower
granularity, but they do have a different shower width distribution and a different conversion probability
than single photons. These differences allow the extraction of the di-photon signal, not on an event-by-
event basis, but on a statistical basis, at each kinematic point being considered. The latter consideration
is important since the background fraction does vary with the kinematics of the events being considered.

With the 1 GeV isolation cut for each photon, the di-photon signal fraction varies from about 30%
at lowET to essentially 100% at highET (50 GeV). The dominant source of background was determined
to be fromπ0π0 production.67 Note that if the leakage of the electro-magnetic shower energy into the
isolation cone is correctly accounted for, there is no reason to have a fractional isolation scale (some fixed
fraction of the photon energy) rather than a fixed amount of energy allowed in the isolation cone. A fixed
energy isolation cut provides a discrimination against jet backgrounds that increases in effectiveness as
the energy of the photon candidate increases. At higher transverse energies, the isolation cut requires the
jet to fragment into aπ0 at larger values of the fragmentation variablez, a process greatly suppressed
by the steeply falling fragmentation function. The largez ( z > 0.95) region is poorly known since
inclusive measurements of jet fragmentation [311] have few statistics in this region. This statement is
even more true for the case of gluon jets, which form the bulk of the background source at the LHC. The
di-photon trigger at the Tevatron selects those rare jets that fragment into isolatedπ0’s. Thus, it would
be useful to try to normalize the predictions of the event generators such as PYTHIA [115], which are
used for background studies at the LHC to the background data at the Tevatron. Such a comparison is
now in progress [557].

9.23 Production in association with jets

In order to improve the signal/background ratio, it has been suggested [549,550] to study the associated
production ofH(→ γγ)+ jet. For this process, both signalS and backgroundB are reduced but still
remain at the level of∼ 100 signal events at low LHC luminosity. The LO estimate has shown that
the S/B ratio is improved critically with the same level of significanceS/

√
B. Furthermore, higher

order corrections to the background have been shown recently [558] to be under better control than in
the inclusive case.

Background: associated vs. inclusive
Indeed, the situations in the inclusive and associated channels are quite different. In the inclusive case,
the main reason why the magnitude of the NNLO box contribution is comparable to the LO cross section
is that the latter is initiated byqq, whereas the former involvesgg. Thegg luminosity, much larger than
theqq one, compensates numerically the extraα2

s factor of the box. This is not the case in the channel
γγ + jet, since the LO cross section is dominated instead by aqg initiated subprocess. Theqg luminosity
is sizably larger than theqq one, which guarantees that the corresponding NNLO contribution remains
small (less than 20% forpT > 30 GeV) compared to the LO result [558]. Thus, expecting that the
subprocessgg → γγg gives the main NNLO correction, a quantitative description of the background
with an accuracy better than 20% could be achieved already at NLO in theγγ+ jet channel for a high-
pT jet. All the helicity amplitudes needed for the implementation of the (“direct” contribution to the)
background to NLO accuracy are now available [269,559,560].

Signal vs. background
The 3-body kinematics of the process allows more refined cuts to improve theS/B ratio up to1/2 −
1/3 [549, 550] (to be compared withS/B ≥ 1/7 for the inclusive channel). Due to helicity and total

67A study of the di-photon backgrounds at ATLAS found theγπ0 andπ0π0 backgrounds to be of roughly equal size in the
low mass Higgs signal region, with each of the backgrounds being of the order of 20% of the di-photon continuum [1].



angular momentum conservation thes-wave state does not contribute to the dominant signal subprocess
gg → Hg. On the contrary, all angular momentum states contribute to the subprocessesgq → γγq
and qq → γγg. Therefore, the signal has a more suppressed threshold behaviour compared to the
background. TheS/B ratio can thus be improved by increasing the partonic c.m.s. energy

√
ŝ far

beyond threshold. Indeed, a cut
√
ŝ > 300 GeV has been found to give the best S/B ratio for the LHC.

The effect can not be fully explained by the threshold behavior only, since that would result in a uniform
suppression factor. It was shown in [549, 550] (see Figs. 5 and 6 there) that the dependences of the
background and the signal on the c.m.s. angular variables are quite different, therefore, the strongŝ
cut affects them with different suppression factors (see [549, 550] for more details). This effect can be
exploited to enhance the significanceS/

√
B at the same level asS/B. If the cutcos(ϑ∗)(jγ) < −0.87

on the jet-photon angle in the partonic c.m.s. is applied for
√
ŝ < 300 GeV and combined with the cut√

ŝ > 300 GeV, the change onS/B is rather small, while the significance is improved by a factor∼
1.3. The same effect can be observed with the cut on the jet angleϑ∗(j) in the partonic c.m.s. (cf. the
Fig. 5 mentioned above), but one should notice that the two variables,ϑ∗(jγ) andϑ∗(j), are correlated.
Therefore, it is desirable to perform a multi-variable optimization of the event selection. Notice that the
present discussion is based on a LO analysis, and concerns only what was defined above as the “direct”
component of the irreducible background. One now has to understand how this works at NLO.

Other, reducible, sources of background are potentially dangerous. The above-defined “single-
fragmentation” component to the so-called irreducible background, and the reducible background com-
ing from misidentification of jet events were treated on a similar footing in the LO analysis of [549,550]
as ade factoreducible background (see footnote 9.21). In [549, 550], a rough analysis found that this
reducible background is less than 20% of the irreducible one after cuts are imposed. The misidentifica-
tion rate is given mainly by the subprocessesgq → γgq, gg → γqq andqq′ → γq(g)q′(g), when the
final state parton produces an energetic isolated photon but other products of the hadronization escape
the detection as a jet. There, aγ(π0)/jet rejection factor equal to 2500 for a jet misidentified as a photon
and 5000 for a well separatedγ(π0) production by a jet were used. No additionalπ0 rejection algorithms
were applied. Furthermore, this reducible background is expected to be suppressed even more strongly
than the irreducible background of “direct” type when a cut on

√
ŝ is applied.

In summary, the associated channelH(→ γγ)+ jet with jet transverse energyET > 30 GeV
and rapidity|η| < 4.5 (thus involving forward hadronic calorimeters) opens a promising possibility for
discovering the Higgs boson with a mass of 100-140 GeV at LHC even at low luminosity. However,
to perform a quantitative analysis, the NLO calculations of the background have to be completed and
included in a more realistic final state analysis.

Signal at NLO
The exact calculation of the NLO corrections to the signal is very complex, since the gluons interact
with the Higgs boson via virtual quark loops. Fortunately, the effective field theory approach [561, 562]
applicable in the large top mass limit with effective gluon-gluon-Higgs boson coupling gives an accurate
approximation with an error less than 5%, providedmH ≤ 2mt. Recently, in this approximation and us-
ing the helicity method, the transition amplitudes relevant to the NLO corrections have been analytically
calculated for all contributing subprocesses (loop corrections [563] and bremsstrahlung [564,565]). The
subtraction method of [161,227] has been used to cancel analytically the soft and collinear singularities
and to implement the amplitudes into a numerical program of Monte-Carlo type which allows to calculate
any infrared-safe observable for the production of a Higgs boson with one jet at NLO accuracy [197].

One of the main results of the calculation is that the NLO corrections are large and increase
considerably the cross section, with aK factor∼ 1.5-1.6 (K = σNLO/σLO) and almost constant for
a large kinematical range ofpT and rapidity of the Higgs boson. Furthermore, the NLO result is less
dependent on variations of the factorization and renormalization scales. Fig. 46(a) displays thepT

distribution at both LO and NLO for a Higgs boson withmH = 120 GeV. The curves correspond to
three different renormalization/factorization scale choicesQ = µ (m2

H + p2
T )1/2, with µ = 0.5, 1, 2, and



show that the scale dependence is reduced at NLO. The same features can be observed in more detail
in Fig. 46(b), where the LO and NLO cross sections integrated forpT larger than 30 and 70 GeV are
shown as a function of the renormalization/factorization scale. Both the LO and NLO cross sections
increase monotonically with decreasingµ, down to the limiting value where perturbative QCD can still
be applied, indicating that the stability of the NLO result is not completely satisfactory. However, in the
usual range of variation ofµ from 0.5 to 2, the LO scale uncertainty amounts to± 35%, whereas at NLO
it is reduced to± 20%.

Fig. 46: Scale dependence of LO and NLO distributions for Higgs boson production. (a)pT distributions at different scales and

(b) the scale dependence of the integrated cross sections forpT > 30 and70 GeV. The MRST parton distributions are used.

9.3 Multi-lepton channels in the mass rangemH ≥ 140 GeV.

Above 140 GeV, the most promising channel isH → ZZ(∗) → 4 leptons. The corresponding irreducible
background comes mainly from the non resonantZZ(∗) production. Severe isolation cuts are needed to
suppress reduciblett andZbb backgrounds for Higgs boson masses below theZZ threshold. The topic of
weak boson pair production is presented in a dedicated Section of the Electroweak Physics Chapter of this
Report. In particular, the latter gathers the effects of NLO contributions to distributions of invariant mass,
or transverse momentum of weak boson pairs, and comparisons between Monte Carlo event generators
and recent NLO partonic calculations.

TheH → WW → 2l+ 6ET channels was recently found [566, 567] to be very promising in
this mass range around 170 GeV, where the significance of theH → ZZ∗ → 4l channel is relatively
small due to the suppression ofZZ∗ branching ratio as theWW mode opens up. In this mass range, the
leptonic branching ration of theWW mode is approximately 100 times larger than theZZ∗ → 4l mode.
Although the Higgs boson mass peak cannot be directly reconstructed in this case, the transverse mass
distribution can be used to sign the Higgs boson and extract information on its mass.

The multileptonic channelsH → WW (∗) andH → ZZ(∗) are also of great interest for the
associatedWH production. Although the cross section for the associated production is a factor 50 to
100 lower than for the inclusive production, theS/B ratio is substantially improved. They are also
interesting to determine the Higgs boson couplings, since only the couplings to gauge bosons appear in
the production and decay chain. The observability ofWH with H →WW ∗ → 2l 2ν has been recently
proposed in [568] and experimentally studied in [1]. The observability of the associated productionWH,
H → ZZ∗ → 4l has been recently considered in [569] and is sketched below. Due to the small number
of events expected forZH andttH production, only theWH process has been investigated.



no cut isolation cut Z mass cut all cuts

WH,MH = 150GeV 3.56 3.42 2.89 2.69
tt background 141. 3.10 26.1 0.098
Zbb background 17.3 3.46 13.8 3.46

WH,MH = 200GeV 5.92 5.55 3.95 3.76
WH,MH = 300GeV 1.45 1.30 0.91 0.86
tt background 141. 3.10 0.098 0.098
Zbb background 17.3 3.46 1.73 0

Table 6: Number of events in the 5 leptons channel forL = 105pb−1, pT cut = 10 GeV. No mass window on 4 leptons is

applied.

9.31 AssociatedWH production, five lepton channel

Selection criteria
All simulations of Higgs boson and background events have been made with the PYTHIA 5.702 and
JETSET 7.408 Monte Carlo programs implemented in the CMSIM/CMANA package [570]. The pro-
cesses implemented in PYTHIA were simulated with parton showers, with the exception of internal
bremsstrahlung, generated by PHOTOS [571]. NoK factors were used, so the final numbers of signal
events may be underestimated by about a factor 1.3 [572]. The experimental resolution of CMS for
lepton reconstruction was simulated by a Gaussian smearing:

∆pT/pT = 4.5%
√
pT /1000 for muons,

(∆E/E)2 = (4%/
√
E)2 + (0.230/E)2 + (0.55%)2 for electrons,

wherepT andE are expressed in GeV. Dedicated programs calculate the dependence onη andpT of the
geometrical and kinematical acceptances, the invariant mass cuts to select theZ orZ∗, and the rejection
of non isolated leptons in jets with cuts selecting leptons without charged tracks abovepT > 2 GeV in a
coneR < 0.1 (R2 = ∆η2 + ∆φ2). A few events were also fully generated and visualized in CMS by
CMSIM. The reactionsW±H → µ±νµZZ

(∗) → 5µ±νµ andW±H → e±νeZZ
(∗) → 5e±νe have been

studied in details. Although the branching ratios are identical, some differences between these channels
are expected due to differences in acceptances and trigger efficiencies. The generated leptons are sorted
in decreasingpT order, from 1 to 5, then the following cuts are applied.
For muon events :

• | η |< 2.1 for µ1 andµ2 | η |< 2.5 for µ3 to µ5

• pT > 20 GeV forµ1 pT > 10 GeV forµ2 pT > 5 or 10 GeV forµ3, µ4 andµ5

For electron events :

• | η |< 2.5 for e1 to e5
• pT > 20 GeV for e1 pT > 15 GeV for e2 pT > 7, 10 or 15 GeV fore3, e4 ande5

Leptons 1 and 2 are the ones used to trigger events, leptons 3 to 5pT thresholds can be set at lower values.
Almost no difference is observed when the trigger threshold is set at a higher value (30 and 20 GeV), as
expected since leptons 1 and 2 produced byW andZ decays are very energetic. The other possible final
states:2e + 3µ, 2µ + 3e, 4e + 1µ and4µ + 1e are also good candidates. Since only small numerical
differences were found in the results between the pure electronic and muonic final states, the 4 mixed
ones were not simulated and the total number of expected events was multiplied by a factor 8. As the
expected cross section is very low, the present search would be meaningful at high luminosity only. The
pile-up at high luminosity has a minor impact for the detection of leptons. Nevertheless it has to be taken
into account when using the isolation cuts.



H → ZZ∗

This channel concerns the mass rangemH < 2mZ . The irreducible background, due to the non resonant
WZZ∗ production, is not included in PYTHIA. In order to get a rough order of magnitude, theS/B ratio
was then assumed to be of the same order as the one of direct production ofH → ZZ∗, compared to
non resonantZZ∗. This ratio has been estimated in [573] to be lower than 10 % formH = 150 GeV. The
reducible background comes from thett andZbb channels with three leptons coming from semi-leptonic
decays ofB andD mesons. The initial cross sections of these processes are very high and, without cut,
this background is much higher than the irreducible one.

The selection requests one pair of opposite sign muons or electrons with a mass equal tomZ ± 5
GeV, and one pair of opposite sign muons or electrons with a mass belowmZ . This removes only 19 %
of the signal events which fall in the tails of the mass distributions. An additional effect of widening the
Z mass would come from thee± bremsstrahlung in the tracker material [574] and contribute to decrease
the acceptance. The lepton pair mass spectra of thett andZbb backgrounds exhibit a peak at low mass.
A cut atmZ∗ > 10 GeV would further reduce these backgrounds by 20 % without affecting the signal.
No detector reconstruction inefficiency was considered at this level. The isolation cut is used to reject
leptons fromb or c quark decay, in the reducible background channels. The events exhibiting tracks
with pT > 2 GeV contained in a coneR < 0.1 around any of the five leptons are rejected (Fig. 47).
Actually a better rejection is expected in the CMS detector when using the information from theb vertex
position [575].

Another reducible background was considered: the non resonant production ofZZ∗ where one of
theZ(∗) decays into two leptons and the other decays intobb, theb quarks decaying semi-leptonically.
The number of events before acceptance, mass and isolation cut is about 70 % of the signal, but as we
expect the leptons from theb’s to be very soft and non isolated, that this background can be considered
as negligible.

H → ZZ
This channel is similar to the previous one except that we request two pairs of opposite sign muons or
electrons with masses equal tomZ ± 5 GeV. This cut removes 32 to 34 % of the signal events. It is now
much more efficient against thett background than against theZbb, because theZbb channel involves
a realZ. The calculations were made for Higgs bosons withmH = 200 and 300 GeV (Fig. 47). The
acceptances of the signal vary only slightly as a function ofpT cut and other selection cuts. The four
leptons mass spectrum for the background is a wide distribution centered around 150 GeV. A cut on this
spectrum can be used to obtain an additional rejection factor of the order of 10 to 50, after the Higgs
boson mass has been previously measured in a more sensitive channel, like the inclusiveH → 4l [575].

Results
The number of expected 5 muons or 5 electrons events for one year of running at high luminosity
100fb−1 is low: 0.34 for a Higgs boson mass of 150 GeV, 0.47 for 200 GeV and 0.11 for 300 GeV/c.
Considering all the possible 5 leptons channels, these numbers must be multiplied by a factor 8. They
are summarized in table 1, together with the corresponding backgrounds (not including the cut on the
four leptons mass spectrum described above). TheS/B ratio is better formH = 200 GeV and is un-
acceptable formH = 150 GeV. Thus this channel can be considered almost hopeless for the discovery
of the Higgs boson below theZZ threshold. On the other hand, if the Higgs boson is in the mass range
200 to 300 GeV, the detection of these rare 5 lepton events above a low background would be a valuable
information for the study of the Higgs boson couplings.

However, before drawing any definitive conclusion, several issues should be improved concerning
the backgrounds. Firstly the irreducibleWZZ∗ background has to be calculated, e.g. using an autom-
atized calculation like [138] and included in the analysis. Moreover the reducibleZbb process should
be revisited with another Monte Carlo generator, as the implementation in PYTHIA 5.7 for theZbb pro-
cess is known to suffer from an instability in the phase space generation (this implementation has been
removed from the version PYTHIA 6.1 for this reason). Finally, another source of 5 leptons events, not
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Fig. 47: Number of events atL = 105pb−1 for WH → 5µ channel and background for MH = 150 GeV (top), 200 and

300 GeV (bottom) after kinematical cuts (left), isolation andZZ mass cuts combined (right).PT cut refers to the softest of the

five muons. Dotted line is an upper limit (no Monte Carlo event survive the cuts).

evaluated with enough statistics so far is the semi-leptonic decay ofbb or cc generated by initial or final
gluon radiation.

An extension of this study would also be the investigation of the associated production of a higher
mass Higgs boson using other decay modes with larger branching ratios likeZ → jet jet.
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