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Different hierarchy of avalanches observed in the Bak-Sneppen evolution model
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A quantity f̄ denoting the average fitness of an ecosystem is introduced in the Bak-Sneppen model. Through

this quantity, a different hierarchy of avalanches,f̄ 0 avalanche, is observed in the evolution of Bak-Sneppen

model. An exact gap equation, governing the self-organization of the model, is presented in terms off̄ . It is

found that self-organized thresholdf̄ c can be exactly obtained. Two basic exponents of the new avalanchet,
avalanche distribution, andD, avalanche dimension are given through simulations of one- and two-dimensional

Bak-Sneppen models. It is suggested thatf̄ may be a good quantity in determining the emergence of criticality.

PACS number~s!: 87.10.1e, 05.40.2a, 05.65.1b
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The term avalanche may originate from the phenom
which occur in nature. It is referred to as sequential eve
which may cause devastating catastrophes. The phenom
of avalanches are ubiquitous in nature. The canonical
ample of the avalanche is the mountain slide, during whic
great mass of snow and ice at a high altitude slide dow
mountain side, often carrying with it thousands of tons
rock, and sometimes destroying forests, houses, etc., i
path @1#. Since avalanches occur everywhere, from the r
pile, to the Himalayan sand piles; from the river network,
the earthquake, starquakes, and even solar flares; from
biology to the economy@2#, etc., it is hence proposed@2# that
avalanches may be the underlying mechanism of the for
tion of various geographical structures and complex org
isms, e.g., brains, etc.~It is now even proposed by Men
et al. @3# that the formation of colorless gluon clusters m
be attributed to avalanches intrigued by emission or abs
tion of gluons.! From this point of view, avalanches can b
viewed as the immediate results of complex systems,
hence can be used as the theoretical justification for cata
phism. This is because if the real world is complex then
catastrophes are inevitable and unavoidable.

Plenty of patterns provided by nature exhibit coher
macroscopic structures developed at various scales an
not exhibit elementary interconnections. They immediat
suggest seeking a compact description of the spatiotemp
dynamics based on the relationship among macroscopic
ments rather than lingering on their inner structure@4#. That
is, one needs to condense information when dealing w
complex systems. Maybe only this way is efficient and tu
out successful.

As known, the avalanche is a kind of macroscopic p
nomenon driven by local interactions. The size of the a
lanche, spatial and temporal as well, may be sensitive to
initial configuration, or more generally, the detailed dyna
ics of the system. However, the distribution of avalanch
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i.e., Gutenberg-Ritcher law@5#, or equivalently, power law,
does not depend on such details due to the universality
complexity. Hence, in this sense an avalanche study ma
an appropriate tool in studying various complex phenome
On the other hand, observation of a great variety of patte
such as self-similar, fractal behavior in nature@6–9#, 1/f
noise in quasar@10#, river flow @11#, and brain activity@12#,
and many natural and social phenomena, including ea
quakes, economic activity, and biological evolution sugge
that these phenomena are signatures of spatiotemporal
plexity and can be related via scaling relations to the frac
properties of the avalanches@13#. This suggestion means tha
the occurrence of these general, empirical phenomena
be attributed to the same underlying avalanche dynam
Thus, one can see that study of the avalanche is crucia
investigating the critical features of complex systems. It c
even be inferred that avalanche dynamics provides m
useful information for us to understand the general featu
of the ubiquitous complexity around us.

Despite the fact that avalanche may provide insight i
complexity, the definition of which can be vastly differe
for various systems, and the same sorts of systems, eve
same system. Let us recall some definitions of avalan
given before. In the sand pile model@2#, an avalanche is
intrigued by adding a grain or several grains of sand into
system at some time and causing the topple of some s
which may later on cause some other sites to topple.
avalanche is considered over when the heights of all the s
are less than the critical value, say, 4. In the Bak-Snep
model @14#, several kinds of avalanches@13# are presented
For instance,f 0 avalanche,G(s) avalanche, forward ava
lanche, backward avalanche, etc. Though these kinds of d
nitions of avalanche may show various hierarchical str
tures they manifest the same underlying fractal feature of
system, i.e., self-organized criticality~SOC!. Relating all
these kinds of avalanches one can provide a general de
tion of the avalanche for Bak-Sneppen model: An avalan
corresponds to sequential mutations below a certain thr
old. One can see that this kind of definition can ensure
mutation events within a single avalanche are casually
771 ©2000 The American Physical Society
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spatially connected. In addition, with this definition the
exists a hierarchy of avalanches, each defined by their
spective threshold. It is the hierarchical structure of the a
lanche, which exhibits the fractal geometry of the system
implies complexity.

It can be inferred from the definition of an avalanche th
there always exists a triggering event which initiates an a
lanche and whose effect, that is, causing the avalanch
spread later on within the system, will disappear at the en
the avalanche. The observation of the avalanche through
triggering event, up to now, has been based on the individ
level, despite the fact that the avalanche is a macroscopic
global phenomenon of the system studied, in the laborat
and in nature as well. In the sand pile model, the trigger
event is adding a grain or several grains of sand to some
causing them to topple. In the Bak-Sneppen model, the
responding triggering event of an avalanche is mutation
the extremal species causing the fitness@14# of the extremal
site at the next time step less than a certain threshold. In
above two models triggering events are directly connec
with the feature of individuals, e.g., the height of the site
the former or, the fitness of the extremal site in the latter
can be readily learned that the triggering events, whethe
the laboratory or in nature, are not directly related to
global feature of the systems although the avalanche
span the whole system. Generally speaking, the behavio
avalanches is observed through the features of individu
instead of those of the whole system. However, general
tures of the complex system may provide insight into kno
ing the tendency of the evolution of the system. Specifica
global features of a complex system may enable one to
derstand the critical behavior of the system. It implies t
some characteristic quantity, representing the correspon
global features, can be employed in describing complex s
tems. Furthermore, these quantities ought to be relate
avalanche dynamics, and hence can be used to describe
plexity emerged in a variety of complex systems. Our aim
to search for or define such quantities and we expect to
serve new types of avalanches based on these quantitie
deed, we obtain a quantity which can be used to defin
different hierarchy of avalanches in the Bak-Sneppen mo
We suggest that this quantity may be used as a criterio
determining the emergence of criticality. It will be show
later that this type of avalanche still exhibits spatiotempo
complexity in another context.

The Bak-Sneppen model@14# is a very simple evolution
model of biology. Despite the simplicity of the model itse
it can exhibit the skeleton of species evolution—punctua
equilibrium. In Bak-Sneppen model, each species is re
sented by a single fitness. The fitness may represent pop
tion of a whole species or living capability of the speci
@15#. It is a vital quantity and the only one describing th
model. No other additional quantities are employed in t
oversimplified model. Thus, the fitness is the most import
feature of species, and absolutely the most important of
model. So, when considering global feature of the ecos
tem, one has to relate it to that of individuals, i.e., fitness

In this ‘‘toy’’ model ~Bak-Sneppen model!, random num-
bers f i chosen from a flat distributionp( f ) are assigned in-
dependently to each species located on ad-dimensional lat-
tice of linear sizeL. At each time step, the extremal site, i.e
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the species with the smallest random number, and itsd
nearest neighboring sites, are assigned 2d11 new random
numbers also chosen fromp( f ). This updating process con
tinues indefinitely. After a long transient process the syst
reaches a statistically stationary state where the densit
random numbers in the system vanishes forf , f c and is
uniform abovef c ~the self-organized threshold!.

Introduce a new quantity for Bak-Sneppen model. Defi
the average fitness, denoted byf̄ , as

f̄ 5
1

Ld (
i 51

Ld

f i , ~1!

where f i is the fitness of thei th species. Here, we refer tof̄
as the average fitness and a global quantity of the systef̄
may represent average population or average living capa
ity of the whole ecosystem. Largef̄ , i.e., high average fit-
ness, may imply the total population of the system is i
mense or its average living capability is great, and vice ve
An initial value of f̄ , denoted byf̄ (0) , can be easily ob-
tained. As known, at the beginning of the evolutionf i ’s are
uniformly distributed between~0,1!. Hence, for an infinite-
size system,f̄ (0) equals 0.5. However, for a finite-size sy
tem f̄ (0) fluctuates slightly due to the finite size effect.
should be pointed out thatf̄ (0) does not reflect the correla
tion between species. As the evolution goes on such a co
lation tends to be more distinctive. Denotef̄ (s) the average
fitness of the system at time steps in the evolution. In thes
limit, i.e., s@Ld, f̄ (s) may partly reflect information abou
correlation. As a global quantity,f̄ (s) should include infor-
mation concerning the interaction between species. Henc
is natural to expect thatf̄ may be a good quantity in describ
ing the feature of the system as a whole.

Before introducing the different hierarchy of avalanches
is necessary and worthwhile to investigate features of
new quantity f̄ (s). First, let us present some theoretic
analysis. Recalling the definition off̄ one can see tha
D f̄ (s)5 f̄ (s11)2 f̄ (s) approaches zero in theL→` limit.
An observer can hardly perceive the change inf̄ (s) during
such a short time period since it is vanishingly small. Ho
ever, changes at each time step are accumulated to fo
relatively distinctive change after a long time, which is pe
ceivable for the observer. This long time period is required
be much larger than the system size, i.e.,s@Ld. In other
words, f̄ (s1s0)2 f̄ (s0) may only be ‘‘noticed’’ whens

@Ld (s0 denotes any initial time step!. The variation off̄ (s)
is small between two successive time steps, which diff
from that of fitness of extremal site. The latter can be ve
large, say, 1. It should also be expected that there exist
increasing tendency off̄ (s) versus times. This is because a
each time step the least fitness is eliminated from the sys
so the general fitness of the whole system will tend to
crease. And due to the slow fluctuation off̄ (s) the increasing
in f̄ (s) behaves similar to a staircase, i.e., Devil’s stairca
@2#. Hence, one may expect to observe such behavior,
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punctuated equilibrium@14#, of f̄ (s) in the evolution of the
Bak-Sneppen model.

In order to show the feature off̄ (s) versus times we
perform simulations of the Bak-Sneppen model. At ea
time step, in addition to the updating of the extremal sit
we also track the signalsf̄ (s). Figure 1~a! presents the evo
lution of f̄ (s) versus times during some time period. This
plot shows thatf̄ (s) varies slightly between two successiv
time steps but tends to increase in the long evolution proc

Introducing another quantityF(s), the gap of the averag
fitness. The definition ofF(s) is given as follows: Initial
value of F(s) is equal to f̄ (0). After s updates, a large
F(s).F(0) opens up. The current gapF(s) is the maximum
of all F(s8), for all 0<s8,s. Figure 1~b! showsF(s) as a
staircase increasing function ofs during the transient. Actu-
ally, the gap is an envelope function that tracks the incre
ing peaks inf̄ (s). Indeed, punctuated equilibrium behavi
appears in terms off̄ (s).

By definition @14#, the separate instances when the g
F(s) jumps to its next higher value are separated by a
lanches. Avalanches correspond to plateaus inF(s) during
which f̄ (s),F(s). A new avalanche is initiated each tim
the gap jumps and ends up when the gap jumps again. A
gap increases, the probability for the average fitnessf̄ (s), to
fall below the gap increases also, and larger and larger
lanches typically occur.

We can derive an exact gap equation ofF(s), similar to
that found in Ref.@16#. Suppose in the system the curre
gap isF(s). If F(s) is to be increased byDF, i.e., fromF(s)
to F(s)1DF, the average number of avalanches neede
Nav5DFLd/@ f̄ c2F(s)#, where f̄ c is the critical value of
f̄ (s). We can guaranteeNav@1 by selectingDF@L2d. In

FIG. 1. ~a! The variation off̄ versus time during a time perio
for a one-dimensional Bak-Sneppen model of sizeL5200. This

shows the hierarchical structure off̄ . ~b! Punctuated equilibrium of

f̄ for a one-dimensional Bak-Sneppen model of sizeL5200. We

track the increasing signal off̄ (s), i.e., F(s).
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the largeL limit, Nav can be arbitrarily large. Hence, in thi
limit, the average number of time steps required to incre
the gap fromF(s) to F(s)1DF is given by the interval
Ds5^S&F(s)Nav5^S&F(s)DFLd/@ f̄ c2F(s)#, where^S&F(s) is
the average size of avalanche of the plateaus in the gap f
tion. From the law of large numbers the fluctuation of th
interval around its average value vanishes. In theDF→0
limit, Ds→0. Taking the continuum limit we can obtain th
differential equation forF(s),

dF~s!

ds
5

f̄ c2F~s!

Ld^S&F(s)

. ~2!

Note that this equation is exact.
All SOC models, e.g., the BTW sand pile model@17#, the

earthquake models@18#, or Bak-Sneppen model@14#, exhibit
self-organized criticality in terms of a power-law distributio
of the avalanche. It is natural to expect that we can obse
SOC in terms of the hierarchical structure off̄ (s), which
itself manifests complexity. It is simply another way to o
serve the same phenomenon by using such a quantity to
fine the avalanche, which can be observed in different wa
As known, the emergence of complexity is independent
the tools used to observe them provided that these tools
efficient and strong enough. Similar to those used in R
@13,19#, we present the definition of thef̄ 0 avalanche, where
f̄ 0 (0.5, f̄ 0,1.0) is only a parameter used to define the a
lanche. Suppose at time steps1 , f̄ (s1) is larger thanf̄ 0. If, at
time steps111, f̄ (s111) is less thanf̄ 0, this initiates a
creation-annihilation branching process. The avalanche
continues at time steps8, if all the f̄ (s) are less thanf̄ 0 for
1<s<s821. The avalanche stops, say, at time steps11S,
when f̄ (s11S). f̄ (s1). In terms of this definition, the size o
the avalanche is the number of time steps between su
quent punctuation of the barrierf̄ 0 by the signalf̄ (s). In the
above example, the size of the avalanche isS. It can be
clearly seen from Fig. 1~a! that this definition guarantees th
hierarchical structure of avalanches—larger avalanches
sist of smaller avalanches. Asf̄ 0 is lowered, bigger ava-
lanches are subdivided into smaller ones. Hence, the st
tics of the f̄ 0 avalanche will inevitably have a cutoff iff̄ 0 is
not chosen to bef̄ c . We can also define af̄ c avalanche.
Nevertheless, thef̄ 0 avalanche in the stationary state has t
same scaling behavior as thef̄ c avalanche providedf̄ 0 close
to f̄ c . We measure thef̄ 0 avalanche distribution for one
dimensional~1D! and two-dimensional~2D! Bak-Sneppen
models. The simulation results are given in Fig. 2. The
ponentt, defined byP(S);S2t, is 1.800 for 1D model and
1.725 for the 2D model. Another exponentD, avalanche di-
mension@13#, defined byncov;SD/d, wherencov is the num-
ber of sites covered by an avalanche, andd is the space
dimension, is measured. We findD52.45 for the 1D model
and 3.10 for the 2D model.

Up to now, a question is still unsolved. It is the critic
value of f̄ , f̄ c . This may be troublesome if the system size
finite, but when we consider the largeL limit, it can be easily
accomplished. Recall the evolution of Bak-Sneppen mo
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774 PRE 61W. LI AND X. CAI
or the detailed research of the model of Ref.@13#, the densi-
ties of sites with random numbers is uniform aboveG and
vanishes belowG when L→`, whereG is the gap of ex-
tremal site. One can readily obtain

lim
L→`

F̄~s!5 lim
L→`

11G~s!

2
. ~3!

From Eq.~3! one can immediately obtain

lim
L→`

f̄ c5 lim
L→`

11 f c

2
. ~4!

Hence,f̄ c can be easily determined from Eq.~4!. Using the
results of f c provided by Refs.@13,20#, one can obtainf̄ c ,
0.83351 for the 1D model and 0.66443 for the 2D mod
However, Eqs.~3! and~4! are not valid for a finite-size sys
tem, since one cannot ensure the distribution of rand
numbers during a finite-size system is really uniform. Due
the fluctuation off̄ (s) it is extremely difficult to determine
the exact critical value off̄ for a finite-size system. One ma
estimatef̄ c for a finite-size system using the simulation. W
find that this value weakly depends on the system size w
it is enough large andf̄ c will approach the correspondin
value for infinite systems. Figure 3 shows the fluctuation of̄
for a 1D model of sizeL5200 near the critical state. W
note, in this curve,f̄ fluctuates slightly around some avera
value and does not tend to increase any more during a
time period. We may say that the system approaches its
tionary state. In this sense, we suggest thatf̄ may be a good
quantity in determining the emergence of criticality. That
the great fluctuation off min will not help us to determine
when we approach the critical state. We need only know

FIG. 2. Distributions of the f̄ 0 avalanche for ~a! one-

dimensional Bak-Sneppen model with sizeL5200, f̄ 050.821 and
slope521.800 and~b! two-dimensional Bak-Sneppen model wi

sizeL520, f̄ 050.648 and slope521.725.
l.

m
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ng
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e

feature of f̄ . It is more reasonable and easily accepted si

f̄ is a global quantity and condenses information of the s
tem and its components.

Why do we call thef̄ 0 avalanche a different hierarchy o
avalanches? First, this type of avalanche is defined on a

bal level, in terms of the new global quantityf̄ . The back-
ground of this definition is different than those used befo
This type of avalanche reflects the fractal geometry in ter
of the global feature. Secondly, one can notice that the
ponentst of avalanche distribution obtained in our simul
tions are different than those found in Ref.@13#. From this
point of view, one can conclude that this type of avalanch
different than any one observed before.

SOC was suggested by Baket al. to be the ‘‘fingerprints’’
of a large variety of complex systems, which is represen
by a scale-free line on a double logarithm plot. In order
know the criticality of a system one needs to know when
system reaches the stable stationary state where the p
transition occurs. It is extremely difficult and nearly impo
sible for one to know when a system in nature approache
critical state. One has to study the ubiquitous fractal g
metrical structure carved by avalanches through thousand
millions of years. However, in laboratory experiments a
computer simulations, one needs a criterion to determ
whether stationary state approaches, even, reaches, sinc
tistics of avalanches may only be done under critical state
the system. Given the Bak-Sneppen model, when the
tremal signalf min approaches the self-organized thresholdf c
the ecosystem reaches its stationary state. However,f min it-
self fluctuates greatly time to time, which brings a big pro
lem in determining the appearance of criticality. Thus,
provide a quantityf̄ for a candidate in judging the emergen
of criticality. As shown,f̄ is relatively stable in a short time
period. Hence, whenf̄ does not tend to increase any mor
one may say that the system approaches its stationary s
One can also observe criticality over quite a long time p
riod.

FIG. 3. The fluctuation off̄ around the critical state for a one
dimensional Bak-Sneppen model of sizeL5200.
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In conclusion, a different hierarchy of avalanches is o
served in the Bak-Sneppen model. A new quantityf̄ is pre-
sented and suggested by us to be a possible candida
determining the emergence of criticality. An exact gap eq
tion and simulation results are also given.
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