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Abstract

We discuss issues of QCD at the LHC including parton distributions, Monte
Carlo event generators, the available next-to-leading order calculations, re-
summation, photon production, smalphysics, double parton scattering, and
backgrounds to Higgs production.

1. INTRODUCTION

It is well known that precision QCD calculations and their experimental tests at a proton—proton col-
lider are inherently difficult. “Unfortunately”, essentially all physics aspects of the LHC, from particle
searches beyond the Standard Model (SM) to electroweak precision measurements and studies of heavy
guarks are connected to the interactions of quarks and gluons at large transferred momentum. An optimal
exploitation of the LHC is thus unimaginable without the solid understanding of many aspects of QCD
and their implementation in accurate Monte Carlo programs.

This review on QCD aspects relevant for the LHC gives an overview of today’s knowledge, of
ongoing theoretical efforts and of some experimental feasibility studies for the LHC. More aspects related
to the experimental feasibility and an overview of possible measurements, classified according to final
state properties, can be found in Chapter 15 of Ref. [1]. It was impossible, within the time-scale of
this Workshop, to provide accurate and quantitative answers to all the needs for LHC measurements.
Moreover, owing to the foreseen theoretical and experimental progress, detailed quantitative studies of
QCD will have necessarily to be updated just before the start of the LHC experimental program. The aim
of this review is to update Ref. [2] and to provide reference work for the activities required in preparation
of the LHC program in the coming years.

Especially relevant for essentially all possible measurements at the LHC and their theoretical in-
terpretation is the knowledge of the parton (quark, anti-quark and gluon) distribution functions (pdf’s),
discussed in Sect. 2. Today’s knowledge about quark and anti-quark distribution functions comes from
lepton-hadron deep-inelastic scattering (DIS) experiments and from Drell-Yan (DY) lepton-pair pro-
duction in hadron collisions. Most information about the gluon distribution function is extracted from
hadron—hadron interactions with photons in the final state. The theoretical interpretation of a large num-
ber of experiments has resulted in various sets of pdf’s which are the basis for cross section predictions
at the LHC. Although these pdf’s are widely used for LHC simulations, their uncertainties are difficult
to estimate and various quantitative methods are being developed now (see3eet3.4).

The accuracy of this traditional approach to describe proton—proton interactions is limited by the
possible knowledge of the proton—proton luminosity at the LHC. Alternatively, much more precise in-
formation might eventually be obtained from an approach which considers the LHC directly as a parton—
parton collider at large transferred momentum. Following this approach, the experimentally cleanest
and theoretically best understood reactions would be used to normalize directly the LHC parton—parton



luminosities to estimate various other reactions. Today’s feasibility studies indicate that this approach
might eventually lead to cross section accuracies, due to experimental uncertainties, ofabbut

Such accuracies require that in order to profit, the corresponding theoretical uncertainties have to be con-
trolled at a similar level using perturbative calculations and the corresponding Monte Carlo simulations.
As examples, the one-jet inclusive cross section and the rapidity dependeficeantl Z production

are known at next-to-leading order, implying a theoretical accuracy of about 10 %. To improve further,
higher order corrections have to be calculated.

Section 3 addresses the implementation of QCD calculations in Monte Carlo programs, which are
an essential tool in the preparation of physics data analyses. Monte Carlo programs are composed of
several building blocks, related to various stages in the interaction: the hard scattering, the production
of additional parton radiation and the hadronization. Progress is being made in the improvement and
extension of matrix element generators and in the prediction for the transverse momentum distribution in
boson production. Besides the issues of parton distributions and hadronization, another non-perturbative
piece in a Monte Carlo generator is the treatment of the minimum bias and underlying events. One of
the important issue discussed in the section on Monte Carlo generators is the consistent matching of the
various building blocks. More detailed studies on Monte Carlo generators for the LHC will be performed
in a foreseen topical workshop.

The status of higher order calculations and prospects for further improvements are presented in
Sect. 4. As mentioned earlier, one of the essential ingredients for improving the accuracy of theoretical
predictions is the availability of higher order corrections. For almost all processes of interest, containing
a (partially) hadronic final state, the next-to-leading order (NLO) corrections have been computed and
allow to make reliable estimates of production cross sections. However, to obtain an accurate estimate
of the uncertainty, the calculation of the next-to-next-to-leading order (NNLO) corrections is needed.
These calculations are extremely challenging and once performed, they will have to be matched with a
corresponding increase in accuracy in the evolution of the pdf’s.

Section 5 discusses the summations of logarithmically enhanced contributions in perturbation the-
ory. Examples of such contributions occur in the inclusive production of a final-state system which
carries a large fraction of the available center-of-mass energy (“threshold resummation”) or in case of
the production of a system with high mass at small transverse momentgmegummation”). In case of
threshold resummations, the theoretical calculations for most processes of interest have been performed
at next-to-leading logarithmic accuracy. Their importance is two-fold: firstly, the cross sections at LHC
might be directly affected; secondly, the extraction of pdf’s from other reactions might be influenced and
thus the cross sections at LHC are madified indirectly. For transverse momentum resummations, two
analytical methods are discussed.

The production of prompt photons (as discussed in Sect. 6) can be used to put constraints on the
gluon density in the proton and possibly to obtain measurements of the strong coupling constant at LHC.
The definition of a photon usually involves some isolation criteria (against hadrons produced close in
phase space). This requirement is theoretically desirable, as it reduces the dependence of observables on
the fragmentation contribution to photon production. At the same time, it is useful from the experimental
point of view as the background due to jets faking a photon signature can be further reduced. A new
scheme for isolation is able to eliminate the fragmentation contribution.

In Sect. 7 the issue of QCD dynamics in the region of smad discussed. For semi-hard strong
interactions, which are characterized by two large, different scales, the cross sections contain large loga-
rithms. The resummation of these at leading logarithmic (LL) accuracy can be performed by the BFKL
equation. Available experimental data are however not described by the LL BFKL, indicating the present
of large sub-leading contributions and the need to include next-to-leading corrections. Studies of QCD
dynamics in this regime can be made not only by using inclusive observables, but also through the study
of final state properties. These include the production of di-jets at large rapidity separation (studying the
azimuthal decorrelation between the two jets) or the production of mini-jets (studying their multiplicity).



An important topic at the LHC is multiple (especially double) parton scattering (described in
Sect. 8), i.e. the simultaneous occurrence of two independent hard scattering in the same interaction.
Extrapolations to LHC energies, based on measurements at the Tevatron show the importance of taking
this process into account when small transverse momenta are involved. Manifestations of double parton
scattering are expected in the production of four jet final states and in the production of a lepton in
association with twa-quarks (where the latter is used as a final state for Higgs searches).

The last section (Sect. 9) addresses the issue of the present knowledge of background for Higgs
searches, for final states containing two photons or multi-leptons. For the case of di-photon final states
(used for Higgs searches wifltt < mpy < 140 GeV), studies of the irreducible background are per-
formed by calculating the (single and double) fragmentation contributions to NLO accuracy and by
studying the effects of soft gluon emission. The production of rare five lepton final states could provide
valuable information on the Higgs couplings far; > 200 GeV, awaiting further studies on improving
the understanding of the backgrounds.

During the workshop, no studies of diffractive scattering at the LHC have been performed. This
topic is challenging both from the theoretical and the experimental point of view. The study of diffractive
processes (with a typical signature of a leading proton and/or a large rapidity gap) should lead to an im-
proved understanding of the transition between soft and hard process and of the non-perturbative aspects
of QCD. From the experimental point of view, the detection of leading protons in the LHC environment
is challenging and requires adding additional detectors to ATLAS and CMS. If hard diffractive scattering
(leading proton(s) together with e.g. jets as signature for a hard scattering) is to be studied with decent
statistical accuracy at larger, most of the luminosity delivered under normal running conditions has
to be utilized. A few more details can be found in Chapter 15 of Ref. [1], some ideas for detectors in
Ref. [3]. Much more work remains to be done, including a detailed assessment of the capabilities of the
additional detectors.

1.1 Overview of QCD tools

All of the processes to be investigated at the LHC involve QCD to some extent. It cannot be otherwise,
since the colliding quarks and gluons carry the QCD color charge. One can use perturbation theory to
describe the cross section for an inclusive hard-scattering process,

hi(p1) + ha(p2) — H(Q,{...}) + X . 1)

Here the colliding hadrong; and h, have momenta, andp,, H denotes the triggered hard probe
(vector bosons, jets, heavy quarks, Higgs bosons, SUSY particles and so o) staehds for any
unobserved particles produced by the collision. The typical sQabé the scattering process is set by

the invariant mass or the transverse momentum of the hard probe and the nftatjostands for any

other measured kinematic variable of the process. For example, the hard process may be the production
of a Z boson. Ther) = M, and we can tak¢...} = y, wherey is the rapidity of theZ boson. One

can also measure the transverse momenfunof the theZ boson. Then the simple analysis described
below applies ifQr ~ M. In the case$)r < Mz and My < @Qp, there are two hard scales in the
process and a more complicated analysis is needed. Thé&)gase M is of particular importance and

is discussed in Sects. 3.3, 3.4 and 5.3.

The cross section for the process (1) is computed by using the factorization formula [4, 5]

o(p1,p2;Q,{...}) = Z/dxl dxa fopny (21, Q%) forny (22, Q%) Gap(1p1, w2p2; Q. {. . }1 as(Q))

a,b
+ O((Agen/Q)) - )

Here the indices:, b denote parton flavorsg, u,u,d, d,...}. The factorization formula (2) involves
the convolution of the partonic cross sectiéf, and the parton distribution functions, /;, (z, Q?) of



the colliding hadrons. The ter® ((Agcp/Q)?) on the right-hand side of Eq. (2) generically denotes
non-perturbative contributions (hadronization effects, multiparton interactions, contributions of the soft
underlying event and so on).

Evidently, the pdf's are of great importance to making predictions for the LHC. These functions
are determined from experiments. Some of the issues relating to this determination are discussed in
Sect. 2. In particular, there are discussions of the question of error analysis in the determination of the
pdf’s and there is a discussion of the prospects for determining the pdf’s from LHC experiments.

The partonic cross sectiah,, is computable as a power series expansion in the QCD coupling

as(Q):

Gan(pr,p25 Q. {- - Fias(@) = (@) {657 (1,02 Q. (- )

+as(@Q) 69" (p1,p2: Q. {..})
+03(@) 55 M s QLD+ ) 3)

The lowest (or leading) order (LO) terai~O) gives only a rough estimate of the cross section. Thus
one needs the next-to-leading order (NLO) term, which is available for most cases of interest. A list of
the available calculations is given in Sect. 4.1. Cross sections at NNLO are not available at present, but
the prospects are discussed in Sect. 4.2.

The simple formula (2) applies when the cross section being measured is “infrared safe.” This
means that the cross section does not change if one high energy strongly interacting light particle in
the final state divides into two particles moving in the same direction or if one such particle emits a
light particle carrying very small momentum. Thus in order to have a simple theoretical formula one
does not typically measure the cross section to find a singleghigbion, say, but rather one measures
the cross section to have a collimated jet of particles with a given total transverse momentum
instead, a single higps pion (or, more generally, a highr hadronH) is measured, the factorization
formula has to include an additional convolution with the corresponding parton fragmentation function
dosr (2, Q%). An example of a case where one needs a more complicated treatment is the production of
high-pr photons. This case is discussed in Sect. 6.

As an example of a NLO calculation, we display in Fig. 1 the predicted cross sdetjait' dy at
the LHC for the inclusive production of a jet with transverse endtgyand rapidityy averaged over the
rapidity interval—1 < y < 1. The calculation uses the program in Ref. [6] and the pdf set CTEQ5M [7].
As mentioned above, the “jets” must be defined with an infrared safe algorithm. Here we use the
algorithm [8, 9] with a joining paramete® = 1. Thek algorithm has better theoretical properties than
the cone algorithm that has often been used in hadron collider experiments.

In EQ. (2) there are integrations over the parton momentum fractigrad x». The values of
x1 andzq that dominate the integral are controlled by the kinematics of the hard-scattering process. In
the case of the production of a heavy particle of m&ésand rapidityy, the dominant values of the
momentum fractions are; » ~ (Me*Y)/./s, wheres = (p; + p2)? is the square of the centre-of-mass
energy of the collision. Thus, varying/ andy at fixed/s, we are sensitive to partons with different
momentum fractions. Increasings the pdf’s are probed in a kinematic range that extends towards larger
values of@) and smaller values af; ». This is illustrated in Fig. 2. At the LHCs;, > can be quite small.
Thus smallx effects that go beyond the simple formula (2) could be important. These are discussed in
Sect. 7.

In Fig. 3 we plot NLO cross sections for a selection of hard processes vgksuBhe curves for
the lower values of/s are forpp collisions, as at the Tevatron, while the curves for the higher values
of /s are forpp collisions, as at the LHC. An approximation (based on an extrapolation of a standard
Regge parametrization) to the total cross section is also displayed. We see that the cross sections for
production of objects with a fixed mass or jets with a fixed transverse ergrgise with \/s. This is
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Fig. 1: Jet cross section at the LHC, averaged over the rapidity intefat y < 1. The cross section is calculated at NLO
using CTEQ5M partons with the renormalization and factorization scales get te 1 = Er/2. Representative values at
Er =0.5,1,2,3and 4 TeV arg.2 x 10°,8.3 x 10',4.0 x 107", 5.1 x 107,5.9 x 107°) fb/GeV with about 3% statistical
errors.

because the important » values decrease, as discussed above, and there are more partons atrsmaller
On the other hand, cross sections for jets with transverse momentum that is a fixed fragfieriadif
with /s. This is (mostly) because the partonic cross sectiofadl with E like E;Q.

The perturbative evaluation of the factorization formula (2) is based on performing power series
expansions in the QCD couplings (). The dependence afs on the scal&) is logarithmic and it is
given by the renormalization group equation [4]

das(Q)

Q? a2 Blas(Q)) = —bo a3 (Q) — b1 a3 (Q) + - @)
where the first two perturbative coefficients are
33 — 2Ny 153 — 19N
bg = ———~ i .
’ 127 n 2472 ’ 5)

and Ny is the number of flavours of light quarks (quarks whose mass is much smaller than th@)scale
The third and fourth coefficients, andbs of the 5-function are also known [11,12]. If we include only
the LO term, Eq. (4) has the exact analytical solution

1
~ boIn(Q*/A3cp)

where the integration constantcp fixes the absolute size of the QCD coupling. From Eq. (6) we can
see that a change of the scg)dy an arbitrary factor of order unity (sa§ — @/2) induces a variation

in ag that is of the order obg. This variation in uncontrollable because it is beyond the accuracy at
which Eg. (6) is valid. Therefore, in LO of perturbation theory the sizexgfis not unambiguously
defined.

The QCD couplingxs (@) can be precisely defined only starting from the NLO in perturbation
theory. To this order, the renormalization group equation (4) has no exact analytical solution. Different
approximate solutions can differ by higher-order corrections and some (arbitrary) choice has to be made.
Different choices can eventually be related to the definition of different renormalization schemes. The

as(Q) (6)
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Fig. 2: Values ofr and@Q? probed in the production of an object of madgsand rapidityy at the LHC,,/s = 14 TeV.

most popular choice [13] is to use thEs-scheme to define renormalization and then to use the following
approximate solution of the two loop evolution equation to defipe p:

| b in [In(Q?/A2)] <1n2 [1n<Q2/A§,|—S>]>

« = 1-—
=@y || QALY QA2 )

(7)

Here the definition o\ gcp (Agep = Agg) is contained in the fact that there is no term proportional

to 1/1n2(Q2/A2QCD). In this expression there ar€; light quarks. Depending on the value @f one

may want to use different values for the number of quarks that are considered light. Then one must match
between different renormalization schemes, and correspondingly change the VAIM%GB discussed

in Ref. [13]. The constaniys is the one fundamental constant of QCD that must be determined from
experiments. Equivalently, experiments can be used to determine the valdeabfa fixed reference
scaleQ = pg. It has become standard to chogge = M. The most recent determinations @f

lead [13] to the world averages(Mz) = 0.119 £ 0.002. In present applications to hadron collisions,

the value ofag is often varied in the wider ranges(Mz) = 0.113 — 0.123 to conservatively estimate
theoretical uncertainties.

The parton distribution functiong, /;, (=, Q?) at any fixed scal€) are not computable in pertur-
bation theory. However, their scale dependence is perturbatively controlled by the DGLAP evolution
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Fig. 3: Cross sections for hard scattering vergis The cross section values gfs = 14 TeV are: oot = 99.4 mb, o, =

0.633 mb, ox = 0.888 nb,ow = 187 nb,oz = 55.5 nb, ou(Mu = 150 GeV) = 23.8 pb,ou(Mu = 500 GeV) = 3.82 pb,

Tiet (E* > 100 GeV) = 1.57 ub, gjes (B* > /5/20) = 0.133 nb, ojec (EI* > 1/5/4) = 0.10 fb. All except the first of
these are calculated using the latest MRST pdf’s [10].

equation [14-17]

dfa h x Q
e am / las(@),2) fon(a/ Q7). ®
Having determineqfa/h(x,Qg) at a given input scal€) = @, the evolution equation can be used to
compute the pdf’s at different perturbative scalgand larger values af.

The kernelsP,;(as, z) in EQ. (8) are the Altarelli-Parisi (AP) splitting functions. They depend

on the parton flavoura, b but do not depend on the colliding hadrénand thus they are process-
independent. The AP splitting functions can be computed as a power series expamsgjon in

Pu(as, 2) = asPL () + o3PV (2) + a2 POV (2) + 0(ad) . (9)

The LO and NLO termﬂbLO)( ) andP(NLO)( ) in the expansion are known [18-24]. These first two
terms (their explicit expressions are collected in Ref. [4]) are used in most of the QCD studies. Partial
calculations [25, 26] of the next-to-next-to-leading order (NNLO) te?) N LO)(z) are also available
(see Sects. 2.5, 2.6 and 4.2).



As in the case otwg, the definition and the evolution of the pdf’s depends on how many of the
quark flavors are considered to be light in the calculation in which the parton distributions are used.
Again, there are matching conditions that apply. In the currently popular sets of parton distributions
there is a change of definition & = M, where)M is the mass of a heavy quark.

The factorization on the right-hand side of Eq. (2) in terms of (perturbative) process-dependent
partonic cross sections and (non-perturbative) process-independent pdf’s involves some degree of arbi-
trariness, which is known as factorization-scheme dependence. We can always ‘re-define’ the pdf’s by
multiplying (convoluting) them by some process-independent perturbative function. Thus, we should
always specify the factorization-scheme used to define the pdf's. The most common schen\Ss the
factorization-scheme [4]. An alternative scheme, known as DIS factorization-scheme [27], is sometimes
used. Of course, physical quantities cannot depend on the factorization scheme. Perturbative corrections
beyond the LO to partonic cross sections and AP splitting functions are thus factorization-scheme de-
pendent to compensate the corresponding dependence of the pdf's. In the evaluation of hadronic cross
sections at a given perturbative order, the compensation may not be exact because of the presence of
yet uncalculated higher-order terms. Quantitative studies of the factorization-scheme dependence can be
used to set a lower limit on the size of missing higher-order corrections.

The factorization-scheme dependence is not the only signal of the uncertainty related to the com-
putation of the factorization formula (2) by truncating its perturbative expansion at a given order. Trun-
cation leads to additional uncertainties and, in particular, to a dependence on the renormalization and
factorization scales. The renormalization sgajgis the scale at which the QCD couplinag is evalu-
ated. The factorization scaler is introduced to separate the bound-state effects (which are embodied
in the pdf's) from the perturbative interactions (which are embodied in the partonic cross section) of the
partons. In Egs. (2) and (3) we tople = urp = Q. On physical grounds these scales have to be of the
same order a§), but their value cannot be unambiguously fixed. In the general case, the right-hand side
of Eq. (2) is modified by introducing explicit dependencewgn i according to the replacement

Farny (@1, Q%) fasny(22,Q%) Gap(z1p1, 2023 Q, {. . .}1 as(Q))
l
Farm (@1, 105) fasny (T2, 1F)  Gap(1p1, 22023 Q, {. . . }; m, s as(piR)) - (10)

The physical cross section(p1, p2; @, {...}) does not depend on the arbitrary scales ., but parton

densities and partonic cross sections separately depend on these scaleg, [Thelependence of the
partonic cross sections appears in their perturbative expansion and compensatesigdpendence of

as(pgr) and theu-dependence of the pdf's. The compensation would be exact if everything could

be computed to all orders in perturbation theory. However, when the quantities entering Eq. (10) are
evaluated at, say, theth perturbative order, the result exhibits a residugl 1 z-dependence, which is
formally of the (n + 1)-th order. That is, the explicitr, ur-dependence that still remains reflects the
absence of yet uncalculated higher-order terms. For this reason, the size.gf, e dependence is

often used as a measure of the size of at least some of the uncalculated higher-order terms and thus as an
estimator of the theoretical error caused by truncating the perturbative expansion.

As an example, we estimate the theoretical error on the predicted jet cross section in Fig. 1. We
vary the renormalization scajer and the factorization scajer. In Fig. 4, we plot

(do(pr/ET,pr/Er) [dET dy)
(do(0.5,0.5)/dET dy)
versusEr for four values of the paifjig/Er, ur/Er}, namely{0.25,0.25}, {1.0,0.25} {0.25,1.0},

and {1.0,1.0}. We see about a 10% variation in the cross section. This suggests that the theoretical
uncertainty is at least 10%.

The issue of the scale dependence of the perturbative QCD calculations has received attention in
the literature and various recipes have been proposed to choose ‘optimal’ valuéseefthe references

A(pr/Er, pr/ET) =

(11)
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in [13]). There is no compelling argument that shows that these ‘optimal’ values reduce the size of
the yet unknown higher-order corrections. These recipes may thus be used to get more confidence on
the central value of the theoretical calculation, but they cannot be used to reduce its theoretical uncer-
tainty as estimated, for instance, by scale variations argurd(). The theoretical uncertainty ensuing

from the truncation of the perturbative series can only be reduced by actually computing more terms in
perturbation theory.

We have so far discussed the factorization formula (2). We should emphasize that there is another
mode of analysis of the theory available, that embodied in Monte Carlo event generator programs. In
this type of analysis, one is limited (at present) to leading order partonic hard scattering cross sections.
However, one simulates the complete physical process, beginning with the hard scattering and proceeding
through parton showering via repeated one parton to two parton splittings and finally ending with a model
for how partons turn into hadrons. This class of programs, which simulate complete events according to
an approximation to QCD, are very important to the design and analysis of experiments. Current issues
in Monte Carlo event generator and other related computer programs are discussed in Sect. 3.

2. PARTON DISTRIBUTION FUNCTIONS *

Parton distributions (pdf's) play a central role in hard scattering cross sections at the LHC. A precise
knowledge of the pdf’'s is absolutely vital for reliable predictions for signal and background cross sec-
tions. In many cases, it is the uncertainty in the input pdf's that dominates the theoretical error on the
prediction. Such uncertainties can arise both from the starting distributions, obtained from a global fit
to DIS, DY and other data, and from DGLAP evolution to the higg&rscales typical of LHC hard
scattering processes.

To predict LHC cross sections we will need accurate pdf's over a wide rangeantl Q? (see
Fig. 2). Several groups have made significant contributions to the determination of pdf's both during
and after the workshop. The MRST and CTEQ global analyses have been updated and refined, and
small numerical problems have been corrected. The ‘central’ pdf sets obtained from these global fits
are, not surprisingly, very similar, and remain the best way to estimate central values for LHC cross
sections. Specially constructed variants of the central fits (exploring, for example, different vaduyges of
or different theoretical treatments of heavy quark distributions) allow the sensitivity of the cross sections
to some of the input assumptions.

A rigorous and global treatment of pdhcertaintiesemains elusive, but there has been significant
progress in the last few years, with several groups introducing sophisticated statistical analyses into quasi-
global fits. While some of the more novel methods are still at a rather preliminary stage, it is hoped that
over the next few years they may be developed into useful tools.

One can reasonably expect that by LHC start-up time, the precision pdf determinations will have
improved from NLO to NNLO. Although the complete NNLO splitting functions have not yet been

1Section coordinators: R. Ball, M. Dittmar and W.J. Stirling.
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calculated, several studies have made use of partial information (moment$), 1 limiting behaviour)
to assess the impact of the NNLO corrections.

At the same time, accurate measurements of Standard Model (SM) cross sections at the LHC will
further constrain the pdf's. The kinematic acceptance of the LHC detectors allows a large range of
andQ? to be probed. Furthermore, the wide variety of final states and high parton-parton luminosities
available will allow an accurate determination of the gluon density and flavour decomposition of quark
densities.

All of the above issues are discussed in the individual contributions that follow. Lack of space
has necessarily restricted the amount of information that can be included, but more details can always be
found in the literature.

2.1 MRS: pdf uncertainties and¥/ and Z production at the LHC ?

There are several reasons why it is very difficult to derive overall ‘one sigma’ errors on parton distri-
butions of the formf; + §f;. In the global fit there are complicated correlations between a particular
pdf at differentz values, and between the different pdf flavours. For example, the charm distribution is
correlated with the gluon distribution, the gluon distribution at lovg correlated with the gluon at high

x via the momentum sum rule, and so on. Secondly, many of the uncertainties in the input data or fitting
procedure are not ‘true’ errors in the probabilistic sense. For example, the uncertainty in the high—
gluon in the MRST fits [28] derives from a subjective assessment of the impact of ‘intkpsan the
prompt photon cross sections included in the global fit. Despite these difficulties, several lgaveps
attempted to extract meaningfits f; pdf errors (see [29, 30] and Sects. 2.3,2.4). Typically, these anal-
yses focus on subsets of the available DIS and other data, which are statistically ‘clean’, i.e. free from
undetermined systematic errors. As a result, various aspects of the pdf's that are phenomenologically
important, the flavour structure of the sea and the sea and gluon distributions at farggxample, are

either only weakly constrained or not determined at all.

Faced with the difficulties in trying to formulaggobal pdf errors, one can adopt a more pragmatic
approach to the problem by making a detailed assessment of the pdf uncertaintyafticalar cross
section of interest. This involves determining which partons contribute and at whaciad Q? values,
and then systematically tracing back to the data sets that constrained the distributions in the global fit.
Individual pdf sets can then be constructed to reflect the uncertainty in the particular partons determined
by a particular data set.

2Contributing authors: A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne.
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Fig. 6: Predictions for thé) and Z total cross sections times leptonic branching ratiggpncollisions at14 TeV using the
various MRST parton sets from Ref. [10]. The error bars on the default MRST prediction correspond to a scale variation of
n = Mv/2 — 2Mv,V = W,Z.

We have recently performed such an analysisiiorand Z total cross sections at the Tevatron
and LHC [10]. The theoretical technology for calculating these is very robust. The total cross sections
are known to NNLO in QCD perturbation theory [31-33], and the input electroweak param¥figrs,(
weak couplings, etc.) are known to high accuracy. The main theoretical uncertainty therefore derives
from the input pdf's and, to a lesser extent, fram.3

For the hadro-production of a heavy object likBaboson, with masd/ and rapidityy, leading-
order kinematics givee = M exp(+y)/+/s and@Q = M. For example, & boson (/ = 80 GeV)
produced at rapidityy = 3 at the LHC corresponds to the annihilation of quarks wits 0.00028 and
0.11, probed at)? = 6400 GeV2. Notice thatu, d quarks with these values are already more or less
directly ‘measured’ in deep inelastic scattering (at HERA and in fixed—target experiments respectively),
but at much lowerQ?, see Fig. 2. Therefore the first two important sources of uncertainty in the pdf’s
relevant toll” production are

() the uncertainty in the DGLAP evolution, which except at higpomes mainly from the gluon and
ag,

(i) the uncertainty in the quark distributions from measurement errors on the structure function data
used in the fit.

This is illustrated in Fig. 3.0nly 75% of the totall¥ cross section at the LHC arises from the scattering
of w andd (anti)quarks. Therefore also potentially important is

(i) the uncertainty in the input strange)(and charm €) quark distributions, which are relatively
poorly determined at low)? scales.

3The two are of course correlated, see for example [28].
“The ‘feed-down’ error represents a possible anomalously large contributiorat affecting the evolution at lowes. It
is not relevant, however, fd/ production at the Tevatron or LHC.
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Compare parton distributions of the original CTEQ5M with those from a refit, using improved evolution code.

set (thin solid lines) with those of a refit, 08 [
using the improved evolution code.

1
—— CTEQ5M Q=80 Ge
- - - - av v

Q=5GeV

0.8 0.6

(<3
< 06
< 04

x12£(x,Q) / (1-x)?

0.4

0.2
0.2

0 0 i | —t B ——
10 103 102 x10' 2 3 4 5 6 7.8 10 103 102 100! 2 3 4 56 7 8

Fig. 7: Comparison of CTEQ5M (original) and CTEQ5ML1 (revised) distributions at two energy scales.

In order to investigate these various effects we have constructed ten variants of the standard
MRST99 distributions [10] that probe approximatdo variations in the gluongg, the overall quark
normalisation, and the andc pdf's. The corresponding predictions for tHé total cross section at the
LHC are shown in Fig. 6. Evidently the largest variation comes from the effect of varyig/2),
in this case by+0.005 about the central value @f.1175. The higher the value ofig, the faster the
(upwards) evolution, and the larger the predict&dcross section. The effect of-82.5% normalisa-
tion error, as parameterised by the] pdf’s, is also significant. The uncertainties in the inpwndc
distributions get washed out by evolution to higf, and turn out to be numerically unimportant.

In conclusion, we see from Fig. 6 that:% represents a conservative error on the prediction of
o(W) at LHC. We arrive at this result without recourse to complicated statistical analyses in the global
fit. It is also reassuring that the latest (corrected) CTEQS prediction [7] is very close to the central
MRST99 prediction, see Fig. 8 below. Finally, it is important to stress that the results of our analysis
represent a ‘snap-shot’ of the current situation. As further data are added to the global fit in coming years,
the situation may change. However it is already clear that lH@nd Z cross sections can already be
predicted with high precision, and their measurement will therefore provide a fundamental test of the
SM.

2.2 CTEQ: studies of pdf uncertainties
Status of Standard Parton Distribution Functions

The widely used pdf sets all have been updated recently, driven mainly by new experimental inputs.
Largely due to differences in the choices of these inputs (direct photon vs. jets) and their theoretical
treatment, the latest MRST [10] and CTEQ [7] distributions have noticeable differences in the gluon
distribution forxz > 0.2. Details are described in the original papers.

The accuracy of modern DIS measurements and the expafdjg) range in which pdf’s are
applied require accurate QCD evolution calculations. Previously known differences in the QCD evolution
codes have now been corrected; all groups now agree with established results [34] with good precision.
The differences between updated pdf's obtained with the improved evolution code and the original ones
are generally small; and the differences between the physical cross sections based on the two versions
of pdf’s are insignificant , by definition, since both have been fitted to the same experimental data sets.
However, accurate predictions for physical processes not included in the global analysis, especially at
values of(z, Q) beyond the current range, can differ and require the improved pdf’s. Figs. 7a,b compare
the pdf sets CTEQ5M (original) and CTEQ5M1 (updated) at sa@les5 and80 GeV respectively.

A comparison of the predictedd” production cross sections at the Tevatron and at LHC, using the his-
torical CTEQ parton distribution sets, as well as the most recent MRST sets are given in Figs. 8. We see

5Contributing authors: R. Brock, D. Casey, J. Huston, J. Kalk, J. Pumplin, D. Stump and W.K. Tung.
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that the predicted values ofy agree very well. However, the spreadogf, from different “best fit” pdf
sets does not give a quantitative measure of the uncertairaty,bf
Studies of pdf Uncertainties

It is important to quantify the uncertainties of physics predictions due to imprecise knowledge of
the pdf’s at future colliders (such as the LHC): these uncertainties may strongly affect the error estimates
in precision SM measurements as well as the signal and backgrounds for new physics searches.

Uncertainties of the pdf’s themselves are strictly speaking unphysical, since pdf's are not directly
measurables. They are renormalization and factorization scheme dependent; and there are strong corre-
lations between different flavours and different values @fhich can compensate each other in physics
predictions. On the other hand, since pdf’s are universal, if one can obtain meaningful estimates of their
uncertainties based on global analysis of existing data, they can then be applied to all processes that are
of interest for the future.

An alternative approach is to assess the uncertaintiespecific physical predictiornfr the full
range (i.e. the ensemble) of pdf’s allowed by available experimental constraints which are used in current
global analyses, without explicit reference to the uncertainties of the parton distributions themselves.
This clearly gives more reliable estimates of the range of possible predictions on the physical variable
under study. The disadvantage is that the results are process-specific; hence the analysis has to be carried
out for each process of interest.

In this short report, we present first results from a systematic study of both approaches. In the
next section we focus on tH&* production cross section, as a proto-typical case of current interest.
A technique of Lagrange multiplier is incorporated in the CTEQ global analysis to probe its range of
uncertainty at the Tevatron and the LHC. This method is directly applicable to other cross sections of
interest, e.g. Higgs production. We also plan to extend it for studying the uncertaintiésméss
measurements in the future. In the following section we describe a Hessian study of the uncertainties of
the non-perturbative pdf parameters in general, followed by application of these i3 theroduction
cross section study and a comparison of this result with that of the Lagrange-multiplier approach.

First, it is important to note the variog®urces of uncertaintyin pdf analysis.

Statistical errors of experimental data. These vary over a wide range, but are straightforward to treat.

Systematic experimental errorswithin each data set typically arise from many sources, some of which
are highly correlated. These errors can be treated by standard mptheidedthey are precisely known,

which unfortunately is often not the case — either because they are not randomly distributed or their
estimation may involve subjective judgements. Since strict quantitative statistical methods are based
on idealized assumptions, such as random errors, one faces an important trade-off in pdf uncertainty
analysis. If emphasis is put on the “rigor” of the statistical method, then most experimental data sets
can not be included the analysis (see Sect. 2.3). If priority is placed on using the maximal experimental
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Fig. 9: x? of the base experimental data sets vs. the W production cross section at the Tevatron and LHC.

constraints from available data, then standard statistical methods need to be supplemented by physical
considerations, taking into account existing experimental and theoretical limitations. We take the latter
tack.

Theoretical uncertaintiesarise from higher-order PQCD corrections, resummation corrections near the
boundaries of phase space, power-law (higher twist) and nuclear target corrections, etc.

Uncertainties of pdf's due to thearametrization of the non-perturbative pdf’s, f,(x, Q%), at some

low energy scal€)q. The specific functional form used introduces implicit correlations between the
variousz-ranges, which could be as important, if not more so, than the experimental correlations in the
determination off,(x, @?) for all Q.

In view of these considerations, the preliminary results reported here can only be regarded as
the beginning of a continuing effort which will be complex, but certainly very important for the next
generation of collider programs.

The Lagrange multiplier method

Our work uses the standard CTEQ5 analysis tools and results [7] as the starting point. The “best
fit" is the CTEQ5M1 set. There are 15 experimental data sets, with a totalX#00 data points; and
18 parameters;,: = 1,...,18 for the non-perturbative initial parton distributions. A natural way to
find the limits of a physical quantityX, such asry at/s = 1.8 TeV, is to takeX as one of the search
parameters in the global fit and study the dependengé @ir the 15 base experimental data sets\an

Conceptually, we can think of the functiog? that is minimized in the fit as a function ¢fi;-
a7, X} instead of{a;-a;g}. This idea could be implemented directly in principle, but Lagrange’s
method of undetermined multipliers does the same thing in a more efficient way. One minimizes

F()\) = X2+)‘X(a17"'7a18) (12)

for fixed \. By minimizing F'()\) for many values of\, we map outy? as a function ofX..

Figs. 9a,b show thg? for the 15 base experimental data sets as a functianofat the Teva-
tron and the LHC energies respectively. Two curves with points corresponding to specific global fits are
included in each plt one obtained with all experimental normalizations fixed; the other with these
included as fitting parameters (with the appropriate experimental errors). We see thawstfa the
best fits corresponding to various values of ifiecross section are close to being parabolic, as expected.
Indicated on the plots are 3% and 5% rangesdf@r. The two curves for the Tevatron case are far-
ther apart than for LHC, reflecting the fact that i@ production cross section is more sensitive to the
quark/anti-quark distributions and these are tightly constrained by existing DIS data.

The important question is: how large an increasg?should be taken to define the likely range of
uncertainty inX. The elementary statistical theorem tiat? = 1 corresponds to 1 standard deviation

®The third line in Figs. 9a refers to results of the next section.



of the measured quantiti relies on assuming that the errors are Gaussian, uncorrelated, and with
their magnitudes correctly estimated. Because these conditions do not hold for the full data set (of
1300 points from 15 different experiments), this theorem cannot be naively applied quantifatively.

plan to examine in some detail how well the fits along the parabolas shown in Fig.9a,b compare with
the individual precision experiments included in the global analysis, in order to arrive at reasonable
guantitative estimates on the uncertainty range foltheross section. In the meantime, based on past
(admittedly subjective) experience with global fits, we believg?adifference of 40-50 represents a
reasonable estimate of current uncertainty of parton distributions. This implies that the uncertainty of
ow is about 3% at the Tevatron, and 5% at the LHC. These estimates certainly need to be put on a firmer
basis by the on-going detailed investigation mentioned above.

The Hessian matrix method

The Hessian matrix is a standard procedure for error analysis. At the minimwh tfie first
derivatives with respect to the parametersire zero, so near the minimugd can be approximated by

1
2 2
X*=xotg § 4 Fijyiy; (13)
Z?]

wherey; = a; — ag; is the displacement from the minimum, ai¢; is the Hessian the matrix of

second derivatives. It is natural to define a new set of coordinates using the complete orthonormal set
of eigenvectors of the symmetric matriX;. These vectors can be ordered by their eigenvaties

The eigenvalues indicate the uncertainties for displacements along the eigenvectors. For uncorrelated
Gaussian statistics, the quantity= 1/,/e; is the distance in the 18 dimensional parameter space that
gives a unit increase ig? in the direction of eigenvectar

From calculations of the Hessian we find the eigenvalues vary over a wide range. There are “steep”
directions ofy? — combinations of parameters that are well determined — e.g. parametersirfiord,
which are well-constrained by DIS data. There are also “flat” directions whehanges little over
large distance im; space, some of them associated with the gluon distribution. These flat directions
are inevitable in global fitting, because as the data improve it makes sense to maintain enough flexibility
for f,(z,Q3) to be determined by the available experimental constraints. The Hessian method gives an
analytic picture of the region in parameter space around the minimum, hence allows us to identify the
particular degrees of freedom which need further experimental input in future global analyses.

We have calculated how thHé& cross sectiorry, varies along the eigenvectors of the Hessian.
Details will be described elsewhere. This provides another way to calculate the relation between the
minimum x? for the base experimental data sets and the valugyaf The results are shown as the
third line in Fig. 9a. We see that there is approximate agreement between this method and the Lagrange
multiplier method. Armed with the Hessian, one can in principle make similar calculations on other
physical cross sections without having to do repeated global fits as in the Lagrange multiplier method.
The latter, however, gives more reliable bounds for each individual process.

Conclusion

We have just begun the task of determining quantitative uncertainties for the parton distribution
functions and their physics predictions. The methods developed so far look promising. Related work
reported in this Workshop (see [10, 35-37] and Sects. 2.1,2.3,2.4) share the same objectives, but have
rather different emphases, some of which are briefly mentioned in the text. These complementary ap-
proaches should lead to eventual progress which is critical for the high-energy physics program at LHC,
as well as at other colliders.

As shown by Gieleet.al.[35], taken literally, only one or two selected experiments satisfy the standard statistical tests.



2.3 Pdf uncertaintied
Introduction

The goal of our work is to extract pdf's from data with a quantitative estimation of the uncer-
tainties. There are some qualitative tools that exist to estimate the uncertainties, see e.g. [28]. These
tools are clearly not adequate when the pdf uncertainties become important. One crucial example of a
measurement that will need a quantitative assessment of the pdf uncertainty is the planned high precision
measurement of the mass of thé-vector boson at the Tevatron.

The method we have developed in [35] is flexible and can accommodate non-Gaussian distribu-
tions for the uncertainties associated with the data and the fitted parameters as well as all their correla-
tions. New data can be added in the fit without having to redo the whole fit. Experimenters can therefore
include their own data into the fit during the analysis phase, as long as correlation with older data can be
neglected. Within this method it is trivial to propagate the pdf uncertainties to new observables, there is
for example no need to calculate the derivative of the observable with respect to the different pdf param-
eters. The method also provides tools to assess the goodness of the fit and the compatibility of new data
with current fit. The computer code has to be fast as there is a large number of choices in the inputs that
need to be tested.

It is clear that some of the uncertainties are difficult to quantify and it might not be possible to
qguantify all of them. All the plots presented here are for illustration of the method only, our results are
preliminary At the moment we are not including all the sources of uncertainties and our results should
therefore be considered as lower limits on the pdf uncertainties. Note that all the techniques we use are
standard, in the sense that they can be found in books and papers on statistics [38,39] and/or in Numerical
Recipes.

Outline of the Method

We only give a brief overview of the method in this section. More details are available in [35].
Once a set of core experiments is selected, a large number of uniformly distributed sets of parameters
A= A1, A2, ..., AN, (€ach set corresponds to one pdf) can be generated. The probability of each set,
P()), can be calculated from the likelihood (the probability) that the predictions baskedescribe the
data, assuming that the initial probability distribution of the parameters is uniform, see [38, 39].

Knowing P()), the probability of the possible values of any observable (quantity that depends
on )\) can be calculated using a Monte Carlo integration. For example, the average value and the pdf
uncertainty of an observableare given by:

Npa'r

o = / ]| 2Py, o = / I dx | 0 — wa)2P(V)
=1

Note that the average value and the standard deviation represents the distribution only if the latter is a
Gaussian. The above is correct but computationally inefficient, instead we use a Metropolis algorithm to
generateV,q unweighted pdf’s distributed according #(\). Then:

1 Npag 1 Npar
2 2
JTS g x(Aj), oi &~ g z(Nj)—p .

This is equivalent to importance sampling in Monte Carlo integration techniques and is very efficient.
Given the unweighted set of pdf’s, a new experiment can be added to the fit by assigning a weight (a new
probability) to each of the pdf’s, using Bayes’ theorem. The above summations become weighted. There
is no need to redo the whole fitthere is no correlation between the old and new data. If we know how

to calculateP () properly, the only uncertainty in the method comes from the Monte-Carlo integrations.

8Contributing authors: W.T. Giele, S. Keller and D.A. Kosower.
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Fig. 10: Plot of the distribution (histogram) of four of the parameters. The first oang,ithe strong coupling constant at the
mass of theZ-boson. The line is a Gaussian distribution with same average and standard deviation as the histogram.

Calculation of P(\)

Given a set of experimental poin{fg°} = z§,x5, ... ,xf, the probability of a set of pdf is
proportional to the likelihood, the probability of the data given that the theory is derived from that set
of pdf: P(\) = P({z¢}|A). If all the uncertainties are Gaussian distributed, then it is well known that:

2

P(zf|\) =~ e %, wherey? is the usual chi-square. It is only in this case that it is sufficient to report
the size of the uncertainties and their correlation. When the uncertainties are not Gaussian distributed,
it is necessary for experiments to report the distribution of their uncertainties and the relation between
these uncertainties the theory and the value of the measurements. Unfortunately most of the time that
information is not reported, or difficult to extract from papers. This is a very important issue that has
been one of the focus of the pdf working group at a Fermilab workshop in preparation for run 1l [40].
In other words, experiments should always provide a way to calculate the likelihood of their data given
a theory prediction for each of their measured data pait{{ £©}|A)). This was also the unanimous
conclusion of a recent workshop on confidence limits held at CERN [41]. This is particularly crucial
when combining different experiments together: the pull of each experiment will depend on it and, as a
result, so will the central values of the deduced pdf's. Another problem that is sometimes underestimated
is the fact that some if not all systematic uncertainties are in fact proportional to the theory. Ignoring this
fact while fitting for the parameters can lead to serious bias.

Sources of uncertainties

There are many sources of uncertainties beside the experimental uncertainties. They either have
to be shown to be small enough to be neglected or they need to be included in the pdf uncertainties. For
examples: variation of the renormalization and factorization scales; non-perturbative and nuclear binding
effects; the choice of functional form of the input pdf at the initial scale; accuracy of the evolution;
Monte-Carlo uncertainties; and the theory cut-off dependences.

Current fit

Draconian measures were needed to restart from scratch and re-evaluate each issue. We fixed the
renormalization and factorisation scales, avoided data affected by nuclear binding and non-perturbative
effects, and use a MRS-style parametrization for the input pdf's. The evolution of the pdf is done by
Mellin transform method, see [42,43]. All the quarks are considered massless. We imposed a positivity
constraint onF;. A positivity constraint on other “observables” could also be imposed.

At the moment we are using H1 and BCDMS(proton) measuremeh{ &r our core set. The full
correlation matrix is taken into accourssuming that all the uncertainties are Gaussian distribifted
we calculate the¢?(\) and P()\) ~ exp(—x?/2). We generated 50000 unweighted pdf’s according to
the probability function. For 532 data points, we obtained a minimgm= 530 for 24 parameters.
We have plotted in Fig. 10, the probability distribution of some of the parameters. Note that the first

®No information being given about the distribution of the uncertainties.
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parameter isxs. The value is smaller than the current world average. However, it is known that the
experiments we are using prefer a lower value of this parameter, see [44], and as already pointed out,
our current uncertainties are lower limits. Note that the distribution of the parameter is not Gaussian,
indicating that the asymptotic region is not reached yet. In this case, the blind use of a so-called chi-
squared fitting technique is not appropriate. From this large set of pdf’s, it is straightforward to plot,
for example, the correlation between different parameters and to propagate the uncertainties to other
observables.

2.4 Uncertainties on pdf's and parton-parton luminosities®

An important quantity for LHC physics is the uncertainty of pdf's used for the cross section calculations.
The modern widely used pdf’s parametrizations do not contain complete estimate of their uncertainties.
This estimate is difficult partially due to the lack of experimental information on the data points correla-
tions, partially due to the fact that the theoretical uncertainties are conventional, and partially due to the
fundamental problem of restoring the distribution from the finite number of measurements. These prob-
lems are not completely solved at the moment and a comprehensive estimate of the pdf’'s uncertainties
is not available so far. The study given below is based on the NLO QCD analysis of the world charged
leptons DIS data of Refs. [45-51] for proton and deuterium tatfethe analysed data span the region
r=10"%+0.75, Q? = 2.5 - 5000 GeV?, W > 2 GeV and allows for precise determination of pdf’s at

low z, which is important for LHC since the most of accessible processes are related te sifadl data

are accompanied by the information on point-to-point correlations due to systematic errors. This allows
the complete inference of systematic errors, that was performed using the covariance matrix approach, as
in Ref. [36]. The pdf's uncertainties due to the variation of the strong coupling consgtaantd the high

twists (HT) contribution are automatically accounted for in the total experimental uncertainties since
ag and HT are fittetf. Other theoretical errors on pdf’'s were estimated as the pdf’s variation after the
change of different fit ansatzes:

RS —the change of renormalization scale in the evolution equations@dio 4Q2. This uncertainty
is evidently connected with the influence of NNLO corrections.

Contributing author: S. Alekhin.
"More details of the analysis can be found in Ref. [29].
2The value ofas(Mz) = 0.1165 + 0.0017(stat + syst) is obtained, that is compatible with the world average.



Fig. 12: The ratios of the experimental pdf's errors calculated with some fitted parameters fixed to the pdf’s errors calculated
with all parameters releasedd fixed — a); HT fixed — b)). The similar ratio for the systematic errors omitted/included is also
given — c). Full lines correspond to gluons, dashed ones — to total sea, dotted ones — to d-quarks, dashed-dotted ones — to
u-quarks.

TS —the change of threshold value @ for the QCD evolution loops with heavy quarks fr(mfg to
6.5m6. The variation is conventional and was chosen following the arguments of Ref. [52].

DC -the change of correction on nuclear effects in deuterium from the ansatz based on the Fermi mo-
tion model of Ref. [53] to the phenomenological formula from Ref. [54]. Note that this uncertainty
may be overestimated in view of discussions [55,56] on the applicability of the model of Ref. [54]
to light nuclei.

MC - the change of c-quark mass by 0.25 GeV (the central value is 1.5 GeV).

SS — the change of strange sea suppression factor by 0.1, in accordance with recent results by the
NuTeV collaboration [57] (the central value is 0.42).

One can see that the scale of the theoretical errors is conventional and can change with improvements in
the determination of the fit input parameters and progress in theory. Moreover, the uncertainties can be
correlated with the uncertainties of the partonic cross sections, e.g. the effect of RS uncertainty on pdf's
can be compensated by the NNLO correction to parton cross section. Thus the theoretical uncertainties
should not be applied automatically to any cross section calculations, contrary to experimental ones.

The pdf’s uncertainties have different importance for various processes. The limited space does
not allow us to review all of them. We give the figures for the most generic ones only. The uncertainties
of a specific cross section due to pdf's are entirely located in the uncertainties of the parton-parton
luminosity L, that is defined as

S

1 X
L) =5 [ 5 falw M) oo/, 08%),

where M is the produced mass and= M?/s. In Fig. 11 the uncertainties for selected set of parton
luminosities calculated using the pdf’s from Ref. [29] are given. The upper bound wias chosen so

that the corresponding luminosity 46 0.01 pb. One can see that in generalldt> 1 TeV experimental
uncertainties dominate, while &f < 1 TeV theoretical ones dominate. Of the latter the most important
are the RS uncertainty for the gluon luminosity and MC uncertainty for the quark luminosities. At the
largestM the DC uncertainty for quark-quark luminosity is comparable with the experimental one. In
the whole the uncertainties do not exceed 10%/ats 1 TeV. As for the quark-quark luminosity, its
uncertainty is less than 10% in the whdlé range. The uncertainties are not so large in view of the fact
that only a small subset of data relevant for the pdf’s extraction was used in the analysis. Adding data on
prompt photon production, DY process, and jet production can improve the pdf’'s determination at large
. Meanwhile it is worth to note that high order QCD corrections are more important for these processes
than for DIS and the decrease of experimental errors due to adding data points can be accompanied by
the increase of theoretical errors.
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Fig. 13: The pdf’s correlation coefficients.

stat+systf RS| TS| SS| MC | DC
ALw (%) 1.9 0409|213 29|03
ALz (%) 1.6 05(09|13| 29| 0.6
ALy 17 (%) 0.5 - | =1 - - 103

Table 1: The uncertainties of the parton luminositiesfotZ production cross sections and their ratios. Heve = L5+ Laa,
Lz = Lua + Lg3, andLW/Z = (Lyg + Laa)/(Lus + Lag)-

As it was noted above, the experimental pdf’s errors by definition include the statistical and sys-
tematical errors, as well as errors dueat and HT. To trace the effect afg variation on the pdf’s
uncertainties the latter were re-calculated wiih fixed at the value obtained in the fit. The ratios of
obtained experimental pdf's errors to the errors calculated witheleased are given in Fig. 12. Itis
seen that thexg variation takes some effect on the gluon distribution errors only. Similar ratios for the
HT fixed are also given in Fig. 12. One can conclude, that the account of HT contribution have signifi-
cant impact on the pdf’s errors. Meanwhile it is evident that these ratios hardly depend on the scale of
pdf’s error and are specific for the analysed data set. For instance, in the analysis of CCFR data on the
structure functiornf; no significant influence of HT on the pdf’s was observed [58,59]. The contribution
of systematic errors to the total experimental pdf’s uncertainties is also given in Fig. 12: the systematic
errors are most essential for the u- and d-quark distributions.

Except uncertainties itself the pdf correlation are also important (see Fig. 13). The account of
correlations can lead to cancellation of the pdf's uncertainties in the calculated cross section. The lumi-
nosities uncertainties can also cancel in the ratios of cross sections. An example of such cancellation is
given in Table 2.4, where the uncertainties of luminosities forlth)gZ production cross sections and
their ratios are given.

The pdf set discussed in this subsection can be obtained by the code [60]. The pdf's are DGLAP
evolved in the range = 1077 ~ 1, Q2 = 2.5 ~ 5.6 - 10" GeV2. The code returns the values of
u-, d-, s-quark, and gluon distributions Gaussian-randomized with accordance of their dispersions and
correlations including both experimental and theoretical ones.



2.5 Approximate NNLO evolution of parton densities

In order to arrive at precise predictions of perturbative QCD for the LHC, for example for the total

W -production cross section discussed in Sects. 2.1 and 2.2, the calculations need to be extended beyond
the NLO. Indeed, the NNLO coefficient functions for the above cross section have been calculated some
time ago [32, 33]. The same holds for the structure functions in DIS [61-64] which form the backbone
of the present information on the parton densities. On the other hand, the corresponding NNLO splitting
functions have not been computed so far. Partial results are however available, notably the lowest four
and five even-integer moments, respectively, for the singlet and non-singlet combinations [25,26]. When
supplemented by results on the leading- 0 terms [65-69] derived from small-resummations, these
constraints facilitate effective parametrisations [70,71] which are sufficiently accurate for a wide range in
z (and thus a wide range of final-state masses at the LHC). In this section, we compile these expressions
and take a brief look at their implications. For detailed discussions the reader is referred to refs. [70, 71].

In terms of the flavour non-singlet (NS) and singlet (S) combinations of the parton densities (here
qu =gandf, = g),
Ny
qu\?s,z'k = ¢*q— (ta), aNg = Z(QT —qr) 5 qs = ( i ) (14)
r=1

with 3 = Zf,vzfl(qr +qyr), the evolution equations (8) consist2iV,—1 scalar non-singlet equations and
the 2 x 2 singlet system. The LO and NLO splitting functio®$"?) (z) and P(NLO) () in Eq. (9) are
known for a long time. For each of the NNLO functioR$? (z) = (47)3 P(NNLO) (1) two approximate
expressions (denoted byl* and ‘B’) are given below in theV'S scheme, which span the estimated

residual uncertainty. The central results are represented by the a\1¢25(géf) + ng)).
The NS" parametrisations [70] read, usig= §(1—z), L1 = In(1—-z)and Ly = Inz,

1137.897
Pt (z) = Ty, T 10997540 — 2075.371 2% — 125.243 — 64.105 L2 + 1.580 L (15)
’ — L)+
184.4098 9 9 (2)
~ Ny (m +180.6971 6 + 98.5885 Ly — 205.7690 2% — 6.1618 — 5.0439 L0> + P&z
1347.2
P (x) = % +2283.011 0 — 722.137 L% — 1236.264 — 332.254 Lo + 1.580 (L§ — 4L3)
K p— x +
184.4098 2 2 (2)
f <7(1 “y, T 18069716 + 98.5885 Ly — 205.7690% — 6.1618 — 5.0439 LO> + PG s
with
PO @) = (- 9004 192¢(3) — 320¢(2)]6(1 — x) + 64
NS’NJ% - 81 (]. — ZE)+
rlnz 9
+ 7= (96 Inz +320) + (1 —2)(48 In + 352z +384) | . (16)

Here((!) denotes Riemanni-function. Equation (16) is an exact result, derived from laigemethods

[72]. The corresponding expressions vq@‘ are

PO () = P () +20.6872° — 18.466 + 66.866 L2 — 0.148 L

+ Ny (0.0163 Ly — 0.402 2% 4 0.4122 — 1.4965LF) 17)
P p(r) = P@5(x) — 0.101 L2 + 1.508 + 4.775 Lo — 0.148 (L — 4L})
+ N (0.0163 Ly — 0.402 2% +0.4122 — 1.4965L7) .

Contributing authors: W.L. van Neerven and A. Vogt.



0.7 e

1 015}

0.1f

Fig. 14: Left: The LO, NLO and approximate NNLO predictions for the logarithmic derivatjygs= dlnq/dIn u7 of the
singlet quark and gluon densities= ¥ andg = g, atpfc ~ 30 GeV2. Right: The relative scale uncertainty,,. (defined in
the text) of these NLO and NNLO results. The number of flavourgis= 4.

The difference betweeﬁlff)* andPIEIzS)V is unknown, but expected to have a negligible effect{(%).

The effective parametrisations for the singlet sector are given in Ref. [71]. Besidégathe =
terms oqu(g), Pq(g) andng) [66, 67], only theNJ% contributionex 1/[1 — z]4 to ngf,) is exactly known
here [73].

The evolution equations (8) are written for a factorization sgale= . Their form can be
straightforwardly generalized to include also the dependence on the renormalization,scale

The expansion of Eq. (8) is illustrated in the left part of Fig. 14 for= uy, as = 0.2 and
parton densities typical fop} ~ 30 GeV2. Under these conditions, the NNLO effects are sma2%)
at medium and large.. This also holds for the non-singlet evolution not shown in the figure. The
approximate character of the our results RSP does not introduce relevant uncertainties at 2-10~3.
The third-order corrections increase with decreasingaching(12+4)% and(—6+3)%, respectively,
of the NLO predictions fob. andg atz = 10~%.

The renormalization-scale uncertainty of these results is shown in the right part of Fig. 14 in terms
of A, ¢ = (¢max — Gmin)/[2 Gaverage], as determined over the ran@e piy < p, < 2puy. Note that
the spikes slightly below = 0.1 arise fromgayerage >~ 0 and do not represent enhanced uncertainties.
Thus the inclusion of the third-order terms in Eqg. (8), already in its approximate form, leads to significant
improvements of the scale stability, except for the gluon evolution belew10~3.

2.6 The NNLO analysis of the experimental data forzF5 and the effects of high-twist power
corrections'4

During the last few years there has been considerable progress in calculations of the perturbative QCD
corrections to characteristics of DIS. Indeed, the analytic expressions for the NNLO perturbative QCD
corrections to the coefficient functions of structure functidhg61, 62, 64] andc F3 [63, 74] are now

YContributing authors: A.L. Kataev, G. Parente and A.V. Sidorov.



known. However, to perform the NNLO QCD fits of the concrete experimental data it is also necessary to
know the NNLO expressions for the anomalous dimensions of the momeR}sanidx F3. At present,

this information is available in the case of= 2,4,6,8,10 moments ofF; [25, 26]. The results of

Refs. [61-64, 25, 26, 74] are forming the theoretical background for the study of the effects, contributing
to scaling violation at the level of new theoretical precision, namely with taking into account the effects
of the NNLO perturbative QCD contributions.

In the process of these studies it is rather instructive to include the available theoretical information
on the effects of high-twist corrections, which could give rise to scaling violation of the fg)d. The
development of the infrared renormalon (IRR) approach (for a review see Ref. [75]) and the dispersive
method [76] (see also [77,78]) made it possible to construct models for the power-suppressed corrections
to DIS structure functions (SFs). Therefore, it became possible to include the predictions of these models
to the concrete analysis of the experimental data.

In this part of the Report the results of the series of works [58, 59, 79, 80] will be summarized.
These works are devoted to the analysis of the experimental data;o6F of vV DIS, obtained by
the CCFR collaboration [81]. They have the aim to determine the NNLO valuﬂ%éfandaS(MZ)
with fixation of theoretical ambiguities due to uncalculated higher-order perturbative QCD terms and
transitions from the case gf = 4 number of active flavours to the case pf= 5 number of active
flavours. The second task was to extract the effects of the twist-4 contributiang;t{b8, 80] and
compare them with the IRR-model predictions of Ref. [82]. Some estimates of the influence of the twist-
4 corrections to the constants of the initial parametrization Bf [59] are presented. These constants
are related to the parton distribution parameters.

The analysis of Refs. [58, 59, 79, 80] is based on reconstruction of the non-singlet (NS} SF
from the finite number of its momenty/,, (Q?) = fol 2" Fy (2, Q?)dz using the Jacobi polynomial
method, proposed in Ref. [83] and further developed in Refs. [84—87]. Within this method one has

Nmaz n
2Py, Q%) =21 —2)® 3 02%() Y " (a, B)MFMC(Q?) (18)
n=0 7=0

where©2’ are the Jacobi ponnomialsﬁ”)(a, () are combinatorial coefficients given in terms of Euler
I’-functions and they, g-weight parameters. In view of the reasons, discussed in Ref. [58] they were
fixed to 0.7 and 3 respectively, whil%,,.,, = 6 was taken. Note, that the expressions for Mellin
moments were corrected by target mass contributions (TMC), taken into accoif H§'(Q?) =
M,(Q?%) + (n(n+1)/(n+ 2))(M?2,.,/Q*) M,+2(Q?). The QCD evolution of the moments is defined
by the solution of the corresponding renormalization group equation

MA(Q¥) _ [_ M@ 3 @) dx] CN3(A(Q%) 19
M) /AS(Q(Q)) Alx) 1ollA.Q2) 49

The QCD running coupling constant enters this equation threlgt)?) = as(Q?)/(4x) and is defined
as the expansion in terms of inverse powers;miﬁ)z/A%Q)-terms in the LO, NLO and NNLO. The

NNLO approximation of the coefficient functions of the momefit&) (A4, (Q?)) = 1+C M (n) A,(Q?)+
C®(n)A2(Q?) were determined from the results of Ref. [63, 74]. The related anomalous dimension
functions are defined as NS
T = (A = D (AL (20)
a'u >0
whereZ NS are the renormalization constants of the corresponding NS operators. The expression for the
QCD 3-function in theM S-scheme is known analytically at the NNLO [11,88]. However, as was already

mentioned, the NNLO corrections fé’,% are known at present only in the casenof 2,4,6,8,10 NS



Order A% A b c v Ay[GeV?] | x2Ipoints
LO 264+ 36 | 4.98+ 0.23| 0.68+ 0.02 | 4.05+ 0.05 | 0.96+ 0.18 - 113.1/86
433+ 51 | 4.6940.13 | 0.64+- 0.01 | 4.03+0.04 | 1.16:0.12 | -0.33£0.12 83.1/86
331+162 | 5.33+1.33 | 0.69-0.08 | 4.214+0.17 | 1.15+0.94 | h(x) in Fig. 15| 66.3/86

NLO | 339+35 | 4.67/+0.11 | 0.65+0.01 | 3.96+0.04 | 0.95+0.09 - 87.6/86
369437 | 4.62+:0.16 | 0.64+0.01 | 3.95+0.05 | 0.98£0.17 | -0.12£0.06 82.3/86
440+183 | 4.71+1.14 | 0.66+0.08 | 4.09+0.14 | 1.34+0.86 | h(x) in Fig. 15| 65.7/86

NNLO | 3264+35 | 4.70+£0.34 | 0.65+0.03 | 3.88+0.08 | 0.80+0.28 - 77.0/86
327+35 | 4.70+0.34 | 0.65+:0.03 | 3.88+0.08 | 0.80£0.29 | -0.01+0.05 76.9/86
372+133 | 4.790.75 | 0.66+0.05 | 3.95+0.19 | 0.96+0.57 | h(x) in Fig. 15| 65.0/86

Table 2: The results of the fits of the CCFR’97 data with the@tt> 5 GeV2. The parametersl, b, ¢, v are normalized at
Q3 = 20 GeV?, which is initial scale of the QCD evolution. Statistical errors are indicated.

moments off, SF ofeN DIS [25, 26]. Keeping in mind that in these cases the difference between the

NLO expressions fom(vlé P andy](vl)&x r, Is rather small [79], it was assumed that the similar feature is
true at the NNLO also. TheFj; fits of Refs. [58, 59, 79, 80] were done within this approximation. The

one more approximation, entering onto these analysis, was the estimation of the anomalous dimensions
of odd moments witm = 3,5,7,9 by means of smooth interpolation of the results of Refs. [25, 26],
originally proposed in Ref. [89]. In view of the basic role of the NNLO corrections to the coefficient
functions ofz F3 moments, revealed in the process of the concrete fits [58,59, 79, 80], it is expected that
neither the calculations of the NNLO correctionsatb; odd anomalous dimensions (which are now in
progress [90]) and further interpolation to even valuesphor the fine-tuning of the reconstruction
method of Eq. (18), which depends on the valuestpfi and N,,..., Will not affect significantly the

accuracy of the main results of Refs. [58, 59, 80].

The power corrections were included in the analysis using two different approaches. First, follow-
ing the ideas of Ref. [91], the term(x)/Q? was added onto the r.h.s. of Eq. (18). The functigm)
was parameterized by a set of free constanfer eachx-bin of the analysed data. These constants were
extracted from the concrete LO, NLO and NNLO fits. The resulting behaviouof is presented in
Fig. 15, taken from Ref. [58]. Secondly, the IRR model contributid}’’* = C'(n)M,,(Q?)A4,/Q?
was added into the reconstruction formula of Eq. (18), Wb@s the free parameter and was estimated
in Ref. [82]. The factorM,,(Q2) in the L.h.s. of Eq. (19) was defined at the initial sc@¢ using the
parametrization: Fs (z, Q2) = A(Q2)zb(@0) (1 — 2)°(Q3) (1 + ~(Q2)z). In Table 2 the combined results
of the fits of Refs. [58, 59] of CCFR’97 data are presented. The twist-4 terms were switched off and
retained following the discussions presented above.

The comments on the extracted behaviouh @f) (see Fig. 15) are now in order. lisshape, ob-
tained from LO and NLO analysis of Ref. [58] is in agreement with the IRR-model formula of Ref. [82].
Note also, that the combination of quark counting rules [92,93] with the results of Ref. [94,95] predict the
following z-shape ofi(z): h(x) ~ A,(1 —z)2. Taking into account the negative valuesAy, obtained
in the process of LO and NLO fits (see Table 2), one can conclude, that the related beha%i@trisf
in qualitative agreement with these predictions. Though a certain indication of the twist-4 terms survives
even at the NNLO, the NNLO part of Fig. 15 demonstrates thatthlape of.(z) starts to deviate from
the IRR model of Ref. [82]. Notice also, that within the statistical error bars the NNLO valug f
indistinguishable from zero (see Table 2). This feature might be related to the interplay between NNLO
perturbative and /Q? corrections. Moreover, at the used reference s@gle- 20 GeV'? the high-twist
parameters cannot be defined independently from the effects of perturbation theory, which at the NNLO
can mimic the contributions of higher-twists provided the experimental data is not precise enough and
the value ofQ3 is not too small (for the recent discussion of this subject see Refs. [29, 30]).
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Fig. 15: h(z) extracted from CCFR’97 data farF’

The results of Table 2 demonstrate, that despite the correlation of the NLO \lﬁ%é)%esvith the

values of the twist-4 coeﬂ‘icierm;, the parameters of the adopted model#@ (z, Q3) remain almost
unaffected by the inclusion of the/ Q?-term via the IRR-model of Ref. [82]. Thus, the corresponding

parton distributions are less sensitive to twist-4 effects, than the NLO valm%)gf At the NNLO level

the similar feature is related to already discussed tendency of the effective minimizationigihe
contributions tar F3 (see also NNLO part of Fig. 15).

For the completeness the NLO and NNLO valuesngfM ), obtained in Ref. [58] from the
results of Table 2 with twist-4 terms modelled through the IRR approach are also presented:

NLO ag(Mz) = 0.120 £ 0.003(stat) + 0.005(syst) 5002 (21)
NNLO ag(Mz) = 0.118 + 0.003(stst) 4 0.005(syst) + 0.003

The systematical uncertainties in these results are determined by the pure systematical uncertainties of
the CCFR’'97 data for: F3 [81]. The theoretical errors are fixed by variation of the factorization and
renormalization scales [58]. The incorporation into the5-matching formula forng [96-98] of the
proposal of Ref. [52] to vary the scale of smooth transition to the world Wit 5 number of active
flavours fromm? to (6.5m;)? was also taken into account. The theoretical uncertainties, presented in
Eq. (22) are in agreement with the ones, estimated in Ref. [70] using the DGLAP equation. The NNLO
value ofag(My) is in agreement with another NNLO resulg(Mz) = 0.1172 + 0.0024, which was
obtained in Ref. [99] from the analysis of SLAC, BCDMS, E665 and HERA dat@$arith the help of

the Bernstein polynomial technique [100].

2.7 Measuring Parton Luminosities and Parton Distribution Functions at the LHC!®

The traditional approach for cross section calculations and measurements at hadron colliders uses the
proton—proton IuMinosityLoton—proton, and the “best” known quark, anti-quark and gluon parton—
distribution functions,PDF(x1, 2, Q?) to predict event ratedV....;s for a particular parton parton
process with a calculable cross sectiQp.or, (¢, 7, g — X), using:

Nevents (pp - X) = Lproton—proton X PDF(xla x2, Qz) X Utheory(Qv 49— X) (22)

The possible quantitative accuracy of such comparisons depends not only on the statistical errors, but
also on the knowledge ok, oton—proton, the PDF(x1,2,Q?%) and the theoretical and experimental
uncertainties for the observed and predicted event rates for the studied process.

Contributing authors: M. Dittmar, K. Mazumdar and N. Skachkov.
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Fig. 16: a) The detected charged lepton cross section ratiéig. 17: The inclusive muom; spectrum in selected
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MRS(H) and MRS(A) parametrisations fé¥ *, W~ and for by a factor of 10 and the light quarks by roughly a fac-
Z° production [101]. tor of 50.
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For many interesting reactions at the LHC one finds that statistical uncertainties become quickly
negligible when compared to today’s uncertainties. Besides the technical difficulties to perform higher
order calculations, limitations arise from the knowledge of the proton—proton luminosity and the parton
distribution functions. Estimates for proton—proton luminosity measurements at the LHC assign typically
uncertainties oft5%. Similar uncertainties are expected from the limited knowledge of parton distribu-
tion functions. Consequently, the traditional approach to cross section predictions and the corresponding
measurements will be limited to uncertainties of at he5%.

A more promising method [101], using only relative cross section measurements, might lead even-
tually to accuracies of-1%. The new approach starts from the idea that for B)glprocesses one should
consider the LHC as a parton—parton collider instead of a proton—proton collider. Consequently, one
needs to determine the different parton—parton luminosities from experimentally clean and theoretical
well understood reactions.

The production of the vector bosos* and Z° with their subsequent leptonic decays fulfil these
requirements. Taking today’s experimental results, the vector boson masses are precisely known and
their couplings to fermions have been measured with accuracies of better than 1%. Furth&f#ore,
and Z° bosons with leptonic decays have 1) huge cross sections (several nb’s) and 2) can be identified
over a large rapidity range with small backgrounds.

From the known mass and the number of “counted” events as a function of the r&pioity can
use the relationd/? = sz1zo andyY = lln”1 to measure directly the corresponding quark and anti-
quark luminosities over a wide range (see flg 2). Simulation studies indicate that the leptdniand
Z decays can be measured with good accuracies up to lepton pseudorapjlitie®.5, corresponding
roughly to quark and anti-quatkranges between 0.0003 to 0.1. The sensitivityloand Z production
data at the LHC even to small variations of the pdf’s is indicated in Figure 16.

Once the quark and anti-quark luminosities are determined frorfitfaand Z data over a wide:



range, SM event rates of high mass Drell-Yan lepton pairs and other processes dominated by quark—anti-
guark scattering can be predicted. The accuracy for such predictions is only limited by the theoretical
uncertainties of the studied process relative to the on&lf@ndZ production.

The approach can also be used to measure the gluon luminosity with unprecedented accuracies.
Starting from gluon dominated “well” understood reactions within the SM, one finds that the cleanest
experimental conditions are found for the production of high masket, Z°-Jet and perhap$y *—Jet
events. However, the identification of these final states requires more selection criteria and includes an
irreducible background of about 10-20% from quark—anti-quark scattering. Some experimental observ-
ables to constrain the gluon luminosity from these reactions have been investigated previously [102]. The
study, using rather restrictive selection criteria to select the above reactions with well defined kinematics,
indicated the possibility to extract the gluon luminosity function with negligible statistical errors and
systematics which might approach errors of akholi# over a wider range.

Furthermore, the use of the different rapidity distributions for the Vector bosons and the associated
jets has been suggested in [103]. The proposed measurement of the rapidity asymmetry improves the
separation between signals and backgrounds and should thus improve the accuracies to extract the gluon
luminosity.

For this workshop, previous experimental simulations of photon—jet final states have been repeated
with much larger Monte Carlo statistics and more realistic detector simulations [104]. These studies
select events with exactly one jet recoiling against an isolated photon with a mingnofM0 GeV.

With the requirement that, in the plane transverse to the beam direction the jet is back—to—back with the
photon, only the photon momentum vector and the jet angle needs to be measured. Using the selected
kinematics, the mass of the photon—jet system can be reconstructed with good accuracy. These studies
show that several million of photon—jet events with the above kinematics will be detected for a typical
LHC year of 10 fb'! and thus negligible statistical errors for the luminosity andetween 0.0005 to

~ 0.2. Thisz range seems to be sufficient for essentially all highreactions involving gluons. In
addition, it might however be possible using dedicated trigger conditions, to select events withgghoton

as low as 10-20 GeV, which should enlarge ttrange to values as low as 0.0001. The above reactions

are thus excellent candidates to determine accurately the parton luminosity for light quarks, anti-quarks
and gluons.

To complete the determination of the different parton luminosities one needs also to constrain the
luminosities for the heavies,c and b quarks. The charm and beauty quarks can be measured from a
guark flavour tagged subsample of the photon—jet final states. One finds that the photon—jet subsamples
with charm or beauty flavoured jets are produced dominantly from the heavy quark—gluon scattering
(c(b)g — c(b)y). For this additional study of photon—jet final states, the jet flavour has been identified
as being a charm or beauty jet, using inclusive higimuons and in additioh-jet identification using
standard lifetime tagging techniques [105]. The simulation indicates that clean photon—charm jet and
photon—beauty jet event samples with higiphotons 40 GeV) and jets with inclusive highy muons.

The muorp; spectrum from the different initial quark flavours is shown in Figure 17.

Assuming that inclusive muons with a minimupp of 5-10 GeV can be clearly identified, a
PYTHIA Monte Carlo simulation shows that a few®18-photon events and about’1B-photon events
per 10 fb! LHC year should be accepted. These numbers correspond to statistical errors of dB6ut
for az. andz, range between 0.001 and 0.1. However, without a much better understanding of charm
and beauty fragmentation functions such measurements will be limited to systematic uncertainties of
+ 5-10%.

Finally, the strange quark luminosity can be determined from the scattering e We. The
events would thus consist &+ charm—jet final states. Using inclusive muons to tag charm jets and
the leptonic decays dfi’’s to electrons and muons we expect about an accepted event sample with a
cross section of 2.1 pb leading to about 20k tagged events per1Q_f##C year. Again, it seems that
the corresponding statistical errors are much smaller than the expected systematic uncertainties from the



charm tagging oft 5-10%.

In summary, we have identified and studied several final states which should allow to constrain
the light quarks and anti-quarks and the gluon luminosities with statistical errors well below 1%for an
range between 0.0005 to&t0.2. However, experimental systematics for isolated charged leptons and
photons, due to the limited knowledge of the detector acceptance and selection efficiencies will be the
limiting factor which optimistically limit the accuracies to perhap$% for light quarks and gluons. The
studied final states with photon—jet events with tagged charm and beauty jets should allow to constrain
experimentally the luminosities af ¢ andb quarks and anti-quarks over a similarange and systematic
uncertainties of perhaps 5-10%.

These promising experimental feasibility studies need now to be combined with the corresponding
theoretical calculations and Monte Carlo modelling. In detail one has to study how well uncertainties
from scale dependenceg and higher order corrections change expected cross section ratios. Figure 6
gives an example of today’s uncertainties forandZ cross sections at the LHC [10]. Similar estimates
for all studied processes need to be done during the coming years in order to know the real potential of
this approach to precision cross section measurements and their interpretation at the LHC.

2.8 Lepton Pair Production at the LHC and the Gluon Density in the Protont®

The production of lepton pairs in hadron collisiohgh, — v*X;~v* — [l proceeds through an inter-
mediate virtual photon vigg — ~*, and the subsequent leptonic decay of the virtual photon. Interest
in this DY process is usually focused on lepton pairs with large rgasshich justifies the application

of perturbative QCD and allows for the extraction of the anti-quark density in hadrons [106]. Prompt
photon productiorhi ho — X can be calculated in perturbative QCD if the transverse mome@igm

of the photon is sufficiently large. Because the quark-gluon Compton subprocess is domjirant,X,

this reaction provides essential information on the gluon density in the proton ati§2§. Alterna-

tively, the gluon density can be constrained from the production of jets with large transverse momentum
at hadron colliders [7].

In this report we exploit the fact that, along prompt photon production, lepton pair production
is dominated by quark-gluon scattering in the regi@n > /2. This realization means that new
independent constraints on the gluon density may be derived from DY data in kinematical regimes that
are accessible at the LHC but without the theoretical and experimental uncertainties present in the prompt
photon case.

At LO, two partonic subprocesses contribute to the production of virtual and real photons with non-
zero transverse momentum — ~*)g andgg — v*)¢. The cross section for lepton pair production
is related to the cross section for virtual photon production through the leptonic branching ratio of the
virtual photona/(37Q?). The virtual photon cross section reduces to the real photon cross section in
the limit Q% — 0.

The NLO corrections arise from virtual one-loop diagrams interfering with the LO diagrams and
from real emission diagrams. At this ord2r— 3 partonic processes with incident gluon paiyg),
quark pairs(qq), and non-factorizable quark-anti-quafii.) processes contribute also. An important
difference between virtual and real photon production arises when a quark emits a collinear photon.
Whereas the collinear emission of a real photon leadslt& @ingularity that has to be factored into a
fragmentation function, the collinear emission of a virtual photon yields a finite logarithmic contribution
since it is regulated naturally by the photon virtualiy In the limit Q2 — 0 the NLO virtual photon
cross section reduces to the real photon cross section if this logarithm is replacéddyyode. A more
detailed discussion can be found in Ref. [107, 108].

The situation is completely analogous to hard photo-production where the photon participates in
the scattering in the initial state instead of the final state. For real photons, one encounters an initial-

8Contributing authors: E. L. Berger and M. Klasen.
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Fig. 18: Invariant cross sectiaid®s /dp® as a function of Fig. 19: Contributions from the partonic subprocesges
Qr for pp — v* X aty/s = 14 TeV. andqq to the invariant cross sectiglid®o/dp® as a func-

tion of Qr for pp — v* X at+/s = 14 TeV. Thegg channel
dominates in the regio@r > Q/2.

state singularity that is factored into a photon structure function. For virtual photons, this singularity is
replaced by a logarithmic dependence on the photon virtu@lit¥09].

A remark is in order concerning the interval @ in which our analysis is appropriate. In
general, in two-scale situations, a series of logarithmic contributions will arise with terms of the type
adIn"(Q/Qr). Thus, if eitherQr >> Q or Q7 << @, resummations of this series must be consid-
ered. For practical reasons, such as event rate, we do not venture into the dpmain @, and our
fixed-order calculation should be adequate. On the other hand, the cross section is large in the region
QT << Q. In previous papers [107, 108], we compared our cross sections with available fixed-target
and collider data on massive lepton-pair production, and we were able to establish that fixed-order per-
turbative calculations, without resummation, should be reliabl€for> @ /2. At smaller values of)r,
non-perturbative and matching complications introduce some level of phenomenological ambiguity. For
the goal we have in mind, viz., constraints on the gluon density, it would appear best to restrict attention
to the region)r > @Q/2, but below@Qr >> Q.

We analyze the invariant cross sectibd®c /dp® averaged over the rapidity interval -1:0y <
1.0. We integrate the cross section over various intervals of pair-fgaamsd plot it as a function of
the transverse momentuf;. Our predictions are based on a NLO calculation [110] and are evaluated
in the MS renormalization scheme. The renormalization and factorization scales areiset fop =

pr = 1/Q%+ Q2. If not stated otherwise, we use the CTEQ4M parton distributions [111] and the

corresponding value of in the two-loop expression aeig with four flavours (five ifu > m;). The DY
factora/(37Q?) for the decay of the virtual photon into a lepton pair is included in all numerical results.

In Fig. 18 we display the NLO cross section for lepton pair production at the LHC as a function of
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Q@ for four regions of@) chosen to avoid resonancé®, from threshold t®.5 GeV, between theg /¢

and theY resonances, above tigs, and a high mass region. The cross section falls both with the mass
of the lepton paiY and, more steeply, with its transverse momen@m The initial LHC luminosity is
expected to be B cm™2 s, or 10 flo-!/year, and to reach the design luminosity of416m~—2 s~! after

three or four years. Therefore it should be possible to analyze data for lepton pair production to at least
Q7 ~ 100 GeV where one can probe the parton densities in the proton up te 2Q1//s ~ 0.014.

The UAL collaboration measured the transverse momentum distribution of lepton pgiks-at630

GeV toxr = 0.13 [112], and their data agree well with our expectations [107,108].

The fractional contributions from thgy andqg subprocesses through NLO are shown in Fig. 19. It
is evident that theg subprocess is the most important subprocess as lofig-as /2. The dominance
of the gg subprocess increases somewhat wthrising from over 80 % for the lowest values @fto
about 90 % at its maximum fap ~ 30 GeV. Subprocesses other than those initiated bydgrand g
initial channels are of negligible import.

The full uncertainty in the gluon density is not known. We estimate the sensitivity of LHC ex-
periments to the gluon density in the proton from the variation of different recent parametrizations. We
choose the latest global fit by the CTEQ collaboration (5M) as our point of reference [7] and compare
results to those based on their preceding analysis (4M) [111] and on a fit with a higher gluon density
(5HJ) intended to describe the CDF and DO jet data at large transverse momentum. We also compare to
results based on global fits by MRST [28], who provide three different sets with a central, higher, and
lower gluon density, and to GRV98 [113]

In this set a purely perturbative generation of heavy flavours (charm and bottom) is assumed. Since we are working
in a massless approach, we resort to the GRV92 parametrization for the charm contribution [114] and assume the bottom

contribution to be negligible.



In Fig. 20 we plot the cross section for lepton pairs with mass betweefy/thendY resonances
at the LHC in the region betweefr = 50 and 100 GeV £ = 0.007...0.014). For the CTEQ
parametrizations we find that the cross section increases from 4M to 5M by 5 % and does not change
from 5M to 5HJ in the wholeQr-range. The largest differences from CTEQ5M are obtained with
GRV98 (minus 18 %).

The theoretical uncertainty in the cross section can be estimated by varying the renormalization
and factorization scalgr = pr about the central valug/ Q2% + Q%. In the region between thé/v
and T resonances, the cross section drops feaf9% (LO) to +16% (NLO) when . is varied over
the interval intervaD.5 < p/1/Q? + Q% < 2. The K-factor ratio (NLO/LO) is approximately 1.3 at

1/\/Q*+QF = 1.

We conclude that the hadroproduction of low mass lepton pairs is an advantageous source of
information on the parametrization and size of the gluon density. With the design luminosity of the
LHC, regions ofrr ~ 0.014 should be accessible. The theoretical uncertainty has been estimated from
the scale dependence of the cross sections and found to be small at NLO.

3. MONTE CARLO EVENT GENERATORS 2

The event generation package is the first link of the event simulation/reconstruction software suite which
is central to any experimental data analysis. Physics results are obtained by a direct comparison of sim-
ulated and observed data. Therefore, precision analyses rely on an accurate and detailed implementation
of the underlying physics model in the generation of signal as well as background processes.

An event generator is built from various pieces whose object and nature are quite different. Some
are perturbative: the hard-scattering matrix element (ME) which can be calculated exactly, the parton
shower (PS) which approximates, through the evolution equations, the initial parton conditions and final-
state jet structure, and some are non-perturbative and probabilistic like the parton distribution in the
composite initial particles and the fragmentation of the final partons. The main difficulty in writing event
generator programs lies on the consistent matching of those different components.

Several multi-process parton shower event generators (PSEG) have been developed to cover the
physics programme atte™, pp or pp colliders: PrTHIA [115], HERwWIG [116-118], BAJET [1109,
120]. These Monte Carlo programs provide an accurate description of jet physics at existing high-energy
colliders, which allow the simulation of a large variety of final-state processes within and beyond the
SM. These programs have been essential to demonstrate the impressive LHC potential on many different
and detailed physics questions, to develop new analysis strategies and also to optimize the performance
of the LHC experiments.

Nevertheless, the increasing potential of very accurate measurements at the LHC and the sensi-
tivity to exotic physics processes using specific and rare kinematics demand for the implementation of
higher-order processes and thus a rethinking of the organisation and probably an extensive rewriting of
many specific Monte Carlo generators.

In the first section, we list the major points of concern or pending issues in the development of
event generators for the LHC physics. The next section discusses the present treatments of minimum
bias and underlying events. The following two contributions address the implementation of transverse
momentum effects in boson production. The last three sections present a short description of some of the
currently available ME generators.

2Section coordinator: D. Perret-Gallix.



3.1 QCD event generators: major issue’s
3.11 Multi-particle final states
Matrix element

PSEG are essentially limited to the simulation20f~ 2 processesbased on analytic matrix element
expressions. However, the LHC center of mass energy is large enough to open many high multiplicity
channels. In addition, new particle searches in the Higgs and Susy sectors require the simulation of
2 — 4,2 — 6 or even2 — 10 jet processesfor which a precise knowledge of the SM background
processes is mandatory.

QCD multi-jets event®p — n4 jets andpp — Z/W + nq jets have been computed at LO, for
ny; < 6 by using the SPHEL approximation [121] (i.e. assuming all helicity amplitudes give similar
contributions), and for; < 6 (NJETY [122] andny < 4 (VECBOSY [123] by using exact recurrence
relations [124].

In the PSEG, partonic final states are mimicked through the PS mechanism based on the leading
logarithmic (LL) approximation. It properly describes parton radiations only in the soft and collinear
region leading to a crude estimate of the multi-parton dynamics of the event. The remedy for a better
multi-parton event generator is two-foldi) o improve the simulation of the PS by introducing ME
corrections (see Sects. 3.3 and 3.4i), 1o implement the complete multi-parton hard scattering ME
process.

The evaluation of ME for multi-particle QCD processes has been reviewed in [125]. A powerful
technique is the use of helicity amplitudes in the massless limit [126—-128]. Recent developments in
this direction were done in [129] where the Weyl-van-der-Waarden spinor calculus was generalized to
the massive fermions. At this level of complexity where so many sub-processes must be calculated, the
analytic hand-made approach becomes literally intractable unless stringent approximations are imposed,
as the narrow width approximation, massless fermions, averaging/summing over initial/final helicity state
or selecting only a subset of gauge invariant diagrams.

A more systematic approach is needalitd provide all required channelsi)(to allow for a detalil
study of finite width effects and helicity and color correlatioriig) o generate complete ME expressions
in order to match the experimental precision. For example, the LHC statistics will allow to measure the
top quark mass with negligible uncertainty. This implies that both top quarkiarhite widths must
be taken into account in the evaluation of the interference between signal and background diagrams.

The automatic Feynman diagram generator packages, largely used oreth@hysics analysis,
generate complete and approximation-free tree-level ME codes, in principle, for any final state multiplic-
ity and with a higher reliability level than hand written proced@reghey are gradually upgraded jp
physics. RACE [130-132], MADGRAPH [133], ALPHA [134] and R4ACT [135, 136] are based on tree
level helicity amplitude algorithms in arbitrary massive gauge theories. The evaluation is purely numer-
ical and the code size scales linearly with the number of external particlesLHAsA(see Sect. 3.7),
an iterative algorithm, based on Green functional methods, evaluates the amplitudes for any given La-
grangian and leads to more compact expressions allowing, for example, the generaggngof- n
with n < 9 [137]. The GMPHEP [138, 132] package is based on the squared amplitude technique.
Here, the size of the ME code grows exponentially with the number of external particles, but it produces
more powerful symbolic expressions. This method has shown good efficiency for the evatuatiGrd
processes, comparable to the helicity amplitude algorithms.

However, the completeness of the automatically produced matrix elements and the poor optimiza-
tion of the code (when compared to hand coding) often translate into computationally intensive and

3Contributing authors: V.A. llyin, D. Perret-Gallix and A.E. Pukhov.

“n — m represents processes wherimitial particles decays or scatter to produeeparticles in the final state.
®In R-parity non-conserving models.

®The packages automatically generate checks for gauge invariance and gauge independence.



memory hungry expressions, sometimes reaching the limit of computability on conventional worksta-
tions.

The development effort is focused on two direction¥idq improve the code efficiency by the in-
troduction of new computational algorithm, by a better optimization and by the “automated” introduction
of approximations, i) to develop code taking advantage of massively parallel systems [139, 140].

Multi-dimensional integration

The cross section computation and the event generation stage are based on the multi-dimensional in-
tegration procedure. It needs to be focused to the phase space region where the amplitude is large.
The amplitude behavior on those regions can be sharp and multi-variate due to complex singularity pat-
terns. Integration packages includinge®As [141, 142], BASEYSPRING [143, 144], MILXy [145],

FoaM [146] use self-adapting techniques basedmportanceand/orstratified sampling However, a

faster integration convergence is obtained by providing the integration algorithm with information on
the location and behavior of the singularities. This is usually done by the so-called “kinematics” rou-
tine performing the mapping of the integration variables to the physics parameters. Not yet fully auto-
mated [147], it is aiming by appropriate variable transforms at smoothing the singularities and reducing
their dimensionality.

For many important processes, it is impossible to match all singularities within a single set of
variable transforms (e.gpp — wuudd with W ,Z decays and-channel singularities). In those cases,
one relies on anultichannelalgorithm [148, 149] where each peaking structure has its own appropriate

mapping.

Interface to the PSEG package

The implementation of automatically-produced hard-process ME in PSEG is a delicate but essential task
to benefit from the implementation of the complex QCD machinery reproducing the initial and final
states.

The ultimate goal is to embed the full ME with its appropriate kinematics mapping into the kernel
of the PSEG through some automated procedure. Although some progress has been achieved toward this
end, a simpler approach is to generate parton level event sample using a program dedicated to a given ME,
then let them fragment through the PS and hadronization scheme of the selected PSEG. For example, in
PyTHIA the routinePYUPINandPYUPE\are available for the implementation of externally produced
event processes. Similar facilities exist or can be implemented in other PSEG. This technique already
used by the LHC experiments (see section 3.5) may raise consistent parameter and parton distribution
bookkeeping issues.

3.12 Heavy-quark production and parton shower

Keeping the fermion masses at their on-shell value, although making the expressions more complex, is
always a good practice to get rid of the propagator pole divergence. At LHC, from a phenomenological
point of view, lightu, d ands quark masses can be neglected, but heayandt¢ quark should be
implemented not only to reproduce threshold effects, but also for a correct treatment of spin correlation
and NLO corrections. Beside the basiquark physics studies, the heavy-quark event generation plays
an important role as the dominant background to the Higgs sedr¢iib, tt + 2jets andtitt, bbbb,

bbtt). Those computations require the use of multi-particle massive ME as developed in the automatic
approach.

The simulation of the PS developed by a massive quark is similar to the massless case above an
angular cut-off off = m,/E,, while below no radiation is emitted. This is true only in the soft and
collinear region, if the physics observable is sensitive to higteffects (e.g. top mass reconstruction)
full massive radiative heavy-quark decay ME (ite— bW g) must be embedded in the PS code [150,



151].

3.13 Color and helicity implementation

Color and spin effects are important at LHC. Color correlations beside driving the fragmentation of
partons lead to color reconnection effects acting on the local event multiplicity. Spin effects in the top
physics, for example, provide a useful handle on the nature of the couplings [152].

The procedure to assign helicity and color to the initial/final partons requires similar implemen-
tations in an event generator. Far— 2 processes, the number of possible color flows is small and
can be handled easily through an overall factor for the single diagram case and through a slightly more
elaborated treatment when dealing with the interference of 2 diagrams with different color flows [153].
For higher multiplicity [154], in the super-symmetric QCD [155] and in tReparity violated pro-
cesses [156], the selection of the color final state is more involved. In the helicity amplitude approach,
each diagram must be decomposed over a color flow reference base. The cross sections for all possible
color/helicity combinations§*s x 3™ x 2"s*"4) are then evaluated. Adding more final-state particles
drastically increases the number of cross section computations.

3.14 NLO and NNLO corrections

In QCD, talking about corrections concerning the NLO and NNLO contributions is an understatement.
Higher-order computations are very important not only due to the rather large coupling censtetitc-

ing substantial corrections, but mainly because they reduce the renormalization and factorization scale
dependence. Furthermore, analysis or experimental-cut dependencies (like the cone-size dependence in
jet analysis) are better reproduced when higher-order corrections are included. Roughly speaking if one
can say that NLO is the first order giving a sensible perturbative result, NNLO can be seen as the error
estimate on this result.

In principle, computing NLO matrix elements is straightforward using loop integral reduction
techniques, but the number of involved diagrams and their complexity have lead to the development
of automatic coding programs like FeynArt/FeynCalc Formcalc/Looptools [157-159RacE(see
Sect. 3.6). The latter is geared to provide 1-lespody final-state ME while, in practice, a maximum
of n = 4 and further approximations are imposed by computational limitations.

But the main problem lies in the cancellation of soft and collinear infinities present at NLO preci-
sion. Fully inclusive computations generate the so-callethctor as a global scaling factor, but detailed
analyses need phase-space dependent corrections. Two techniques (see the general discussion in Sect. 4.)
have been developed to handle the cancellations: the phase-space slicing method [160] and the subtrac-
tion method [161, 162]. In the former, the cancellation is performed by approximate integration within
regions delimited by some unphysical cut-off (the approximation becomes better as the cut-off becomes
smaller), in the latter the divergent terms are replaced by a suitable analytically-integrable expression
plus its finite difference with the original expression. For these two approaches, Monte-Carlo integra-
tion techniques are used, allowing for a precise implementation of the experimental cuts. These NLO
programs (see Sect. 4.) can be seen as “pseudo-event generators”. Phase space points (pseudo-events)
after being tested against the cuts have their corresponding weights accumulated to form the observable.
Single or multi differential distributions can be built in one go. But two issues prevent the use of these
packages as true event generatdisthe handling of negative weighted events diidthe interface to
the PS and fragmentation stage. No definite scheme currently exists to properly implement LO+NLO
processes in a stochastic event generator.

The negative weighted events arise from the virtual corrections cancelling the soft and collinear
divergences. Several attempts are on trial. One approach is to treat those events as the usual positive
weighted events and to observe the cancellation only after the reconstruction stage where the experimen-
tal resolution will have introduced a natural cut-off. This implies the generation, the simulation and the



reconstruction of many events which finally cancel, not contributing to the statistical significance and
therefore leads to unstable results. More advanced attempts have been based on a re-weighting of event
generated by showering from the LO matrix elements [163-166, 150, 151]. Recently, a modified sub-
traction method is exercised to built NLO event generators [167, 168] by point-by-point cancellation of
the singularities. This approach looks quite encouraging although final implementations have not been
realized yet.

The second problem is the matching of a NLO ME to the PS. A consistent approach would be to
interface a NLO ME to next-to-leading logarithmic (NLL) order parton shower, but no such algorithm
exist yet (see Sect. 3.15) and therefore one has to find the least damaging approach to connect NLO ME
and LL PS and final hadronization. Basically the ordered evolution PS variable should be matched to
the ME regularization parameter. Remaining double counting effects will be removed by the rejection
algorithm for each event topology [167].

3.15 Parton shower

In hadronic collision, the parton showering occurs both in the initial and in the final state. In the latter,
the high-virtuality partons are evolved using the DGLAP equations down to quasi-real objects ready to
undergo final hadronization. The initial partons selected from the parton distribution functions with a
relative momentum fraction and virtuality Q2 follow a backward evolution [169-171] to bring back

the virtuality down to values compatible with the confinement of partons in a fast hadron (cloud of quasi-
real particles). In this process, gluons and quarks are emitted (absorbed in the backward-evolution time
frame) by quark radiation or gluon splitting. This radiation contributes to the final-state multiplicity
(beam remnants). In addition, the parton acquires a transverse momentum and the full kinematic of the
initial centre-of-mass of the hard scattering will be uniquely defined (see Sects. 3.3 and 3.4).

The parton shower model implemented in the PSEG is essentially a LL approximation, even if
some NLL corrections have been added through exact energy-momentum conservation, angular ordering
and ‘optimal scheme’ definition fag [172]. The dominant logarithmic singularities are resummed in
the Sudakov form factors.

As seen in the previous section, the need for a NLL parton shower is high. The problem is that
resumming higher-order correction breaks one major “raisetrel’ of the PS: the universality. At LL
level, the hard scattering and the parton showering are 2 independent processes (factorization between
the short an the long range) and the success of the PSEG is based on this feature. Incorporating higher-
order corrections may break universality and each type of hard scattering process may require a specific
NLL PS evaluation (see also the last paragraph in Sect. 3.6).

3.16 Multi-parton scattering

PSEG for rare events usually include single-scattering processes only. At the LHC, one expect, due to the
unitary bound, multi-parton interactions to give important contributions to several processes [173,174].
As an example the cross section for the production of four jets with double-parton collisions dominates
the single-scattering process when the minimum of the produced jets transverse momenta s

20 GeV (see Sect. 8.). These processes, observed by CDF [175, 176], are largely discussed in Sect. 8.,
in the Bottom Production Chapter of this Report and in the ATLAS TDR [1]. Information related to

the PSEG implementation of multi-parton scattering can be found in ¥heiR [115] and HERWIG

v6.1 [118] manuals.

Under the simplifying assumptions of no correlation between the longitudinal-momentum frac-
tions of the initial partons, and of the process-independence of parton correlations in transverse-momentum
space, double-parton interactions are easyly implementable into PSEG codes, in terms of a single uni-
versal parameter. ;¢ (see Sect. 8.). However, none of those hypotheses can be taken for granted. Itis
therefore important to implement those effects in PSEG programs by using different dynamical models.



In addition to their contributions to the background to new particle searches, the multi-parton interactions
at the LHC can provide insights on the dynamical structure of the hadrons [177-179].

3.17 Standardization and language issues

The availability of several independent event generation packages although aiming at similar scopes is
a big advantage for the experimental community. It makes possible comparative checks and leads to a
deeper understanding of the various approximations used and implementation dependent issues.

However, one must strongly stress that the definition of a common interface scheme between the
event generators and the simulation/analysis experimental packages would be extremely valuable. Such
a standardization would cover the following issueB: parameter naming conventionij)(parameter
database managemeriii,)(event output format,y) event sample database.

Although the standardization scheme can already be exercised on the existing Fortran PSEG, it
takes its full meaning with the current transition to the object oriented (OO) methodology. The main-
tenance issueof those large and complex packages over the long expected lifetime of the LHC experi-
ments is the main reason for using the OO technology, but the built-in object modularity opens the door
to a finer grained standardization at least to the level of the interfaces of the main procedures (random
number generator, diagram generation, diagram display, matrix element code, integrator, parton shower,
fragmentation, structure functions). This would allow the building of event generators using procedures
from various origins. Most of the PSEG package developers have endorsed C++ as the language for the
future developments. Design and implementation studies are already in progress [180-182].

On these last issues, the setting up of a dedicated working group with all concerned authors and
users would be quite timely.

3.2 Minimum bias and underlying event$

A crucial area of physics for the LHC is the structure of finals states in soft minimum-bias collisions and
the soft underlying event in hard processes. At present very little is understood about these matters on the
basis of QCD starting from first principles. The three principal event generators in use for LHC physics,
ISAJET, HERWIG and PrTHIA, use quite different models for this type of physics, although each uses
basically the same model to generate both minimum-bias and underlying events.

Simulation of minimum-bias events starts with a parametrization of the total cross secten. H
WIG and PrTHIA both use the Donnachie-Landshoff fit [183]

oot = 21.7057 %% 4 56.085~0-49%°
(Whereo is in mb andy/s in GeV), whereasdAJET uses dog? s form:
Otor = 25.65 [1 + 0.01021og?(s/1.76)] .

Notice (see Fig. 21) that, although smaller asymptotically, #ast T value is larger at LHC energies.

To model soft final states, ERwWIG uses the UA5 minimum-bias Monte Carlo [184], adapted to
its own cluster fragmentation model. See therRwIG manuals [118] for further details. The model is
based on a negative binomial parametrization of the overall charged multiplicity. This has the property
of generating large multiplicity fluctuations with long range in rapidity, in addition to short-range corre-
lations due to cluster decay. For true minimum-bias simulation, the soft events generatekiwycH
should be mixed with an appropriate fraction of QCD hard-scattering events. For the underlying event in

"Maintenance here means much more than a mere bug correcting process, it refers to the ability to implement new physics
models, processes or features on request.
8Contributing author: B.R. Webber.
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Fig. 21: Thepp total cross section according to the parametrizations use@ MG, PYTHIA and ISAJET.

hard collisions, the same model is used to simulate a soft collision between beam clusters containing the
spectator partons.

The minimum-bias/underlying event model used$aJeTis based on a mechanism of multiple
Pomeron exchange [185], with a fluctuating number of ‘cut Pomerons’ acting as sources of final-state
hadrons. Each cut Pomeron fragments directly into hadrons according teabetlindependent frag-
mentation model, with the fragmentation axis along the beam direction. The model again produces
large long-range multiplicity fluctuations, but short-range correlations are weak due to the absence of
clustering.

In PYTHIA a multiple interaction model is used to generate hard, soft and underlying events in a
unified manner. Multiple interactions are discussed in more detail below. The nunalner distribution
P(n) of interactions per event is controlled by the minimum transverse momentum allowed in each
interaction and, optionally, by a model for the impact parameter profile. Long-range fluctuations may
be somewhat weaker in this model, with short-range correlations somewhere between the two other
generators. In minimum-bias events the cheice 0 can occur, in which case a two-string fragmentation
model linking a quark in each beam proton to a diquark in the other is used.

A study of energy-flow correlations between well-separated phase-space regions would be helpful
in understanding the underlying event and in separating its contribution from that of the hard subprocess
[186]. Such a study is currently being undertaken by the CDF Collaboration.

3.3 Matrix-element corrections to vector boson production and transverse-momentum distribu-

tions®
Vector boson production will be a fundamental process to test QCD and the SM of the electroweak
interactions. Monte Carlo event generators [115-117] simulate the initial-state radiation in vector boson
production processes in the soft/collinear approximation, but can have ‘dead zones’ in phase space,
where no parton emission is allowed. The radiation in the dead zone is physically suppressed, since
it is not soft or collinear logarithmically enhanced, but not complete absent as nevertheless happens in
standard PS algorithms. Matrix-element corrections to taewiG simulation of Drell-Yan processes
have been implemented in [164] following the method described in [163]: the dead zone is populated by
the using of the exact first-order amplitude and the cascade in the already-populated phase-space region
is corrected using the exact matrix element every time an emission is capable of being the hardest so
far. A somewhat different procedure is followed to implement matrix-element corrections te threP

®Contributing authors: G. Corcella and M.H. Seymour.
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event generator [165, 166]: the PS probability distribution is applied over the whole phase space, the
previous algorithm having a cyt < my on the vector bosofr transverse momentum to avoid double
counting, and the exa@(ag) matrix element is used only to generate the closest branching to the
hard vertex. Referring hereinafter to the&RwIG event generator, in Fig. 22 the distribution of #é
transverse momentugy- is plotted at the LHC by running ERwWIG 5.9, the latest public version, and
HERWIG 6.1 [118], the new version including matrix-element corrections to vector boson production, for
an intrinsic transverse momentum;,; = 0, its default value. A big difference can be seen at lagge

where the 6.1 version has many more events which are generated via th&éxggtamplitude. In the

PS soft/collinear approximation, on the contrary,is constrained to ber < myy. A suppression can

be seen at smally, due to the fact that, even though we are providing the Monte Carlo shower with the
tree-levelO(«g) matrix-element corrections, virtual contributions are missing and, by default, we still
get the total leading-order cross section. No next-to-leading order parton shower algorithm is presently
available.

In Fig. 23 some recent DY data [187] on &g spectrum at the Tevatron is compared with the
HERWIG 6.1 results, which are corrected for detector smearing effects. A good agreement is found after
hard and soft matrix-element corrections; the optigns= 0 and 1 GeV are investigated, but no relevant
effect is visible after detector corrections, which have been shown in [164] to be pretty strong.

In Fig. 24, we compare ERwIG with some CDF data [188] o# production, already corrected for
detector effects, which are however much smaller tharitthease. We consider the optiogs;,,: = 0,
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1 and 2 GeV. The overall agreement is good, with a crucial role of matrix-element corrections to fit
in with the data at larger. At low g7, the best fit is the one correspondinggta,: = 2 GeV. Even
though, as can be seen from Fig. 24, theistribution is strongly dependent on the intrinsic transverse
momentum at lowgr, in [189] and in Fig. 25 it is shown that the ratio of th& and Z differential

cross sections, both normalized to one, is roughly independent,@f which means that the effect of a
non-zerogrint IS approximately the same for bobit andZ spectra. This ratio is one of the main inputs

for the experimental analyses and the fact that it is not strongly dependent on unknown non-perturbative
effects is good news for studies on i€ mass measurement.

It is also worthwhile comparing the #RwIG 6.1 g7 distributions with some available calculations
which resum the logarithms= log(my /qr), my being the vector boson mass, in a Sudakov-like ex-
ponential form factor (see Sect. 5. for a review of theoretical aspects of Sudakov resummation). Such
logarithms are large in the low, range. In [164] the Monte Carlo results are compared with the re-
summation approaches of [190], where all terms down to the next-to-leading logarithmicrorddf*
are kept in the Sudakov exponent, bothgin and impact parametérspace, and of [191], where the
authors expand the Sudakov exponent and keep in the differential cross section all terms down to the
order~ o%i?"~3, which are next-to-next-to-leading logarithms after the expansion of the form factor.
Such resummations are also matched to the exact first-order result in [164]. In Figs. 26 andi27 the
gr distributions are plotted according toERwWIG 6.1 and the resummed calculations at smalland
over the wholegr range respectively. The overall agreement at dgwis reasonable and thedRwIG
plots lie well within the range of the resummed approaches. At lgrgthe matching of the resummed
calculations to the exa@®(«g) result works well only for the approach of [190] in the-space, as
we have a continuous distribution at the pajat = myy, the other distributions showing a step due to
uncompensated contributions of ordey or higher.

In [164], it is also shown that matrix-element corrections to vector boson production have a negli-
gible effect on rapidity distributions, the latest versiogrwIG 5.9 agreeing well with the CDF data on
the Z rapidity. The implemented hard and large-angle gluon radiation has nevertheless a marked impact
on jet distributions both at the Tevatron and LHC, as many more events with high transverse energy jets
are now generated. While these analyses are performed assuming that the produced vector boson decays
into a lepton pair, the implementation of matrix-element corrections to thewHG simulation of the
hadroniclWW decayW — q¢’ is in progress, however it is expected to be a reasonably straightforward
extension of the corrections already applied to the progess ¢g. Furthermore, the method applied to
improve the initial-state shower f6#/Z production could be extended to many other processes which



are relevant for the LHC. Among these, we expect that the implementation of matrix-element corrections
to top and Higgs production may have a remarkable phenomenological effect at the LHC. This is in
progress as well.

3.4 A comparison of the predictions from Monte Carlo programs and transverse momentum
resummation®

For many physical quantities, the predictions from PS Monte Carlo programs should be nearly as precise
as those from analytic theoretical calculations. This is expected, among others, for calculations which re-
sum logs with the transverse momentum of partons initiating the hard scattering (resummed calculations
are described in Sect. 5.). In the recent literature, most calculations of this kind are either based on or
originate from the formalism developed by J. Collins, D. Soper, and G. Sterman [192], which we choose
as the analytic ‘benchmark’ of this Section. In this case, both the Monte Carlo and analytic calculations
should accurately describe the effects of the emission of multiple soft gluons from the incoming partons,
an all orders problem in QCD. The initial state soft gluon emission can affect the kinematics of the final
state partons. This may have an impact on the signatures of physics processes at both the trigger and
analysis levels and thus it is important to understand the reliability of such predictions. The best method
for testing the reliability is the direct comparison of the predictions to experimental data. If no experi-
mental data is available for certain predictions, then some understanding of the reliability may be gained
from the comparison of the predictions from the two different methods.

Parton showering resums primarily the leading logarithms, which are universal, i.e. process in-
dependent, and depend only on the given initial state. In this lies one of the strengths of Monte Carlos,
since parton showering can be incorporated into a wide variety of physical processes. As discussed in
Sect. 5., an analytic calculation, in comparison, can resum all large logarithms, since all (in principle)
are included in the Sudakov exponent given in EqQ. (46).

If we try to interpret parton showering in the same language as resummation, which is admittedly
risky, then we can say that the Monte Carlo Sudakov exponent always contains terms analotféus to
and B in Eq. (47). It was shown in Ref. [172] that a suitable modification of the Altarelli-Parisi
splitting function, or equivalently the strong coupling constantalso effectively approximates th&?)
coefficient.

Both Monte Carlo and analytic calculations describe the effects of the emission of multiple soft
gluons from the incoming partons, an all orders problem in QCD. The initial state soft gluon emission
affects the kinematics of the final state partons, which, in turn, may have an impact on the signatures of
physics processes at both the trigger and analysis levels. Thus it is important to understand the reliability
of such predictions. The best method for testing the reliability is the direct comparison of the predictions
to experimental data. If no experimental data is available for certain predictions, then some understanding
of the reliability may be gained from the comparison of the predictions from the two different methods.

In particular, one quantity which should be well-described by both calculations is the transverse
momentum %) of the final state electroweak boson in a subprocess sucly as WX, ZX or
gg — HX, where most of theyr is provided by initial state parton showering. The parton shower-
ing supplies the same sort of transverse kick as the soft gluon radiation in a resummation calculation.
This correspondence between the Sudakov form factors in resummation and Monte Carlo approaches
may seem trivial, but there are many subtleties in the relationship between the two approaches relating
to both the arguments of the Sudakov factors as well as the impact of sub—leading logs [166, 188, 164].

At a point in its evolution corresponding to (typically) the virtuality of a few Gethe parton
shower is cut off and the effects of gluon emission at softer scales must be parameterized and inserted

Contributing authors: C. Ba¥s, J. Huston and I. Puljak.
HReference [172] deals only with the hightor 1/7) region, but the same results apply to the smallregion in transverse
momentum distributions.



CDF Preliminary
T tT

30 ¢ | B 7
= ; pp » 7/Z + X E
° 25 . _
> i ﬁ /7 > ee 1
o C t 66 < M ,yz< 116 GeV/c® 1
S R0 W E
. . [ ]
A 15Ff L .
= 0 Sy, -
Thbs 1
o [ + = 1992-95 Data ﬂvk%\ 1
5 5T — = NNLO ResBos (CTEQ4M) f+ﬂ+7
j rescaled up +8.4% ==
0 [ \ \ \ 4
0 5 10 15 20
Py, GeV/c
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agreement with the shape of the data (2.15 GeV).

by hand. This is similar to the (somewhat arbitrary) division between perturbative and non—perturbative
regions in a resummation calculation. The parametrization is typically done with a Gaussian smearing
similar to that used for the non—perturbatie in a resummation program. In general, the value for the
non—perturbativékr) needed in a Monte Carlo program will depend on the particular kinematics being
investigated?!?

A value for the average non—perturbatit’e greater than 1 GeV does not imply that there is an
anomalous intrinsiér associated with the parton size; rather, this amourteJ needs to be supplied
to provide what is missing in the truncated parton shower. If the shower is cut off at a higher virtuality,
more of the ‘non—perturbativel; will be needed.

3.41 Vector boson production and comparison VA#THIA and RESBOS

The (resolution correctegh distribution for Z° bosons (in the low region) for the CDF experiment
[188] is shown in Figure 28 [193], compared to both the resummed prediction from ResBos [194], and to
two predictions from PTHIA (version 6.125). One¥rHIA prediction uses the default (rm3yvalue of
intrinsic kr of 0.44 GeV and the second a value of 2.15 GeV per incoming parton. The latter value was
found to give the best agreement for 1A with the datal* All of the predictions use the CTEQ4M
parton distributions [111]. Good agreement is observed between ResBosAPand the CDF data.

3.42 Higgs boson production and comparison WAtTHIA

A comparison of the Higgs distribution at the LHC [193P, for a Higgs mass of 150 GeV, is shown
in Figure 29, for ResBos [195] and the two recent versionsyafHfA. PYTHIA has been rescaled to
agree with the normalization of ResBos to allow for a better shape comparison. Note that the peak of the

12Note that this is unlike the case of the resummation calculations in Refs. [192,194,195], where the non—perturbative physics
is determined from fits to fixed target data and then automatically evolved to the kinematic regime of interest.

For a Gaussian distributiok;™ = 1.13(kr).

1See Sect. 3.3 and Fig. 24 for comparisons of the @9k data with HERWIG.

15A more complete comparison of Monte Carlo and resummation treatments of Z and Higgs production at both the Tevatron
and the LHC can be found in Ref. [196].
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PYTHIA. The ResBos and¥HIA predictions have been normalized to the same area.

resummed distribution is at- ~ 11 GeV (compared to about 3 GeV fgf production at the Tevatron).

This is partially due to the larger mass (150 GeV compared to 90 GeV), but is primarily because of the
larger color factors associated with initial state gluofig (= 3) rather than quarks((r = 4/3), and

also because of the larger phase space for initial state gluon emission at the LHC. The newer version
of PyTHIA agrees well with ResBos at low to moderate, but falls below the resummed prediction

at highpp. This is easily understood: ResBos switches to the NLO Higgs + jet matrix element [197]
at highpy while the default RTHIA can generate the Higgs- distribution only by initial state gluon
radiation, using as maximum virtuality the Higgs mass squared. ptighiggs production is another
example where @ — 1 Monte Carlo calculation with parton showering can not completely reproduce
the exact matrix element calculation, without the use of matrix element corrections as already discussed
in section 3.3. The highp; region is better reproduced if the maximum virtual®?, ., is set equal

to the squared partonic center of mass enesgyather thann?,. This is equivalent to applying the

PS to all of phase space. However, this has the consequence of depleting the tegion as ‘too

much’ showering causes events to migrate out of the peak. The appropriate scale to usein P

(or any Monte Carlo) depends on the range to be probed. If matrix element information is used

to constrain the behavior, the correct high cross section can be obtained while still using the lower
scale for showering. The incorporation of matrix element corrections to Higgs production (involving the
processegq — qH,qq — gH, g9 — gH) is the next logical project for the Monte Carlo experts, in
order to accurately describe the high region.

The older version of PTHIA produces too many Higgs events at modegatdin comparison to
ResBos). Two changes have been implemented in the newer version. The first change is that a cut is
placed on the combination efand@? values in a branchings = Q* — 5(1 — z) < 0, wheres refers
to the subsystem of the hard scattering plus the shower partons considered to that point. The association
with @ is relevant if the branching is interpreted in terms df a» 2 hard scattering. The corner of
emissions that do not respect this requirement occurs whe)thealue of the space-like emitting
parton is little changed and thevalue of the branching is close to unity. This effect is mainly for the
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hardest emission (large§t?). The net result of this requirement is a substantial reduction in the total
amount of gluon radiation [198F. In the second change, the parameter for the minimum gluon energy
emitted in space-like showers is modified by an extra factor roughly correspondinglttitifiector for

the boost to the hard subprocess frame [198]. The effect of this change is to increase the amount of gluon
radiation. Thus, the two effects are in opposite directions but with the first effect being dominant.

This difference in thepy distribution between the two versions, 5.7 and 6.1, efihA could
have an impact on the analysis strategies for Higgs searches at the LHC [199]. For example, for the
CMS simulation of the Higgs search and the decay into two photons it is envisaged to optimize the
efficiency and the mass resolution for the high-luminosity running phase using charged particles with
relatively largep;, which balance the Higgsr spectrum. These associated charged particles will allow
to distinguish the Higgs event vertex from other vertices of unrelated proton—proton interactions with
good accuracy. The efficiency of such an analysis strategy depends obviously on the knowledge of the
Higgspr spectrum and is thus somewhat sensitive to the used Monte Carlo parametrisation.

3.43 Comparison wittHERWIG

The variation between versions 5.7 and 6.1 of RIA gives an indication of the uncertainties due to the

types of choices that can be made in Monte Carlos. The requiremerithieategative for all branchings

is a choice rather than an absolute requirement. Perhaps the better agreement of version 6.1 with ResBos
is an indication that the adoption of tligestrictions was correct. Of course, there may be other changes

to PyTHIA which would also lead to better agreement with ResBos for this variable.

Since there are a variety of choices that can be made in Monte Carlo implementations, itis instruc-
tive to compare the predictions for tipe distribution for Higgs production from ResBos and®IA

18such branchings are kinematically allowed, but since matrix element corrections would assume initial state partons to have
Q? = 0, anon-physical: results (and thus no possibility to impose matrix element corrections). The correct behavior is beyond
the predictive power of LL Monte-Carlos.



with that from HERWIG (version 5.6, also using the CTEQ4M parton distribution functions). Tar-H

WIG prediction is shown in Figure 30 along with the B41A and ResBos predictions, all normalized to

the ResBos predictidh. In all cases, the CTEQ4M parton distribution was used. The predictions from
HERWIG and FYTHIA 6.1 are very similar, with the ERwIG prediction matching the ResBos shape
somewhat better at logrr. An understanding of the signature for Higgs boson production at either the
Tevatron or LHC depends upon the understanding of the details of soft gluon emission from the initial
state partons. This soft gluon emission can be modelled either in a Monte Carlo or in a resummation
calculation, with various choices possible in both implementations. A comparison of the two approaches
is useful to understand the strengths and weaknesses of each. The data from the Tevatron that either
exists now, or will exist in Run 2, will be extremely useful to test both approaches.

In contrast to the case for Z production at the Tevatron, the Higgs cross section at the LHC is
not particularly sensitive to the non—perturbative added at the scal@,. In the evolution to the hard
scatter scal€), the kr is ‘radiated away’, given the enhanced gluon radiation probability present for a
gg initial state. For a more thorough discussion of the comparison between analytic methods and parton
showers, see Ref. [193].

3.5 CoMmpPHEPfor LHC 18

The CoMPHEP package is available fronmttp://theory.npi.msu.su/"comphep/ . A ver-
sion adapted to the LHC physicoo®PHEP V.33 [138], including executable Linux modules is available
at CERN from:/afs/cern.ch/cms/physics/ COMPHEP-Linux

The current ©MPHEP version performs all calculation at tree level (LO). Three issues must be
discussed as they open several setting options: a) the parton distributions, b) the QCD scale, and c) the
running strong coupling.

In CoMPHEP v.33, the following parton distribution sets are implemented: MRS(A) and MRS(G)
[200], CTEQA4I and CTEQ4m [111]. Note that CTEQA4I is a LO parametrization, while in all others the
evolution of parton distributions is treated at NLO. Dedicated routines are available to allow the addition
of any other defined parton distribution (e.g. CTEQ5).

As discussed in Sect. 1., the factorization theorem states that the parton distribution depends not
only on Bjorken variabler but also on its virtualityQ? or, equivalently, on the factorization scale. This
parameter is related to the energy (or momentum) scale which characterizes the hard subprocess, but it
cannot be unambiguously fixed (see Sect. 1.). Therefore it can be experimentally tuned. It can be set
by the user for each specific QCD process as efiiked or running In the latter case)? can be set
to any linear combination squared of the external particles momenta({g.g- p3)?, (p1 — p3 — p4)?,

(ps + pa)? ... where ifitial and outgoing momenta enter with opposite signs).

In CoMPHEP V.33, the QCD couplings can be computed at LO, NLO or NNLO precision. All
the corresponding formulas are written in terms\%%, the fundamental QCD scale fof; = 6 flavours
of massless quarks (see Sect. 1. and [13]). tmEHEP, to evaluate a QCD process, one first fixes the
ag hormalization point (e.g. a popular normalization point is the mass lbbson,Q = Myz) to which
correspond an experimental fit (e@éVLO(MZ) = 0.118). Then, the corresponding%) (Ny =5at
Q = M) can be deduced from the; expression at the selected precision order. TogEHEP input
parameteﬂ\% is then obtained fromh:v%). Finally, the choice of the QCD scalg determinesxg and

the factorization scale for the pdf's. Therefore, complete LO calculations of LHC processes are made
available for a consistent phenomenological analysis of the influence of higher order contributions.

"The normalization factors (ResBos/Monte Carlo) areri®a (both versions)(1.61) and gkwiG (1.76). Figures of the
absolutely normalized predictions from ResBos;TRiA and HERwIG for the pr distribution of the Higgs at the LHC can be
found in Ref. [193].

8Contributing authors: V.A.llyin and A.E.Pukhov.



3.51 CoMPHEP-PrTHIA interface

An interface between @WPHEP and RTHIA can be found in:
[/afs/cern.ch/cms/physics/ COMPPYTH

A library of CoMPHEP based partonic event generators for LHC processes has been initiated
and various samples of event are available/ats/cern.ch/cms/physics/PEVLIB for Zbb,
Wbb, ttbb and some others. Unweighted event sample files, located in the corresponding directories
(see the filelREADME for details) when handled by thedmPHEP-PrTHIA interface code, generate
complete LHC events, ready to be fed to the detector simulation software. For exam@ié) ihrecess
can be found in/afs/cern.ch/cms/physics/PEVLIB/Z_b_b. The file __pevZbb contains about 200K
unweighted events. Each event is represented by the Lorentz momenta of all external particles. In the
current version of the package, there is no color information associated to the events. Thus, only the
Independent Fragmentation Modehn be invoked. One can always require the Lund model option for
the fragmentation, as long as the corresponding color strings have been set by an external algorithm in the
routinePYUPEVThe same remark applies also to the final state radiations (FSR), which are, by default,
switched off in @MPHEP-PrYTHIA interface although initial state radiations (ISR) are switched on. In
the upcoming version of the@PHEP package [201] color strings will be generated from the matrix
element factors allowing for the use of the Lund fragmentation model.

3.6 GRACEfor LHC 1°

The URL of web page for the RACE system ishttp://www-sc.kek.jp/minami/ where the
latest information, the reports and manuals [130, 131], tRecE version.2 and the other products are
available.

The automated system allows us to create event generators for complicated processes which are
hard to calculate by hand. For instance the proggss- bbbb has been calculated without any approxi-
mation (e.g. accounting for massive fermions) by use of tRe&& system [130, 131].

The intrinsic function of the @ACE system is to generate the amplitude for a specified parton
interaction. The system has been tested for many reactions and it was confirmed to be able to manage
2-body to 6-body final state processes. The interface with the pdf's, PS and the fragmentation tools
will be implemented in the coming versions (see for exampkea@ for ep — /X [202]). For the
parton showering and the fragmentation, two kinds of approach can be followed. The first is, like in
GRAPE a 2 step procedure: theABEYSPRING package including pdf’s is used for the integration over
the phase space and for the generation of unweighted events. If the “kinematics” code is appropriate,
SPRING generates events with high efficiency and writes the four-vectors of the final-state particles on
a temporary file. Then the generated momenta are passedrtai/# for PS and fragmentation. The
other approach is more convenient but more complex. Here the code including the kinematics and the
generated matrix element is prepared so thatH?A can drive them directly. This type of interface is
tested till now only for the processes whose final state consist of 2-, 3- and 4-bodies.

The GRACE system can automatically deal with one-loop processes (NLO) for the electroweak
and QED-like QCD interactions. For the final two-body processes the performance has been shown to be
good. The application to the multi-body final states, however, would be limited because of the huge CPU
time required when the code is used as event generators. For such cases a practical use of the generated
code will be to evaluate the cross sections and to give the distribution of several physical quantities rather
than providing event generators.

As mentioned the contributions beyond LO are crucial for a detailed QCD study. Since the PS
method is based on the renormalization group equation, it works as a bridge between the “hard” parton
collision and the fragmentation. This bridge is built on the solid and reliable ground of perturbative QCD.
In other words the parton shower provides an unambiguous theoretical understanglirig)dhterac-

Contributing author: K. Kato.



tions except for the “soft” component which cannot be controlled by the perturbative QCD. However,
the PS in LL order is not enough. One of the shortcomings is as follows. The pdf’s for the initial state,
products of elaborated works, are parameterized according to the NLO QCD formulas. On the other hand
the corresponding PS, implemented in the existing programs hkeiRA , is evolved using only the LL
algorithm at least in their current status. Then the systematic summation of large logarithms up to NLL
order must solve this annoying situations. Though the basic technology has been already established and
known for many years [203—-205], its implementation is not a trivial task as simply imagined. First it

is process-dependent. Once the idea evolves and is realized as one of the environme&xs ®HfilG

should allow more precise prediction for LHC. Thus this must be the biggest issue to us.

3.7 ALPHA for LHC 2

As discussed in the introduction to this Section, the ability to evaluate production rates for multi-jet final
states will be fundamental at the LHC to study a large class of processes, within and beyond the SM. As
was also discussed in the Sect. 3.1, a necessary feature of any multi-jet calculation is the possibility to
properly evolve the purely partonic final state, for which exact fixed-order perturbative calculations can
be performed, into the observable hadronic final state. This evolution is best performed using shower
Monte Carlo calculations. The accurate description of color-coherence effects, furthermore, requires
as noticed in the introduction a careful bookkeeping of the contribution to the matrix elements of all
possible color configurations. The goal of the algorithm [137] described in this Section is to allow the
effective calculation of multi-parton matrix elements, allowing the separation, to the leading order in
1/N2 (N. = 3 being the number of colors), of the independent color configurations. This technique
allows an unweighting of the color configurations, and allows the merging of the parton level calculation
with the HERwIG Monte Carlo.

The key element of the strategy is the use of the algori#i®HA introduced in Ref. [134] for

the evaluation of arbitrary multi-parton matrix elements. This algorithm determines the matrix elements
from a (numerical) Legendre transform of the effective action, using a recursive procedure which does
not make explicit use of Feynman diagrams. The algorithm has a complexity growing like a power
in the number of particles, compared to the factorial-like growth that one expects from naive diagram
counting. This is a necessary feature of any attempt to evaluate matrix elements for processes with large
numbers of external particles, since the number of Feynman diagrams grows very quickly beyond any
reasonable value. For example, this calculation allowed [137] the evaluation of the matrix elements for
the production of 8-gluon final states. The number of Feynman diagrams which describe this process
exceeds 7 billion.

The interface of the parton level scattering matrix element with the PS requires the capability to
reconstruct the appropriate color flow for a given event. The strategy to deal with this issue is described
in detail in [137]. The following points have to be noticed:

1. Dual amplitudes [206—208] can be easily evaluated usind\tiigHAalgorithm. Since the dual
amplitudesA are independent of the numh®¥. of colors, they can be calculated exactly by taking
N, sufficiently large.

2. With an appropriate choice for the color of the external partons, the full amplitude is proportional
to a single dual amplitude.

We explicitly calculated-gluon dual amplitudes using the largé-Lagrangian. The correctness
of the calculation was checked farup to 11 by comparing the results for maximally helicity violating
(MHV) amplitudes [209] (e.g.gTg" — g*---g™) with the analytic expressions known exactly for
arbitrary n [206—208, 124]. The input of the numerical evaluation of the matrix element is a string
containing the total number of gluons, their helicity state, and their momenta. From these data, the
amplitude is evaluated automatically.

ZContributing authors: M.L. Mangano and M. Moretti.



The prescription to correctly generate the parton-shower associated to a given event in the large-
limit is therefore the following:

1. Calculate thén — 1)! dual amplitudes corresponding to all possible planar color configurations.

2. Extract themost likelycolor configuration for this event on a statistical basis, according to the
relative contribution of the single configurations to the total event wei§htSince each dual
amplitude is gauge invariant, the choice of color-configurations is also a gauge-invariant operation.

3. Develop the PS out of each initial and final-state parton, starting from the selected color config-
uration. This step can be carried out by feeding the generated event to a Monte-Carlo program
such as HRwIG, which is precisely designed tarn partons into jetstarting from an assigned
color-ordered configuration.

Notice that, if the dual amplitudes are evaluated for a specific helicity configuraterwi will also
include spin-correlation effects in the evolution of the parton shower [210,211,171,116,117].

As a result, use of the dual-amplitude representation of a multi-gluon amplitude allows to ac-
curately describe not only the large-angle correlations in multi-jet final states, but also the full shower
evolution of the initial- and final-state partons with the same accuracy availablermvtde for the de-
scription of 2-jet final states.

In alternative to the above prescription, one can Ak@HALto calculate the matrix elements for
external states with assigned colors. Since these states are all orthogonal, such an approach is particularly
efficient if one wants to use a Monte Carlo approach to the summation over all possible color states. The
program will then extract through a standard unweighting (at the leading ord¢nif) a specific color
flow from all possible color flows contributing to a given orthogonal color state. This color flow is then
suitable as an initial condition for the shower evolution. Further details can be found in [137]. At this
time, the program is only available in its parton-level form, and allows the calculation of matrix elements
forgg — ¢g...gandqgg — g¢...g processes, with up to 8 final-state gluons. A full version including the
interface with HERwIG is being prepared.

4. AVAILABLE NLO CALCULATIONS AND PROSPECTS AT NNLO 22

4.1 Available NLO calculations of multijet processe$®

QCD calculations of multijét processes beyond LO in the strong coupling constanare quite in-

volved. Nowadays we know (see below) how to perform in general calculations of the NLO corrections

to multijet processes, and almost every process of interest has been computed to that accuracy. Instead,
the calculation of the NNLO corrections is still at an organisational stage and represents a main challenge.
Why should we perform calculations which are technically so complicated ?

The general motivation is that the calculation of the NLO corrections allows us to estimate reliably
a given production rate, while the NNLO corrections allow us to estimate the theoretical uncertainty on
the production rate. That comes about because higher-order corrections reduce the dependence of the
cross section on the renormalization scalg, and for processes with strongly-interacting incoming
particles the dependence on the factorization sgaleas well.

An example is the determination of; from event shape variables ife~ — 3 jets [212-215].
The calculation of the NNLO contributions to this process would be needed to further reduce the theo-
retical uncertainty in the determination af. An additional motivation for performing calculations at
NNLO is to obtain a more accurate theoretical determination of signal and QCD background to Higgs
production (for further details, see Sect. 9.).

Loy
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In recent years it has become clear how to construct general-purpose algorithms for the calcu-
lation of multijet processes at NLO accuracy. The crucial point is to organise the cancellation of the
infrared (i.e. collinear and soft) singularities of the QCD amplitudes in a universal, i.e. process- and
observable-independent, way. The universal terms in a NLO calculation are given by the tree-level
collinear [14, 216,16, 17] and soft [217—-219] functions, and by the universal structure of the poles of the
one-loop amplitudes [160,220,221]. The universal NLO terms and the process-dependent amplitudes are
combined into effective matrix elements, which are devoid of singularities. The various NLO algorithms
(phase-spacslicing [160, 222—224] andubtractionmethod [161, 225, 227,226, 162]) provide different
methods to construct the effective matrix elements. These can be integrated in four dimensions, in prac-
tice almost always numerically, due to the complexity of the integrand. The integration can be performed
with arbitrary experimental acceptance cuts.

We now outline how to perform a NLO calculation of a generic physical observable. As is well
known from Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems, QCD (like QED) does not have
an infinite-resolution power; any attempt to compute the kinematical properties of a fixed number of final-
state quarks and gluons results in an infrared-divergent cross section. In order to obtain finite quantities,
all the partonic subprocesses which contribute to the same ordgrtmthe squared amplitude have to
be included in the computation, regardless of the number of final-state particles. In addition, one is forced
to consider variables which are inclusive enough tinfrared safe Roughly speaking, an observable is
said to be infrared safe when its value, computed with the kinematical variables of the final-state partons,
does not change abruptly when a soft gluon is emitted, or a parton splits almost collinearly into a pair
of partons. More technically, an infrared-safe observable must have a smooth limit (that is, must behave
continuously) in the following three configuratiorsy when a gluon in the final state gets sdfj;when
two partons in the final state tend to get collinear to each ottjenhen an initial-state parton emits
collinearly another parton.

At NLO (assuming that the LO cross section gets contributions fronntharton amplitudes),
this implies that one has simply to consider two contributions, denoted as virtual and real. The former is
the product of the:-parton one-loop amplitudes with tleparton tree amplitudes, while the latter is the
square of thén + 1)-parton tree amplitudes. In order to deal with finite quantities in the intermediate
steps of the calculation, we adopt dimensional regularization — i.e. we change the dimensionality of
space-time t@ = 4 — 2e. Thus, we can schematically write the virtual and real contributions to the cross

section as follows: J ] d 1
o g
=) ==51- - = ' 23
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here,1 — x represents the radiated energy. $6; 1 means no radiation, and= 0 is the maximum of
radiation. The relevant physical quantity will be the average value > of a certain functior¥’(x); for
example, we can think of’ as being the product of theta functions representing a histogram bin. Then,
the NLO contribution to< F' > is

1 1
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The factor(1 — )2 in the real contribution comes from the necessity of performing the computation in

d dimensions, in order to regulate the divergences arising when performing the integration over the phase
space. As it is apparent from eq. (25), the most difficult task is the computation of the real contribution.
In practice, the form off'(x) is too complicated to perform an analytical integration. On the other
hand, we cannot proceed straightforwardly, and compute the integral numerically; in fact, the integral is



divergent in the limit — 0, and the pole il /e will exactly cancel that explicitly displayed in the virtual
contribution (provided that’ describes an infrared-safe quantity).

Two strategies have been developed to tackle this problem. In the frameworksb€thgmethod,
the real contribution is rewritten as follows:

[ F(x) ' F(x)
<F>R—/0 dx(l +/1_6dx( (27)

_ x)1+2€ 1— m)l—f—?e’

whered is an arbitrary parameted, < § < 1. The first term on the right hand side of this equation

is free of divergencesH(x) is regular in the limitx — 1); in this term, one can therefore set= 0,

and compute the integral with standard numerical methods. On the other hand, the second term is still
divergent fore — 0; however, ifé is small enough, one can approximdtér) with F'(1) (that is, with

the first term of its Taylor expansion aroumd= 1). Therefore

1-0 F(z 1 1
1-06 —2¢
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Eqg. (29) can now be substituted into eq. (26). Expanding eq. (29) in power&eéping only the terms
which do not vanish in the limi¢ — 0, and neglecting the contributions of the terma{), we see
that the pole terms ifh/e cancel, and one is left with a finite result:

1-46
- F
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At a first glance, this expression is seemingly puzzling: the parametearbitrary, and the physical
results should not depend on it. However, it is easy to see that the upper bound of the integral gives a
contribution behaving (approximately) likeF'(1) log d. It has to be stressed that the slicing method is
based on the approximation performed in eq. (28); for this approximation to hold, it is crucialishes

small as possible; otherwise, the terms collectively denoted @t in eq. (29) are not negligible. On

the other hand, in practical computations, the integral in eq. (30) is performed numerically; due to the
divergence of the integrand far— 1, § cannot be taken too small, because of the loss of accuracy of the
numerical integration. Thus, the value dfs a compromise between these two opposite requirements,
being neither too small nor too large. Of course, “small” and “large” are meaningful only when referred
to a specific computation. Therefore, when using the slicing method, it is mandatory to check that the
physical results are stable against the variation of the valdeasfosen in a suitable range. In principle,

this check would have to be performed for each observAlemputed; in practice, only one observable

is checked, generally chosen to be rather inclusive (such as a total rate).

Another possibility to compute: F' >, is given by thesubtractionmethod. One writes

_ [t F@) - F()f(z — 1+ ) GRS S
< F >p= /0 dx (1 — x)1+26 + F(l)/o dx W, (31)

wherezx. is an arbitrary parametér < z. < 1. The first term on the right hand side of this equation is
convergent, and we can set 0. The second term is formally identical to the one appearing in eq. (28).
Notice, however, that no approximation has been made in eq. (31); the price to pay is a more complicated
expression for the first integral. Proceeding as before, we get:

LV Flx) - F()0(x — 1+ .
<F>§1ﬁ§:/ gy F@) = F)O( — 1+ ) + F(1)log z.. (32)
0
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This equation has to be compared to eq. (30); although the two are quite similar, there are two important
differences that have to be stressed. Firstly, the paramegtetroduced in the subtraction method does



not need to be small (actually, in the original formulation of the methpavas not even introduced,
which corresponds to set = 1 here). This is due to the fact that in the subtraction method no approxi-
mation has been performed in the intermediate steps of the computation. This in turn implies the second
point: there is no need to check that the physical results are independent of the valusinée this is

true by construction.

The universal algorithms previously mentioned allow the computation of any infrared-safe observ-
able in a straightforward manner; the matrix elements do not need any algebraic manipulation, and can
be computed in four dimensions. It is therefore relatively easy to construct computer codes, accurate to
NLO in QCD, that are flexible enough to become a useful tool in the analysis of the experimental data. In
the following, we will list the codes which are of direct interest for the physics of high-energy hadronic
collisions. We do not intend to give a complete list of references to the papers relevant for the calculation
of a given production process, but rather only to quote the computer codes which will have a chance
to be used by the experimental collaborations at the LHC. Most of the codes listed here are available as
free software.

e Jets

— S.D. Ellis, Z. Kunszt and D.E. Soper [220, 8l btraction computes one- and two-jet ob-
servables.

— W.T. Giele, E.W.N. Glover and D.A. Kosower (JETRAD) [2228]icing, computes one- and
two-jet observables.

— S. Frixione [227]subtraction computes one- and two-jet observables.

— W. Kilgore and W.T. Giele [228]slicing, computes three-jet observables.

e Single Isolated Photon (plus one jet)

— H. Baer, J. Ohnemus and J.F. Owens [228ting, fragmentation contribution computed to
LO accuracy.

— L.E. Gordon and W. Vogelsang [230], analytical integration over the variables of the recoiling
partons: no information on the accompanying jet; dependence on the isolation variables
treated to logarithmic approximation.

— S. Frixione [231] subtraction only effective with the isolation prescription of ref. [232].

— M. Werlen (PHONLL) [http://home.cern.ch/"monicaw/phonll.htnsljcing, based on ref. [234,
233].

e Isolated-Photon Pairs

— B. Bailey, J.F. Owens and J. Ohnemus [238i;ing, fragmentation contributions computed
to LO accuracy.

— C. Balazs, E.L. Berger, S. Mrenna and C.P. Yuan [236ting, resummation effects in-
cluded, fragmentation contributions computed with parton shower methods.

— T.Binoth, J.Ph. Guillet, E. Pilon and M.Werlen (DIPHOX) [238]icing, all contributions
computed to NLO accuracy.

¢ Single Heavy Vector Boson (plus one jet)
— W.T. Giele, E.W.N. Glover and D.A. Kosower (DYRAD) [224licing.
e Single Heavy Vector Boson plus one photon

— U. Baur, T. Han, J. Ohnemus [238, 238licing.

— D. de Florian and A. Signer [240$ubtraction includes spin correlations in the decay of the
bosons; fragmentation contributions computed to LO accuracy.

e Heavy Vector Boson Pairs
— U. Baur, T. Han, J. Ohnemus and J.F. Owens [241-Zi5]ng.

BEurther details on codes involving the production of a single vector boson and of a Higgs boson can be found in Sect. 6.
and 9., respectively.



— S. Frixione, B. Mele, P. Nason and G. Ridolfi [246—248]btraction

— J.M. Campbell and R.K. Ellis (MCFM) [249Eubtraction includes spin correlations in the
decay of the bosons.

— L. Dixon, Z. Kunszt and A. Signer [250%ubtraction includes spin correlations in the decay
of the bosons.
e Higgs Boson at large transverse momentum (plus one jet)
— D. de Florian and M. Grazzini and Z. Kunszt [198ubtraction computes Higgs-boson
production in the infinite top-quark-mass limit.
e Heavy Quarks
— M. Mangano, P. Nason and G. Ridolfi [25%btraction computes single-inclusive distribu-
tion and correlations betweeéhand(.

Since the universal algorithms accomplish the task of cancelling the infrared divergences of the
virtual and real contributions in a process-independent way, the remaining work that has to be performed
to calculate a production rate at NLO is the computation of the appropriate tree and one-loop amplitudes.
As we said previously, to compute-jet production at NLO, two sets of amplitudes are requiraj:
n-particle production amplitudes at tree level and one Id@)pin + 1)-particle production amplitudes
at tree level. If the one-loop amplitudes are regularised through dimensional regularisation, it suffices at
NLO to compute them t@(°).

Efficient methods based on the color decomposition [125, 252-254] of an amplitude in color-
ordered subamplitudes, which are then projected onto the helicity states of the external partons, have
largely enhanced the ability of computing tree [125] and one-loop [255] amplitudes. Accordingly, tree
amplitudes with up to seven massless partons [125, 256, 257] and with a vector boson and up to five
massless partons [258] have been computed analytically. In addition, efficient techniques to evaluate
numerically tree multi-parton amplitudes have been introduced [259, 137] (see Sect. 3. for a descrip-
tion of available numerical codes), and have been used to compute tree amplitudes with up to eleven
massless partons [137]. The calculation of one-loop amplitudes can be reduced to the calculation of
one-loopn-point scalar integrals [260—262]. The reduction method [260] allowed the computation of
one-loop amplitudes with four massless partons [263] and with a vector boson and three massless par-
tons [264]. However, one-loop scalar integrals present infrared divergences, induced by the massless ex-
ternal legs. For one-loop multi-parton amplitudes, the infrared divergences hinder the reduction methods
of ref. [260—262]. This problem has been overcome in ref. [265, 266]. Accordingly, one-loop amplitudes
with five massless partons [267, 269, 268] and with a vector boson and four massless partons [270-274]
have been computed analytically. The reduction procedure of ref. [265, 266] has been generalised in
ref. [275], where it has been shown that any one-lagmint scalar integral, with > 4, can be reduced
to box scalar integrals. The calculation of one-loop multi-parton amplitudes thus can be pushed a step
further in the near future.

4.2 Prospects for NNLO calculationg®

Eventually, a procedure similar to the one followed at NLO will permit the construction of general-
purpose algorithms at NNLO accuracy. It is mandatory then to fully investigate the infrared structure of
the matrix elements at NNLO. The universal pieces needed to organise the cancellation of the infrared
singularities are given by the tree-level triple-collinear [276, 277, 253], double-soft [219, 278] and soft-
collinear [276, 278] functions, by the one-loop splitting [271, 279—281] and eikonal [271] functions, and
by the universal structure of the poles of the two-loop amplitudes [282]. These universal pieces have yet
to be assembled together, to show the cancellation of the infrared divergences at NNLO.

Then to computer-jet production at NNLO, three sets of amplitudes are requiggdi-particle
production amplitudes at tree level, one loop and two lobpsr + 1)-particle production amplitudes

ZContributing authors: V. Del Duca and G. Heinrich.



at tree level and one loog) (n + 2)-particle production amplitudes at tree level. In dimensional regu-
larisation at NNLO, the two-loop amplitudes need be compute@(td), while the one-loop amplitudes

must be evaluated t®(¢?) [271, 283]. The main challenge is the calculation of the two-loop ampli-
tudes. At present, the only amplitude known at two loops is the on& fer gq [284, 285, 32], with

V' a massive vector boson, which depends only on one kinematic variable. It has been used to evaluate
the NNLO corrections to Drell-Yan production [32,33] and to deeply inelastic scattering (DIS) [64, 63].
Two-loop computations for configurations involving two kinematic variables, which are needed in the
case of parton-parton scattering, exist only in the special cases of maximal supersymmetry [286], and of
maximal helicity violation [287]. The latter contributes only beyond NNLO. One of the main obstacles
for configurations involving two kinematic variables is the analytic computation of the two-loop four-
point functions with massless external legs, where significant progress has just been achieved. These
consist of planar double-box integrals [288, 289], non-planar double-box integrals [290], single-box in-
tegrals with a bubble insertion on one of the propagators [291] and single-box integrals with a vertex
correction [292]. Finally, processes sucheds~ — 3 jets andpp — H jet sport configurations in-

volving three kinematic variables and require the analytic computation of two-loop four-point functions
with a massive external leg. Some of the required two-loop four-point functions of this kind have been
derived recently [293]. Another obstacle is the color decomposition of two-loop amplitudes, which is not
generally known yet. Substantial progress is expected in the near future on all the issues outlined above,
which should make the present note soon outdated.

Finally, we mention that in the factorization of collinear singularities for strongly-interacting in-
coming particles, the evolution of the pdf’s in the jet cross section should be determined to an accuracy
matching the one of the parton cross section. For hadroproduction of jets computed at NLO, one needs
the NLO AP splitting functions for the evolution of the pdf’s (see Egs. (8) and (9)). Accordingly, for
hadroproduction at NNLO the evolution of the pdf’s should be computed using the NNLO AP splitting
functions. Except for the lowest five (four) even-integer moments of the NNLO non-singlet (singlet) AP
splitting functions [25, 26], no calculation of the NNLO evolution of the pdf's exists yet. Some NNLO
analyses based on the finite set of known moments have been performed for the DIS structure functions
xF3 andF; (see Sects. 2.5 and 2.6 and Ref. [99]). Furthermore, in ref. [70] a quantitative assessment of
the importance of the yet unknown higher-order terms has been performed, with the conclusion that they
should be numerically significant only for Bjorkensmaller thanl0—2.

The computation of the evolution kernels of the pdf's at NNLO accuracy is a major challenge in
QCD. The NLO computation was performed with two different methods, one using the operator product
expansion (OPE) in a covariant gauge [18-21, 24], the other using the light-cone axial (LCA) gauge with
principal value prescription [22,23]. However, the prescription used in ref. [22,23] has certain shortcom-
ings. Accordingly, the calculation has been repeated in the LCA gauge using a prescription [294, 295]
which makes it amenable to extensions beyond NLO, whereas the principal value prescription does not
seem to be applicable beyond NLO [296]. On the other hand, using the OPE method, there had been a
problem with operator mixing in the singlet sector, which has been fixed [297-299] only recently, and
the result finally coincides with the one obtained in the LCA gauge in ref. [23]. Thus the result for the
AP splitting functions at NLO accuracy is fully under control. Recent proposals for their calculation
beyond NLO include extensions of the OPE technique, which have been used to recompute the NNLO
corrections to DIS [300], and a computation based on combining universal gauge-invariant collinear
pieces [301].



5. SUMMATIONS OF PERTURBATION THEORY 2/
5.1 Summations of logarithmically-enhanced contribution$®

The calculation of hard—scattering cross sections in hadron collisions requires the knowledge of partonic
cross sectiong, as well as that of parton densities (see the factorization formula in Eq. (2)). The
partonic cross sectiors(p1, po; Q, {Q1, - . . }; #?) are usually computed by truncating their perturbative
expansion at a fixed order g, as in Eqg. (3). However, fixed—order calculations are quantitatively
reliable only when all the kinematical scales{Q,...} are of the same order of magnitude. When

the hard-scattering process involves two (or several) very different scale§, say),, the n-th term

in Eq. (3) can contain double— and single—logarithmic contributions of the (yp&?)" and (agL)"

with L = In(Q/Q1) > 1. These terms spoil the reliability of the fixed—order expansion and have to be
summed to all orders, systematically improving on the logarithmic accuracy of the expansion.

Typical examples of such large logarithms are the tefms In Q) /Q, related to the evolution of
parton densities (and parton fragmentation functions) from a low input ézate the hard—scattering
scale(). These logarithms are produced by collinear radiation from the colliding partons arsirgjle
logarithmic contributions. They never explicitly appear in the calculation of the partonic cross sec-
tion, because they are systematically (LO, NLO and so forth) resummed in the evolved parton densities
fan(z, @Q?) and parton fragmentation functiods, y (=, Q?) by using DGLAP equations (8).

A different sort of large logarithmL = In /s/Q, arises when the centre—of-mass eneaygyof
the collision is much larger than the hard sc@eThese smalle (x = Q/+/s) logarithms are produced
by multiple gluon radiation over the wide rapidity range that is available at large energy. For sufficiently
inclusive processes in singlet channels these gjiivgle—logarithmig(LLx) contributions that can be cal-
culated by using the BFKL equation [302—-306]. The subleading (NLLx) contributions have also been
calculated recently [67,307] and turn out to be very large. This is understood to be due to contamination
by collinear logarithms of)?/Q3, which must be simultaneously resummed to obtain reliable predic-
tions at smallz [308, 309]. Various resummation procedures have been suggested, and will be briefly
discussed in Sects. 5.4 and 7. Unfortunately there are as yet no substantial phenomenological analyses
which use these resummations. The resummation of sikggarithms will be important for the accu-
rate determination of the behaviour of singlet parton densftjgs(, Q?) at small values of the parton
momentum fractionr, and thus for making reliable predictions of any process that is sensitive to the
hard—scattering of low—momentum partons (for exandphpuark productiof® and inclusive production
of low—E7 jets and prompt photons at the LHC). The BFKL equation is however also relevant for un-
derstanding the structure of final states, for example when there are jets with large rapidity intervals,
or diffractive processes with large rapidity gaps. These more general aspects ofrspiglsics are
discussed in Sect. 7.

Yet another class of large logarithms is associated to the bremsstrahlung spectrum of soft gluons.
Since soft gluons can be radiated collinearly, they give risgowable—logarithmiccontributions to the
partonic cross section, which takes the form

& ~ ok (L) {1 + ol (cgz)LQ" +oim et ol Aty ) } . (33)

n=1

Double—logarithmic terms due to soft gluons arise in all the kinematic configurations where the contri-
butions of real and virtual partons are highly unbalanced (see Ref. [218] and references therein).

When partons (particles or jets) with low momentum fractioare directly triggered in the final
state, theale of (real) soft radiation is evidently enhanced. The low—momentum region of the fragmen-
tation spectra of particles and subjets in jet final-states is thus particularly sensitive to the resummation
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of small— logarithms. The calculations based on the resummation of these logarithms are probably the
perturbative predictions that are most sensitive to the coherence properties [218,310] of QCD. Detailed
studies of fragmentation processes have been performetkin annihilation, DIS and at the Tevatron

(see the recent review in Ref. [311]). Although this topic is not included in these proceedings, similar
studies at the LHC would certainly be valuable.

In different kinematic configurations, (real) radiation in the final state can instead be strongly
inhibited. For instance, this happens in the case of transverse momentum distributions at low transverse
momentum, in the case of hard—scattering production near threshold or when the structure of the final
state is investigated with high resolution (internal jet structure, shape variables).

Soft—gluon resummation for jet shapes has extensively been studied and applied to hadronic final
states produced hy"e~ annihilation [312,214,313]. Applications to hadron-hadron collisions have just
begun to appear [314-316] and have a large, yet uncovered, potentiak{§rdeterminations to studies
of non—perturbative dynamics). Future studies of this topic are certainly warranted.

Threshold logarithms = In(1 — z), occur when the tagged final state produced by the hard
scattering is forced to carry a very large fractiec — 1) of the available centre—of-mass enexgy.
Outstanding examples of hard processes near threshold are DIS at (aggex is the Bjorken variable),
production of DY lepton pairs or di-jets with large total invariant m&ss= Mj; or M;; (x = Q/+/s),
production ofl¥, Z and Higgs bosonsi(= M,z 1 /+/s), production of heavy quark—anti-quark pairs
(z = 2mg/+/s), inclusive production of single jets and single photons at large transverse eggrgy
(z = 2B7/V/3).

Transverse—momentum logarithmis,= In Q?/p%, occur in the distribution of transverse mo-
mentump, of systems with high masg (Q > pr) that are produced with a vanishipg- in the LO
subprocess. Examples of such systems are DY lepton pairs, lepton pairs produéedrdZ decay,
heavy quark—anti-quark pairs, photon pairs and Higgs bosons.

Studies of soft—gluon resummation for transverse—momentum distributions at low transverse mo-
mentum and hard-scattering production near threshold were pioneered two decades ago [317-327]. The
physical bases for a systematic all-order summation of the soft—gluon contributions are dynamics and
kinematics factorizations [328, 329]. The first factorization follows from gauge invariance and unitarity:
in the soft limit multigluon amplitudes fulfil factorization formulae given in terms of universal (process
independent) soft contributions. The second factorization regards kinematics and strongly depends on
the actual cross section to be evaluated. When phase—space kinematics is factorizable, resummation is
analytically feasible in the form of generalized exponentiatioof the universal soft contributions that
appear in the factorization formulae of QCD amplitudes.

Typically, phase—space factorization does not occur in the space of the kinematic variables where
the cross section is defined. It is thus necessary to introduce a conjugate space to overcome phase
space constraints. This is the case for hard—scattering production near threshold, where the relevant
kinematical constraint is (one—dimensional) energy conservation, which can be factorized performing
a Laplace (or Mellin) transformation (see Sect. 5.2). Analogously, the relevant kinematical constraint
for p—distributions is (two—dimensional) transverse—momentum conservation and it can be factorized
by performing a Fourier transformation (see Sect. 5.3). In the conjugate space, the logaritiitine
relevant ratio of momentum scales are replaced by logarithmfthe conjugate variable.

The resummed cross section is thus typically of the form
Gres. = Qb / gL .c.3, (34)

where the integraf,  denotes the inverse transformation from the conjugate space where resummation
is actually carried out. The fact@¥ contains all constant contributions in the limiit— oco. The singular



dependence oh is entirelyexponentiatedh the effective form factoss:

S = exp {i g1(as(w)L) + g2(as(p) L; %) + as(p) gs(as(p)L; p?) + ... } : (35)

The structure of the exponent is formally analogous to that of the fixed—order expansion of the partonic
cross sections (see Eg. (3)). The functibrg; resums all the leading logarithmic (LL) contributions

o L™, while g» contains the next-to—leading logarithmic (NLL) teradsL™ and so forth. Note that

the NLL terms are formally suppressed by a powengfwith respect to the LL ones, and the same is
true for the successive classes of logarithmic téfmEhus, this logarithmic expansion is as systematic

as the fixed—order expansion in Eq. (3).

In general, a resummed expression such as Eq. (34) must be properly combined with the best
available fixed—order result. Using a shorthand notation, this is achieved by writing the partonic cross
sections as

o= a'res. + a'rem. . (36)

The termé,s. embodies the all-order resummation, while the remaiéggr contains no large loga-
rithmic contributions. The latter has the form

(f.0.)

e, (37)

a'rem. =0 [ Ares.

and it is obtained fron#(f-2-), the truncation of the perturbative expansion doat a given fixed order

(LO, NLO, ...), by subtracting the corqgsnding truncatiod&res,](f'o') of the resummed part. Thus,

the expression on the right-hand side of Eq. (36) includes soft—gluon logarithms to all orders and it
is matchedto the exact (with no logarithmic approximation) fixed—order calculation. It represents an
improved perturbative calculation that is everywhere as good as the fixed—order result, and much bet-
ter in the kinematics regions where the soft—gluon logarithms become lagde { 1). Eventually,
whenagL > 1, the resummed perturbative contributions are of the same size as the non—perturbative
contributions and the effect of the latter has to be implemented in the resummed calculation.

Using a matched NLL+NLO calculation as described above, we can consistently introduce a pre-
cise definition (sayS) of as (1) and investigate the theoretical accuracy of the calculation by studying
its dependence on the renormalization/factorization seale

Resummed calculations for hadron collisions near threshold anpg-fatistributions are discussed
in Sects. 5.2 and 5.3, respectively. Some overviews can also be found in Ref. [196]. We refer the reader
to Sects. 3.3 and 3.4 for comparisons of resummed calculations with parton shower event generators.

5.2 Threshold resummations?!

Large logarithms arise in any inclusive cross section for the production of an object with a larg@ mass
whenever the partonic energys available for the process is close@ the production threshold. The
physical mechanism responsible for these logarithms is simple. Close to threshold the phase space for
the emission of gluon radiation in the final state is kinematically restricted; soft real radiation is, however,
responsible for the cancellation of infrared divergences associated with virtual gluon exchange; when-
ever radiation is inhibited, the cancellation is partially spoiled: finite but large contributions are left over,

in the form of logarithms of the ratio of the two relevant energy scatéés — @?)/3]. Close to partonic
threshold these logarithms become large and must be resummed. Processes for which this resummation

%CThis has to be contrasted with the tower expansion sketched on the right—hand side of Eq. (33). Within the framework
of the tower expansion that sums the double-logarithmic téess.?)™, then the terme L*" ! ~ asL(asL?)" ! and so
forth, the ratio of two successive towers is, roughly speaking, of the ordes bf More precisely, the tower expansion allows
us to formally extend the applicability of perturbative QCD to the regigih.> < 1, and the exponentiation in Eq. (35) extends
it to the wider regiorus L < 1.
®1Contributing author: L. Magnea.



is relevant are ubiquitous, as noted in the previous subsection. Techniques to perform threshold resum-
mations have been developed and progressively extended for well over a decade; references in which
these technigues are explained is some detail include [330-337]; here we will briefly review the basic
theoretical issues, and sketch the status of phenomenological applications of relevance to the LHC.

As described in the introduction to the present Section, the resummation of threshold logarithms in
performed in Mellin space. To illustrate the structure of a typical resummation of threshold logarithms,
let us concentrate on the simplest and best known example: the DY cross section. In this case the
resummed formula for the Mellin transform of the partonic cross section, in the DIS factorization scheme,
takes the form [330, 331]

OA—reS.(Nv Q2) - C(aS(Q2)) exXp [E(Nv Q2)} ) (38)

where the functior' collects terms independent of the Mellin variabe while the exponent can be
written as

N

2V -1 (1-2)Q? dq2

Blas(-=@)+ [ CEates@)| @

E(N,Q* =—-2 /0le

Equations (38) and (39) resum, in principle, all logarithmsN\ofto all orders in perturbation theory,

in the sense that all such logarithms exponentiate and are calculable from the funttionmsB, for
which Feynman rules can be derived. In practice, the functibasd B are known only to two loops,

so that the resummation can explicitly be performed only for leading and next—to—leading loganthms
the exponentPerforming the integrals i’ (N, Q?), after expansion of the running couplings in terms
of as(Q?) to the desired accuracy, yields in general an expression of the form

E(N,Q*) =InN gi(asIn N) + g2(asIn N) + > ok giya(asinN) (40)
k=1

where the functiong; andg, are known in terms of the coefficients!), A and B() of the perturba-
tive expansion of the functiong and B, together with the one— and two—loop coefficients of the QCD
6 function. The (unknown) functiops, giving the NNL logarithms, would require the determination of
A®) | as well asB®? and the three—loop function.

Several comments are necessary in order to introduce the practical applications of resummed for-
mulas such as Eq. (39).

e At the present level of accuracy (NLL) the dependence on the renormalization scale and on the
factorization scheme is under control. A change in renormalization scale shifts the fupgction
by an amount proportional to the derivative of the functign A change in factorization scheme
changes botly; andgs, because it affects the way in which the DIS process is subtracted from DY
to construct a finite cross section, however the change is well understood and both functions can
be translated from one scheme to another [172, 335].

e To understand the effects of resummation, one should keep in mind that it is performed at the level
of the partonic cross section. One consequence of this fact is that resummation genegitally
hanceghe cross section, although one might expect a Sudalippressionsince the probability
of having a nearly radiation-less hard scattering is exponentially suppressed. This is easily under-
stood in the DIS scheme: there one computes the (factorized) partonic DY cross section by taking
the ratio of the DY process to the square of the DIS process, since there are two partons in the DY
initial state. In this ratio, the denominator is Sudakov suppressed twice as much as the numerator,
resulting in an overall Sudakov enhancement.

e The fact that the resummed partonic cross section must be folded with parton distributions to
extract a physical prediction also means that the effects of resummation are felt quite far away from



the hadronicthreshold. In fact, given a hadronic centre—of-mass engrghe typical partonic
energy available for the production process willbh& >=< xz2 > S, wherex; andzs are the
momentum fractions of the scattered partons. Clealdgcomes close to threshold long beféfe
does.

e The resummed partonic cross section by construction contains a subset of the finite order perturba-
tive calculations available for the process at hand. One should then work with a “matched” cross
section, as described in the previous subsection (see Egs. (36) and (37)).

e The alert reader will have noticed that Eq. (39), although well-defined order by order if the run-
ning couplings depending on variable arguments are re-expanded in terms of a fixed large scale,
is actually ill-defined in the leading—logarithm (6f) approximation, because the integration
contour runs over the Landau pole. This is a general feature of most known resummations of per-
turbation theory: in fact, perturbation theory is pointing us to its own limitations, and to the need
to include information concerning the non—perturbative structure of QCD [75]. This fact has two
consequences. On the one hand, it is possible to exploit partial resummations such as Eq. (39)
to estimate the size of the first relevant non—perturbative corrections: in the case of the DY pro-
cess, two independent approaches [338, 76] lead to the conclusion that the first power correction
to Eqg. (38) isO((N/Q)?). On the other hand, experience has shown that the necessary inversion
of the Mellin transform back to momentum space can generate unjustified (and stronger) power
corrections that are not present in the original resummed expression. Methods to circumvent this
problem have been developed [334], so that Eq. (38) can be used confidently, with a definite un-
derstanding of the size of expected corrections.

¢ In the general case of colored final states, a comparatively simple expression for the resummed
cross section, such as Eq. (39), is not available to all logarithmic orders, because the correspond-
ing evolution equations are in matrix form, and their solution involves a scale—dependent mixing of
color tensors. To NLL accuracy, however, a simple exponentiation can still be achieved, by diago-
nalizing a matrix of anomalous dimensions in the space of available color configurations [336,337].
This results in a matrix of exponentials, each similar to Eg. (39), with two new color—dependent
functions of the running coupling. These new functions also carry the necessary dependence on
the angles between incoming and outgoing colored partons.

e It should be emphasized that further improvements are possible, and in some cases have already
been achieved. In the case of the DY process, the terms independ€rtasftained in the factor
C' in Eg. (38) can also be resummed: in the DIS scheme, they contain the absolute value of the
ratio of the time-like to the space-like Sudakov form factor, which is known to exponentiate [339].
Methods to resum classes of terms of the farmiv/N have recently been suggested [340]. Fi-
nally, a technique to resum simultaneously threshold logarithms and recoil enhancements in single
particle inclusive cross sections has been introduced [341].

Turning to practical applications, we observe that resummations of threshold logarithms have been
performed to NLL accuracy for most of the processes of interest at the LHC, ranging from DIS and
DY [330, 331,342,172, 335, 343] to Higgs boson [340] production, to include more recently studies of
processes with hard colored particles in the final states, such as heavy quark [336,337,344], prompt pho-
ton [345-348] W boson [349] and di-jet [350] production; applications of the formalism to quarkonium
production have been proposed [351]. Detailed phenomenological calculations, however, are presently
available only for a subset of these processes.

Itis important to note that at the LHC threshold resummation can be important for two reasons. On
one side, it can directly be applied to LHC processes through the corresponding partonic cross sections.
On the other side, it can be applied to the lower—energy processes that are typically used to determine
the parton densities, and thus it can indirectly affect LHC predictions through the use of (evolved) parton
distributions reevaluated in this manner.

We shall illustrate the phenomenological effects of the application of these techniques with few ex-
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Fig. 31: Scale dependence &f/dEr for single prompt—photon production @V collisions. The solid lines represent the
NLO result for different choices qf = pr = pr (1 = Er/2 and2E7), normalized to the result fgr = Er. The dashed
lines represent the NLO+NLL results for different choicesuphormalized to NLO result for = Er. See Ref. [347] for
details.

amples, which will serve to point out another relevant feature of NLO+NLL calculations: their increased
stability with respect to scale variations.

As discussed in Sect. 2., present data and NLO calculations do not constrain very well the determi-
nation of the parton distributions at large values of the parton momentum fractibimis is particularly
true for the gluon density,(z,Q?) atz > 10! and@ ~ 5 — 10 GeV. The uncertainty ory, in
this kinematic region propagates (although with a reduced overall size) to smaller valuaadafarger
values ofQ? in LHC processes. Threshold resummation can help to extract parton distributions at large
x with more confidence than is at present in NLO analyses. Consider, for instance, the production of
prompt photons with high transverse enefgy at fixed—target experiments. This process is very sensi-
tive to the behaviour of the gluon density at largéer ~ xp = 2E7/+/s). The corresponding theoretical
calculations at fixed perturbative order, however, are not very accurate, as can be argued by studying their
dependence on the factorization/renormalization sgaM/hen NLL resummation is applied [347], the
scale dependence of the calculation is highly reduced and the resummed NLL contributions lead to large
corrections at highey (and smaller corrections at lower). The scale dependence of the theoretical
cross section ipN collisions is shown in Fig. 31 as a function éf,...,, the energy of the proton
beam. Fixingur = purp = p and varyingu in the rangeEr /2 < p < 2Ep with Ep = 10 GeV and
FEyeam = 530 GeV (this corresponds to the largest valuewf that is reachable by the E706 kinemat-
ics [352]), the cross section varies by a factorof at LO (the result of the LO calculation is not shown
in the plot), by a factor of- 4 at NLO and by a factor of- 1.3 after NLL resummation. The central value
(i.e. withu = E7) of the NLO cross section increases by a factordt.5 after NLL resummation. As
expected, the size of these effects is reduced by decreasi(gg. by increasing/s at fixed Er). This
(extreme) example clearly illustrates how NLO+NLL resummed calculations can improve the present
NLO determinations of parton distributions. The method of Ref. [341] can also be applied to investigate
the relevance of recoil effects in prompt-photon production.

NLL resummations of threshold logarithms are now available for all the most important processes
(DIS, DY, and prompt—photon production) used to determine the parton densities via global fits. Itis thus
possible to consistently [346, 353] take into account all threshold effects affecting the different hadronic
cross sections. Preliminary studies [353—-355] suggest that NLO+NLL fits are not likely to make drastic
differences in the parton densities that are strongly constrained by DIS data, at least so long as the region



of small@ (Q ~ few GeV) is avoided at very large. At the same time, they suggest that resummed

fits can make some difference where the pdf's are not so well known (gluon density atclamk

guark densities at larger valuesof. In particular, NLO+NLL fits, if implemented, are likely to reduce
scale dependence, and thus further improve our confidence in the theoretical predictions for LHC cross
sections.

As for direct effects of NLL threshold resummation at the LHC, we briefly discuss top pair produc-
tion, which is currently the best studied process in LHC kinematics [337]. One could argue that threshold
resummation effects in this case should not be expected, since at the LHC wehae,/\/s ~ 0.03.

This would however be incorrect since, as explained above, partonic threshold can be, on average, quite
far from hadronic threshold. In the case of top production at the LHC, the dominant partonic subprocess
is gluon fusion. The gluon density is steeply falling at latgend quite large at smatl, so that the av-

erage momentum fraction of gluons entering the partonic hard subprocess is relatively sniadkand

As a consequence, the effect of NLL resummation is still visible at the LHC: the NLO+NLL resummed
cross section is larger than the NLO estimate by atétit Moreover, NLL resummation reduces the

scale dependence of the cross section by approximately a factor of two (from1a@bot about5%).

This can be relevant, because the uncertainty due to the present knowledge of the parton densities is
estimated to be twice as large. We refer the reader to the Top Physics Chapter of this Report for full
details.

Other topical LHC processes are Higgs production, DY productioW’af and lepton pairs, as
well as production of high&r jets. Since the Higgs masgd; is expected to be of the same order as
the top-quark mass, Higgs production will be dominated by gluon fusion. Thus, the effects of threshold
resummation on this process should be at least as important as for top-pair production. The results of
Ref. [340], based on the expansion at NNLO of threshold resummation, support this conclusion. Com-
plete quantitative studies to NLL accuracy are not yet available and would be valuable. The production
of W and Z at the LHC is less close to threshold than top production. Moreover, its dominant partonic
subprocess igg annihilation. The larges-behaviour of the quark densities is less steep than that of the
gluon density, and soft—gluon radiation from initial-state quarks is depleted by the colour charge factor
Cr/Cy4 ~ 1/2 with respect to radiation from gluons. Thus, the effects of threshold resummation on
W, Z production should be small. Their size could however increase in the case of production of high—
mass (sayg > 1 TeV) DY lepton pairs. The inclusive production of high+ jets and di-jets with large
invariant mass at the Tevatron and at the LHC can be sensitive to threshold logarithmic contributions.
Nonetheless, phenomenological analyses to NLL accuracy are not available for these processes. Anim-
portant conceptual reason for that is the fact that the cone algorithms used so far to experimentally define
jets are not infrared and collinear safe [315,356]. Although their unsafety may show up only at some high
order in perturbation theory, it prevents all-order summations. The future use [357] of safe algorithms,
such as the: | -algorithm [8, 9] and the improved cone algorithm studied at the Workshop on Physics
at the Tevatron in Run II, will overcome this problem. For the definition of different jet algorithms, we
refer the reader to Ref. [357].

5.3 Resummation of transverse momentum distribution®

The description of vector and scalar boson production properties, in particular their transverse momen-
tum (pr) distribution, is likely to be one of the most investigated topics at the LHC, especially in the
context of Higgs searches. To obtain a reliable theoretical prediction fgy ttaistribution, the cor-
rections due to soft gluon radiation have to be taken into account. At small transverse momentum the
pr distribution is dominated by large logarithrhgQ?/p2.), which are directly related to the emission

of gluons by the incoming partons. Therefore, at sufficiently smallfixed—order perturbation theory
breaks down and the logarithms must be resummed. The origin of the large logarithms is visible already
at leading—order: in fact, the contribution from real emission diagramggfer— Vg contains a term of

*2Contributing authors: A. Kulesza and W. J. Stirling.



the formasCr In (Q?/p%.) /(7p3.). When more gluons are emitted, the logarithmic divergence becomes
stronger. It can be shown that in the approximatiorsait and collineargluons with strongly ordered
transverse momentar, i.e.

ko < kfo < ... < ki, <pp < Q? (41)

the dominant contributions to thgf — V X cross section can be resummed, giving a so—called Su-
dakov factor [319], of the form

2 2
id—UQ = asél In (Q—2> exp (—%an (Q—2>> ) (42)
oodpy  27pt 2z 47 2z
where A = 2CF, andoy is the total LOgg — V cross section. This approximation is commonly
known as théDouble Leading Logarithm ApproximatigbLLA).

The resummation in Eqg. (42) gives a finite but unphysicalippressedesult in the smalpy
limit. This suppression is caused by the vanishing of strongly—ordered phase space, in which overall
transverse momentum conservation is ignored. The result in (42) corresponds to a configuration in which
a single soft gluon balances the vector boson transverse momentum, giving the onéER) p2.) /p3
term, while all other gluons have transverse momegta . This isnot the dominant configuration
in the smallpy limit. Equally important are non—strongly—ordered contributions corresponding to the
emission of soft{ pr) gluons whose transverse momenta add vectorially to give the oyerall the
vector boson. Although such contributions are formally sub-leading order—by—order, they do dominate
the cross section in the region where the Sudakov form factor suppresses the (formally) leading DLLA
contributions. The non—leading ‘kinematical’ logarithms are correctly taken into account by imposing
transverse momentum conservation (rather than strong ordering), and this is most easily achieved by
means of a Fourier transform to impact paramelejgpace.

We next discuss analytic methods for resumming large logarithrhsspace angr—space. As
already mentioned, comparisons of resummed calculations with the predictions coming from parton
shower Monte Carlo approaches are presented in Sects. 3.3 and 3.4.

5.31 Analytic methodgdi—space

In the b—space method [317] one imposes transverse momentum conservation by Fourier transforming
the pr distribution to impact parameter space and using the identity

N N
1 . .
5 < § kT, — PT> =2 d’be~™PPT | | ek (43)
i=1

=1

This allows for the derivation of a general expression resumming all terms of the perturbation series
which are at least as singular B%?2% whenpr — 0[192, 358, 359]. The resummed expression is of the
form

do(AB — V(— II)X) 1 Q?
dp2.dQ*dydcosfdy — 256mNes (Q2 — MZ)% + M2I?,
< Yoo, Q% y,0) + Y (07, Q% 0,0, 0)] (44)

where My andI'y, are the mass and the width of the vector boson, taadd ¢ stand for the lepton
polar and azimuthal angles in the Collins—Soper frame [192, 358, 3594lenotes the resummed part
of the cross section, whil¥; is the remainder (that is, the fixed—order expression minus terms which
are already taken into account¥f, as in Eq. (36)). The exact expression Igrcan be found in [360],



whereas

Yk @0 = 0@ k) 5 /0 db b Jo(prb) Y Fi”(Q,b, w4, 28)
a,b
b b
X Hup(0) foyalea. 12 fiyp(en. ) exp[S(h,Q). (45)

Here f’ denotes a modified parton distributiaf,;(6) includes coupling factors and the angular depen-
dence of the lowest order cross section [360], andndFéXP are discussed below. The Sudakov factor
has the form

S(b,Q?) = /_Q o I (%)A(asm?)) + Blas(i?)]. (46)
Moy =Y (52)" 40 Blas) =3 (52)' B, @)
i= =1

with by = 2exp(—vg). The form in Eq. (46) is equally valid for processes initiated;pyannihilation
(e.g. production of DY lepton pair8l” andZ) and bygg-fusion (e.g. Higgs production). The coefficients
AW A and BMY in each series (47) were computed in Ref. [361]d@annihilation and in Ref. [362]

for gg-fusion. These coefficient$ can also be obtained [363] from the exact fixed—order perturbative
calculation in the highpy region by comparing the logarithmic terms therein with the corresponding
logarithms generated by the first three terms of the expansiempt (b, Q?)) in Eq. (45).

Although theb—space method succeeds in recovering a finite, positive result py-the 0 limit,
there are drawbacks associated with the need to work in impact parameter space. The firstis the difficulty
of matching the resummed and fixed—order predictions. Since the resummation is perfotrsubice
one loses control over which logarithmic terms gin—space) are taken into account. Therefore there is
no unambiguous prescription for matching; existing prescriptions require switching from resummed to
fixed—order calculation at some valuemgf. Secondly, since the integration in (45) extends from 0 to
00, it is impossible to make predictions fany pr without having a prescription for how to deal with
the non—perturbative regime of large One prescription is to artificially preventfrom reaching large
values by replacing it with a new variabbe and by parametrising the non—perturbative latgegion
in terms of the form factoFCfXP . The ‘freezing’ ofb atb, is achieved by

b
b*:— b*<blim7

VI+ (0/byim)?
with the parameteb;;,, ~ 1/Aqcp separating perturbative and non—perturbative physics. The de-
tailed form of the non—perturbative functid?ﬁp remains a matter of theoretical dispute (for a review
see [360]), although it is assumed to have the general form [192, 358, 359]

ENP(Q,b,x4,28) = exp {— [hQ(b) In (%) + ha(b,z.4) + hy (D, xB)} } .
0
In a very simple model in which the non—perturbative contribution arises from a Gaussian ‘intrinsic’
kr distribution, one would havé’ ~ exp(—libQ). The data are not inconsistent with such a form, but
suggest that the parametemay have some dependence@mandz.

Phenomenological studies and numerical calculations based dr-dpace formalism are pre-
sented in Refs. [364, 365, 110, 194, 360] (for DY lepton pdirand Z production) and in Refs. [366—
368, 195] (for Higgs production).

33In Ref. [363] the coefficienB® for gg-annihilation was also computed. The coefficigi®) for gg-fusion is not yet
known.



5.32 Analytic methodgsr—space

The difficulties mentioned above could in principle be overcome if one had a method of performing the
calculations directly in transverse momentum space. Given an insight into which logarithmic terms are
resummed, it should be fairly straightforward to perform matching with the fixed—order result. Moreover,

the non—perturbative input would be required in (and would affect) only the gma#gion.

Three techniques have been proposed for carrying out resummatigr-space [191, 190, 369].
The main difference lies in the selection of subsets of logarithmic terms which each method resums; for
a detailed discussion the reader is referred to [370]. The starting point for all techniques is the general
expression in impact parameter space for the vector boson transverse momentum distribution in the DY
process [192, 358, 359], at the quark level. To illustrate the results, we consider the approach of [369],
and we give the expression for the resummed part of the cross segtien» v* X, in the simplest case,
with fixed couplingag, at the parton level, and retaining only the leading coefficiéit in the series of
Eq. (47). Itis of the form

1 do A _apea (—20)0D) N‘1< N-1 ) N1 [
- — — ¢ 2 - L 77127‘N m+LTN m—1
oo dpz  pa szl (N —1)! 7;) m + +
(48)
HereL = In(Q?/p%), A = asCr/m, and the numbers,, are defined by
_ [ m Y
Tm = / dyJi(y) In (b—) (49)
0 0

The 7, can be calculated explicitly using a generating function [369] so thatrg.g- 1, 71 = 75 = 0,

T3 = —% (3), etc. Notice that by setting atl,, coefficients (excepty) to zero one would immediately
recover the DLLA form (48). Since there are no explicit sub-leading logarithms in (48), other than those
related to kinematics, the presence ofthecoefficients must correspond to relaxing the strong—ordering
condition. This can be checked explicitly by performing the ‘exa{Q(’ag) calculation in transverse
momentum space. One finds

/d2kT1d2kT2 [111(@22/]5%1)} [ID(QZ/]C?W)] 5(2) (le + sz _ PT) — 12 (_L3 4 4C(3)) ) (50)
k1 + ko + br

Strong ordering is equivalent to replacing theunction byd® (kt; — pr)x 0(k%, — k3y) +(1 < 2).
This gives only the leading?® term on the right—-hand side. TI§¢3) term represents the first appearance
of the (kinematic)rs coefficient of Eq. (48).

In principle the formalism presented above allows for an inclusioanyfnumber of such sub-
leading kinematic logarithms. In practice, we use Eqg. (48) with a finite number of terms by introducing
Nmax as the upper limit of the first summatiofV,,,.x corresponds to the number of towers of logarithms
which are fully resummed. Figure 32 shows that for small valugg-dhe approximation of the-space
result improves with increasiny ... Therefore by retaining sufficiently many terms one can obtain a
good approximation (i.e. adequate for phenomenological purposes) tegpace result by summing
logarithms directly inpr space3

The technique developed so far can be extended to include sub-leddind B coefficients, the
running coupling and parton distributions, thus yielding a ‘realistic’ expression for the hadron—level cross
section. The result is too lengthy to reproduce here, but can be found in [369, 371].

34Notice however that, due to the lack of knowledgetsf’, B, etc., it is only possible to obtain the complete result
for the first four ‘towers’ of logarithms; subsequent towers can be included only in the approximations leading to Eq. (48),
see [369].
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Fig. 32: Theb—space result (parton level, fixed coupling, oat{")) compared to the expression (48), calculated for various
values 0fNmax. Heren = p3./Q? and Nmax is the upper limit of the first summation in Eq. 48.

Although thepr—space method provides a simple matching prescription, the form of the non—
perturbative function in this approach (as well ag-ispace approach) remains an open theoretical issue.
In particular, the current lack of understanding of thendQ? dependence of the non—perturbative con-
tribution is a limiting factor in predicting ther — 0 behaviour of the distribution at the LHC. However,
it seems that the dependence on the amount of non—perturbative smearing weakens with inQreasing
(see Ref. [193] and the discussion in Sect. 3.4). It has also been shown [370] that the quality of the
approximation to thé—space result achieved by various resummation approachegs-gpace changes
significantly only for small values agf2./Q?. This in turn would suggest that the differences between
these approaches may become relevant for obtaining an accurate theoretical description of very heavy
boson (e.g. Higgs) production in the small regime.

5.4 Small< resummations®

If we are to make accurate predictions for LHC ‘background’ processes with partonic centre—of-mass
energy below 1 TeV, we need to extrapolate cross sections measured at HERA and the Tevatron forward
by between one and three orders of magnitud€) and back by between one and three orders of
magnitude inx. Since away from thresholds these cross sections are generally rather smooth functions
of  and Q? one might try to do this by simply extrapolating parametric fits [372, 373]. However the
uncertainties in such extrapolations are very difficult to quantify. Adding an assumption that the dominant
singularities are Regge poles is not very helpful, since even with current data more than one ‘Pomeron’
singularity is needed for a satisfactory fit [374, 375]. Moreover in this kind of approach it is not possible
to relate all the various cross sections of interest, or for example calculate heavy quark production, or
jet cross sections: each must be fitted individually. Clearly we need more dynamics. Strong interaction
dynamics at high energies inevitably means perturbative QCD, and it is the current understanding of
perturbative QCD at small that we summarise here.

Provided there is a hard scale in the process, strong interaction processes may generally be fac-
torized into a hard partonic cross section, computable in perturbative QCD, and parton densities which
must be determined empirically. At large scal@$ and not too small but fixed the QCD evolution
equations [14, 376,377,216, 16] provide a reliable framework for the extrapolation of these parton den-
sities from some initial scal®? to higher values o). The complete AP splitting functions have been
computed in perturbation theory at ordeg (LO) and ag (NLO). For the first few moments the AP

%Contributing author: R.D. Ball.



splitting functions at ordesd (NNLO) are also known [25, 26]. Once we have the parton distributions,

it is straightforward to compute hadronic cross sections at LO or NLO: potentially large contributions of
the form(asIn Q?/Q3)™ (LLQ), as(asInQ?/Q3)™ (NLLQ), ..., have been resummed by solving the
evolution equations, so all that is necessary is the convolution of the evolved parton densities with the
hard partonic cross section.

If we start with initial parton distributions that rise less steeply than a powefirasz decreases,
then fixed order evolution to high€)? inevitably leads to distributions that become progressively steeper
in 1/x as@? increases [378], in agreement with the rise in fedata from HERA. More significantly
the specific form and steepness of the rise is precisely [379—-381] as predicted. This is a major triumph
for perturbative QCD, since it can be interpreted as direct evidence for asymptotic freedom [382]: the
coefficient3, which determines the slope of the rise is the first coefficient of the @&dnction. This
has now been confirmed many times by successful NLO fits (see [383, 384] and Sect. 2.) to increasingly
precise HERAF; datasets. From these fits a gluon distribution may be extracted, and predictions made
for Fy, di-jet production, and,, all of which have now been confirmed by direct measurements [385,
386]. Clearly fixed order perturbative QCD works well at HERA: none of these predictions is trivial, and
all are successful. Extrapolation to the LHC region, and the calculation of relevant NLO cross sections,
can then be performed in the same way as at largeith the added bonus that besides extrapolating up
in Q% one can simultaneously extrapolate backwards.iThe errors in such predictions are the usual
mix of experimental and parametrization uncertainties (see the discussion in Sects. 2.3, 2.4 and in [387]),
and theoretical errors predominantly due to missing sub-leading corrections, which may be estimated by
partial calculations of NNLO terms [388, 70] (see also Sect. 2.5).

However to obtain truly reliable predictions for processes at the LHC it is not sufficient to confirm
NLO QCD within errors at HERA: we must also be convinced that new sources of theoretical uncertainty
do not arise as the kinematic region is extended. In particular, as one goes to smaller valiies bt
clear that retaining only the first few terms in the expansion (9) of the splitting functions in powers of
ag will be and remain a good approximation: as soo @s In 1/« is sufficiently large thatvg¢ ~ 1,
terms of orderas(agé)™ (LLX), a(ag€)™ (NLLX), ... must also be considered in order to achieve a
result which is reliable up to terms of ordeg. In factag¢ > 1 throughout much of the kinematic
region available at both HERA and the LHC, so one might naively expect these effects to be significant
when extrapolating from one to the other. The fact that at HERA they seem to be small empirically is a
mystery which must be solved if reliable predictions are to be made for the LHC.

Using the BFKL kernelK (Q?, k?) [303, 302, 304-306] (see also Sect. 7.) calculated tag)
(LO) it is possible [389-391] to deduce the coefficients of the LLx singularities of the AP splitting
function to all orders in perturbation theory. Summing these up, the splitting function (and thus the
structure function) is predicted to grow as* asz — 0, where (at LLX)A = )\ = (12ag1n2)/x.
This procedure may be extended to NLLx singularities, using calculations of the coefficient function
and gluon normalization [392, 66] and of the NLLx kernel [67, 393—-400, 307, 401-403, 271], to give
all the NLLx terms in the splitting function [404—410]. It was known some time ago that reconciling
these summed logarithms with the HERA data was going to be difficult [379-381, 411-413], simply
because there is no evidence in the data for a rise with a fixed powé&nce all the NLLx corrections
were known it became clearer why: the expansion in summed anomalous dimensions at LLx,NLLX,...
is unstable [414, 69, 415], the ratio of NLLx to LLx contributions growing without bound as 0.
It follows that the previous theoretical estimates [404—-413] of the size of the effects of theasmall
logarithms based on the fixed order BFKL equation, either at LO or NLO, were all hopelessly unreliable.
Indeed any calculation which resums LO and NLO log&éf but sums up only LO and NLO logarithms
of x is seen to be insufficient: some sort of all order resummation of the sniwdlarithms is necessary.
Clearly there are many ways in which such a resummation might be attempted: what are needed are
guiding principles to keep it under control.

There are two distinct strands to this problem. The first is the stability of the BFKL equation



itself (see the discussion in Sect. 7.3). Various proposals have been put forward: for example a partic-
ular choice of the renormalization scale [416], or a different identification of the large logs which are
resummed [417,418]. However the root of the problem [308] is that the perturbative contributions to the
kernel K (Q?, k?) contain unresummed logarithms of the fog(ast)™ (LLQ), o (aZt)™ (NLLQ),.. .,
wheret = In Q?/k?, which destabilise the fixed order expansion both in the ultraviolet regrors k2

and in the infrared)? < k2. These logarithmic contributions turn out to be so large that the fixed order
expansion is useless, even in the smalegion, unlessyg is unrealistically small. In order to obtain a
realistic approximation to the kernel, the large logarithm§éfmust be resummed to all orders in per-
turbation theory. Fortunately the ultraviolet logarithms not associated with the running of the coupling
may be determined at LLQ and NLLQ from the LO and NLO Altarelli-Parisi splitting functions [419].
Summing them up, longitudinal momentum is automatically conserved: the relevant part of the kernel
then satisfies the all order sum rule [418]_d¢K (t) = 1. Furthermore, it turns out that when the LLQ

and NLLQ contributions to the LO and NLO BFKL kernels are resummed, the expansion stabilises in the
perturbative Q2 >> k?) region, and the residual part of the kernel which resums the remaining small
logarithms is relatively small.

However before we can use this resummed BFKL kernel to compute smeflummation cor-
rections we need to resolve a second issue: the inherent perturbative instability of the LLx and NLLx
contributions to the splitting functions first noted in [414, 69]. This is quite distinct from the previous
problem: it can be shown (see [415] and Sect. 7.3) to follow inevitably from the shift in the value of
A from its LLx value Ay to \g + A\ at NLLx. This shift must be accounted for exactly if a sensible
resummed perturbative expansion is to be obtained. Since in practice the correatierof the same
order as\y, it seems probable that= Ay + A\ is not calculable in perturbation theory: rather the value
of A may be used to parameterise the uncertainty in the value of the Keid#, k%) when@? ~ k2.

Putting together the two principles of momentum conservation and perturbative stability, we can
compute fully resummed NLO splitting functions [419]. The result depends on the unknown parameter
A. Provided\ < 0, the corrections to conventional NLO evolution in the HERA region are tiny: this in
itself is sufficient to explain the success of NLO evolution in describing the HERA data, and furthermore
means that effect of resummed smalbgarithms on the extrapolation upwardsA from HERA to the
LHC should also be rather small. More significant effects might be expected in the extrapolation down
to smallerz, particularly ifQ? is also small and\ is positive. It should now be possible to quantify such
uncertainties by a phenomenological analysis, using available HERA data to constrain

One might have hoped that eventually it would be possible to comyppégturbatively. The main
uncertainty in current calculations is due to the unresummed infrared logarithms in theKe@rglk?),
which destabilise the fixed order perturbative expansion in the regfor k2. In Refs. [309, 420, 421]
an attempt is made to resum these logarithms through a symmetrizatiaii@f, k?) in Q? and k%
the idea is to deduce the infrared logarithms from the ultraviolet ones. The main shortcoming of this
approach is that it makes implicit assumptions about the validity of perturbation theory@risrvery
small: symmetrization only works when running coupling effects are included, but making the coupling
run with Q? or k2 is not only very model dependent but seems inevitably to destabilise the small
evolution [422—-427], suggesting that effects beyond the reach of the usual perturbative expansion become
important in this region.

It seems that to make further progress we require either genuine nonperturbative input, or a sub-
stantial extension of the perturbative domain. A possible way in which this might be done through a new
factorization procedure was explored in Ref. [428], from which the main conclusion was that at small
x the coupling should run not witty?, but with W2 ~ Q?/z. Preliminary calculations [429] suggest
that this is not phenomenologically unacceptable. An alternative approach to factorization in high energy
QCD based on Wilson lines may be found in Refs. [430,431]. Clearly much work remains to be done.



6. PROMPT PHOTON PRODUCTION 36
6.1 General features of photon production®’

When mentioning the photon in the framework of high-energy collider physics, one is immediately led
to think — with good reasons — to Higgs searches through the gold-plated clanreh~. However,

the production of photons also deserves attention on its own. Firstly, a detailed understanding of the
continuum two-photon production is crucial in order to clearly disentangle any Higgs signals from the
background. Secondly, in hadronic collisions, where a very large number of strong-interacting particles is
produced, photon signals are relatively clean, since the photon directly couples only to quarks. Therefore,
prompt-photon data can be used to study the underlying parton dynamics, in a complementary way with
respect to analogous studies performed with hadrons or jets. For the same reason, these data represent
a very important tool in the determination of the gluon density in the profgf;). Indeed, in recent

years almost all thdirect information (that is, not obtained through scaling violations as predicted by
the DGLAP equations) on the intermediate- and highehaviour off,(x) came from prompt-photon
production,pp — vX andpN — ~X, in fixed-target experiments. The main reason for this is that, at
LO, a photon in the final state is produced in the reactigns- v¢ andqg — ~g, with the contribution

of the former subprocess being obviously sensitive to the gluon and usually dominant over that of the
latter. It is the ‘point-like’ coupling of the photon to the quark in these subprocesses that is responsible
for a much cleaner signal than, say, for the inclusive production «df, avhich proceeds necessarily
through a fragmentation process.

There is, however, a big flaw in the arguments given above. In fact, photons can also be produced
through a fragmentation process, in which a parton, scattered or produced in a QCD reaction, fragments
into a photon plus a number of hadrons. The problem with the fragmentation component in the prompt-
photon reaction is twofold: first, it introduces in the cross section a dependence upon non-perturbative
fragmentation functions, similar to those relevant in the case of single-hadron production, which are not
calculable in perturbative QCD: they depend on non-perturbative initial conditions [432,433], and only
their asymptotic behavior at very large scales is perturbatively calculable [434]. These functions are, at
present, very poorly determined by the sparse LEP data available. Seah@¢D partonic reactions
contribute to the fragmentation component; thus, when addressing the problem of the determination of
the gluon density, the advantage of having a priori only one partonic reaggor (yg) competing with
the signal {g — ~q) is lost, even though some of the subprocesses relevant to the fragmentation part at
the same time result from a gluon in the initial state.

The relative contribution of the fragmentation component with respect to the direct component
(where the photon participates in the short-distance, hard-scattering process) is larger the larger the
centre-of-mass energy and the smaller the final-state transverse morffenairthe LHC, for trans-
verse momenta of the order of few tens of GeV, it can become dominant. However, here the situation is
saved by the so-called ‘isolation’ cut, which is imposed on the photon signal in experiments. Isolation
is an experimental necessity: in a hadronic environment the study of photons in the final state is com-
plicated by the abundance of’s, eventually decaying into pairs ofs. The isolation cut simply serves
to improve the signal-to-noise ratio: if a given neighbourhood of the photon is free of energetic hadron
tracks, the event is kept; it is rejected otherwise. Fortunately, by requiring the photon to be isolated,
one also severely reduces the contribution of the fragmentation part to the cross section. This is because
fragmentation is an essentially collinear process: therefore, photons resulting from parton fragmentation
are usually accompanied by hadrons, and are therefore bound to be rejected after the imposition of an
isolation cut.
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BActually, in the fixed-targepp — X reaction, one can see the fragmentation component increasing relatively to the direct
one also at veryarge pr~, because of the direct cross section dying out very quickly at such momenta. This effect is of no
phenomenological relevance at the LHC.



It has to be stressed that, at fixed-target energies, the size of the average transverse momentum
allows to resolve the two photons coming frarfl decay and therefore to identify the. It seems
therefore appropriate to recall some fixed target results before turning to prompt photon production at the
LHC. A recent review on the comparisons between data and theory may be found in [435]. Theory means
NLO predictions including the direct and the bremsstrahlung contributions [234, 233, 436, 229, 437]. A
Fortran code which puts together both contributions and allows simple changes of parameters is now
available [438]. The conclusion reached in ref. [435] is that some data sets are incompatible with each
other, or that theory must be modified. A modification proposed in ref. [352] consists in introducing
transverse momentum of initial partons with a large average value >~ 1.4 GeV. If this average
value varies with,/s, then it is possible to adjust theory to data. The resummation of threshold effects
[347] (see also Sect. 5.) increases the cross section atdarge 2p, /+/s, but it cannot remove the
discrepancy between theory and data. Clearly an unsettled problem remains in this fixed target energy
range, which gquestions the possibility to determine the gluon contents of the proton from prompt photon
data (see Sect. 2.).

We now turn to the case of photon production at high-energy colliders; after some general in-
troductory remarks, we will present phenomenological predictions relevant to the LHC; we remind the
reader that the production of prompt photons at LHC was first studied at the Aachen workshop [2]. No
NLO corrections to the bremsstrahlung terms were available at that time, and the isolation prescriptions
were implemented only at LO accuracy. Since then, theoretical computations progressed toward a fully
consistent NLO framework, which we will discuss in the following.

6.2 Isolation prescriptions™®

As mentioned before, the fragmentation contribution, that threatened to spoil the cleanliness of the pho-
ton signals at colliders, is relatively well under control in the case of isolated-photon cross sections.
There is of course a price to pay for this gain: the isolation condition poses additional problems in the
theoretical computations, which are not present in the case of fully-inclusive photon cross sections. To
be specific, we write the cross section for the production of a single isolated photon in hadronic collisions
as followg?:

d0h1h2 (p17p2;p"/) =

ol

/d1’1d9€2fa/h1($1,MF)fb/hg(m,MF)d%‘Z,,(UClpl,9621?2;1%;MR,MF,/M)
+/dx1dx2d2fa/h1 (21, 17 foyny (T2, 1P )G (21D1, T2D23 Py ) 25 iR (1P iy )y e(2, 1y ), (B1)

whereh; and hy are the incoming hadrons, with momemtaandp, respectively, and a sum over the
parton indices:, b andc is understood. In the first term on the right hand side of eq. (51) (the direct
component) the subtracted partonic cross secﬂﬁrjﬁ’i get contributions from all the diagrams with a

photon leg. On the other hand, the subtracted partonic cross se@t&igfﬂcsappearing in the second term

on the right hand side of eq. (51) (the fragmentation component), Qet contribution from the pure QCD
diagrams, with one of the partons eventually fragmenting in a photon, in a way described by the parton-
to-photon fragmentation functiod, .. As the notation in eq. (51) indicates, the isolation condition is
embedded into the partonic cross sections.

Itis a well-known fact that, in perturbative QCD beyond LO, and for all the isolation prescriptions
known at present, with the exception of that of ref. [232], neither the direct nor the fragmentation com-
ponents argeparatelywell defined at any fixed order in perturbation theory: only their sum is physically

39Contributing author: S. Frixione
“*The production of pairs of isolated photons can be described in the very same manner; we will consider this case later.
Here we stick to a simpler case in order to have as simple as notation as possible.



meaningful. In fact, the direct component is affected by quark-to-photon collinear divergences, which are
subtracted by the bare fragmentation function that appears in the unsubtracted fragmentation component.
Of course, this subtraction is arbitrary as far as finite terms are concerned. This is formally expressed in
eq. (51) by the presence of the same sgalén both the direct and fragmentation components: a finite
piece may be either included in the former or in the latter, without affecting the physical predictions.
The need for introducing a fragmentation contribution is physically better motivated from the fact that a
QCD hard scattering process may produce, again through a fragmentation proeesesan that has

the same quantum numbers as the photon and can thus convert into a photon, leading to the same signal.

As far as the isolation prescriptions are concerned, here we will restrict to those belonging to
the class that can be denoted as ‘cone isolations’ [229, 439-442, 230]. In the framework of hadronic
collisions, where the need for invariance under longitudinal boosts (which is necessary for collinear
factorizability) suggests not to define physical quantities in terms of angles, the cone is drawn in the
pseudorapidity—azimuthal angle plane, and corresponds to the set of points

= { o) |+ (00,0 < R}, 52

wheren, and ¢, are the pseudorapidity and azimuthal angle of the photon, respectively? @&the
aperture (or half-angle) of the cone. After having drawn the cone, one has to actually impose the isolation
condition. We consider here two sub-classes of cone isolation, whose difference lies mainly in the
behaviour of the fragmentation component. Prior to that, we need to define the total amount of hadronic
transverse energy deposited in a cone of half-aftjées

ET had(R) = Z E1i0(R — Ry;), (53)
=1

where

Ry = \/(m —17)% + (0 — ¢4)%, (54)

and the sum runs over all the hadrons in the event (or, alternativelgn be interpreted as an index
running over the towers of a hadronic calorimeter). For both the isolation prescriptions we are going to
define below, the first step is to draw a cone of fixed half-ardgjearound the photon axis, as given in

eqg. (52). We will denote this cone as the isolation cone.

Definition A. The photon is isolated if the total amount of hadronic transverse energy in the isolation
cone fulfils the following condition:

ET,had(RO) < €cPrv, (55)

wheree, is a fixed (generally small) parameter, gnd is the transverse momentum of the photon.
Definition B. The photon is isolated if the following inequality is satisfied:

ET,had(R) < G'ypT'yy(R)v (56)

for all the cones lying inside the isolation cone, that is for & Ry. The function) is arbitrary
to a large extent, but must at least have the following property:

lim Y(R) =0, (57)

and being different from zero everywhere exceptfo« 0.

Definition A was proven to lead to an infrared-safe cross section at all orders of perturbation theory
in ref. [443]. The smallek,, the tighter the isolation. Loosely speaking, for vanishipghe direct



component behaves liKeg ¢., while the fragmentation component behaves likéoge.. Thus, for

e. — 0 eq. (51) diverges. This is obvious since the limit— 0 corresponds to a fully-isolated-photon
cross section, which cannot be a meaningful quantity, whether experimentally (because of limited energy
resolution) or theoretically (because soft-particle emission inside the cone cannot be forbidden without
spoiling the infrared safety of the cross section).

Definition B was proposed and proven to lead to an infrared-safe cross section at all orders of
perturbation theory in ref. [232]. Eq. (57) implies that the energy of a parton falling into the isolation
coneCp, is correlated to its distance (in tlye¢ plane) from the photon. In particular, a parton becoming
collinear to the photon is also becoming soft. When a quark is collinear to the photon, there is a collinear
divergence; however, if the quark is also soft, this divergence is damped by the quark vanishing energy.
When a gluon is collinear to the photon, then either it is emitted from a quark, which is itself collinear
to the photon — in which case, what was said previously applies — or the matrix element is finite. Finally,
it is clear that the isolation condition given above does not destroy the cancellation of soft singularities,
since a gluon with small enough energy can be emitted anywhere inside the isolation cone. The fact that
this prescription is free of final-state QED collinear singularities implies that the direct part of the cross
section is finite. As far as the fragmentation contribution is concerned, in QCD the fragmentation mech-
anism is purely collinear. Therefore, by imposing eq. (56), one forces the hadronic remnants collinear to
the photon to have zero energy. This is equivalent to saying that the fragmentation vaisatgstricted
to the rangez = 1. Since the parton-to-photon fragmentation functions do not contaid@ny- z),
this means that the fragmentation contribution to the cross section is zero, because an integration over a
zero-measure setis carried out. Therefore, only the first term on the right hand side of eq. (51) is different
from zero, and it does not contain apy dependence.

We stress again that the functighcan be rather freely defined. Any sufficiently well-behaved
function, fulfilling eq. (57), could do the job, the key point being the correlation between the distance
of a parton from the photon and the parton energy, which must be strong enough to cancel the quark-to-
photon collinear singularity. Throughout this paper, we will use

1—cosR\"
Y(R) = (m) ;o n=1 (58)

We also remark that the traditional cone-isolation prescription, eq. (55), can be formally recovered from
eq. (56) by setting/ = 1 ande, = e..

6.3 Single isolated photons at the LH&!

In this section, we will present results for isolated-photon cross sectiops @vllisions at 14 TeV.
These results have been obtained with the fully-exclusive NLO code of ref. [231], and are relevant to the
isolation obtained with definition B; the actual parameters used in the computation are given in eg. (58),
together withe, = 1. We setRy = 0.4. We will comment in the following on the outcome of definition

A. Benchmark rates for isolated photons over different ranges of rapidity are given in Fig. 33.

Any sensible perturbative computation should address the issue of the perturbative stability of its
results. A rigorous estimate of the error affecting a cross section at a given order can be given if the
next order result is also available. If this is not the case, it is customary to study the dependence of
the physical observables upon the renormalizatjog) @nd factorization ) scales. It is important to
stress that the resulting spread should not be taken as the ‘theoretical error’ affecting the cross section;
to understand this, it is enough to say that the range in whjchnd . are varied is arbitrary. Rather,
one should compare the spread obtained at the various perturbative orders; only if the scale dependence
decreases when including higher orders the cross section can be regarded as perturbatively stable and
sensibly compared to data.

“IContributing author: S. Frixione
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Fig. 33: Benchmark cross sections for isolated-photon production: differential spectrum (left) and integrated spectrum (right).

Usually, ur andur are imposed to have the same valugwhich is eventually varied. However,

this procedure might hide some problems, because of a possible cancellation between the effects induced
by the two scales. Itis therefore desirable to vagyandp r independently. Here, an additional problem
arises at the NLO. The expression of any cross section in terms(ibfat is, whenur = pr) is not
ambiguous, whilet is ambiguous ifur # ur. In fact, whenur # up, the cross section can be written
as the sum of a term corresponding to the contribution relevant to theugaseur, plus a term of the
kind:

as (1) Blas (un) log |, (59)

whereB has the same power of; as the LO contribution, sayf. The argument of thess in front of

eqg. (59),14, can be chosen either equalsig or equal tour, since the difference between these two
choices is of NNLO. Thus, it follows that the dependence ypgror 1 of a NLO cross section reflects
the arbitrariness of the choice made in eq. (59), which is negligible only if the NMS’SO?Q corrections

are much smaller than the NLO one%(“). This leads to the conclusion that a study of the dependence
uponpu g or up only can be misleading. In other words. in eq. (59) is determined through DGLAP
equations in order to cancel the scale dependence of the parton densities up to terms ogfﬁder
This happens regardless of the choice madefoin eq. (59). However, here we are not discussing the
cancellation to a given perturbative order of the effects due to scale variations; we are concerned about
the coefficient in front of th@(a@“) term induced by such variations, whose size is dependent upon
the choice made fot. 4 and therefore, to some extent, arbitrary. We have to live with this arbitrariness,
if we decide to vary.r or ur only. However, we can still varyrp andu» independently, but eventually
putting together the results in some sensible way, that reduces the impact of the choice nuaddrior
this section, we will consider the quantities defined as follows:

(5_0> _ . [U(HR = g, bF = o) — O (R = At flo, pF = uo)]2
o). o(pr = po, iF = po) + o(UR = axplo, iF = Ho)

1
+ [J(MR = o, bF = J1o) — O (1R = po, PP = aiﬂo)]2 2 (60)
o(pr = po, pr = po) + o (LR = po, bF = axfio) ’
wherea, anda_ = 1/a, are two numbers of order one, which we will take equal to 1/2 and 2 re-

spectively; thet sign in front of the right hand side of eq. (60) is purely conventional. We can evaluate
(60 /0)+ by usingua = pgr or pa = pr in eg. (59). The reader can convince himself, with the help of
the renormalization group equation (4), that the difference between these two choices is @f‘sloimler

the expansion ahe contribution todo /)2 due to eq. (59)on the other hand, this difference is only of
ordera?s’ in each of the two terms under the square root in the right hand side of eq. (60). This is exactly



MRST99 CTEQ5
1 ] 2 ] 3] 4] 5 M [ HI [ (00/0)s
NLO, n,| < 2.5 || 23.78] 23.20] 24.19] 22.07| 25.49 25.10] 24.61] *50%%
LO, |, < 2.5 | 10.34| 10.07| 10.52| 9.875| 10.78| 10.91] 10.66| 052
NLO, || < 1.5 || 14.59] 14.23| 14.88| 13.66| 15.53| 15.35] 15.01| *Docs
LO, |n,| < 1.5 | 6.457| 6.270] 6.583| 6.212| 6.657 || 6.771] 6.596| 0023

Table 3: Isolated-photon cross sections (nb), with< pr, < 400 GeV, in two different rapidity ranges, for various MRST
(MRST99-1/5) and CTEQ (CTEQ5M/HJ) parton densities. The scale dependence, evaluated according to eq. (60) and with the
MRST99-1 set, is also shown.

what we wanted to achieve: a suitable combination of the cross sections resulting from indepandent
and p. variations is less sensitive to the choice for made in eq. (59) than the results obtained by
varying pg or p g only.

In table 3 we present the results for the total isolated-photon rates, both at NLO and at LO. The
latter cross sections have been obtained by retaining only the LO térms,f «s)) in the short-distance
cross section, and convoluting them with NLO-evolved parton densities. Also, a two-loop expression for
as has been used. There is of course a lot of freedom in the definition of a Born-level result. However,
we believe that with this definition one has a better understanding of some issues related to the stability of
the perturbative series. To obtain the rates entering table 3, we required the photon transverse momentum
to be in the rangd0 < p,, < 400 GeV, and we considered the rapidity clits| < 1.5 and|n,| < 2.5,
in order to simulate a realistic geometrical acceptance of the LHC detectors. We first consider the scale
dependence of our results (last column), evaluated according to eq. (60). We see that the NLO results
are clearly more stable than the LO ones; this is reassuring, and implies the possibility of a sensible
comparison between NLO predictions and the data. Notice that the size of the radiative corrdctions (
factor, defined as the ratio of the NLO result over the LO result) is quite large. From the table, we see
that the cross sections obtained with different parton densities differ by 6% at the most (relative to the
result obtained with MRST99-1 [10], which we take as the default set). MRST99 sets 2 and 3 are meant
to give an estimate of the effects due to the current uncertainties affecting the gluon density (see sect. 2.),
whereas sets 4 and 5 allow to study the sensitivity of our predictions to the vatug bf,) (sets 1,

4 and 5 have&% =220, 164 and 288 MeV respectively). On the other hand, the difference between

MRST99-1 and CTEQ5M [7] results is due to the inherent difference between these two density sets

(CTEQS5M hasA% =226 MeV, and therefore the difference in the valueswf)M ) plays only a very
minor role).

From inspection of table 3, we can conclude that isolated-photon cross section at the LHC is under
control, both in the sense of perturbation theory and of the dependence upon non-calculable inputs, like
ag(My) and parton densities. The relatively weak dependence upon the parton densities, however, is
not a good piece of news if one aims at using photon data to directly access the gluon density. On the
other hand, the expected statistics is large enough to justify attempts of a direct measurement of such a
guantity. In the remainder of this section, we will concentrate on this issue. We will consider

_ doo/dx —do/dx
* dog/dx + do/dz’

(61)

wherex is any observable constructed with the kinematical variables of the photon and, possibly, of the
accompanying jetsr andog are the cross sections obtained with two different sets of parton densities, the
latter of which is always the default one (MRST99-1). We can imagine a gedanken experiment, where
it is possible to change at will the parton densities; in this way, we can assume the relative statistical
errors affectingr andoy to decrease as/v/N and1//Ny, N and N, being the corresponding number

of events. It is then straightforward to calculate the statistical error affe®indyy imposingR,. to be
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Fig. 34: Dependence of isolated-photon and isolated-photon-plus-jet cross section upon parton densities, as a fuagtion of
andz.;.

larger than its statistical error, one gets

Re > (Ra)pin = S (62)

min 2Leo(x, Ax)’

where/. is the integrated luminosity, < 1 collects all the experimental efficiencies, and

z+Ax/2
U(x,Ax)—/ pas dell_Z (63)

is the total cross section in a range of widkh: aroundz.

In fig. 34 we present our predictions f&r,. In the left panel of the figure we have choses: p..,,
while in the right panel we have = z.;, where

_ Pry exp(ny) + Prj exp(n)

ww‘ \/g .

In this equation,/s is the centre-of-mass energy of the colliding hadrons,andandr; are the trans-

verse momentum and rapidity of the hardest jet recoiling against the photon. In order to reconstruct the
jets, we adopted hereka -algorithm [8], in the version of ref. [9] wittD = 1. Notice thatz,; exactly
coincides at the LO with the longitudinal momentum fractionf the partons in one of the incoming
hadrons; NLO corrections introduce only minor deviations. For all the density sets considered, the de-
pendence ofRk uponp,., is rather mild. The values in the oy, region could also be inferred from

table 3, since the cross section is dominated by smals. Analogously to what happens in the case of
total rates, the sets MRST99-4 and MRST99-5 give rise to extreme resum;gr since the value of
ag(My) is quite different from that of the default set. From the figure, it is apparent that, by studying
the transverse momentum spectrum, it will not be easy to distinguish among the pebaitd=of the

gluon density. On the other hand, it seems that, as far as the statistics is concerned, a distinction between
any two sets can be performed. Indeed, the symbols in the figure display the quantity defined in eq. (62),
for £ = 100 fb—1, Apr, = 10 GeV ande = 1. Of course, the latter value is not realistic. However, a
smaller value (leading to a largéR ).i»), can easily be compensated by enlarglyg,, and by the fact

that the total integrated luminosity is expected to be much larger than that adopted in fig. 34.

Turning to the right panel of fig. 34, we can see a much more interesting situation. Actually,
it can be shown that the pattern displayed in the figure is rather faithfully reproduced by plotting the
analogous quantity, where one uses the gluon densities instead of the cross sections. This does not come
as a surprise. Firsty,; is in an almost one-to-one correspondence withatrentering the densities.

(64)



Secondly, photon production is dominated by the gluon-quark channel, and therefore the cross section
has a linear dependence upfyix), which can be easily spotted. It does seem, therefore, to be rather
advantageous to look at more exclusive variables, like photon-jet correlations (this is especially true if
one considers the procedure of unfolding the gluon density from the data: in the case of single-inclusive
variables, the unfolding requires a de-convolution, which is not needed in the case of correlations). Of
course, there is a price to pay: the efficiemayill be smaller in the case of photon-jet correlations, with
respect to the case of single-inclusive photon observables, mainly because of the jet-tagging. However,
from the figure it appears that there should be no problem with statistics, except in the very.large
region.

Finally, we would like to comment on the fact that, for the case of single-inclusive photon ob-
servables, we also computed the cross section by isolating the photon according to definition A, using
€. = 2 GeV/p.,,. The two definitions return g, spectrum almost identical in shape, with definition B
higher by a factor of about 9%. It is only at the smallgst values that we considered, that definition
B returns a slightly steeper spectrum. The fact that such different definitions produce very similar cross
sections may be surprising. This happens because, prior to applying the isolation condition, partons tend
to be radiated close to the photon; therefore, most of them are rejected when applying the isolation, no
matter of which type. This situation has already been encountered in the production of photons at much
smaller energies. The reader can find a detailed discussion on this point in ref. [444].

In the previous paragraphs, we concentrated on the possibility that isolated-photon data can be
used to constrain or measure the gluon density in the proton. However, it is well knowf), thats
rather strongly correlated tgs. This is not a problem if one is interested in observables that only depend
upon the quantityvs f,(x). On the other hand, the determination of the gluon density alone is important
in many respects. Thus, one has to assume an accurate knowlegdgeodaéxtractf,(z) from the data.
It is of course possible to turn this argument the other way round: that is, to assume a good knowledge of
f4(z) to measurevs. The sensitivity of the isolated-photon cross section at the LHC upon the value of
ag can be inferred from table 3 and fig. 34, looking at the results obtained with the sets MRST99-4 and
MRST99-5. Unfortunately, since the gluon-initiated processes dominate the cross section, and the gluon
is the least known among the parton densities, this procedure will probably result in sizeable systematic
errors; on the other hand, thanks to the size of the production rate, we should expect a precise result on
a statistical basis. These considerations should encourage us to find alternative ways of magsuring
by using photon data. Since the main problem is in the dependence of the cross sectigfy(upon
the guide line is that of considering observables that are less sensitive to the parton densities than the
isolated-photon cross section.

In what follows, we will argue that an observable of this kind is given by the ratio

(pr) - (65)

Here,do;/dpr; is the single-inclusive jet transverse momentum spectrum, whilgdp.-, is the trans-
verse momentum spectrum of the isolated photon.

It is immediate to see that, at the L@, is proportional toas. In the ratio that defined’, one
expects that the dependence upon the parton densities cancel to a good extent, thus giving an observable
suited to measureg, regardless of the precision to whi¢h(x) is known. In hadronic physics, the trick
of considering ratios of cross sections (instead of the cross sections themselves) in order to reduce the
dependence on the parton densities is frequently used. In particular, for the measuremeattradron
colliders, one can think to thé” 4 1-jet overWW + 0-jet ratio (4), and to the 3-jet over 2-jet rati@). We
have to stress an important difference between these two quantitiek: andhe ratio that definegl and
B, the numerator requires the definition (through final-state cuts) of an hard object in addition to those
already present in the denominator. This implies that the kinematical configurations in the numerator
and denominator can be sizably different. Therefore, one faces the following problem: etemdf



77 (GeV) 20 | 100 | 200
Imy| <15
MRST99-2 || 1.006 4+ 0.009 | 1.003 +0.025 | 0.991 4+ 0.051
MRST99-3 || 1.002 4+ 0.009 | 1.009 4+ 0.023 | 1.007 4+ 0.048
Iny| <25
MRST99-2 || 1.003 4+ 0.008 | 1.002 4+ 0.023 | 0.998 + 0.042
MRST99-3 || 1.009 4+ 0.008 | 1.009 4+ 0.023 | 0.999 + 0.046

Table 4: NLO predictions for the double ratid defined in eq. (66), for varioys;*™ and two ranges in rapidity.

P (GeV) 40 [ 100 | 200
Imy| <15
MRST99-2 || 0.974 £ 0.003 | 0.966 £ 0.010 | 0.984 £+ 0.027
MRST99-3 || 1.019 +0.003 | 1.016 £ 0.010 | 1.012 +0.025
[ny| <25
MRST99-2 || 0.976 + 0.002 | 0.973 £ 0.008 | 0.987 +0.019
MRST99-3 || 1.017 £ 0.002 | 1.010 £ 0.008 | 1.010 +0.018

Table 5: NLO predictions for the ratio defined in eq. (68). This table has to be compared to table 4.

B are formally proportional (at the LO) tag, it is not straightforward to determine the scale at which

ag is calculated. Furthermore, since the numerator and the denominator have different hard scales, the
parton densities appearing in these two quantities will be probed at different momenta: this of course
will partially destroy the cancellation that one is willing to achieve when considering such ratios. One
the other hand, this problem does not aff@ctboth the isolated-photon and the single-inclusive cross
sections are dominated by two-body, back-to-back configurations: it is therefore pretty intuitiug that

will be evaluated at a scale equal to the transverse momentum of the observed photon and jet. On the
other hand, the partonic subprocesses contributing to the numerator and the denomidzsaod ¥ are
basically the same. This is not true far, because of the different hard production processes involved.
Therefore, one might argue that in the latter case the cancellation of the dependence on parton densities
will not take place. We can however observe the following: at the LHC, and if one does not consider
too large values iy, the average momentum fractianprobed is small: thus, the quark densities

are dominated by the sea, which is in turn related o). In this way, we can expect to recover the
cancellation.

Of course, there is no way to tell beforehand which observable displays the smallest dependence
upon the parton density choice. In order to study this issue in the ca%e wk will consider in the
following the double ratio

D(p™) = X (pir™) | Xo(p™), (66)

where

max

=, pr® do; Pr do
pyzn pT] p?zn

— . 7
P~ de’y (6 )

In eq. (66),X is computed with our default parton density set (MRST99-1), whilis computed with

the other sets. Notice that we consider&dnstead ofX just because we collected a limited amount

of statistics in the MC runs performed so far, atdstands a better chance thahto be insensitive

to fluctuations. Notice, however, that the relevant transverse momentum spectra are quite steep, and
thereforeX (p™™) is dominated byX' (p™™). In eq. (67), the upper limj”*%* can be chosen at will. A
possible choice is to set it equal to the kinematical limit; in the results presented in this section, we have
setp'* = 400 GeV.



Our NLO predictions for the double ratio are presented in table 4. By inspection of the table, we
can see thab is remarkably stable with respect to the choice of the density set; it has to be stressed, how-
ever, that an increase of the statistics is mandatory at the higfi&stonsidered. In the table, we limited
ourselves to considering only the sets MRST99-2 and MRST99-3. The reason is the following: by con-
struction, these sets gauge the current uncertainty affecting the determinafidm jpfwith MRST99-1
being assumed to return the “true” densities. Thus, sinéecompatible with one, we are indeed check-
ing that the dependence upon the parton densitie¥ {@actually, X') almost perfectly cancels. If we
were considering other sets, like MRST99-4, we would expect ag(AvrsTo9—1)/ s (AMRST99-1)-
However, the strong correlation betweeg and f,(x) might spoil this naive expectation. The same can
be said when considering the sets of the CTEQ group: in this case, a further bias can be introduced by
the fact that MRST and CTEQ use different parametrizations and evolution codes. We postpone a more
careful analysis of this problem to a forthcoming work.

It can be argued that the results displayed in table 4 are due to the fact that the densities used are
actually not that different in the range of interest. This, however, is not true. In fact, at the level of
cross sections, the differences between the predictions obtained with the default set or with the other sets
are much larger. This can be seen from table 3. More precisely, we can consider the ratio

P do, / PR dogy
/p$m dpr de’y/ i dpr dprr ) (68)
wheredoy, is calculated using MRST99-1, anld, with all the other density sets. The results for this
guantity are presented in table 5. Each entry of this table has to be compared with the corresponding
entry in table 4. From this exercise, it is indeed evident ftias much less sensitive than the isolated-
photon cross section to the choice of the density set, at least atsgfffallWhenp" approaches larger
values, no firm conclusion can be reached, given the statistics collected; as mentioned before, one can

suspect that, the highef*", the larger the dependence &fupon the densities. One the other hand, it
can be observed that smaller momenta allow an easier observation of the runaing of

6.4 Pairs of isolated photons: infrared sensitivity with standard cone isolatiof?

In the discussion given before, we restricted to the case of the production of a single isolated photons. Of
course, the considerations we made can be extended with obvious modification in eq. (51) to the case of
the production of photon pairs. In such a case, the cross section splits naturally inrthhgeicalcom-

ponents: direct, single-fragmentation and double-fragmentation, corresponding to the processes where
both photons, one photon and none of the photons are directly entering the hard subprocess. As far as the
isolation prescription is concerned, things are unchanged: this cut has to be imposed on both photons,
and possibly supplemented by the requirement that the photons be isolated from each other.

In Sect. 9., the production of photon pairs is described with a special emphasis on its role as a
background to Higgs searches. Here we would like to concentrate on a different, more technical aspect,
which is more relevant to pure-QCD studies. We investigate appearance of infrared divemggidetise
physical spectrum. An example of such divergences appears in the transverse momehspadtrum
of a pair of isolated photons - or of a jet+isolated photon system. This can be seen in Fig. 35, which
showsdo /dqr vs. g for isolated photon pairs, computed at NLO accuracy [237]. The rather large value
of isolation cut used hereF .., = 15 GeV, is not motivated by any phenomenological consideration:
it instead allows to split the well known infrared issue in the vicinitygef — 0 from the new one at
qr — Ermaz-

The trouble comes from the “single fragmentation” contribution (the contribution where only one
photon comes from the fragmentation of a hard parton, the other being emitted by the partonic sub-
process). In the QCD improved parton model framework, the fragmentation is a strictly collinear pro-

“42Contributing authors: T. Binoth, J.P. Guillet and E. Pilon.
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Fig. 35: Di-Photon differential cross sectialr/dgr at LHC, \/s = 14 TeV, with the kinematic cutpr(v1) > 40 GeV,
pr(y2) > 25 GeV, |y(y1,2)| < 2.5, and with isolation criteriorErn,q.. = 15 GeV in R = 0.4. The scale choice for initial
state factorization scalé(), fragmentation scale\(y) and renormalization scal@)is M = My = p = m~~ /2.

cess, hence all the hadronic debris of the parton-to-photon fragmentation fall inside the cone of the
photon from fragmentation. At LO, both photons are back-to-back in the transverse plane, so, due to
transverse momentum conservatign,= E¢4. Since the transverse hadronic energy deposited in the
isolation cone has to be less thét ..., the LO “single fragmentation” contribution of thg- distri-

bution has a stepwise behavior. Then, as shown in [445], at NLO such an observable gets an infrared
double logarithmic divergence at the critical poit = E7 ... The details of this infrared structure

are very sensitive to the kinematic constraints and the observable considered. In the case at hand, the
NLO contribution todo /dgr gets a double logarithm below the critical point, which is produced by the
convolution of the lowest order stepwise term with the probability distribution for emitting a soft and
collinear gluon, yielding:

do do q2
99 ~(22) O(Ermes — xa1n2(1— T )+ 69
<qu>NLO (dQT>LO ( g QT) i E’%max ( )

More generally, at each order in;, up to two powers of such logarithms will appear, making any fixed
order calculation diverge atr = F7 .42, SO that the spectrum computed by any fixed order calculation

is unreliable in the vicinity of this critical value. In principle, an all order resummation has to be carried
out if possible, in order to restore any predictability. In practice, the phenomenologically relevant values
of Er.q. are fairly lower than 15 GeV, so that this problem may affect only the very first bins gfithe
distribution.

6.41 Mismatch theory/experiment with very severe isolation cuts

Another issue deserves some care, when isolated photons are selected by mean of the above standard
cone criterion. In an actual prompt photon event the transverse energy deposited inside the isolation
cone has several physical origins. One is when hadrons coming from the hadronization of hard partons
involved in the subprocess fall into the cone. A second one is given by the debris of the fragmentation
producing the photon, when the latter comes from such a mechanism. A third source of accompanying
transverse energy is provided by “minimum bias”. Moreover at high luminosity, piled-up events may
also contaminate the hadronic environment of a previous photon event. From an experimental point of



view, the value oftr ... has to be as low as possible in order to suppress background events and events
with photons from fragmentation, while retaining most of the “true” direct photons. The goal is thus to
use an experimental value 6%, basically saturated by “minimum bias” - and pile-up. For example

this is nearly achieved by CDF at the Tevatron requiriiig,,.. = 1 GeV in R = 0.4. In partonic
calculations, the first two sources of accompanying transverse energy are taken into account, whereas
the last two are ignored. However if the accompanyifft§? is to be saturated by “minimum bias” and
pile-up, then in a partonic calculation, this leaves almost no room for accompanying pdiooaning

from the hard subprocess itself. Therefore, a partonic calculation meant to incorporate the effect of such
an experimental cut should use an effective valueHer,,... in the calculation, which is much smaller

than the one experimentally used, e.g. at most a few hundred MeV for CDF. The correspondence between
the values used in experiments, or full Monte Carlo simulations (which model the “minimum bias”), and
their counterparts in higher order partonic calculations has to be further studied. Such a comparison is
worthwhile especially because the actual isolation cuts used by colliders experiments are more exclusive
and sophisticated than the schematic criterion defined above.

However when the experimental value Bf ..., iS nearly saturated by “minimum bias”, such a

study is complicated by an infrared problem. Indeed, an infrared divergence appears in partonic calcu-
lations, when photons are required to be absolutely isolated, i.e. accompaniediglzing amounof
partonic transverse energy inside a cone of finite size, because this amputation of gluon phase space pre-
vents the cancellation of the infrared singularities associated with soft gluon emission. With a finite value
E7 maz, this would translate into the appearancédtr ... /Q) (Where@ is some large scale, of the
order of the photon’'ss) which would become large with a tinir,,,.... Whereas the “fragmentation”
contribution to, e.g. they distribution of direct photons [230, 446], or the invariant mass distribution of
photon pairs, is roughly

Ufmgm~5(1n25—|—1n51nR—|—---) (70)

(with e = E7 4. /@), the “direct” contribution behaves as
o ~ R*Ine + O(1) (71)

The theoretical partonic calculation would then become unstable and unreliable gwhdnwith finite

R. Moreover, this problem is not localized in the sole vicinity of some isolated point, at the border of or
inside the spectrum, but in principle it plagues the calculation over the whole spectrum - at least some
extended range of it - for observables such as, e.gpthdistribution of direct photons, or the invariant
mass distribution of photon pairs. The dependence of theoretical partonic calculations on the isolation
parameters, especially diy- 4., has still to be studied in detail [447] in order to fix this puzzle.

7. SMALL X PHYSICS*®
7.1 Jet physics at large rapidity intervals and the BFKL equatiorf*

The LHC offers a unique opportunity to explore semi-hard strong-interaction processes, which are char-
acterized by two large and disparate kinematic scales. In inclusive jet production, jets of transverse
energy £, = 50 GeV can span a kinematic range of up to 11 units of rapidity. Processes with two
large and disparate kinematic scales typically lead to cross sections containing large logarithms. Exam-
ples of this type of process are di-jet production in hadron collisions at large rapidity intervals [448],
forward jet production in DIS [449-451], ang~* collisions in double-tag events," e~ — ete™+
hadrons [452]. In large-rapidity di-jet production the large logarithm is the rapidity interval between the
jets, Ay ~ In(5/|t|), with 5 the squared parton center-of-mass energy|&naf the order of the squared

jet transverse energy. In forward jet production in DIS the large logaritim(ig/x;; ), wherex; is the

Bjorken scaling variable and the momentum fraction of the parton entering the hard scattering. These

43Section coordinators: R. Ball, V. Del Duca and A. de Roeck.
#cContributing authors: V. Del Duca and W.J. Stirling.



logarithms will arise in a perturbative calculation at each order in the coupling constaAtternatively,

if the logarithms are large enough, it is possible to include them through an all-order resummation in
the leading logarithmic (LL) approximation performed by means of the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [304—306].

In the high-energy limits > |£|, the BFKL theory assumes that any scattering process is domi-
nated by gluon exchange in the crossed chafthelhich for a given scattering occurs @t(a%). This
constitutes the leading-order (LO) term of the BFKL resummation. The corresponding QCD amplitude
factorizes into a gauge-invariant effective amplitude formed by two scattering centers, the LO impact
factors, connected by the gluon exchanged in the crossed channel. The impact factors are characteris-
tic of the scattering process at hand. The BFKL equation then resums the universal LL corrections, of
O(aZIn™(3/f])), to the gluon exchange in the crossed channel. These are obtained in the limit of a
strong rapidity ordering of the emitted gluon radiation, i.e.»fagluons produced in the scattering,

YL > Y2 > > Yp1 > Yn - (72)

Di-Jet production in hadron collisions at large rapidity intervals is the simplest process to which to
apply the BFKL resummation, and one of the topical BFKL processes at the LHC, thus we shall use it as
the paradigm process. Since di-jet production at large rapidity intervals is dominated by gluon exchange
in the crossed channel, the functional form of the QCD amplitudes for gluon-gluon, gluon-quark or
quark-quark scattering at LO is the same; they differ only by the colour strength in the parton-production
vertices. We can then write the cross section in the following factorized form [458-460]

do
Ay 1 Py | dyg dyy

dogg
dpy 1 dPpy 1’

= a0 forr (20, uF) ) for (2], 13) (73)

wherep - is the factorisation scale, andd’ label the forward and backward outgoing jet, respectively,
andp, are two-dimensional vectors in the plane transverse to the collision axisztmaithalplane.

29, ) are the parton momentum fractions in the high-energy limit,

20 — ‘pa’l|€ya/ 0 _ ‘Pb’ﬂefyb,

74
a \/g Ly \/g ) ( )
and the effective parton distribution functions are [461]
4
ferlo i) = folw,ih) + 5 3 | a0 md) + fa, (o) (75)
f

where the sum is over the quark flavours. In the high-energy limit, the gluon-gluon scattering cross
section becomes [458]

dﬁgg [CAOzs] CAaS
o o = f(aL, a1, Ay ) (76)
d?par 1 d*py 1 P2 ( ) i

withC4 = N, = 3, Ay = y —yp andg; | the momenta transferred in thehannel, withy,, = —pa/1

andg,, = py ., and where we use the shorthand for the magnitude squared, = p. The quan-

tities in square brackets are the LO impact factors for jet production. The funftion , g1, Ay) is

the Green’s function associated with the gluon exchanged in the crossed channel. It is process inde-
pendent and given in the LL approximation by the solution of the BFKL equation. This equation is a

“The crossed-channel gluon dominance is also used as a diagnostic tool for discriminating between different dynamical
models for parton scattering. In the measurement of di-jet angular distributions, models which feature gluon exchange in the
crossed channel, like QCD, predict a characteristic *(6* /2) di-jet angular distribution [453—455], while models featuring
contact-term interactions, which do not have gluon exchange in the crossed channel, predict a flattening of the di-jet angular
distribution at larges /|| [456, 457].



two-dimensional integral equation which describes the evolution in transverse momentum of the gluon
propagator exchanged in the crossed channel. If we transform to moment space via

dw

Fatsar By) = | 5= e f(dat, qv1) (77)
we can write the BFKL equation as
W fuldal, 1) = 3 0°(Qar — qp1) + 7’C [fo(Gar>qv1)]s (78)

with @s = ag N, /7, and where the kernd( is given by

2k,
Gt

2
g1
kﬁ_ + (Qai + kl)2

K1fo(qassap1)] = / |:fw(Qai + ki, qp1) — fo(daL, %L)] : (79)
The first term in the kernel accounts for the emission of a real gluon of transverse momentaina
the second term accounts for the virtual radiative corrections, whgdeisethe gluon exchanged in the

crossed channel. The solution to the BFKL equation is,

oo

00 2 w
f(Gas,qp,Ay) = ; Z ein®ab / dy e m)Ay (anJ-> ’ (80)
(2m)%4/q o0 oL

2 2
0l dp| n=—00

with ¢, the azimuthal angle betweep, andg,,, andw(v, n) the eigenvalue of the BFKL equation

w(v,n) = —ag [w (WT—'_I + iu) + (WT—Fl — il/) + 275] , (81)

with 1) the digamma functiome = —1(1) the Euler constant, and with maximuma{0,0) = \ =
4ag1In2. Thus the solution of the BFKL equation resums powerg\gf The resulting gluon-gluon
cross section grows witthy as f(q.1, g1, Ay) ~ exp(AAy) [305, 306], in contrast to the leading-
order (O(a3)) cross section which is constant at laryg.

In order to detect evidence of a BFKL-type behaviour in a scattering process, we need to have
Ay as large as possible. In di-jet production it can be done by minimizing the jet transverse energy,
and maximizings. Sinces = zzs, in a fixed-energy collider this is achieved by increasing the parton
momentum fractions, ;, and then measuring e.g. the di-jet production ratgdAy. However, as the
x's grow the parton luminosity falls off, making it difficult to disentangle the eventual BFKL-driven rise
of the parton cross section from the pdf’s fall off [459, 460]. One way to circumvent this problem is
to use a variable-energy collider: the increase itan then be achieved by fixing thés (and hence
the pdf’s) and by letting the hadron center-of-mass energsow. The advantage of this set-up is that
variations in the pdf's are minimised, while variations in the parton dynamics, and thus in the eventual
underlying BFKL behaviour, are stressed [458, 462]. The DO collaboration have recently attempted to
uncover BFKL behavior in this way by comparing di-jet cross sections measurgd at 630 GeV
and 1.8 TeV [463]. In a contribution to this Workshop [464], the possibility of testing for BFKL-type
behaviour by comparing di-jet cross sections at the Tevatron (2 TeV) and the LHC (14 TeV) has been
investigated. The difficulty here is that one is comparing jets measured in two very different detectors,
with resulting systematic uncertainties in the relative cross sections. One could also, of course, con-
template running the LHC at a lower collision energy. Note that a variable-energy configuration can be
more easily realised: in forward-jet production in DIS, since a fixed-enepgollider is nonetheless a
variable-energy collider in the photon-proton frame [465—470%}*i* collisions in double-tag events,
ete”™ — eTe”+ hadrons, by varying the energy in the photon-photon frame [471,472].

As a more practical alternative to varying the collider energy, one can study less inclusive observ-
ables. In particular, the correlation between the tagging jets, which at LO are supposed to be back to back,



is smeared by gluon radiation induced by parton showers and by hadronization. However, if we look at
the correlation also as a function &fy, we expect the (BFKL) gluon radiation in the rapidity interval be-
tween the jets to further blur the information on the mutual position in transverse momentum space, and
thus the decorrelation to grow withy. Accordingly, the transverse momentum imbalance [459, 473],
and the azimuthal angle decorrelation [459, 460, 474—476] have been proposed as BFKL observables.
In particular, it is straightforward to derive from (80) the prediction for the dependengexf,;) on

Ay:A® (cos dg) ~ 0. One finds [459, 460, 474—476] thatos ¢,;) decreases rapidly from 1 at small

Ay (back-to-back jets), and approaches zerd\gs— oo. Such an azimuthal angle decorrelation has
indeed been observed at the Tevatron Collider [448]. However, the LL BFKL formalism predicts a much
stronger decorrelation than that observed in the data. On the other hand a NLO partonic Monte Carlo
generator (JETRAD [222,477]), in which the ex&ct-> 2 and2 — 3 matrix elements are taken into
account, predicts too little decorrelation. In fact the data are well described by the HERWIG Monte Carlo
generator [171,211,116], which ‘dresses’ the basie 2 parton scattering with parton showers and also
includes hadronization. Thus the present conclusion is that at least for di-jets with transverse momenta
> 20 GeV and with rapidity intervals< 6 units, as analysed by the DO Collaboration at the Tevatron,
there is no evidence for LL BFKL-induced gluon radiation in the azimuthal angle decorrelation.

A possible explanation of the failure of the LL BFKL prediction to describe the Tevatron data
is that the sub-leading corrections are large. There are various sources of such corrections: next-to-
leading order corrections to the BFKL kernel in (79), which have recently been calculated (see Sect. 7.3),
related running coupling effeéts and finally kinematic corrections that take into account the limited
phase space available for BFKL-type gluon emission. In the derivation leading to the result (80), the
transverse momentum of each emitted gluon is unbounded, and it is this unrestricted emission of gluons
with transverse momenta |p. | |, |py 1 | that leads to the strong decorrelation in azimuthal angle.

In an attempt to go beyond the analytic LL BFKL results, a Monte Carlo approach has been
adopted [478,476,462]. By solving the BFKL equation (78) by iteration, which amounts to ‘unfolding’
the summation over the intermediate radiated gluons and making their contributions explicit, it is possible
to include the effects of both the running coupling and the overall kinematic constraints. It is also
straightforward to implement the resulting iterated solution in an event generator.

The first step in this procedure is to separateithétegral in (78) into ‘resolved’ and ‘unresolved’
contributions, according to whether they lie above or below a small transverse energy.stiaéescale
1 is assumed to be small compared to the other relevant scales in the problem (the minimum transverse
momentunp™i® for example). The virtual and unresolved contributions are then combined into a single,
finite integral. The BFKL equation becomes

1 a d*k

= 0%(qar — @L) + —S/ —QL JolQar +k1,q1)

2 s k2 >,U'2 kl

@ d2]€L
il

W ful@ar,ap1) =

a2, fuldar,qv1)
ki + (Qai + kl)2

|:fw(QQL + ki, q)0(p? — k) — . (82)

The combined unresolved/virtual integral can be simplified by noting that difice< ¢2,,q2, by
construction, thé: | term in the argument of,, can be neglected, giving

1 1o} d’k
(w—wo) fu(@aLsqpL) = 3 6%(qar — av1) + —S/ —QJ_ Jol@ar + ki, q01),  (83)
T Jespe KL
where ) ) )
wy = — O(p” —k3) — @ =asn|{—=). (84)
T ) K ( 1) k7 + (qor +k1)? Gy

min

“8In practice one integrates the di-jet transverse momenta above some thrashold|p, . | > pT™.
“"Note that the solution given in (80) assumes a fixed valuexfor



The virtual and unresolved contributions are now containedyiand we are left with an integral over
resolved real gluons. We can now solve (83) iteratively, and performing the inverse transform we have

F(dar a1, AY) = Y f™(qar, a1, Ay) - (85)
n=0
where
2 710sAy
1
FO01, a0, Ay) = [MT] = 6°(qar — qv1)
a1 2
2 1asAy n n
1
U (Gar, g1, Ay) = [QMT] {H/kou dyi]:i} 2 0*(Gar — oL — Y _ ki)
al i=1 i=1
_ i—1 27 asYi
ol + 1 kj
Foo= 02— )0l ) | 2 i) (86)
Tk, (Gar + 27521 Kj1)

Thus the solution to the BFKL equation is recast in terms of phase space integrals for resolved gluon
emissions, with form factors representing the net effect of unresolved and virtual emissions. Unlike in the
case of DGLAP evolution, there is no strong ordering of the transverse morgnt&trictly speaking,

the derivation given above only applies for fixed coupling because we haveslefttside the integrals.

The modifications necessary to account for a running couplg(@i) are straightforward [476].

The expression fof in (85,86) above is amenable to numerical integration, and one can for ex-
ample reproduce the analytic result given in (80). More importantly, having made explicit the BFKL
gluon emission phase space, we can impose overall energy and momentum conservation. In particular
the parton momentum fractions in the presence of BFKL gluon emission become

eva’ _ .
Ta = <!pa/ﬂ + lppLle™™ + > lkife” y“') ;

2

NG

The momentum fractions in the high-energy limit given in (74) are recovered by imposing strong rapidity
ordering, eq. (72). Note that the requirement z;, < 1 effectively imposes an upper limit on the
transverse momentunk,( ) integrals. This in turn means that the analytic result (8@oisreproduced

in the presence of such a constraint, since they require the internal transverse momenta integrals to
extend to infinity. Formally, the kinematic constraints, ;, < 1 induce an infinite sequence of sub-
leading IogarithmsngAy”—l, a’§Ay”‘2, ... that suppress the growth of the parton scattering cross
section withAy.

e _ it
Ty = <|pb'ﬂ + [parsle™® + Y |kisle yﬁyb) - (87)

1

Applying kinematic constraints and including the running coupling suppresses the emission of
energetic BFKL gluons, and therefore weakens the azimuthal decorrelation predicted at LL level [478,
476]. As a result, reasonable agreement with the DO decorrelation data is recovered. Itis clear, therefore,
that one needs a higher-energy collider such as the LHC in order to discriminate between the BFKL and
parton shower (DGLAP) dynamics.

Figure 36 shows the mean value@k A¢ in di-jet production in an improved BFKL MC ap-
proach [479] that includes kinematic constraints and running couplings (upper curves). The jets are
completely correlated (i.e. back-to-back in the azimuthal plang&yat 0, and asAy increases we see
the characteristic BFKL decorrelation, followed by a flattening out and then an increéses ihg) as
the kinematic limit is approach&¥ Not surprisingly, the kinematic constraints have a much stronger

“8For any given transverse momentum threshold, there is shgnat which the jet paird’, b')alone saturates the kinematic
limit, and emission of additional (real) gluons is completely suppressed and the azimuthal correlation returns. As we approach
that limiting value ofAy we therefore expect to see a transition back towards correlated jets.



Lo T

BFKL MC:

r N Tevatron, p; > 20 GeV B
o8- ---LHC, py > 50 GeV i
\\\—LHC, P > 20 GeV

06 — /]

<cos A¢>

04 qgH, LHC: T —

[\ ~~ Py > 50 GeV ]
L — pp > 20 GeV
02 — :

0.0 L [ I B L1 T == B TS
0 2 4 6 8 10

Fig. 36: The azimuthal angle decorrelation in di-jet production at the Teva{fen< 1.8 GeV) and LHC (/s = 14 TeV) as

a function of di-jet rapidity differencéy [479]. The upper curves are computed using the improved BFKL MC with running
as; they are: (i) Tevatronpr > 20 GeV (dotted curve), (i) LHCpr > 20 GeV (solid curve), and (iii) LHCpr > 50 GeV
(dashed curve). The lower curves are for di-jet production in the pragess qqH for pr > 20 GeV (solid curve) and

pr > 50 GeV (dashed curve).

effect when thq)‘fin threshold is set &0 GeV (dashed curve) than 2@ GeV (solid curve); in the latter

case more phase space is available to radiate gluons. We also show for comparison the decorrelation
for di-jet production at the Tevatron fgrr > 20 GeV. There we see that the lower collision energy

(1.8 TeV) limits the allowed rapidity difference and substantially suppresses the decorrelation at large
Avy. Note that the larger center-of-mass energy compared to transverse momentum threshold at the LHC
would seem to give it a significant advantage as far as observing BFKL effects is concerned.

The lower set of curves in Fig. 36 refer to Higgs production viath&/’, Z~Z fusion process
qq — qqH, and are included for comparison [479]. This process automatically provides a ‘BFKL-like’
di-jet sample with large rapidity separation, although evidently the jets are significantly less correlated
in azimuthal angle.

In summary, the LHC offers an important test of BFKL dynamics in the production of relatively
low transverse momentum jet pairs with a large rapidity separation. In this section we have given an
overview of the relevant theory. An important next step is to include the effects of the next-to-leading
order contributions to the BFKL kernel, and to consider other related processes with gluon exchange in
the crossed chanrf@l On the experimental side, it remains a challenge to trigger on such Igats in
the far forward regions of the detector.

7.2 Small« Effects in Final States®

To understand the special features of QCD dynamics at amialvill be essential not only to study the

fully inclusive cross sections for smatlprocesses at the LHC, such as the Drell-Yan process at dilepton
mass-squared)? much smaller than the c.m. energy-squared, but also to investigate the structure of
the associated final states. One important aspect of the final state is the number of mini-jets produced.
By mini-jets we mean jets with transverse momenta above some resolutiornugcatberep? < Q2.

Thus the mini-jet multiplicity at smalk involves not onlyln z > 1 but also another large logarithm,

T = In(Q?/u), which needs to be resummed. The results presented below include all terms of the
form (agInz)"T™ wherel < m < n. Terms withm = n are called double-logarithmic (DL) while

those withl < m < n give single-logarithmic (SL) corrections. The DL contributions to the mini-jet
multiplicity have been obtained in [480], and the SL terms have been included in [481, 482]. In these

“Examples includgg — Wqg, gg — bbg etc.
S0Contributing authors: C. Ewerz and B.R. Webber.



calculations the BFKL formalism [302, 306] has been used, but the results are expected to hold [483]
also in the CCFM formalism [484, 485, 390, 391] based on angular ordering of gluon emissions.

We start by considering the gluon structure function at the momentum@éale(z, Q?). Itis the
sum of contributiong”("1€9 (z, @2, 1i2) in which different numbers of final-state mini-jets are resolved
with transverse momentum greater than

Ldz

FO) (2, Q, i) = F(w, 1g) @ G (,T) = / —F(z03)G" (/2 T). (88)

T

To determine the coefficient functiafi(”) to leading logarithmic order im, it is convenient to apply a
Mellin transformation,

1
fuloo) —/0 dez“ f(xz,...) . (89)

In w-space the evolution of the structure functioFis(Q?) = exp[y. (as/w)T|F,, (u2), wherevy, is the
Lipatov anomalous dimension, i.e. the solution obtained from eq. (81) by setting andy = 1/2+iv,

w=—as[P(y) + (1 —7) + 2% =asx(7) . (90)

The Lipatov anomalous dimension can be written as an expansion in powegswof

_ — \ 4 — \6
_ as as ag
=—+2 — 2 — e 1
(@) = 220 () v (2 + (o1)
In [482] it has been shown that the generating function(u, T) = > 72, ur G (T') can be written as
o Iw(uv 0)
GUJ(U’?T) - Iw(u,T) I (92)
where J
I(u,T) = / @y e 1T +ow(u) ’ (93)
r
T" being a contour parallel to the imaginary axis on the left of all singularities of the integrand, and
u v w
utun) = 7 [ |22 —x)] (94)
u—1 L asu
One can obtain the moments of the jet multiplicity distribution from the generating function as follows:
_ 0°G,
r(r—1)...(r—s+1), = exp[—y.(as/w)T] s (95)
u=1
Using the expressions (92)-(94) we thus find for the mean number of jets
_ 1 /1 X 1,
=—— =+ T—-_—T
Y (% Tayt X) 2x' (99)

where x’ means the derivative of(y) evaluated aty = ~.. The corresponding expression for the
variance in the number of jets? = r2,, — 72, is more complicated [482]. Interestingly, the variance is
a polynomial of third degree iif'. This implies that the distribution in the number of jets remains narrow

for largeT in the sense that its width grows slower than its mean.

Considered as functions af the coefficients of the powers @f in eq. (96) and in the corre-
sponding expression far? [482] exhibit bad behaviour at large values@f/w. This is associated
with the singularity of the leading-order Lipatov anomalous dimensioatas/w = (4In2)~1. We



would expect this behaviour to be modified strongly by higher order corrections. Although the next-to-
leading corrections te, are known [67, 400, 307] a full calculation of the corresponding corrections to
the associated jet multiplicity has not been performed and would appear very difficult.

For practical purposes it is necessary to determine the multiplicity moments as functiens of
This can be done using (90) and the perturbative expansion (91) of the anomalous dimension. The
inverse Mellin transformation can then be applied to this series term by term using

1 —— as " Qs [ES ln(l/x)]n_l
9 dex ! (U) =% o (97)

In this way one easily finds a series for the inverse Mellin transfefm) of 7, for example. We note
that the factorial in the denominator makes the resulting seriespace converge very rapidly. Itis then
straightforward to compute the mini-jet multiplicity associated with point-like scattering on the gluonic
component of the proton at smallusing

F(z,Q%) ®7(z)
F(z, Q%)

To illustrate the effects of BFKL resummation we compute the number of associated jets in central
Higgs production at the LHC. The dominant production process for a SM Higgs boson at the LHC is
expected to be gluon-gluon fusion. The production cross section for a Higgs boson of\fgaasd
rapidity y by gluon-gluon fusion in proton-proton collisions at centre-of mass engrgiakes the form

do
dy

n(x) =

(98)

:F(xlvM%I)F(x%M%I)C(MIQ{)v (99)

where for central production of the Higgg & 0) we haver; = x5, = Mpy//s, and for LHC,/s =

14 TeV. C represents thgg — H vertex, which is perturbatively calculable as an intermediate top-
quark loop. A more careful treatment would involve replacing the Higgs production v@(t&&%) by

an impact factoiC(M%, k%, k3) and convoluting it with unintegrated gluon densities taken at the off-
shell gluon virtualitiesk? andk3, respectively. The dependence of the impact factay/ %, k2, k3) on
these virtualities is expected to be weak, and we have neglected it to arrive at eq. (99X Thanels

in the mean number of mini-jets and its dispersion, and we do not need to know its detailed form.

Since the gluon emissions in the regions of positive and negative rapidity are independent, we can
simply add the numbers; = n(x;) andny = n(x2) of mini-jets produced in these regions. The mean
multiplicity N of associated mini-jets becontés

N(x) =n1 +n2 =2n(x), (100)
wheren(z) can be calculated as in (98) after replac@gby M 7. Similarly, the variance is
ofe (@) = op(x1) + o (22) = 207 () . (101)

The variancer2 can be obtained in a similar way as the mean (for details, see ref. [482]).

We have calculated the dependenceVoéndo y on the Higgs masa/y using the leading-order
MRST gluon distribution [28]. Our numerical results are shown in fig. 37. The DL results, obtained by
keeping only the first term in eq. (91), give an excellent approximation and the SL terms are less signif-
icant. We see that the mini-jet multiplicity and its dispersion are rather insensitive to the Higgs mass at
the energy of the LHC. The mean number of associated mini-jets is rather low, such that the identifica-
tion of the Higgs boson should not be seriously affected by them. In view of the rapid convergence of
the perturbative series irrspace we do not expect the result for the mini-jet multiplicity to be strongly
modified by higher order corrections.

1We do not count any jets emerging from the proton remnants.
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Fig. 37: The mean value and dispersion of the number of (mini-)jets in central Higgs production at LHC for two different
resolution scalegr. Solid lines show the SL results up to the 15th order in perturbation theory, dashed lines correspond to the
DL approximation.

7.3 The next-to-leading correction&?

As has already been discussed, in practically all experimental contexts, the LL BFKL equations fails
to reproduce the data. It is likely that the problem is due to the presence of significant sub-leading
corrections.

The next-to-leading logarithmic (NLL) correction termg(ag In s)™ are therefore of particular
interest. Such terms can arise for example from configurations containing a pair of particles which are
close in rapidity, or due to the running of the coupling. We write the kernel of the BFKL equation (78)
as

K (fu(dar,av1)] = Kolfo(qar, a1 )] + s Ki[fuldar, a1)] + O (@) (102)

whereC is the LL kernel (79), andC; contains the NLL corrections. A number of different pieces
contribute to/C;: the emission of two close-in-rapidity partons (two gluons [486, 401] 4 jpair [487,
488,398,402, 399]) from the gluon ladder; the one-loop corrections [395-397, 489, 490] to the emission
of a gluon from the ladder; the NLL corrections to a reggeised gluon [393, 394,491, 492]. The various
pieces were put together in [67,400, 307].

The resulting corrections have a number of interesting features, such as the fact that they imply
the emitted transverse momentum as being the appropriate scalg famd certain parts of the resulting
kernel can be associated with physical contributions such as the fipiéet of the DGLAP splitting
functions. However from the point of view of their direct use in phenomenology, the NLL corrections
present problems: applying the NLL kernel to the LL eigenfunctigk$,)”, with v as in eq. (90), the
BFKL exponent becomes [67,307]

A~ 4In2ag(l —6.2ag), (103)

and inserting a value afg = 0.2 relevant for many BFKL studies leads to a negative power. A detailed
study of the resummation of the kernel reveals the even worse property thag for 0.05 the NLL
corrections lead to negative cross sections [493].

7.31 Beyond NLL

At first sight one might therefore conclude that the NLL corrections remove all predictive power from
BFKL physics. Various groups have however proposed rather different approaches for the inclusion and

%2Contributing author: G.P. Salam.



resummation of higher-order terms with a view to stabilising the perturbative series. Three basic strate-
gies have been suggested: BLM resummation together with an appropriate scheme change, a rapidity
veto, and resummation of collinearly enhanced terms.

A standard approach in situations where the perturbative series converges slowly is to apply a
scale change. One such procedure is BLM scale setting [494], where it is argued that for any given
observable, some of the NLL corrections come from the natural scale being differentfprmnd
that the appropriate scale can be deduced from the coefficient d¥ thdependent part of the NLL
correction. In [416] the procedure is applied to the BFKL NLL corrections. The authors find that in the
MS scheme, BLM scale setting makes little difference to the poor convergence of the series. They then
show that in certain other schemes, notably the MOM (based on the symmetric triple-gluon vertex) and
T (based ol — ggg decay) schemes, the coefficient of thig dependence is significantly modified —
the BLM resummation then has a much larger effect leading to an estimate for the exponefit] 5
fairly independently of@?. The problem of negative cross sections still persists however, albeit to a
lesser extent. There are also questions regarding the naturalness of the particular scheme choices that are
required in order to obtain a stable answer, there being arguments both for and against.

The rapidity veto approach has been studied in detail in [417]. The background of this approach
is that the BFKL kernel is formally valid only for branchings separated by a large rapidity — but to
obtain the high-energy power-growth one then normally integrates over all possible rapidity intervals
between successive branchings, including small rapidities. One can equally well place a rapidity veto,
i.e. integrate only over rapidities beyond some &y, of order 1 or 2. This corresponds to introducing
a set of corrections at NLL and beyond, and one argues that part of the actual NLL corrections may
come from something akin to such a rapidity veto. One then studies the effect of the rapidity veto at
all orders (while fixing the NLL corrections). This was done in [417] where it was found that for large
rapidity vetoes Ay > 2.2) the exponen is quite stable against variations &y and that the problems
of negative cross sections disappear. But for smaller rapidity vetoes, the usual problems persist.

The two above approaches conjecture some new physical effect (natural non-Abelian scheme,
rapidity veto). The third approach is a little different in that it takes the sm&é#fnel and supplements it
in such a way as to render it consistent with DGLAP evolution in the collinear and anti-collinear limits,
i.e. where one of the interacting objects has a much larger transverse scale than the other. The motivation
for doing this comes from the observation that while the convergence of the sragfiansion is poor
for normal high-energy scattering (both objects of the same transverse scale), for (anti)collinear high-
energy scattering the expansion becomes far worse anuistbe resummed: technically speaking, the
LL characteristic functio?® x(v) diverges ag /v in the collinear limity — 0, while the NLL function,
x1(7), diverges as /3. Since the structure of these divergences is governed by collinear physics, it can
be calculated at all orders. It turns out that there are double and single collinear logs and alone they are
responsible for most of the NLL correction even outside the collinear region. They have been resummed
respectively in [308,495] and [309,420], leading to a stable result for the expankeat of the problem
of negative cross sections. The dependenck af ag is shown in figure 38, together with the leading
and next-to-leading results, for comparison. There is relatively little dependence on changes of scheme
and scale [420] and on the additional introduction of a rapidity veto [418]. This approach therefore seems
to be the most likely candidate for practical phenomenology.

7.32 Spin-offs from the NLL results: understanding running coupling

One of the spin-offs of the NLL corrections was that they identified the correct scale to be used in the
kernel: as(q?), wheregq is the emitted transverse momentum. However to understand the effects of
running coupling in high-energy cross sections it is necessary to understaiterétion of the kernel

*3In the notation of Sect. 7.1 and generalising eq. (99, 0) = @sxo(1/2 + iv) + @éx1(1/2 + iv) + .... Higher
azimuthal components(v,n > 1) are not included. However, they contribute only to azimuthal angle correlations such as
those discussed in Sect. 7.1.
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Fig. 38: The high-energy exponent in various approachésthe exponent relevant to processes such as Mueller-Navelet jets,
including the NLL corrections and collinear improvements; the equivalent exponent relevant to anomalous dimensions is

with running coupling. The two contexts of interest are for quantities such as Mueller-Navelet jets, and
for anomalous dimensions.

In the former, one has a situation where diffusion takes place both above and below the scale set
by the jets. The running of the coupling causes diffusion below the typical &Zaté the jets to be en-
hanced compared to that above — as a result, as the rapidity separation increases and diffusion increases,
evolution belowE? is increasingly favoured, and the cross section grows faster¢H&nY : an extra
term appears in the exponent, proportionahtd 7)Y 3 [426, 496]. This causes the effective power
growth to increase gradually. A second, recently hypothesised effect tafindling[421], should at a
certain point cause a sudden increase in the observed power growth, as the contribution from very-low-
scale evolution becomes larger than that from evolution at scales of Bfddihis happens at a rapidity
of Y ~ InQ%/\p, where)p is the exponent characteristic of low scales. It remains to be seen whether
such an effect will be phenomenologically observable.

Another quantity for which running coupling effects turn out to be very important is anomalous
dimensions, or equivalently smatlsplitting functions. Very schematically, anomalous dimensions at a
scale)? seem to involve smalt-branching only abov&?: branching below that scale has already been
factorized out. Consequently they sample a region where the running coupling is smalle; (ty).

Thus the observed smatlexponent of the anomalous dimension{(Q?), is smaller than the exponent
A(Q?) relevant in say Mueller-Navelet jets with scdld = Q2 [420,421,497]. An alternative point of
view [415,419] is discussed in Sect. 5.4.

8. DOUBLE PARTON SCATTERING 54 55
8.1 Introduction

The large flux of partons, which becomes available for hard collisions at high energies, justifies the
expectation, at the LHC, of sizeable effects due to the unitarization of the hard component of the inter-
action. In fact it is not difficult to foresee hard collision processes with a cross section larger than the
total cross section itself [498, 499]. Such a result is not inconsistent, if one keeps into account that the
inclusive cross section, described by the single scattering expression of the QCD-parton model, includes
a multiplicity factor which keeps into account the possibility of having several partonic interactions in
the same hadronic inelastic event [500, 501]. The possibility of hard processes with multiple parton in-

4Section coordinator; D. Treleani.
SContributing authors:A. Del Fabbro and D. Treleani.



Fig. 39: Double parton scattering. Fig. 40: Graphical representation of Eq. 104.

teractions, namely different pair of partons interacting independently with a large momentum transfer in
the same hadronic collision, was on the other hand foreseen long ago by several authors [502-514]. In
a multi-parton interaction the different pairs of interacting partons are separated in transverse space by a
distance of the order of the hadron radius. As a consequence the transverse momenta have to be balanced
independently in the different partonic collisions, giving in this way a well defined characterization to the
process. The simplest event of that kind, the double parton scattering, has been a topic of experimental
search of all high energy hadron collider experiments since several years [515-517]. While initially the
results have been sparse and not very consistent, recently CDF has reported the observation of a large
number of events with double parton scatterings [175, 176].

8.2 Cross section for double parton scattering

The inclusive cross section of a double parton scattering has a simple probabilistic expression. Interfer-
ence effects between the two partonic collisions are in fact negligible, since the partonic interactions are
localized in a much smaller region, with a size of the order of the inverse of the momentum transfer,
as compared to the distance in transverse space between the different partonic interactions. The non-
perturbative component of the process gets factorized, as a consequence, into a function which depends
on the fractional momenta of the partons taking part the interaction and on their distance in transverse
space, which has to be the same for both the target and the projectile partons, in order to have the align-
ment which is needed for the interaction to occur. One obtains therefore for the double parton scattering
cross section the expression (see fig. 40)

op =5 /pcut T a(z1, 22;0)6 (x1, 21)6 (2o, 25T g(2], 2h; b)dxy do’ drodah,d®D (104)
where the non perturbative input is the two-body parton distribukiom , 25; b), whose arguments are

the two fractional momenta;; andz-, and the distance of the two partons in transverse shatée

partonic cross sectioné(x, '), are integrated on the momentum transfer, at a fixed value of the partonic
center of mass energy, and the cuteff’ is introduced to regularize the singularity at sma# and at

smallx values. The two-body parton distributiof$z,, x2; b) represent the new property of the hadron
structure which becomes accessible through the observation of the double parton collision processes. It
is a non perturbative quantity which is independent on the one-body parton distributions, namely on the
non-perturbative input to the large- processes usually considered. The two-body parton distributions
are in fact related directly to the two-body parton correlations in the hadron structure.

If the two pairs of partons undergoing the hard interactions are not correlatedcaim if the
dependence oh can be factorized, the two-body parton distributions are nevertheless expressed as
[(x1,29;0) = f(z1)f(z2)F(b), where f(x) is the usual one-body parton distribution, appearing in



large pr inclusive processes, arfd(b) is a function which describes the distribution of the partons in
transverse space. With these assumptions the cross section for a double parton collision leads, in the case
of two indistinguishable parton interactions, to the simplest factorized expression

ooy = SO (105)

20.5f
whereog is the usual inclusive cross section of the perturbative QCD, i.e. the convolution of parton
distributions with the partonic cross sectigifi” is the lower integration threshold awnd; is a scale
factor, with dimensions of a cross section. It is the result of the integration on the transverse distance
b, actuallyl/o.r; = [ d*bF?(b). All the information on the parton correlation in transverse space is
summarized i, ;r [518]. The geometrical origin of.;; justifies the expectation that its value is both
a energy and cutoff independent quantity.

The double parton scattering process has been measured at Fermilab by CDF by looking at final
states with three mini-jets and one photon [175, 176]. The measured value of the scale factor is:

Oefy =145 £ 17757 mb. (106)

In the limited range ofr experimentally accessible,;; does not show evidence of dependence on the
fractional momenta, which indicates that the simplest hypotheses above are not in contradiction with the
experiment.

The qualitative features of the double parton scattering process are easily read in the factorized
expression in Eqg. (105). As a consequence of the proportionalitypofvith o—%, the double parton
scattering cross section is characterized by a rapid decreage fes oo and by a rapid growth for
pr — 0. As for the energy behaviog increases faster with as compared to the single scattering
cross section (it goes a%). Multiple parton collisions are therefore enhanced at the LHC.

8.3 Four jet production

The most obvious case where multiple parton collisions play a role at high energy is in the production
of jets, since the integrated cross section can easily exceed the unitarity limit at large energies and with
a fixed value op5**. One has in fact that, for any value @, whens is sufficiently largess > ;e

The simplest case to consider is the production of four larggets, where one can compare the leading

(2 — 4) process with the power suppresg@d— 2)? double parton collision.

In fig. (41) we show the expected rates of production of four largéets in the central rapidity
region (y| < 3) with the two different production mechanisms, as a function of the lowest value of the
transverse momenta of the produced j&fé”. The continuous curve is the expected cross section as
from the leading QCD production mechani$tn— 4) [519,122]. The dashed curve is the double parton
collisions(2 — 2)? cross section. The curve representing the double parton collision in fig. (41) has to be
regarded as a lower limit, rather than as the expected rate of the double parton collision process, since no
factor K, accounting for higher order correction termsyg, has been included in the evaluation. Notice
that higher order corrections imng will contribute with a factor/? in the double parton collision cross
section. The overall qualitative feature is that, at the LHC, the double parton collision dominates, with
respect to the leading QCD single scattering interaction, when one of the jets has a transverse momentum
which becomes as low 28 GeV.

8.4 [+ bb production

Although multi-parton collisions have been mostly considered to describe the multiplicity distributions
in high energy hadronic interactions (for a discussion of multi-parton interactions at LHCb, we refer
the reader to the Bottom Production Chapter of this Report), the role of multi-parton collisions is not
limited to the case of production of large or relatively laggejets. One may find in fact various other
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Fig. 41: Integrated cross section for production of four jets Wjth< 3 as a function of the lowest transverse momentum of
the jetsp’»". The continuous curve is the expected cross section as from the leading QCD production meghanigrthe
dashed curve is the expected cross section due to the contribution of double parton cgllisiery?.

processes of interest at the LHC where multiple parton collisions are relevant [173,174].o\hiteay

depend in principle on the different species of partons involved in the interaetipp should not vary

much in the different processes and one would expect that it is, to a large extent, a process independent
quantity [178]. We will therefore consider it, in the following, as a universal quantity and we will use for
o.yr the value which has been measured in the CDF experiment. The cross section of a double parton
interaction, resulting from the two distinguishable parton collisidrend B, is therefore expressed as

op = ZA%8 (107)
Oeff

As a meaningful example we have considered the production of an isolated lepton arid phi

[520], which represents an interesting channel to detect the Higgs boson production at the LHC in the
intermediate Higgs mass rang#GeV < Mgy < 150GeV. A background to the procegs+ p —

WH + X, withW — Iy, andH — bb, is represented by the double parton scattering interaction where
the intermediate vector bosd¥ and thebb pair are created in two independent parton interactions. If one
usess (W) x BR(W — ly;) ~ 40nb [10] ando(bb) ~ 5 x 10?ub, one obtains for the double collision
cross section the value of4 nb. The Higgs production cross sectiops;p — W H + X, with W — [y,

andH — bb, has been estimated to be rather of ordet pb [521,522]. Obviously the three orders of
magnitude of difference in the integrated cross section are mainly due to the configurations where the
pair is produced with an invariant mass close to the threshditlmfoduction. The expected background

to the Higgs production signal, caused by the double parton collision process, is shown in fig. (42) as a
function of the invariant mass of tté pair.

In fig. (42) we have plotted the expected signal in thénvariant mass due to the Higgs boson
production for three possible values of the Higgs mass, 80, 100 and 120 GeV. The dashed line is the
double parton scattering background at the LO in perturbation theory. The continuous line is the result
for the double parton scattering background when computingitbeoss section at ord@r?9 [251].

In fig. (43) we compare the signal and the background after applying all the typical cuts considered
to select the Higgs signal in this channel [521]:

- - for the lepton we requirep’. > 20 GeV, |n!| < 2.5 and isolation from thé's, AR, > .7
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Fig. 42: Double parton scattering background to Higgs bd-ig. 43: The backgrounds to Higgs boson production is
son production in association withi& as a function of the compared with the signal after the cuts (see main text). Dot-
bb invariant mass. The expected Higgs signal is for threted line: single scattering contribution to tHébb channel.
possible values of the Higgs mass, 80, 100 and 120 GeMashed line: double parton scattering background. Contin-
The dashed line is the background at the LO in perturbaous line: total estimated background.

tion theory. The continuous line is the result for the double

parton scattering background when computingiheross

section at orden [251].

- - for the twob partons:ph. > 15 GeV,|n’| < 2andAR, ; > .7

As in the previous figure the Higgs signal in thieinvariant mass corresponds to three possible
values for the mass of the Higgs bos&6, 100 and120 GeV. The dotted line is the single parton scatter-
ing background, where thié bb state is created directly in a single partonic interaction. The dashed line
is the expected background originated by the double parton scattering process, evaluated by estimating
the bb production cross section &(a?). The continuous line is the total expected background. In the
calculations of the background and signal we used, for the LO matrix elements, the packages MadGraph
[133] and HELAS [523]. The integration was performed by VEGAS [141] with the parton distributions
MRS99 [10].

Also after using the more realistic cuts just described, the double parton scatterings process re-
mains a rather substantial component of the background, as one may see by comparing in fig. (43) the
total background estimate (continuous curve) with the more conventional single scattering background
estimate (dotted curve).

8.5 Summarizing remarks

At the LHC one has to expect large effects from multiple parton collisions in various processes of interest.
To the purpose of illustration, we have presently studied the productiorppair in association with

a W boson, followed by the decay — [v, in the mass rang@/,; ~ 100 GeV. The channel is of
interest for the observation of the Higgs boson production when the Higgs mass is below the threshold of
W+W~ production. We find that, if one applies the standard cuts to the final state usually considered to
isolate the Higgs signal in this channel, the background due to double parton scattiripgis &ndiy’

boson produced in two different partonic interactions) is comparable to the more traditional background,
where thebb pair and thd¥ boson are produced in a single parton collision. A similar situation can be
expected with several other final states:



o Zbb,
W + jets, Wb + jets andWbb + jets,

o tt — IIbb,

o tb — bblv,

o bb + jets,

e final states with many jets whef"" ~ 20, 30 GeV.
The well definite characterization of the states produced by the multiple parton scattering processes
allows nevertheless one to figure out more efficient selection criteria to get rid of this further background
source, or to measure it in a precise way. The present analysis however points out that, as a consequence
of the enhanced role of multiple parton collisions at high energy, a detailed and systematic study of the

expected rates and backgrounds, due to multiple parton collision processes, is of great importance at the
LHC and it represents one of the topics which have to be addressed seriously in the next future.

9. BACKGROUNDS TO NEUTRAL HIGGS BOSONS SEARCHES®% 57
9.1 Introduction

The most important goal of the physics programme of the LHC experiments ATLAS [1] and CMS [524]

is to perform measurements which lead to the understanding of the mechanism of electroweak symmetry
breaking. In the framework of the SM, as well as its extensions, e.g. super-symmetric (SUSY), it
translates into the major topic of Higgs boson searches. The SM assumes one doublet of scalar fields,
implying the existence of one neutral scalar particle. In SUSY models, the Higgs sector is extended
to contain at least two doublets of scalar fields leading to the prediction of five Higgs patrticles, three
electrically neutral and two charged. The following discussion focuses on neutral bosons.

The Higgs boson mass remains largely unconstrained in the SM. From perturbative unitarity ar-
guments an upper limit of 1 TeV can be derived. The requirements of stability of electroweak vac-
uum, and of perturbative validity of the SM seen as an effective theory, allow to set upper and lower
bounds depending on the cut-off value chosen for the energy scale up to which the SM is assumed to
be valid [525-535]. If the cut-off is assumed to be about the Planck mass, which means that no new
physics appears up to that scale, the Higgs boson is predicted to be in the range 130 -190 GeV. This
bound becomes weaker if new physics appears at a lower mass scale. A global fit to all electroweak data
in the SM framework seems to favour a rather light Higgs bosog: = 761LZ§ GeV [536]. Moreover,

SUSY extensions of the SM generically predict the existence of one rather light neutral Higgs boson (e.g.
roughlympy < 130 GeV in the minimal SUSY extension). The LEP2 experiments are searching Higgs
bosons with masses up to about 110 GeV [537]. Assuming that no Higgs boson will be found at LEP, the
above indications raise even more interest in the Higgs boson searches at LHC in the intermediate mass
range from 95 GeV t@m .

The Higgs boson searches scenarios prepared by the ATLAS [1] and CMS [524] Collaborations
cover a large spectrum of final state signatures in this mass range. Th# rase~y~y decay mode
is expected to be accessible in inclusive Higgs production in the mass range 90 -140 GeV already for
an integrated luminosity of00 fb~'. This observability can be also complemented by looking at an
additional jet (production in association with jets) or lepton in the final stafé,(V H, Z H associated
production). The additional isolated lepton in the final state will also allow to access the dominant
H — bb decay mode, and such observability has been established in the ATLAS searches scenarios for
thett H production channel. Higgs decay iffio1Vin inclusive or associated production lead to the clean
signature of 2 or 3 leptons in the final state. A signature with even higher lepton multiplicity is provided
by the H — ZZ* channel in the inclusive and associated production. The possible observability of

56section coordinators: J.-P. Guillet, E. Pilon and E. Richter-Was.
S’Contributing authors: T. Binoth, D. de Florian, M. Grazzini, J.-P. Guillet, J. Huston, V. llyin, Z. Kunszt, Ple, RirPilon,
E. Richter-Was and M. Werlen.



the latest one is still under investigation, as presented below. A rich spectrum of final state signatures
was proposed recently, which explorédV and Z~Z fusion mechanisms producing a Higgs boson

in association with two forward/backward jets. The observability of the—~ vy, H — 777~ and

H — WW* as established so far in [538-541] at the particle level seems very promising.

Given the very large spectrum of final state signatures which have become of interest in the inter-
mediate mass range, this section will be focused on recent progress in the evaluation of backgrounds to
two-photon and multi-lepton signatures, and in the observability of the latter in associated production.
Recent results concerning the two-photon background in the mass range 90 - 140 GeV, together with
the NLO contribution to the signal of associated productiént jet, are given in Sect. 9.2. A recent
investigation o/’ H associated production fenz > 140 GeV is presented in Sect. 9.3.

9.2 The two-photon channel in the mass range 90 - 140 GeV

In this range, the most promising channeHs— ~~. The branching ratio is however sndl| typically
B(H — vv) ~ O(1073), and initially the background is eight orders of magnitude larger than the
signal. This background is splitted into two components, catteducible andreducible

9.21 Irreducible background: prompt photon pairs.

This class of background comes from prompt photon pair production, where “prompt” means that the
photons do not come from the decay of high-t® or », but from hard partonic interactions. A large
amount of this background, which we therefore @adiducible passes the photon isolation cuts. Further
kinematic cuts have to be used to suppress it. Regarding the efficiency of background rejection, one
may distinguish between the signal processdaafisiveproduction, and ofssociategroduction (and
corresponding backgrounds). The first class yields higher rates than the second one. On the other hand,
kinematical cuts are more efficient in the case of associated production, and the background may be
theoretically better controlled than in the inclusive case. These issues are discussed in the following.

Mechanisms of prompt photon pair production.

Schematically, three mechanisms produce prompt photon pairs with a large invariant mass: the “direct”
mechanism produces both photons directly from the hard subprocess; the “single-fragmentation” mech-
anism, instead, involves precisely one photon resulting from the fragmentation of a hard parton; the
“double-fragmentation” mechanism yields both photons by fragmentation. Topologically, a photon from
fragmentation is most probably accompanied by a jet of hadrons, therefore will be more strongly rejected
by the isolation criterion. From a calculational point of view, this schematic classification emerges from
the QCD factorization procedure described in Sect. 1. (see [237] for more details). Although this classi-
fication is convenient, one has to keep in mind that the splitting between these different contributions is
arbitrary: none of these contributions is separately measurable, only their sum is. Due to the high gluon
density at LHC, “single-fragmentation” dominates the inclusive production of prompt photon pairs. Be-
yond NLO, a new process of the “direct” type appears, the so-calleddpex v~ contribution. Strictly
speaking, it is a NNLO contribution. However, the large gluon luminosity at LHC magnifies it to a size
comparable with the Born tergg — ~~ in the invariant mass range 90 - 140 GeV. Therefore it is usually
included in LHC phenomenological studies [237,544,545, 235, 546,547,236, 548].

Recent improvements

Early calculations [544, 545] of photon-pair production were not suitable to estimate the background
to Higgs boson production. A first improvement [235, 546, 547] implemented these results in a more
flexible way by combining analytical and Monte-Carlo techniques. Following a similar approach, recent
work goes further along two directions.

%8The cross section for the production of a SM Higgs boson at the Tevatron in this rargépis not enough to allow a
search in this mode given its small branching ratio. A search for a non SM Higgs Boson in this mode has been carried out by
both CDF and Oy with negative conclusions [542,543].



In [236, 548], multiple soft gluons effects in the “direct” contribution are summed to next-to-
leading logarithmic accuracy in the Collins-Soper framework. This provides a prediction for semi-
inclusive observables such as the transverse momengdpdistribution of photon pairs that extends
over the whole spectrum, thanks to a matching between the resummed part (suited for gheokak)
and a fixed order calculation for the high tail. These features are encoded in the computer program
RESBO0$236, 548]. In this calculation, the “single-fragmentation” contribution is evaluated at LO and
“double-fragmentation” is neglected.

Another recent improvement is the computation of the NLO corrections to both fragmentation
contributions (using the set of NLO fragmentation functions of [433]), which provides a consistent NLO
approximation suitable for inclusive observables. This calculation, also implemented in a computer
codeDIPHOX of Monte Carlo type, is described in [237]. No soft gluon summation has so far been
implemented in [237].

Effects of isolation

Actually, the isolation requirements, imposed experimentally to suppress the reducible background,
severely reduce the fragmentation components, too (which, properly speaking, are thus not really ir-
reducibl@?). The isolation criterion commonly used is schematically the follofing\ photon is called

isolated if, inside a cone about the photon, defined in rapidity and azimuthal angle by, )? +

(¢ — gbﬂy)2 < RZ?, the deposited transverse hadronic ene@ﬂd is less than some specified value
Ermae. Severe isolation requirements, B ... = 5 GeV inside a cone of radiuR = 0.4, sup-

press the "single-fragmentation” component by a factor 20 to 50, and kill the “double-fragmentation”
contribution, so that the production iolatedphoton pairs is dominated by the “direct” mecharfi$m
Isolation implies however that one is not really dealing with inclusive quantities anymore. Although the
factorization property of collinear singularities still holds in this case [443,446], infrared divergences can
appeainsidethe physical spectrum for some distributions calculated at fixed order, e.g. NLO, accuracy,
due to isolation. The appearance and the pattern of these singularities depend strongly on the kinematics
and on the type of isolation criterion used. Moreover, potential infrared instabilities may affect the reli-
ability of the predictions, when a very low value B%,,,.., compared to ther of the isolated photon,

is used. A better understanding of these problems is required ( see [237] and Sect. 6. for a more detailed
discussion).

Phenomenology

Our understanding of photon pair production is already tested at the Tevatron [553-555]. A compari-
son of the CDF di-photon cross section to NLO and resummed predictions is shown in Fig. 44 (for a
recent comparison with Pdata see, e.g., [237]). Measured inclusive observables, such as the invariant
mass distribution, each photorys distribution, the azimuthal angle{,) distribution of pairs, agree
reasonably well with NLO calculations [544,545, 235,546,547, 237]. However, the measured di-photon
gr distribution is noticeably broader than the NLO prediction, but it is in agreement with the resummed
prediction of [236, 548]. This is expected since thedistribution is particularly sensitive to soft gluon
effect$? [196].

%9This misleading terminology sometimes [549, 550] leads to call irreducible only the “direct” component, and reducible
the 7%, n, etcplus the “fragmentation” components. Although it seems intuitive at LO, this alternative classification is ill
defined beyond LO, as the splitting between “fragmentation” components and higher order corrections to the “direct” one is
theoretically ambiguous.

®0This isolation criterion for single prompt photon production is discussed in the theoretical literature in Refs. [442,551,552,
443] (e" e~ collisions) and in Refs. [229, 439, 440, 230, 446] (hadronic collisions). An alternative criterion has been recently
proposed in [232]. More discussion on the issue of isolation can be found in Sects. 6.

®1The situation is essentially the same for a less severe ciltras.. = 10 GeV. Note however that such a partonic
calculation ignores the hadronic transverse energy splashed in by underlying events. The ¥#alue, pfused in this type of
calculation may then be considered as an effective parameter, smaller than the actual value used experimentally. This issue has
still to be clarified, especially when the experimental value is nearly saturated by underlying events and pile-up effects.

®2Infrared sensitive distributions, such as thedistribution nearyr — 0, and theg.,, distribution neak.,, — =, can be
reliably estimated only with resummed calculations. Note that, forthedistribution nears, — m, not only the “direct”
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component diverges order by order and requires a soft gluon summation, but also both fragmentation contributions. This much
more complicated case has not been treated yet.



The results from Run 1 at the Tevatron were obtained with less thapi0Oof data. During
Run 2, a data sample approximately 20 times as large will be available, allowing both the di-photon
signal and its background to be studied in detail. In particular, the di-phgtadistribution will be
measured to much greater precision, allowing a study ofitheesummation techniques forgg initial
state, necessary for both Higgs and di-photon production at the LHC [196].

On the theoretical side, scale ambiguities as well as the uncertainties from unknown beyond NLO
corrections plague the predictions. A study of scale uncertainties has been performed [237] for inclusive
observables such as the invariant mass distribution of photon pairs at LHC in the range 90 - 140 GeV,
(Fig. 45). In the isolated case withi; ..., = 5 GeV inside a cone wittR = 0.4, the scale uncertain-
ties are dominated by the dependences on the factorization and renormalizatiom$cates:; while
the fragmentation scalé\{;) dependence is negligible due to the strong suppression of the fragmen-
tation contribution. The scale uncertainties are rather small (less than 5%) when the factorization and
renormalization scales are set to be equal and are varied betwge2 and2m... On the other hand,
anti-correlated variations df/ andy in the same range lead to still rather large (up to 20%) uncertainties.

In summary, the higher order corrections in prompt photon pair productiaroafigly under control yet.

The consistent calculation at full NNLO accuracy would involve, in particular, two-lgpp- ~vy am-

plitudes and the NNLO evolution of the parton distributions. Despite recent progress [288, 290, 289, 70]
in this directiol®®, such a NNLO description is not yet available. Furthermore, the box contribution

gg — vy is the lowest order term of a new subprocess. Reducing its scale dependence would involve the
calculation of NLO correction§*. Meanwhile, preliminary numerical comparisons have been initiated
between these new NLO (and resummed) partonic calculations, and Monte Carlo event generators [196].
They have to be pushed further.

9.22 Reducible background

Before any cut is applied, most of tié — ~~ background comes from large- 7°, n or w, decaying

into photons. It can be severely reduced by imposing combined geometric and calorimetric isolation
criteria. A small fraction of this huge background, consisting in largésolatedr” or , may still pass

such cuts. Earlier estimations of this background rely on Monte Carlo event generators, in which the
tails of fragmentation distributions near the end point are rather poorly known. An improvement can
be provided by using isolated pairs andyr” Tevatron data, compared with Monte-Carlo type NLO
calculations, such as [556], to improve NLO fragmentation functions at targe

Like continuum di-photon production, its background fronf andz7° production has been ex-
tensively studied at the Tevatron [553-555]. This study can serve as a useful benchmark for the reducible
background prediction, as well as for very useful tests of QCD. The inclusiv& and~=" cross sec-
tions are orders of magnitude larger than{hecross sections, making an extraction of the latter difficult,
unless additional selection criteria are applied. As in essentially all collider photon measurements, an
isolation cut needs to be applied to each of the di-photon candiflataghe case of CDF (in Run 1B),
the isolation cut requires that any additional energy in a cone of radius R 04 (/An? + A¢?)
around the photon direction be less than 1 GeV. This requirement is basically saturated by the energy
deposited by the di-photon underlying event and any additional minimum bias interactions that may have
occurred during the same crossing. Such a strict isolation requirement rejects the majorityyof the
and7%7% backgrounds while retaining the true di-photon events with 80% efficténcy

The isolation cut suppresses the di-photon backgrounds to the point where they are comparable

®3For more details, see also Sect. 4.
84Although incomplete, the NLO corrections to solgyg initiated subprocesses, especially the first correction to the box,
might already reduce the scale uncertainties. A compléteO\calculation goes beyond the scope of available techniques.
80ther cuts are applied as well but the main impact on the background is from the isolation cut.
®For the sake of compactness, onfybackgrounds are listed, but other backgrounds, for example,sframalw production,
are also considered.



to the di-photon signal. One still needs a technique that allows for the separation of the di-photon
signal from the background, in a Monte Carlo independent manner. CDF uses two such techniques:
a measurement of the electro-magnetic shower width using a wire chamber placed at the EM shower
maximum position, and a measurement of the fraction of the photon candidates that have converted
in the magnet coil. The two photons from th€& can not be separately reconstructed given the tower
granularity, but they do have a different shower width distribution and a different conversion probability
than single photons. These differences allow the extraction of the di-photon signal, not on an event-by-
event basis, but on a statistical basis, at each kinematic point being considered. The latter consideration
is important since the background fraction does vary with the kinematics of the events being considered.

With the 1 GeV isolation cut for each photon, the di-photon signal fraction varies from about 30%
at low Er to essentially 100% at high (50 GeV). The dominant source of background was determined
to be from7%7° production®” Note that if the leakage of the electro-magnetic shower energy into the
isolation cone is correctly accounted for, there is no reason to have a fractional isolation scale (some fixed
fraction of the photon energy) rather than a fixed amount of energy allowed in the isolation cone. A fixed
energy isolation cut provides a discrimination against jet backgrounds that increases in effectiveness as
the energy of the photon candidate increases. At higher transverse energies, the isolation cut requires the
jet to fragment into ar® at larger values of the fragmentation variablea process greatly suppressed
by the steeply falling fragmentation function. The largé = > 0.95) region is poorly known since
inclusive measurements of jet fragmentation [311] have few statistics in this region. This statement is
even more true for the case of gluon jets, which form the bulk of the background source at the LHC. The
di-photon trigger at the Tevatron selects those rare jets that fragment into iselged hus, it would
be useful to try to normalize the predictions of the event generators such as PYTHIA [115], which are
used for background studies at the LHC to the background data at the Tevatron. Such a comparison is
now in progress [557].

9.23 Production in association with jets

In order to improve the signal/background ratio, it has been suggested [549, 550] to study the associated
production of H(— ~v)+ jet. For this process, both signéland background3 are reduced but still
remain at the level of~ 100 signal events at low LHC luminosity. The LO estimate has shown that
the S/B ratio is improved critically with the same level of significang\/B. Furthermore, higher

order corrections to the background have been shown recently [558] to be under better control than in
the inclusive case.

Background: associated vs. inclusive

Indeed, the situations in the inclusive and associated channels are quite different. In the inclusive case,
the main reason why the magnitude of the NNLO box contribution is comparable to the LO cross section
is that the latter is initiated byg, whereas the former involvegy. The gg luminosity, much larger than

the qg one, compensates numerically the extfafactor of the box. This is not the case in the channel

~~ + jet, since the LO cross section is dominated instead qayiaitiated subprocess. Thg luminosity

is sizably larger than theg one, which guarantees that the corresponding NNLO contribution remains
small (less than 20% fopr > 30 GeV) compared to the LO result [558]. Thus, expecting that the
subprocesgg — ~vg gives the main NNLO correction, a quantitative description of the background
with an accuracy better than 20% could be achieved already at NLO imthéet channel for a high-

pr jet. All the helicity amplitudes needed for the implementation of the (“direct” contribution to the)
background to NLO accuracy are now available [269, 559, 560].

Signal vs. background

The 3-body kinematics of the process allows more refined cuts to improv&/tBeatio up tol/2 —
1/3 [549, 550] (to be compared with/B > 1/7 for the inclusive channel). Due to helicity and total

57A study of the di-photon backgrounds at ATLAS found the” and 7%z backgrounds to be of roughly equal size in the
low mass Higgs signal region, with each of the backgrounds being of the order of 20% of the di-photon continuum [1].



angular momentum conservation th&ave state does not contribute to the dominant signal subprocess
gg — Hg. On the contrary, all angular momentum states contribute to the subprogessesy~q

andqg — ~vg. Therefore, the signal has a more suppressed threshold behaviour compared to the
background. TheS/B ratio can thus be improved by increasing the partonic c.m.s. engggiar

beyond threshold. Indeed, a oy > 300 GeV has been found to give the best S/B ratio for the LHC.

The effect can not be fully explained by the threshold behavior only, since that would result in a uniform
suppression factor. It was shown in [549, 550] (see Figs. 5 and 6 there) that the dependences of the
background and the signal on the c.m.s. angular variables are quite different, therefore, thes strong
cut affects them with different suppression factors (see [549, 550] for more details). This effect can be
exploited to enhance the significansgy/B at the same level a8/ B. If the cutcos(9¥*)(jy) < —0.87

on the jet-photon angle in the partonic c.m.s. is appliedvfér< 300 GeV and combined with the cut

V3 > 300 GeV, the change o/ B is rather small, while the significance is improved by a faetor

1.3. The same effect can be observed with the cut on the jet &i¢j¢ in the partonic c.m.s. (cf. the

Fig. 5 mentioned above), but one should notice that the two varialilégy) and¥*(j), are correlated.
Therefore, it is desirable to perform a multi-variable optimization of the event selection. Notice that the
present discussion is based on a LO analysis, and concerns only what was defined above as the “direct”
component of the irreducible background. One now has to understand how this works at NLO.

Other, reducible, sources of background are potentially dangerous. The above-defined “single-
fragmentation” component to the so-called irreducible background, and the reducible background com-
ing from misidentification of jet events were treated on a similar footing in the LO analysis of [549, 550]
as ade factoreducible background (see footnote 9.21). In [549, 550], a rough analysis found that this
reducible background is less than 20% of the irreducible one after cuts are imposed. The misidentifica-
tion rate is given mainly by the subprocesges— ~vgq, g9 — vqg andqq’ — vq(9)q’'(9), when the
final state parton produces an energetic isolated photon but other products of the hadronization escape
the detection as a jet. Thereyé&r) /jet rejection factor equal to 2500 for a jet misidentified as a photon
and 5000 for a well separatedr) production by a jet were used. No additiondirejection algorithms
were applied. Furthermore, this reducible background is expected to be suppressed even more strongly
than the irreducible background of “direct” type when a cutGhis applied.

In summary, the associated chan#&{— ~~)+ jet with jet transverse energif; > 30 GeV
and rapidity|n| < 4.5 (thus involving forward hadronic calorimeters) opens a promising possibility for
discovering the Higgs boson with a mass of 100-140 GeV at LHC even at low luminosity. However,
to perform a quantitative analysis, the NLO calculations of the background have to be completed and
included in a more realistic final state analysis.

Signal at NLO

The exact calculation of the NLO corrections to the signal is very complex, since the gluons interact
with the Higgs boson via virtual quark loops. Fortunately, the effective field theory approach [561, 562]
applicable in the large top mass limit with effective gluon-gluon-Higgs boson coupling gives an accurate
approximation with an error less than 5%, provideg < 2m,. Recently, in this approximation and us-

ing the helicity method, the transition amplitudes relevant to the NLO corrections have been analytically
calculated for all contributing subprocesses (loop corrections [563] and bremsstrahlung [564,565]). The
subtraction method of [161, 227] has been used to cancel analytically the soft and collinear singularities
and to implement the amplitudes into a numerical program of Monte-Carlo type which allows to calculate
any infrared-safe observable for the production of a Higgs boson with one jet at NLO accuracy [197].

One of the main results of the calculation is that the NLO corrections are large and increase
considerably the cross section, withiafactor ~ 1.5-1.6 (¢ = oV2© /¢20) and almost constant for
a large kinematical range @fr and rapidity of the Higgs boson. Furthermore, the NLO result is less
dependent on variations of the factorization and renormalization scales. Fig. 46(a) displays the
distribution at both LO and NLO for a Higgs boson witliy; = 120 GeV. The curves correspond to
three different renormalization/factorization scale choiQes: . (m?, + p2)*/2, with . = 0.5,1,2, and



show that the scale dependence is reduced at NLO. The same features can be observed in more detail
in Fig. 46(b), where the LO and NLO cross sections integrateg-fdiarger than 30 and 70 GeV are

shown as a function of the renormalization/factorization scale. Both the LO and NLO cross sections
increase monotonically with decreasipngdown to the limiting value where perturbative QCD can still

be applied, indicating that the stability of the NLO result is not completely satisfactory. However, in the
usual range of variation qgf from 0.5 to 2, the LO scale uncertainty amountst85%, whereas at NLO

it is reduced tot 20%.
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Fig. 46: Scale dependence of LO and NLO distributions for Higgs boson productign- i¥tributions at different scales and
(b) the scale dependence of the integrated cross sectiops for30 and70 GeV. The MRST parton distributions are used.

9.3 Multi-lepton channels in the mass rangen > 140 GeV.

Above 140 GeV, the most promising channelis— ZZ*) — 4 leptons. The corresponding irreducible
background comes mainly from the non resond@*) production. Severe isolation cuts are needed to
suppress reduciblg and Zbb backgrounds for Higgs boson masses belowAkethreshold. The topic of

weak boson pair production is presented in a dedicated Section of the Electroweak Physics Chapter of this
Report. In particular, the latter gathers the effects of NLO contributions to distributions of invariant mass,

or transverse momentum of weak boson pairs, and comparisons between Monte Carlo event generators
and recent NLO partonic calculations.

The H — WW — 2+ Fr channels was recently found [566, 567] to be very promising in
this mass range around 170 GeV, where the significance afithe ZZ* — 4l channel is relatively
small due to the suppression ¥ * branching ratio as thB/1/ mode opens up. In this mass range, the
leptonic branching ration of thid” W mode is approximately 100 times larger than #%&* — 4/ mode.
Although the Higgs boson mass peak cannot be directly reconstructed in this case, the transverse mass
distribution can be used to sign the Higgs boson and extract information on its mass.

The multileptonic channeldl — WW® and H — ZZ® are also of great interest for the
associated? H production. Although the cross section for the associated production is a factor 50 to
100 lower than for the inclusive production, ti5¢ B ratio is substantially improved. They are also
interesting to determine the Higgs boson couplings, since only the couplings to gauge bosons appear in
the production and decay chain. The observabilityiofl with H — WIWW* — 2I 2v has been recently
proposed in [568] and experimentally studied in [1]. The observability of the associated prodiidion
H — Z7Z* — 4l has been recently considered in [569] and is sketched below. Due to the small number
of events expected fof H andt¢t H production, only théV H process has been investigated.



H \ no cut\ isolation cut\ 7 mass cut\ all cuts H

WH, My = 150GeV 3.56 3.42 2.89 2.69
tt background 141. 3.10 26.1| 0.098
Zbb background 17.3 3.46 13.8 3.46
WH, My = 200GeV 5.92 5.55 3.95 3.76
WH, My = 300GeV 1.45 1.30 0.91 0.86
tt background 141. 3.10 0.098| 0.098
Zbb background 17.3 3.46 1.73 0

Table 6: Number of events in the 5 leptons channelffor= 10°pb~, pr cut = 10 GeV. No mass window on 4 leptons is
applied.

9.31 Associated H production, five lepton channel

Selection criteria

All simulations of Higgs boson and background events have been made with the PYTHIA 5.702 and
JETSET 7.408 Monte Carlo programs implemented in the CMSIM/CMANA package [570]. The pro-
cesses implemented in PYTHIA were simulated with parton showers, with the exception of internal
bremsstrahlung, generated by PHOTOS [571]. Ndactors were used, so the final numbers of signal
events may be underestimated by about a factor 1.3 [572]. The experimental resolution of CMS for
lepton reconstruction was simulated by a Gaussian smearing:

Apr/pr = 4.5%+/pr/1000  for muons,
(AE/E)? = (4%/VE)? + (0.230/ E)? 4 (0.55%)>  for electrons,

wherepr and E are expressed in GeV. Dedicated programs calculate the dependeneadp of the
geometrical and kinematical acceptances, the invariant mass cuts to selBatte’, and the rejection

of non isolated leptons in jets with cuts selecting leptons without charged tracksabov@ GeV in a

coneR < 0.1 (R? = An? + A¢?). A few events were also fully generated and visualized in CMS by
CMSIM. The reactiondV*H — p*v,Z2Z% — 5u% v, andW*H — et ZZ™) — 5e*uv, have been

studied in details. Although the branching ratios are identical, some differences between these channels
are expected due to differences in acceptances and trigger efficiencies. The generated leptons are sorted
in decreasing order, from 1 to 5, then the following cuts are applied.

For muon events :

e |n|<21forpu;andus | n|< 2.5for usto us
e pr > 20 GeV for iy pr > 10 GeV for s pr > 5o0r10 GeV for us, pg andus
For electron events :

o |n|<25fore; toes
e pr > 20 GeV forey pr > 15 GeV forey pr > 7,10 or 15 GeV foreg, e, andes

Leptons 1 and 2 are the ones used to trigger events, leptonsig-tthEesholds can be set at lower values.
Almost no difference is observed when the trigger threshold is set at a higher value (30 and 20 GeV), as
expected since leptons 1 and 2 producedibyandZ decays are very energetic. The other possible final
states:2e + 3u, 2u + 3e, 4e + 1 and4yu + le are also good candidates. Since only small numerical
differences were found in the results between the pure electronic and muonic final states, the 4 mixed
ones were not simulated and the total number of expected events was multiplied by a factor 8. As the
expected cross section is very low, the present search would be meaningful at high luminosity only. The
pile-up at high luminosity has a minor impact for the detection of leptons. Nevertheless it has to be taken
into account when using the isolation cuts.



H— Z7*

This channel concerns the mass range < 2m . The irreducible background, due to the non resonant

W Z Z* production, is not included in PYTHIA. In order to get a rough order of magnitudes tiaeratio

was then assumed to be of the same order as the one of direct productibr-ofZ Z*, compared to

non resonanf Z*. This ratio has been estimated in [573] to be lower than 10 %fgr= 150 GeV. The
reducible background comes from tieand Zbb channels with three leptons coming from semi-leptonic
decays ofB and D mesons. The initial cross sections of these processes are very high and, without cut,
this background is much higher than the irreducible one.

The selection requests one pair of opposite sign muons or electrons with a mass eguat to
GeV, and one pair of opposite sign muons or electrons with a mass be}ow his removes only 19 %
of the signal events which fall in the tails of the mass distributions. An additional effect of widening the
Z mass would come from the" bremsstrahlung in the tracker material [574] and contribute to decrease
the acceptance. The lepton pair mass spectra af thed Zbb backgrounds exhibit a peak at low mass.
A cut atmz- > 10 GeV would further reduce these backgrounds by 20 % without affecting the signal.
No detector reconstruction inefficiency was considered at this level. The isolation cut is used to reject
leptons fromb or ¢ quark decay, in the reducible background channels. The events exhibiting tracks
with pr > 2 GeV contained in a con& < 0.1 around any of the five leptons are rejected (Fig. 47).
Actually a better rejection is expected in the CMS detector when using the information frémehex
position [575].

Another reducible background was considered: the non resonant produc#dfi* afhere one of
the Z*) decays into two leptons and the other decays btdhe b quarks decaying semi-leptonically.
The number of events before acceptance, mass and isolation cut is about 70 % of the signal, but as we
expect the leptons from thés to be very soft and non isolated, that this background can be considered
as negligible.
H—ZZ
This channel is similar to the previous one except that we request two pairs of opposite sign muons or
electrons with masses equalig; + 5 GeV. This cut removes 32 to 34 % of the signal events. It is now
much more efficient against thé background than against tt#b, because th&bb channel involves
arealZ. The calculations were made for Higgs bosons with = 200 and 300 GeV (Fig. 47). The
acceptances of the signal vary only slightly as a functiopeftut and other selection cuts. The four
leptons mass spectrum for the background is a wide distribution centered around 150 GeV. A cut on this
spectrum can be used to obtain an additional rejection factor of the order of 10 to 50, after the Higgs
boson mass has been previously measured in a more sensitive channel, like the i#tlusite[575].

Results

The number of expected 5 muons or 5 electrons events for one year of running at high luminosity
100fb~! is low: 0.34 for a Higgs boson mass of 150 GeV, 0.47 for 200 GeV and 0.11 for 300 GeV/c.
Considering all the possible 5 leptons channels, these numbers must be multiplied by a factor 8. They
are summarized in table 1, together with the corresponding backgrounds (not including the cut on the
four leptons mass spectrum described above). IhB ratio is better forny = 200 GeV and is un-
acceptable forny = 150 GeV. Thus this channel can be considered almost hopeless for the discovery
of the Higgs boson below th&Z threshold. On the other hand, if the Higgs boson is in the mass range
200 to 300 GeV, the detection of these rare 5 lepton events above a low background would be a valuable
information for the study of the Higgs boson couplings.

However, before drawing any definitive conclusion, several issues should be improved concerning
the backgrounds. Firstly the irreducibl€ Z Z* background has to be calculated, e.g. using an autom-
atized calculation like [138] and included in the analysis. Moreover the redugitiigorocess should
be revisited with another Monte Carlo generator, as the implementation in PYTHIA 5.7 f@bthero-
cess is known to suffer from an instability in the phase space generation (this implementation has been
removed from the version PYTHIA 6.1 for this reason). Finally, another source of 5 leptons events, not
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evaluated with enough statistics so far is the semi-leptonic decklyasfcc generated by initial or final
gluon radiation.

An extension of this study would also be the investigation of the associated production of a higher
mass Higgs boson using other decay modes with larger branching ratids likget jet.
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