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Different hierarchy of avalanches observed in the Bak-Sneppen evolution model
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A quantityf_denoting the average fitness of an ecosystem is introduced in the Bak-Sneppen model. Through
this quantity, a different hierarchy of avalanch%,avalanche, is observed in the evolution of Bak-Sneppen
model. An exact gap equation, governing the self-organization of the model, is presented in térntsiof
found that self-organized threshol_g can be exactly obtained. Two basic exponents of the new avalanche
avalanche distribution, arid, avalanche dimension are given through simulations of one- and two-dimensional
Bak-Sneppen models. It is suggested ﬁatay be a good quantity in determining the emergence of criticality.

PACS numbefs): 87.10+e, 05.40-a, 05.65+b

The term avalanche may originate from the phenomenae., Gutenberg-Ritcher lafb], or equivalently, power law,
which occur in nature. It is referred to as sequential eventsloes not depend on such details due to the universality of
which may cause devastating catastrophes. The phenomeoamplexity. Hence, in this sense an avalanche study may be
of avalanches are ubiquitous in nature. The canonical exan appropriate tool in studying various complex phenomena.
ample of the avalanche is the mountain slide, during which &n the other hand, observation of a great variety of patterns,
great mass of snow and ice at a high altitude slide down guch as self-similar, fractal behavior in naty@-9], 1/f
mountain side, often carrying with it thousands of tons ofnoise in quasaf10], river flow [11], and brain activity{12],
rock, and sometimes destroying forests, houses, etc., in isnd many natural and social phenomena, including earth-
path[1]. Since avalanches occur everywhere, from the ricequakes, economic activity, and biological evolution suggests
pile, to the Himalayan sand piles; from the river network, tothat these phenomena are signatures of spatiotemporal com-
the earthquake, starquakes, and even solar flares; from tipdexity and can be related via scaling relations to the fractal
biology to the economj2], etc., it is hence proposéd] that  properties of the avalanchgk3]. This suggestion means that
avalanches may be the underlying mechanism of the formahe occurrence of these general, empirical phenomena may
tion of various geographical structures and complex organbe attributed to the same underlying avalanche dynamics.
isms, e.g., brains, etglt is now even proposed by Meng Thus, one can see that study of the avalanche is crucial in
et al. [3] that the formation of colorless gluon clusters mayinvestigating the critical features of complex systems. It can
be attributed to avalanches intrigued by emission or absorpeven be inferred that avalanche dynamics provides much
tion of gluons) From this point of view, avalanches can be useful information for us to understand the general features
viewed as the immediate results of complex systems, andf the ubiquitous complexity around us.
hence can be used as the theoretical justification for catastro- Despite the fact that avalanche may provide insight into
phism. This is because if the real world is complex then thecomplexity, the definition of which can be vastly different
catastrophes are inevitable and unavoidable. for various systems, and the same sorts of systems, even the

Plenty of patterns provided by nature exhibit coherentsame system. Let us recall some definitions of avalanche
macroscopic structures developed at various scales and dpiven before. In the sand pile modgt], an avalanche is
not exhibit elementary interconnections. They immediatelyintrigued by adding a grain or several grains of sand into the
suggest seeking a compact description of the spatiotemporaystem at some time and causing the topple of some sites,
dynamics based on the relationship among macroscopic elevhich may later on cause some other sites to topple. The
ments rather than lingering on their inner structi#te That  avalanche is considered over when the heights of all the sites
is, one needs to condense information when dealing witlare less than the critical value, say, 4. In the Bak-Sneppen
complex systems. Maybe only this way is efficient and turnamodel[14], several kinds of avalanch¢&3] are presented.
out successful. For instance,f, avalanche,G(s) avalanche, forward ava-

As known, the avalanche is a kind of macroscopic phedanche, backward avalanche, etc. Though these kinds of defi-
nomenon driven by local interactions. The size of the avanitions of avalanche may show various hierarchical struc-
lanche, spatial and temporal as well, may be sensitive to thiires they manifest the same underlying fractal feature of the
initial configuration, or more generally, the detailed dynam-system, i.e., self-organized criticalittSOCQ. Relating all
ics of the system. However, the distribution of avalanchesthese kinds of avalanches one can provide a general defini-

tion of the avalanche for Bak-Sneppen model: An avalanche
corresponds to sequential mutations below a certain thresh-
*Electronic address: liw@iopp.ccnu.edu.cn old. One can see that this kind of definition can ensure the
"Electronic address: xcai@wuhan.cngb.com mutation events within a single avalanche are casually and
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spatially connected. In addition, with this definition therethe species with the smallest random number, and dits 2
exists a hierarchy of avalanches, each defined by their reaearest neighboring sites, are assignéd-2 new random
spective threshold. It is the hierarchical structure of the avanumbers also chosen frop(f). This updating process con-
lanche, which exhibits the fractal geometry of the system andinues indefinitely. After a long transient process the system
implies complexity. reaches a statistically stationary state where the density of
It can be inferred from the definition of an avalanche thatrandom numbers in the system vanishes fierf. and is
there always exists a triggering event which initiates an avauniform abovef (the self-organized threshold
lanche and whose effect, that is, causing the avalanche to !ntroduce a new quantity for Bak-Sneppen model. Define
spread later on within the system, will disappear at the end dfhe average fitness, denoted hyas
the avalanche. The observation of the avalanche through the
triggering event, up to now, has been based on the individual Ld
level, despite the fact that the avalanche is a macroscopic and . i 2 .
global phenomenon of the system studied, in the laboratory, =
and in nature as well. In the sand pile model, the triggering
event is adding a grain or several grains of sand to some site, o
causing them to topple. In the Bak-Sneppen model, the comwheref; is the fitness of théth species. Here, we refer fo
responding triggering event of an avalanche is mutation ofg the average fitness and a global quantity of the system.

the extremal species causing the fitngl4 of the extremal 3y represent average population or average living capabil-

site at the next time step less than a certain threshold. In thI }/ of the whole ecosystem. Largg i.e., high average fit-

above two models triggering events are directly connecteness’ may imply the total population of the system is im-

with the feature of individuals, e.g., the height of the site inmense or its average livina capability is areat. and vice versa
the former or, the fitness of the extremal site in the latter. It 9 g capability is g ' )

can be readily learned that the triggering events, whether iA\n initial value of f, denoted byf(0) , can be easily ob-
the laboratory or in nature, are not directly related to thefdined. As known, at the beginning of the evolutiffs are
global feature of the systems although the avalanche cawniformly distributed betweer0,1). Hence, for an infinite-
span the whole system. Generally speaking, the behavior ¢fize systemf(0) equals 0.5. However, for a finite-size sys-
avalanches is observed through the features of individualsem f(0) fluctuates slightly due to the finite size effect. It

instead of those of the whole system. However, general feaspquid be pointed out thzi_(O) does not reflect the correla-

tures of the complex system may provide insight into know-ijon, peqween species. As the evolution goes on such a corre-
ing the tendency of the evolution of the system. Specifically

global features of a complex system may enable one to ud?tlon tends to be more d.'Stht'V.e' Dendigs) Fhe average
derstand the critical behavior of the system. It implies that eSS Of the s;yst_em at time stefn the evolution. In thes
some characteristic quantity, representing the correspondir§nit, i.e., s>L%, f(s) may partly reflect information about
global features, can be employed in describing complex syssorrelation. As a global quantityi(s) should include infor-
tems. Furthermore, these quantities ought to be related tmation concerning the interaction between species. Hence, it

avalanche dynamics, and hence can be used to describe co@natural to expect the{_tmay be a good quantity in describ-
plexity emerged in a variety of complex systems. Our aim ising the feature of the system as a whole.

to search for or define such quantities and we expect to ob- Before introducing the different hierarchy of avalanches it
serve new types of avalanches based on these quantities. 8- necessary and worthwhile to investigate features of the

deed, we obtain a quantity which can be used to define e\, quantityf(s). First, let us present some theoretical
different hierarchy of avalanches in the Bak-Sneppen model. . . o —
nalysis. Recalling the definition of one can see that

We suggest that this quantity may be used as a criterion iR —= ) s

determining the emergence of criticality. It will be shown Af(s)=f(s+1)—f(s) approaches zero in the—oo limit.

later that this type of avalanche still exhibits spatiotemporalAn observer can hardly perceive the changd (s) during

complexity in another context. such a short time period since it is vanishingly small. How-
The Bak-Sneppen modgl4] is a very simple evolution ever, changes at each time step are accumulated to form a

model of biology. Despite the simplicity of the model itself, relatively distinctive change after a long time, which is per-

it can exhibit the skeleton of species evolution—punctuateaeivable for the observer. This long time period is required to

equilibrium. In Bak-Sneppen model, each species is reprebe much larger than the system size, isL% In other

sented by a single fitness. The fitness may represent populgords, f(s+s,) —f(s,) may only be “noticed” whens

tion of a Who_le specie_s or living capability of the §pecies>|_d (s, denotes any initial time st¢pThe variation off_(s)
[15]. It is a vital quantity and the only one descnbm_g th? is small between two successive time steps, which differs

Sfrom that of fitness of extremal site. The latter can be very

oversimplified model. Thus, the fitness is the most importan;arge’ say, 1. It should also be expected that there exists an

feature of species, and absolutely the most important of the . — . .
P y D ncreasing tendency df(s) versus times. This is because at

model. So, when considering global feature of the ecosyé— ; . S
tem. one has to relate it to that of individuals. i.e.. fithess. each time step the least fitness is eliminated from the system
In this “toy” model (Bak-Sneppen mod)elra'ndon"l num- SO the general fitness of the whole system will tend to in-

bersf; chosen from a flat distributiop(f) are assigned in- crease. And due to the slow fluctuationf¢$) the increasing
dependently to each species located akdimensional lat- in f(s) behaves similar to a staircase, i.e., Devil's staircase
tice of linear size.. At each time step, the extremal site, i.e., [2]. Hence, one may expect to observe such behavior, i.e.,

@
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0.62 E the largeL limit, N, can be arbitrarily large. Hence, in this
0.6 E limit, the average number of time steps required to increase
0.58 E- the gap fromF(s) to F(s)+AF is given by the interval
£ 8:22 S As:<S>F(S)Nay=(S}F(S)AFLd/[fc—F(s)], Wher¢<5>p(s) is
N 052 B the average size of avalanche of the plateaus in the gap func-
05 E- tion. From the law of large numbers the fluctuation of this
0.48 £ interval around its average value vanishes. In Afe—0
0.46 Brodoolu oo oo oo b limit, As—0. Taking the continuum limit we can obtain the
0.85 differential equation folF(s),
0.8 —
0.75 (b) dF(s) fc—F(s) @
o 07 d=1 ds Ld<S>F(s)
L. 0.65
0.6 L=200 Note that this equation is exact.
0.55 All SOC models, e.g., the BTW sand pile modl&l], the
05 LLLI Lo ben b b Lawn 1y earthquake mode[4.8], or Bak-Sneppen modgl4], exhibit
0 2000 4000 6000 8000 10000 12000 self-organized criticality in terms of a power-law distribution
s of the avalanche. It is natural to expect that we can observe

_ SOC in terms of the hierarchical structure ffs), which
FIG. 1. (a) The variation off versus time during a time period itself manifests Comp|exity_ It is S|mp|y another way to ob-
for a one-dimensional Bak-SneBpen model of size200. This  gerye the same phenomenon by using such a quantity to de-
shows the hierarchical structure fof(b) Punctuated equilibrium of  fine the avalanche, which can be observed in different ways.
f for a one-dimensional Bak-Sneppen model of dize200. We  As known, the emergence of complexity is independent of
track the increasing signal 6{s), i.e., F(s). the tools used to observe them provided that these tools are
efficient and strong enough. Similar to those used in Refs.

punctuated equilibriuni14], of f(s) in the evolution of the ~[13,19, we present the definition of tffg avalanche, where
Bak-Sneppen model. fo (0.5<f,<<1.0) is only a parameter used to define the ava-

In order to show the feature df(s) versus times we  lanche. Suppose at time step f(s,) is larger tharf,. If, at
perform simulations of the Bak-Sneppen model. At eachime steps;+1, f(s;+1) is less thanf,, this initiates a
time step, in addition to the updating of the extremal sitescreation-annihilation branching process. The avalanche still

we also track the signalf(s). Figure 1a) presents the evo- continues at time steg, if all the f(s) are less thari, for
lution of f(s) versus times during some time period. This 1<s=s'—1. The avalanche stops, say, at time sigf S,

plot shows thaff(s) varies slightly between two successive whenf(s; +S) >f_(sl). In terms of this definition, the size of
time steps but tends to increase in the long evolution procestie avalanche is the number of time steps between subse-

Introducing another quantit(s), the gap of the average quent punctuation of the barriég by the signalf(s). In the
fitness. The definition oF(_s) is given as follows: Initial above example, the size of the avalancheSidt can be
value of F(s) is equal tof(0). After s updates, a large clearly seen from Fig. (&) that this definition guarantees the
F(s)>F(0) opens up. The current g&{s) is the maximum hierarchical structure of avalanches—larger avalanches con-
of all F(s"), for all 0<s’'<s. Figure Ib) showsF(s) as a sist of smaller avalanches. Af is lowered, bigger ava-
staircase increasing function efduring the transient. Actu- lanches are subdivided into smaller ones. Hence, the statis-

ally, the gap is an envelope function that tracks the increasijcs of thef, avalanche will inevitably have a cutoff ff, is
ing peaks inf(s). Indeed, punctuated equilibrium behavior ot chosen to bé_c_ We can also define {C avalanche.

appears in terms df(s). . Nevertheless, thé, avalanche in the stationary state has the
By_def|n|t|on_[14], the separate instances when the 9380same scaling behavior as tﬁ@avalanche provideﬁo close

F(s) jumps to its next higher value are separated by ava- — — o

lanches. Avalanches correspond to plateauk (s) during to fe. We measure thé, a\_/alanc_he distribution for one-

which f_(s)<F(s). A new avalanche is initiated each time dimensional(1D) and two-dimensiona(2D) Bak-Sneppen

: : . models. The simulation results are given in Fig. 2. The ex-
the gap jumps and ends up when the gap jumps again. As trb%nentf, defined byP(S)~S 7, is 1.800 for 1D model and
gap increases, the probability for the average fitrf¢sy, to 1 725 for the 2D model. Another exponedt avalanche di-
fall below the gap increases also, and larger and larger avanensjon[13], defined byn.,,~ SP’9, wheren.,, is the num-
lanches typically occur. _ o ber of sites covered by an avalanche, ahds the space
We can derive an exact gap equationFds), similar o gimension, is measured. We fillti=2.45 for the 1D model
that found in Ref[16]. Suppose in the system the current gng 3.10 for the 2D model.
gap isF(s). If F(s) is to be increased byF, i.e., fromF(s)  yp to now, a question is still unsolved. It is the critical
to F(s)+AF, the average number of avalanches needed Walue off, f.. This may be troublesome if the system size is

Nay=AFLY[f.~F(s)], where f. is the critical value of finite, but when we consider the largdimit, it can be easily
f(s). We can guarantedl,>1 by selectingAF>L"9 In  accomplished. Recall the evolution of Bak-Sneppen model,
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FIG. 3. The fluctuation of around the critical state for a one-
dimensional Bak-Sneppen model of size 200.

InS

FIG. 2. Distributions of thef, avalanche for(a) one-

dimensional Bak-Sneppen model with size: 200,f_0=0.821 and
slope= —1.800 and(b) two-dimensional Bak-Sneppen model with

_ feature off. It is more reasonable and easily accepted since
sizeL =20, f;=0.648 and slope —1.725.

f is a global quantity and condenses information of the sys-

or the detailed research of the model of Héf3], the densi-
ties of sites with random numbers is uniform abdveand
vanishes belowG whenL—«, whereG is the gap of ex-
tremal site. One can readily obtain

o — ~ 1+G(s)
lim F(s)= lim — (3

L—o L—oo

From Eq.(3) one can immediately obtain

1+f, .
. @

lim f.=lim
L—o L—o

Hence,f_c can be easily determined from E@). Using_the
results off; provided by Refs[13,20, one can obtairf,

tem and its components.

Why do we call thef_o avalanche a different hierarchy of
avalanches? First, this type of avalanche is defined on a glo-

bal level, in terms of the new global quantify The back-
ground of this definition is different than those used before.
This type of avalanche reflects the fractal geometry in terms
of the global feature. Secondly, one can notice that the ex-
ponentsr of avalanche distribution obtained in our simula-
tions are different than those found in RgL3]. From this
point of view, one can conclude that this type of avalanche is
different than any one observed before.

SOC was suggested by Bakal.to be the “fingerprints”
of a large variety of complex systems, which is represented
by a scale-free line on a double logarithm plot. In order to
know the criticality of a system one needs to know when the
system reaches the stable stationary state where the phase

0.83351 for the 1D model and 0.66443 for the 2D modeltransition occurs. It is extremely difficult and nearly impos-
However, Eqs(3) and (4) are not valid for a finite-size sys- sible for one to know when a system in nature approaches its

tem, since one cannot ensure the distribution of randong'itical state. One has to study the ubiquitous fractal geo-
numbers during a finite-size system is really uniform. Due tometrical structure carved by avalanches through thousands of
the fluctuation off(s) it is extremely difficult to determine Millions of years. However, in laboratory experiments and

the exact critical value of for a finite-siz tem. One m computer simulations, one needs a criterion to determine
€ exact criical value of for a finte-size system. On€ may \pether stationary state approaches, even, reaches, since sta-

estimatef ; for a finite-size system using the simulation. We tistics of avalanches may only be done under critical state of
find that this value weakly depends on the system size whefhe system. Given the Bak-Sneppen model, when the ex-
it is enough large and. will approach the corresponding tremal signalff ., approaches the self-organized threshipld

value for infinite systems. Figure 3 shows the fluctuatiof of the ecosystem reaches its stationary state. Howdygrit-
for a 1D model of sizeL =200 near the critical state. We Self fluctuates greatly time to time, which brings a big prob-

note, in this curvef fluctuates slightly around some averageIern _|n determining the appearance of criticality. Thus, we

value and does not tend to increase any more during a longrovide a quantityf for a candidate in judging the emergence
time period. We may say that the system approaches its staf criticality. As shown,f is relatively stable in a short time

tionary state. In this sense, we suggest thatay be a good period. Hence, wheii does not tend to increase any more,
guantity in determining the emergence of criticality. That is,one may say that the system approaches its stationary state.
the great fluctuation of,,, will not help us to determine One can also observe criticality over quite a long time pe-
when we approach the critical state. We need only know theiod.
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